

# **Ball and Roller Bearings**



| Technical Data                     | A- 5  |
|------------------------------------|-------|
| Deep Groove Ball Bearings          | B- 5  |
| Miniature and Extra Small Bearings | B- 31 |
| Angular Contact Ball Bearings      | B- 43 |
| Self-Aligning Ball Bearings        | B- 79 |
| Cylindrical Roller Bearings        | B- 91 |
| Tapered Roller Bearings            | B-133 |
| Spherical Roller Bearings          | B-233 |
| Thrust Bearings                    | B-269 |
|                                    |       |
| Locknuts, Lockwashers & Lockplates | C- 1  |
|                                    |       |
| Catalog List & Appendix Table      | D- 1  |

## Warranty

NTN warrants, to the original purchaser only, that the delivered product which is the subject of this sale (a) will conform to drawings and specifications mutually established in writing as applicable to the contract, and (b) be free from defects in material or fabrication. The duration of this warranty is one year from date of delivery. If the buyer discovers within this period a failure of the product to conform to drawings or specifications, or a defect in material or fabrication, it must promptly notify NTN in writing. In no event shall such notification be received by NTN later than 13 months from the date of delivery. Within a reasonable time after such notification, NTN will, at its option, (a) correct any failure of the product to conform to drawings, specifications or any defect in material or workmanship, with either replacement or repair of the product, or (b) refund, in part or in whole, the purchase price. Such replacement and repair, excluding charges for labor, is at NTN's expense. All warranty service will be performed at service centers designated by NTN. These remedies are the purchaser's exclusive remedies for breach of warranty.

NTN does not warrant (a) any product, components or parts not manufactured by NTN, (b) defects caused by failure to provide a suitable installation environment for the product, (c) damage caused by use of the product for purposes other than those for which it was designed, (d) damage caused by disasters such as fire, flood, wind, and lightning, (e) damage caused by unauthorized attachments or modification, (f) damage during shipment, or (g) any other abuse or misuse by the purchaser.

THE FOREGOING WARRANTIES ARE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

In no case shall NTN be liable for any special, incidental, or consequential damages based upon breach of warranty, breach of contract, negligence, strict tort, or any other legal theory, and in no case shall total liability of NTN exceed the purchase price of the part upon which such liability is based. Such damages include, but are not limited to, loss of profits, loss of savings or revenue, loss of use of the product or any associated equipment, cost of capital, cost of any substitute equipment, facilities or services, downtime, the claims of third parties including customers, and injury to property. Some states do not allow limits on warranties, or on remedies for breach in certain transactions. In such states, the limits in this paragraph and in paragraph (2) shall apply to the extent allowable under case law and statutes in such states.

Any action for breach of warranty or any other legal theory must be commenced within 15 months following delivery of the goods.

Unless modified in a writing signed by both parties, this agreement is understood to be the complete and exclusive agreement between the parties, superceding all prior agreements, oral or written, and all other communications between the parties relating to the subject matter of this agreement. No employee of NTN or any other party is authorized to make any warranty in addition to those made in this agreement.

This agreement allocates the risks of product failure between NTN and the purchaser. This allocation is recognized by both parties and is reflected in the price of the goods. The purchaser acknowledges that it has read this agreement, understands it, and is bound by its terms.

Although care has been taken to assure the accuracy of the data compiled in this catalog, NTN does not assume any liability to any company or person for errors or omissions.



# **TECHNICAL DATA CONTENTS**

| 1. Classification and Characteristics                 | 5. Boundary Dimensions and                                                    |       |
|-------------------------------------------------------|-------------------------------------------------------------------------------|-------|
| of Rolling BearingsA-5                                | Bearing Number Codes                                                          | .A-30 |
| 1.1 Rolling bearing construction                      | 5.1 Boundary dimensions                                                       | .A-30 |
| 1.2 Classification of rolling bearings                | 5.2 Bearing numbers                                                           | .A-31 |
| 1.3 Characteristics of rolling bearingsA-8            |                                                                               |       |
|                                                       | 6. Bearing Tolerances                                                         | .A-35 |
| 2. Bearing SelectionA-12                              | 6.1 Dimensional accuracy and                                                  |       |
| 2.1 Bearing selection flow chartA-12                  | running accuracy                                                              | .A-35 |
| 2.2 Type and characteristicsA-14                      | 6.2 Chamfer measurements and tolerance<br>or allowable values of tapered bore | .A-46 |
| 2.3 Selection of bearing arrangementA-15              | 6.3 Bearing tolerance measurement methods                                     | A-48  |
| 3. Load Rating and LifeA-17                           |                                                                               |       |
| 3.1 Bearing life                                      | 7. Bearing Fits                                                               | .A-49 |
| 3.2 Basic rating life and basic dynamic               | 7.1 Fitting                                                                   | .A-49 |
| load ratingA-17                                       | 7.2 The necessity of a proper fit                                             | .A-49 |
| 3.3 Adjusted rating life                              | 7.3 Fit selection                                                             | .A-49 |
| 3.4 Machine applications and requisite life A-19      |                                                                               |       |
| 3.5 Basic static load rating                          |                                                                               |       |
| 3.6 Allowable static equivalent loadA-20              | 8. Bearing Internal Clearance                                                 |       |
|                                                       | and Preload                                                                   |       |
| 4 Pagning Load Calculation A 04                       | 8.1 Bearing internal clearance                                                |       |
| 4. Bearing Load CalculationA-21                       | 8.2 Internal clearance selection                                              | .A-58 |
| 4.1 Loads acting on shaftsA-21                        | 8.3 Preload                                                                   | .A-66 |
| 4.2 Bearing load distribution                         |                                                                               |       |
| 4.3 Mean load                                         |                                                                               |       |
| 4.4 Equivalent loadA-25                               | 9. Allowable Speed                                                            | .A-70 |
| 4.5 Bearing rating life and load calculation examples |                                                                               |       |

| 10. Friction and                                        | 14.3 Shaft and housing accuracyA-87                                                    |
|---------------------------------------------------------|----------------------------------------------------------------------------------------|
| Temperature RiseA-71                                    | 14.4 Allowable bearing misalignmentA-87                                                |
| 10.1 FrictionA-71                                       |                                                                                        |
| 10.2 Temperature riseA-71                               |                                                                                        |
|                                                         | 15. Bearing HandlingA-88                                                               |
|                                                         | 15.1 Bearing storageA-88                                                               |
| 11. LubricationA-72                                     | 15.2 InstallationA-88                                                                  |
| 11.1 Purpose of lubricationA-72                         | 15.3 Internal clearance adjustment                                                     |
| 11.2 Lubrication methods and                            | 15.4 Post installation running testA-92                                                |
| characteristics                                         | 15.5 Bearing disassemblyA-92                                                           |
| 11.3 Grease lubricationA-72                             | 15.6 Bearing maintenance and inspection A-94                                           |
| 11.4 Solid grease  (For bearings with solid grease)A-76 |                                                                                        |
| 11.5 Oil lubrication                                    |                                                                                        |
|                                                         | 16. Bearing Damage and                                                                 |
|                                                         | Corrective MeasuresA-96                                                                |
| 12. External bearing                                    |                                                                                        |
| sealing devicesA-80                                     |                                                                                        |
|                                                         | 17. Technical dataA-100                                                                |
|                                                         | 17.1 Deep groove ball bearing radial internal clearances and axial internal clearances |
| 13. Bearing MaterialsA-83                               | A-100                                                                                  |
| 13.1 Raceway and                                        | 17.2 Angular contact ball bearing axial load and                                       |
| rolling element materialsA-83                           | axial displacementA-100                                                                |
| 13.2 Cage materialsA-83                                 | 17.3 Tapered roller bearing axial load and axial displacement                          |
|                                                         | 17.4 Allowable axial load for ball bearings A-102                                      |
| 14. Shaft and Housing DesignA-85                        | 17.5 Fitting surface pressureA-103                                                     |
| 14.1 Fixing of bearingsA-85                             | 17.6 Necessary press fit and pullout force A-104                                       |
| 3                                                       |                                                                                        |
| 14.2 Bearing fitting dimensions                         |                                                                                        |

# 1. Classification and Characteristics of Rolling Bearings

#### 1.1 Rolling bearing construction

Most rolling bearings consist of rings with raceway (inner ring and outer ring), rolling elements (either balls or rollers) and cage. The cage separates the rolling elements at regular intervals, holds them in place within the inner and outer raceways, and allows them to rotate freely.

#### Raceway (inner ring and outer ring) or raceway disc 1)

The surface on which rolling elements roll is called the "raceway surface". The load placed on the bearing is supported by this contact surface.

Generally the inner ring fits on the axle or shaft and the outer ring on the housing.

Note 1: The raceway of thrust bearing is called "raceway disc," the inner ring is called the "shaft raceway disc" and the outer ring is called the "housing raceway disc."

#### Rolling elements

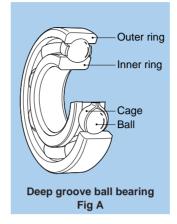
Rolling elements classify in two types: balls and rollers. Rollers come in four types: cylindrical, needle, tapered, and spherical.

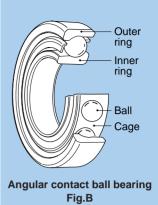
Balls geometrically contact with the raceway surfaces of the inner and outer rings at "points", while the contact surface of rollers is a "line" contact.

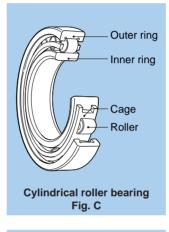
Theoretically, rolling bearings are so constructed as to allow the rolling elements to rotate orbitally while also rotating on their own axes at the same time.

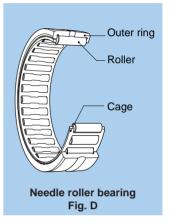
#### Cages

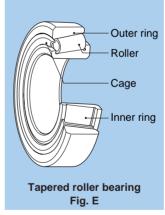
Cages function to maintain rolling elements at a uniform pitch so load is never applied directly to the cage and to prevent the rolling elements from falling out when handling the bearing. Types of cages differ according to way they are manufactured, and include pressed, machined and formed cages.

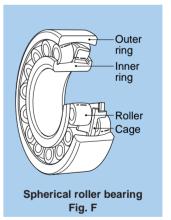

#### 1.2 Classification of rolling bearings

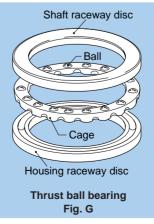

Rolling bearings divide into two main classifications: ball bearings and roller bearings. Ball bearings are classified according to their bearing ring configurations: deep groove type and angular contact type. Roller bearings on the other hand are classified according to the shape of the rollers: cylindrical, needle, tapered and spherical.


Rolling bearings can be further classified according to the direction in which the load is applied; radial bearings carry radial loads and thrust bearings carry axial loads.


Other classification methods include: 1) number of rolling rows (single, double, or 4-row), 2) separable and non-separable, in which either the inner ring or the outer ring can be detached.


There are also bearings designed for special applications, such as: railway car journal roller bearings, ball screw support bearings, turntable bearings, as well as linear motion bearings (linear ball bearings, linear roller bearings and linear flat roller bearings). Types of rolling bearings are given in **Fig. 1.2**.













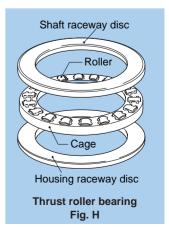




Fig. 1.1 Rolling bearing

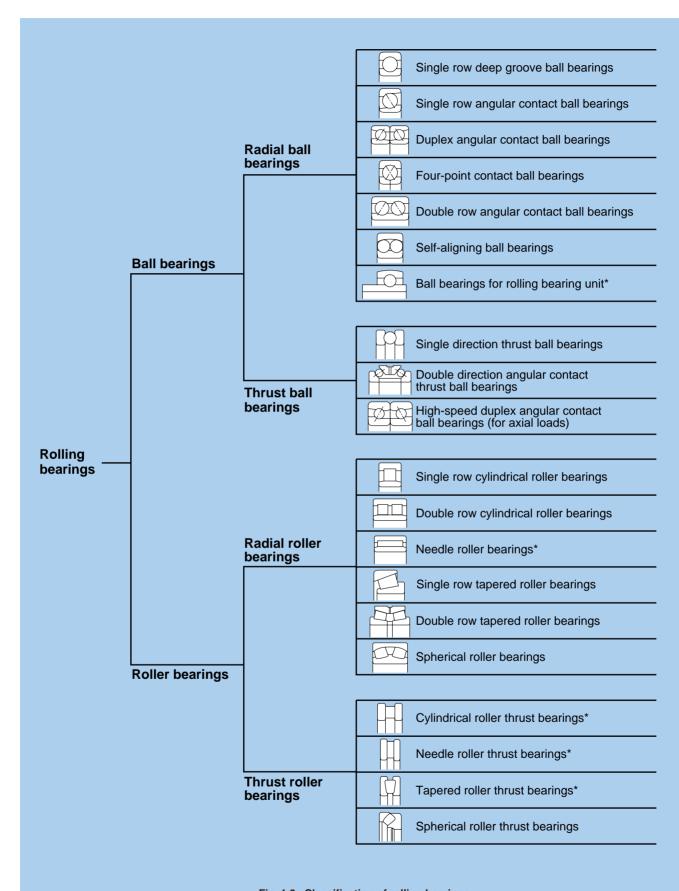



Fig. 1.2 Classification of rolling bearings

|                           |  | Ultra thin wall type ball bearings*              |
|---------------------------|--|--------------------------------------------------|
|                           |  | Turntable bearings*                              |
|                           |  | Ball screw support bearings*                     |
|                           |  | Railway car journal roller bearings*             |
|                           |  | Ultra-clean vacuum bearings*                     |
| Special                   |  | SL-type cylindrical roller bearings*             |
| application —<br>bearings |  | Rubber molded bearings*                          |
|                           |  | Clearance adjusting needle roller bearings*      |
|                           |  | Complex bearings*                                |
|                           |  | Connecting rod needle roller bearings with cage* |
|                           |  | Roller followers*                                |
|                           |  | Cam followers*                                   |
|                           |  |                                                  |
|                           |  |                                                  |
| Linear                    |  | Linear ball bearings*                            |
| motion —<br>bearings      |  | Linear roller bearings*                          |
| Z Car mgo                 |  | Linear flat roller bearings*                     |

Note: Bearings marked with an asterisk are not contained in this catalog. For details, see the catalog devoted to the concerned type of bearing.

#### 1.3 Characteristics of rolling bearings

#### 1.3.1 Characteristics of rolling bearings

Rolling bearings come in many shapes and varieties, each with its own distinctive features.

However, when compared with sliding bearings, rolling bearings all have the following advantages:

- (1) The starting friction coefficient is lower and there is little difference between this and the dynamic friction coefficient.
- (2) They are internationally standardized, interchangeable and readily obtainable.
- (3) They are easy to lubricate and consume less lubricant.
- (4) As a general rule, one bearing can carry both radial and axial loads at the same time.
- (5) May be used in either high or low temperature applications.
- (6) Bearing rigidity can be improved by preloading.

Construction, classes, and special features of rolling bearings are fully described in the boundary dimensions and bearing numbering system section.

#### 1.3.2 Ball bearings and roller bearings

**Table 1.1** gives a comparison of ball bearings and roller bearings.

Table 1.1 Comparison of ball bearings and roller bearings

|                      |                 | Ball bearings                                                                                                                                                                                           | Roller bearings                                                                                                                                                                                                                       |
|----------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contact with raceway |                 | Point contact Contact surface is oval when load is applied.                                                                                                                                             | Linear contact Contact surface is generally rectangular when load is applied.                                                                                                                                                         |
|                      | Characteristics | Because of point contact<br>there is little rolling<br>resistance, ball bearings are<br>suitable for low torque and<br>high-speed applications.<br>They also have superior<br>acoustic characteristics. | Because of linear contact, rotational torque is higher for roller bearings than for ball bearings, but rigidity is also higher.                                                                                                       |
|                      | Load capacity   | Load capacity is lower for<br>ball bearings, but radial<br>bearings are capable of<br>bearing loads in both the<br>radial and axial direction.                                                          | Load capacity is higher for rolling bearings. Cylindrical roller bearings equipped with a lip can bear slight radial loads. Combining tapered roller bearings in pairs enables the bearings to bear an axial load in both directions. |

#### 1.3.3 Radial and thrust bearings

Almost all types of rolling bearings can carry both radial and axial loads at the same time.

Generally, bearings with a contact angle of less than 45 have a much greater radial load capacity and are classed as radial bearings; whereas bearings which have a contact angle over 45 have a greater axial load capacity and are classed as thrust bearings. There are also bearings classed as complex bearings which combine the loading characteristics of both radial and thrust bearings.

#### 1.3.4 Standard bearings and special bearings

The boundary dimensions and shapes of bearings conforming to international standards are interchangeable and can be obtained easily and economically over the world over. It is therefore better to design mechanical equipment to use standard bearings.

However, depending on the type of machine they are to be used in, and the expected application and function, a non-standard or specially designed bearing may be best to use. Bearings that are adapted to specific applications, and "unit bearings" which are integrated (built-in) into a machine's components, and other specially designed bearings are also available.

The feature of typical standard bearings are as follows:

## Deep groove ball bearings

The most common type of bearing, deep groove ball bearings are widely used in a variety of fields. Deep groove ball bearings include shield bearings and sealed bearings with grease make them easier to use.

Deep groove ball bearings also include bearings with a locating snap-ring to facilitate positioning when mounting the outer ring, expansion compensating bearings which absorb dimension variation of the bearing fitting surface due to housing temperature, and TAB bearings that are able to withstand contamination in the lubricating oil.

Table 1.2 Configuration of sealed ball bearings

|               | •                 |                    | •              |                   |  |  |
|---------------|-------------------|--------------------|----------------|-------------------|--|--|
| Туре          | Shield            | Sealed             |                |                   |  |  |
| and<br>symbol | Non-contact<br>ZZ | Non-contact<br>LLB | Contact<br>LLU | Low torque<br>LLH |  |  |
| Configuration |                   |                    |                |                   |  |  |

#### Angular contact ball bearings

The line that unites point of contact of the inner ring, ball and outer ring runs at a certain angle (contact angle) in the radial direction. Bearings are generally designed with three contact angles.

Angular contact ball bearings can support an axial load, but cannot be used by single bearing because of the contact angle. They must instead be used in pairs or in combinations.

Angular contact ball bearings include double row angular contact ball bearings for which the inner and outer rings are combined as a single unit. The contact angle of double row angular contact ball bearings is 25°.

There are also four-point contact bearings that can support an axial load in both directions by themselves. These bearings however require caution because problems such as excessive temperature rise and wearing could occur depending on the load conditions.

Table 1.3 Contact angle and symbol

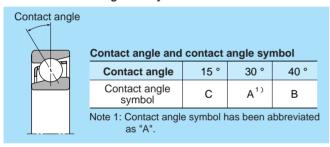



Table 1.4 Configuration of double row angular contact ball bearings

| Type<br>and<br>symbol | Open | Open Shield ZZ |  | Contact<br>sealed<br>LLD |
|-----------------------|------|----------------|--|--------------------------|
| Configuration         |      |                |  |                          |

Table 1.5 Combinations of duplex angular contact ball bearings

| Type<br>and<br>symbol | Back-to-back<br>duplex<br>DB | Face-to-face<br>duplex<br>DF | Tandem duplex<br>DT |
|-----------------------|------------------------------|------------------------------|---------------------|
| Configuration         |                              |                              |                     |

#### Cylindrical roller bearings

Uses rollers for rolling elements, and therefore has a high load capacity. The rollers are guided by the ribs of the inner or outer ring. The inner and outer rings can be separated to facilitate assembly, and both can be fit with shaft or housing tightly. If there is no ribs, either the inner or the outer ring can move freely in the axial direction. Cylindrical roller bearings are therefore ideal to be used as so-called "free side bearings" that absorb shaft expansion. In the case where there is a ribs, the bearing can bear a slight axial load between the end of the rollers and the ribs. Cylindrical roller bearings include the HT type which modifies the shape of roller end face and ribs for increasing axial road capacity. And the E type with a special internal design for enhancing radial load capacity. The E type is standardized for small-diameter sizes. **Table 1.6** shows the basic configuration for cylindrical roller bearings.

In addition to these, there are cylindrical roller bearings with multiple rows of rollers and the SL type of full complement roller bearing without cage.

Table 1.6 Types of cylindrical roller bearings

| Type<br>and<br>Symbol | NU type<br>N type | NJ type<br>NF type | NUP type<br>NH type<br>(NJ+HJ) |
|-----------------------|-------------------|--------------------|--------------------------------|
| Drawings              | NU type           | NJ type            | NUP type                       |
| Dra                   | N type            | NF type            | NH type                        |

# **Tapered roller bearings**

Tapered roller bearings are designed so the inner/outer ring raceway and apex of the tapered rollers intersect at one point on the bearing centerline. By receiving combined load from inner and outer ring, the rollers are pushed against the inner ring rib and roll guided with rib.

Induced force is produced in the axial direction when a radial load is applied, so must be handled by using a pair of bearings. The inner ring with rollers and outer ring come apart, thus facilitating mounting with clearance or preload. Assembled clearance is however hard to manage and requires special attention. Tapered roller bearings are capable of supporting large loads in both the axial and radial directions.

NTN bearings with 4T-, ET-, T- and U attached to the name conform to ISO and JIS standards for sub-unit dimensions (nominal contact angle, nominal small end diameter of outer ring) and are internationally interchangeable.

NTN also has a line of case hardened steel bearings designed for longer life (ETA-, ET-, etc.). NTN tapered roller bearings also include bearings with two and four rows of tapered rollers for extra-heavy loads.

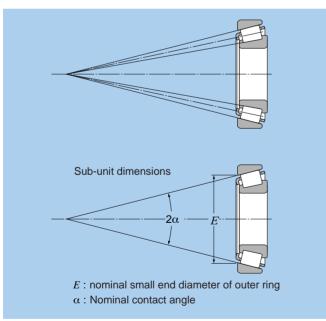



Fig. 1.3 Tapered roller bearings

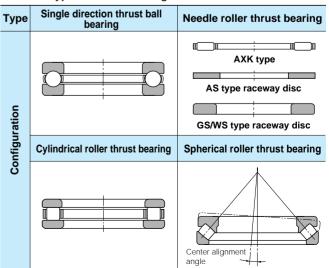
#### Spherical roller bearings

Equipped with an outer ring with a spherical raceway surface and an inner ring which holds two rows of barrel-shaped rolling elements, NTN spherical roller bearings are able to adjust center alignment to handle inclination of the axle or shaft.

There are variety of bearing types that differ according to internal design.

Spherical roller bearings include as type equipped with an inner ring with a tapered bore. The bearing can easily be mounted on a shaft by means of an adapter or withdrawal sleeve. The bearing is capable of supporting heavy loads, and is therefore often used in industrial machinery. When heavy axial load is applied to the bearing, the load on rollers of another row is disappeared, and can cause problems. Attention must therefore be paid to operating conditions.

Table 1.7 Types of spherical roller bearings


| Туре          | Standard<br>(B type) | C type | 213 type | E type |
|---------------|----------------------|--------|----------|--------|
| Configuration |                      |        |          |        |

#### **Thrust bearings**

There are many types of thrust bearings that differ according to shape of rolling element and application. Allowable rotational speed is generally low and special attention must be paid to lubrication.

In addition to the ones given below, there are various types of thrust bearings for special applications. For details, see the catalog devoted to the concerned type of bearing.

Table 1.8 Types of thrust bearings



#### **Needle roller bearings**

Needle roller bearings use needle rollers as rolling elements. The needle rollers are a maximum of 5 mm in diameter and are 3 to 10 times as long as they are in diameter. Because the bearings use needle rollers as rolling elements, the cross-section is thin, but they have a high load capacity for their size. Because of the large number of rolling elements, the bearings have high rigidity and are ideally suited to wobbling or pivoting motion.

There is a profusion of types of needle roller bearings, and just a few of the most representative types are covered here. For details, see the catalog devoted to the concerned type of bearing.

Table 1.9 Main types of needle roller bearings

| Туре          | Needle roller bearing with cage   |
|---------------|-----------------------------------|
|               |                                   |
|               | Solid type needle roller bearings |
| Configuration |                                   |
| onfi          | Shell type needle roller bearings |
| o             |                                   |
|               | Roller follower Cam follower      |
|               |                                   |

#### **Bearing unit**

A unit comprised of a ball bearing inserted into various types of housings. The housing can be bolted onto machinery and the inner ring can be easily mounted on the shaft with a set screw.

This means the bearing unit can support rotating equipment without special design to allow for mounting. A variety of standardized housing shapes is available, including pillow and flange types. The outer diameter of the bearing is spherical just like the inner diameter of the housing, so it capable of aligning itself on the shaft.

For lubrication, grease is sealed inside the bearing, and particle generation is prevented by a double seal. For details, see the catalog devoted to the concerned type of bearing.

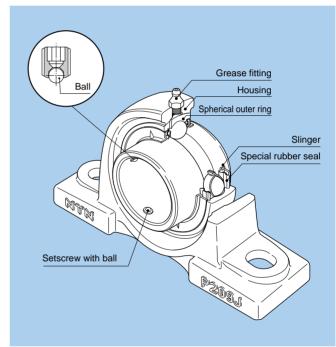



Fig. 1.4 Oil-lubricated bearing unit

# 2. Bearing Selection

Rolling element bearings are available in a variety of types, configurations, and sizes. When selecting the correct bearing for your application, it is important to consider several factors, and analyse in various means.

A comparison of the performance characteristics for each bearing type is shown in **Table 2.1**. As a general guideline, the basic procedure for selecting the most appropriate bearing is shown in the following flow chart.

#### 2.1 Bearing selection flow chart

**Procedure** Confirm operating Select bearing conditions and Select bearing Select bearing type and operating dimensions tolerances configuration environment Design life of components to house bearings (refer to page insert ...A-19) Dynamic/static equivalent load conditions Dimensional limitations (refer to page insert ...A-30) Bearing load (magnitude, Shaft runout tolerances (refer to page insert ... A-35) Function and construction of components to house bearings Rotational speed direction, vibration; presence of shock load) (refer to page insert ...A-70)
Torque fluctuation Bearing mounting location Confirmation items (refer to page insert ...A-21) Rotational speed (refer to page insert ...A-25) Safety factor (refer to page insert ...A-19) Bearing load (direction and (refer to page insert ...A-70) Bearing tolerances (refer to page insert ...A-35) Allowable speed (refer to page insert ...A-70) Allowable axial load Rotational speed Rigidity (refer to page insert ...A-67) Allowable misalignment of inner/outer rings Vibration and shock load (refer to page insert ...A-19, 25) Allowable space (refer to page insert ...A-30) Bearing temperature (Ambient temperature / temperature (refer to page insert ...A-87) Friction torque (refer to page insert ...A-71) Bearing arrangement (fixed side, floating side) Operating environment (potential for corrosion, degree of contamination, extent of (refer to page insert ...A-15) Installation and disassembly (refer to page insert ...A-88) Bearing availability and cost

#### (1) Dimensional limitations

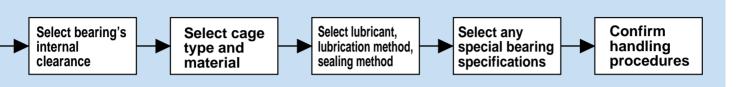
The allowable space for bearings is generally limited. In most cases, shaft diameter (or the bearing bore diameter) has been determined according to the machine's other design specifications. Therefore, bearing's type and dimensions are determined according to bearing bore diameters. For this reason all dimension tables are organized according to standard bore diameters. There is a wide range of standardized bearing types and dimensions: the right one for a particular application can usually be found in these tables.

# (2) Bearing load

The characteristics, magnitude, and direction of loads acting upon a bearing are extremely variable. In general, the basic load ratings shown in bearing dimension tables indicate their load capacity. However, in determining the appropriate bearing type, consideration must also be given to whether the acting load is a radial load only or combined radial and axial load, etc. When ball and roller bearings within the same dimension series are considered, the roller bearings have a larger load capacity and are also capable of withstanding greater vibration and shock loads.

#### (3) Rotational speed

The allowable speed of a bearing will differ depending upon bearing type, size, tolerances, cage type, load, lubricating conditions, and cooling conditions.


The allowable speeds listed in the bearing tables for grease and oil lubrication are for normal tolerance NTN bearings. In general, deep groove ball bearings, angular contact ball bearings, and cylindrical roller bearings are most suitable for high speed applications.

#### (4) Bearing tolerances

The dimensional accuracy and operating tolerances of bearings are regulated by ISO and JIS standards. For equipment requiring high tolerance shaft runout or high speed operation, bearings with Class 5 tolerance or higher are recommended. Deep groove ball bearings, angular contact ball bearings, and cylindrical roller bearings are recommended for high rotational tolerances.

#### (5) Rigidity

Elastic deformation occurs along the contact surfaces of a bearing's rolling elements and raceway surfaces under loading. With certain types of equipment it is necessary to reduce this deformation as much as



Material and shape of shaft and housing (refer to page insert ...A-85) Fit (refer to page insert ...A-49) Temperature differential between inner/outer rings (refer to page insert ...A-59) Allowable misalignment of inner/outer rings (refer to page insert ...A-87) Load (magnitude, nature) (refer to page insert ...A-21) Amount of preload (refer to page insert ...A-66) Rotational speed (refer to page insert ...A-70)

Rotational speed (refer to page insert ...A-70) Noise level Vibration and shock load Momentary load Lubrication type and method (refer to page insert ...A-72) Operating temperature (refer to page insert ...A-72) Rotational speed (refer to page insert ...A-70. Lubrication type and method (refer to page insert ...A-72) Sealing method (refer to page insert ...A-80) Maintenance and inspection (refer to page insert ...A-94)

Operating environment (high/low temperature, vacuum, pharmaceutical, etc.) Requirement for high reliability

Installation-related dimensions (refer to page insert ...A-86) Installation and disassembly procedures (refer to page insert ...A-88)

possible. Roller bearings exhibit less elastic deformation than ball bearings. Furthermore, in some cases, bearings are given a load in advance (preloaded) to increase their rigidity. This procedure is commonly applied to deep groove ball bearings, angular contact ball bearings, and tapered roller bearings.

#### (6) Misalignment of inner and outer rings

Shaft flexure, variations in shaft or housing accuracy, and fitting errors. result in a certain degree of misalignment between the bearing's inner and outer rings. In cases where the degree of misalignment is relatively large, self-aligning ball bearings, spherical roller bearings, or bearing units with self-aligning properties are the most appropriate choices. (Refer to Fig. 2.1)

#### (7) Noise and torque levels

Rolling bearings are manufactured and processed according to high precision standards, and therefore generally produce only slight amounts of noise and torque. For applications requiring particularly low-noise or low-torque operation, deep groove ball bearings and cylindrical roller bearings are most appropriate.

#### (8) Installation and disassembly

Some applications require frequent disassembly and reassembly to enable periodic inspections and repairs. For such applications, bearings with separable inner/outer rings, such as cylindrical roller bearings, needle roller bearings, and tapered roller bearings are most appropriate. Incorporation of adapter sleeves simplifies the installation and disassembly of selfaligning ball bearings and spherical roller bearings with tapered bores.

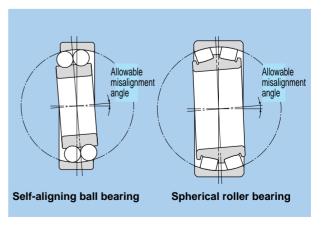



Fig. 2.1

## 2.2 Type and characteristics

Table 2.1 shows types and characteristics of rolling bearings.

Table 2.1 Type of rolling bearings and performance comparison

| Bearing types                                | Deep<br>groove<br>ball<br>bearings | Angular<br>contact<br>ball<br>bearings | Double row<br>angular<br>contact<br>ball bearings | Duplex<br>angular<br>contact<br>ball bearings | Self-<br>aligning<br>ball<br>bearings | Cylindrical<br>roller<br>bearings | Single-<br>flange<br>cylindrical<br>roller bearings | Double-<br>flange<br>cylindrical<br>roller bearings | Double row<br>cylindrical<br>roller<br>bearings | Needle<br>roller<br>bearings |
|----------------------------------------------|------------------------------------|----------------------------------------|---------------------------------------------------|-----------------------------------------------|---------------------------------------|-----------------------------------|-----------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|------------------------------|
| Characteristics                              |                                    |                                        |                                                   |                                               | [8]                                   |                                   |                                                     |                                                     |                                                 |                              |
| Load Carrying Capacity                       |                                    |                                        |                                                   |                                               |                                       |                                   |                                                     |                                                     |                                                 |                              |
| Radial load                                  |                                    |                                        |                                                   |                                               |                                       | 1                                 |                                                     |                                                     | 1                                               | •                            |
| Axial load                                   |                                    |                                        |                                                   |                                               |                                       |                                   |                                                     |                                                     |                                                 |                              |
| High speed <sup>●</sup>                      |                                    |                                        |                                                   |                                               |                                       |                                   |                                                     |                                                     |                                                 |                              |
| High rotating accuracy ●                     |                                    |                                        |                                                   |                                               |                                       |                                   |                                                     |                                                     |                                                 |                              |
| Low noise/vibration <sup>●</sup>             |                                    |                                        |                                                   |                                               |                                       |                                   |                                                     |                                                     |                                                 |                              |
| Low friction torque <sup>●</sup>             |                                    |                                        |                                                   |                                               |                                       |                                   |                                                     |                                                     |                                                 |                              |
| High rigidity <sup>●</sup>                   |                                    |                                        |                                                   |                                               |                                       |                                   |                                                     |                                                     |                                                 |                              |
| Vibration/shock resistance                   |                                    |                                        |                                                   |                                               |                                       |                                   |                                                     |                                                     |                                                 |                              |
| Allowable misalignment for inner/outer rings |                                    |                                        |                                                   |                                               |                                       |                                   |                                                     |                                                     |                                                 |                              |
| Stationary in axial direction                |                                    |                                        |                                                   | For DB and DF<br>arrangement                  |                                       |                                   |                                                     |                                                     |                                                 |                              |
| Moveable in axial direction                  |                                    |                                        |                                                   | For DB arrangement                            |                                       |                                   |                                                     |                                                     |                                                 |                              |
| Separable inner/outer rings                  |                                    |                                        |                                                   |                                               |                                       |                                   |                                                     |                                                     |                                                 |                              |
| Inner ring tapered bore                      |                                    |                                        |                                                   |                                               |                                       |                                   |                                                     |                                                     |                                                 |                              |
| Remarks                                      |                                    | For duplex arrangement                 |                                                   |                                               |                                       | NU, N<br>type                     | NJ, NF<br>type                                      | NUP, NP, NH<br>type                                 | NNU, NN<br>type                                 | NA<br>type                   |
| Reference page                               | B-5                                | B-43                                   | B-74                                              | B-43                                          | B-79                                  | B-91                              | B-91                                                | B-91                                                | B-116                                           | E-2                          |

| Tapered roller bearings | Double-row,<br>4-row<br>tapered<br>roller<br>bearings | Spherical roller bearings | Thrust ball bearings | Double row angular contact thrust ball bearings | Cylindrical roller thrust bearings           | Spherical roller thrust bearings | Reference page | Bearing types  Characteristics                  |
|-------------------------|-------------------------------------------------------|---------------------------|----------------------|-------------------------------------------------|----------------------------------------------|----------------------------------|----------------|-------------------------------------------------|
|                         | 1                                                     |                           | •                    | <b></b>                                         | •                                            | -                                |                | Load Carrying Capacity  Radial load  Axial load |
|                         |                                                       |                           |                      |                                                 |                                              |                                  | A-66           | High speed <sup>●</sup>                         |
|                         |                                                       |                           |                      |                                                 |                                              |                                  | A-31           | High rotating accuracy ●                        |
|                         |                                                       |                           |                      |                                                 |                                              |                                  |                | Low noise/vibration <sup>●</sup>                |
|                         |                                                       |                           |                      |                                                 |                                              |                                  | A-67           | Low friction torque <sup>●</sup>                |
|                         |                                                       |                           |                      |                                                 |                                              |                                  | A-54           | High rigidity <sup>●</sup>                      |
|                         |                                                       |                           |                      |                                                 |                                              |                                  | A-18           | Vibration/shock resistance                      |
|                         |                                                       |                           |                      |                                                 |                                              |                                  | A-79           | Allowable misalignment for inner/outer rings    |
|                         |                                                       |                           |                      |                                                 |                                              |                                  | A-13           | Stationary in axial direction                   |
|                         |                                                       |                           |                      |                                                 |                                              |                                  | A-13           | Moveable in axial direction                     |
|                         |                                                       |                           |                      |                                                 |                                              |                                  |                | Separable inner/outer rings                     |
|                         |                                                       |                           |                      |                                                 |                                              |                                  | A-79           | Inner ring tapered bore                         |
| For duplex arrangement  |                                                       |                           |                      |                                                 | Including<br>needle roller<br>thrust bearing |                                  |                | Remarks                                         |
| B-133                   | B-133                                                 | B-233                     | B-269                | B-269                                           | E-48                                         | B-269                            |                | Reference page                                  |

- The number of stars indicates the degree to which that bearing type displays that particular characteristic.
  - Not applicable to that bearing
- type.
  Indicates dual direction. Indicates single direction axial movement only.
- indicates movement in the axial direction is possible for the raceway surface; indicates movement in the axial direction is possible for the fitting surface of the outer ring or inner ring.

  Indicates both inner ring and
- outer ring are detachable.
- Indicates inner ring with tapered bore is possible.

#### 2.3 Selection of bearing arrangement

Shafts or axles are generally supported by a pair of bearings in the axial and radial directions. The bearing which prevents axial movement of the shaft relative to the housing is called the "fixed side bearing" and the bearing which allows axial movement relatively is called the "floating-side bearing". This allows for expansion and contraction of the shaft due to temperature variation and enables error in bearing mounting clearance to be absorbed.

The **fixed side bearing** is able to support radial and axial loads. A bearing which can fix axial movement in both directions should therefore be selected. A **floating-side bearing** that allows movement in the axial direction while supporting a radial load is desirable. Movement in the axial direction occurs on the raceway surface for bearings with separable inner and outer rings such as

cylindrical roller bearings, and occurs on the fitting surface for those which are not separable, such as deep groove ball bearings.

In applications with short distances between bearings, shaft expansion and contraction due to temperature fluctuations is slight, therefore the same type of bearing may be used for both the fixed-side and floating-side bearing. In such cases it is common to use a set of matching bearings, such as angular contact ball bearings, to guide and support the shaft in one axial direction only.

Table 2.2 (1) shows typical bearing arrangements where the bearing type differs on the fixed side and floating side. Table 2.2 (2) shows some common bearing arrangements where no distinction is made between the fixed side and floating side. Vertical shaft bearing arrangements are shown in Table 2.2 (3).

Table 2.2 (1) Bearing arrangement (distinction between fixed and floating-side)

| Arrangement |          | Comment                                                                                                                                                                                                                                                                                                                                                    | Application                                        |
|-------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Fixed       | Floating | Comment                                                                                                                                                                                                                                                                                                                                                    | (Reference)                                        |
|             |          | General arrangement for small machinery.     For radial loads, but will also accept axial loads.                                                                                                                                                                                                                                                           | Small pumps,<br>auto-mobile<br>transmissions, etc. |
|             |          | <ol> <li>Suitable when mounting error and shaft deflection are minimal or used<br/>for high rotational speed application.</li> <li>Even with expansion and contraction of shaft, floating side moves<br/>smoothly.</li> </ol>                                                                                                                              | Medium-sized electric motors, ventilators, etc.    |
|             |          | Radial loading and dual direction of axial loading possible.     In place of duplex angular contact ball bearings, double-row angular contact ball bearings are also used.                                                                                                                                                                                 | Worm reduction gear                                |
|             |          | Heavy loading capable.     Shafting rigidity increased by preloading the two back-to-back fixed bearings.     Requires high precision shafts and housings, and minimal fitting errors.                                                                                                                                                                     | Reduction gears for general industrial machinery   |
|             |          | <ol> <li>Allows for shaft deflection and fitting errors.</li> <li>By using an adaptor on long shafts without screws or shoulders, bearing mounting and dismounting can be facilitated.</li> <li>Self-aligning ball bearings are used for positioning in the axial direction, and not suitable for applications requiring support of axial load.</li> </ol> | General industrial machinery                       |
|             |          | Widely used in general industrial machinery with heavy and shock load demands.     Allows for shaft deflection and fitting errors.     Accepts radial loads as well as dual direction of axial loads.                                                                                                                                                      | Reduction gears for general industrial machinery   |
|             |          | Accepts radial loads as well as dual direction axial loads.     Suitable when both inner and outer ring require tight fit.                                                                                                                                                                                                                                 | Reduction gears for general industrial machinery   |
|             |          | Capable of handling large radial and axial loads at high rotational speeds.     Maintains clearance between the bearing's outer diameter and housing inner diameter to prevent deep groove ball bearings from receiving radial loads.                                                                                                                      | Transmissions for diesel locomotives               |

Table 2.2 (2) Bearing arrangement (no distinction between fixed and floating-side)

| Arrangement               | Comment                                                                                                                                                                                                                                                                                                                                                                        | Application (Reference)                                                    |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|                           | <ol> <li>General arrangement for use in small machines.</li> <li>Preload is sometimes applied by placing a spring on the outer ring side surface or inserting a shim.         (can be floating-side bearings.)     </li> </ol>                                                                                                                                                 | Small electric motors, small reduction gears, etc.                         |
|                           | <ol> <li>Back to back arrangement is preferable to face to face arrangement when moment load applied.</li> <li>Able to support axial and radial loads; suitable for high-speed rotation.</li> <li>Rigidity of shaft can be enhanced by providing preload.</li> </ol>                                                                                                           | Machine tool spindles, etc.                                                |
|                           | <ol> <li>Capable of supporting extra heavy loads and impact loads.</li> <li>Suitable if inner and outer ring tight fit is required.</li> <li>Care must be taken that axial clearance does not become too small during operation.</li> </ol>                                                                                                                                    | Construction<br>equipment, mining<br>equipment sheaves,<br>agitators, etc. |
| Back to back Face to face | <ol> <li>Withstands heavy and shock loads. Wide range application.</li> <li>Shaft rigidity can be enhanced by providing preload, but make sure preload is not excessive.</li> <li>Back-to-back arrangement for moment loads, and face-to-face arrangement to alleviate fitting errors.</li> <li>With face-to-face arrangement, inner ring tight fit is facilitated.</li> </ol> | Reduction gears, front and rear axle of automobiles, etc.                  |

Table 2.2 (3) Bearing arrangement (Vertical shaft)

| Arrangement | Comment                                                                                                                                                                                                            | Application (Reference)                  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|             | When fixing bearing is a duplex angular contact ball bearing, floating bearing should be a cylindrical roller bearing.                                                                                             | Vertically mounted electric motors, etc. |
|             | Most suitable arrangement for very heavy axial loads.     Shaft deflection and mounting error can be absorbed by matching the center of the spherical surface with the center of spherical roller thrust bearings. | Crane center shafts, etc.                |

# 3. Load Rating and Life

#### 3.1 Bearing life

Even in bearings operating under normal conditions, the surfaces of the raceway and rolling elements are constantly being subjected to repeated compressive stresses which causes flaking of these surfaces to occur. This flaking is due to material fatigue and will eventually cause the bearings to fail. The effective life of a bearing is usually defined in terms of the total number of revolutions a bearing can undergo before flaking of either the raceway surface or the rolling element surfaces occurs.

Other causes of bearing failure are often attributed to problems such as seizing, abrasions, cracking, chipping, scuffing, rust, etc. However, these so called "causes" of bearing failure are usually themselves caused by improper installation, insufficient or improper lubrication, faulty sealing or inaccurate bearing selection. Since the above mentioned "causes" of bearing failure can be avoided by taking the proper precautions, and are not simply caused by material fatigue, they are considered separately from the flaking aspect.

#### 3.2 Basic rating life and basic dynamic load rating

A group of seemingly identical bearings when subjected to identical load and operating conditions will exhibit a wide diversity in their durability.

This "life" disparity can be accounted for by the difference in the fatigue of the bearing material itself. This disparity is considered statistically when calculating bearing life, and the basic rating life is defined as follows.

The basic rating life is based on a 90% statistical model which is expressed as the total number of revolutions 90% of the bearings in an identical group of bearings subjected to identical operating conditions will attain or surpass before flaking due to material fatigue occurs. For bearings operating at fixed constant speeds, the basic rating life (90% reliability) is expressed in the total number of hours of operation.

Basic dynamic load rating expresses a rolling bearing's capacity to support a dynamic load. The basic dynamic load rating is the load under which the basic rating life of the bearing is 1 million revolutions. This is expressed as pure radial load for radial bearings and pure axial load for thrust bearings. These are referred to as "basic dynamic load rating (G)" and "basic dynamic axial load rating (G)." The basic dynamic load ratings given in the bearing tables of this catalog are for bearings constructed of NTN standard bearing materials, using standard manufacturing techniques.

The relationship between the basic rating life, the basic dynamic load rating and the bearing load is given in formula.

For ball bearings: 
$$L_{10} = (\frac{C}{P})^3$$
 .....(3.1)

For roller bearings: 
$$L_{10} = (\frac{C}{P})^{10/3}$$
.....(3.2)

where.

 $L_{10}$ : Basic rating life  $10^6$  revolutions

C: Basic dynamic load rating, N {kgf} (C<sub>r</sub>: radial bearings, C<sub>a</sub>: thrust bearings)

P: Equivalent dynamic load, N {kgf}

( $P_r$ : radial bearings,  $P_a$ : thrust bearings)

n: Rotational speed, min<sup>-1</sup>

The relationship between Rotational speed n and speed factor  $f_n$  as well as the relation between the basic rating life  $L_{10h}$  and the life factor  $f_n$  is shown in **Table 3.1** and **Fig. 3.1.** 

Table 3.1 Correlation of bearing basic rating life, life factor, and speed factor

| Classification                 | Ball bearing                                                     | Roller bearing                                                             |
|--------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------|
| Basic rating life $L_{10h\ h}$ | $\frac{10^6}{60n} \left(\frac{C}{P}\right)^3 = 500 \text{ fb}^3$ | $\frac{10^6}{60n} \left(\frac{C}{P}\right)^{10/3} = 500 \text{ fs}^{10/3}$ |
| Life factor                    | $f_0 \frac{C}{P}$                                                | $f_0 \frac{C}{P}$                                                          |
| Speed factor                   | $\left(\frac{33.3}{n}\right)^{1/3}$                              | $\left(\frac{33.3}{n}\right)^{3/10}$                                       |

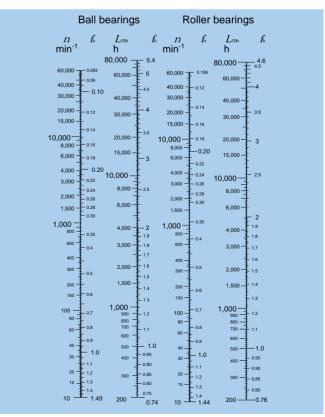



Fig. 3.1 Bearing life rating scale

When several bearings are incorporated in machines or equipment as complete units, all the bearings in the unit are considered as a whole when computing bearing life (see formula 3.3).

$$L = \frac{1}{\left(\frac{1}{L_1^e} + \frac{1}{L_2^e} + \dots + \frac{1}{L_n^e}\right)^{1/e}} \dots (3.3)$$

where,

L: Total basic rating life of entire unit, h  $L_1$ ,  $L_2$  ... $L_n$ : Basic rating life of individual bearings, 1, 2, ...n, h e = 10/9......For ball bearings e = 9/8.....For roller bearings

When the load conditions vary at regular intervals, the life can be given by formula (3.4).

$$L_{\rm m} = (\frac{1}{L_1} + \frac{2}{L_2} + \dots + \frac{1}{L_j})^{-1} \dots (3.4)$$

where.

 $L_{
m m}$  : Total life of bearing

 $_{\rm j}$  : Frequency of individual load conditions

(j=1)

 $L_{\rm j}$ : Life under individual conditions

If equivalent load P and rotational speed n are operating conditions of the bearing, basic rated dynamic load C that satisfies required life of the bearing is determined using **Table 3.1** and formula (3.5). Bearings that satisfy the required C can be selected from the bearing dimensions table provided in the catalog.

$$C = P = f_h$$
 .....(3.5)

#### 3.3 Adjusted rating life

The basic bearing rating life (90% reliability factor) can be calculated through the formulas mentioned earlier in Section 3.2. However, in some applications a bearing life factor of over 90% reliability may be required. To meet these requirements, bearing life can be lengthened by the use of specially improved bearing materials or manufacturing process. Bearing life is also sometimes affected by operating conditions such as lubrication, temperature and rotational speed.

Basic rating life adjusted to compensate for this is called "adjusted rating life," and is determined using formula (3.6).

$$L_{\text{na}} = a_1 \cdot a_2 \cdot a_3 \cdot L_{10}...$$
 (3.6) where,

 $L_{\text{na}}$ : Adjusted rating life in millions of revolutions

a1: Reliability factor

a2: Bearing characteristics factor

as: Operating conditions factor

#### 3.3.1 Reliability factor a

The value of reliability factor  $a_1$  is provided in **Table 3.2** for reliability of 90% or greater.

#### 3.3.2 Bearing characteristics factor a

Bearing characteristics concerning life vary according to bearing material, quality of material and if using special manufacturing process. In this case, life is adjusted using bearing characteristics factor  $a_2$ .

The basic dynamic load ratings listed in the catalog are based on NTN's standard material and process, therefore, the adjustment factor  $a_2 = 1$ .  $a_2 > 1$  may be used for specially enhanced materials and manufacturing methods. If this applies, consult with NTN Engineering.

Dimensions change significantly if bearings made of high carbon chrome bearing steel with conventional heat treatment are used at temperatures in excess of 120°C for an extended period of time. NTN Engineering therefore offers a bearing for high-temperature applications specially treated to stabilize dimensions at the maximum operating temperature (TS treatment). The treatment however makes the bearing softer and affects life of the bearing. Life is adjusted by multiplying by the values given in **Table 3.3**.

Table 3.2 Reliability factor a

| Reliability % | $L_{ m n}$ | Reliability factor a <sub>1</sub> |
|---------------|------------|-----------------------------------|
| 90            | $L_{10}$   | 1.00                              |
| 95            | $L_5$      | 0.62                              |
| 96            | $L_4$      | 0.53                              |
| 97            | $L_3$      | 0.44                              |
| 98            | $L_2$      | 0.33                              |
| 99            | $L_1$      | 0.21                              |

Table 3.3 Treatment for stabilizing dimensions

| Symbol | Max. operating temperature (C°) | Bearing characteristics factor $a_2$ |
|--------|---------------------------------|--------------------------------------|
| TS2    | 160                             | 1.00                                 |
| TS3    | 200                             | 0.73                                 |
| TS4    | 250                             | 0.48                                 |

#### 3.3.3 Operating conditions factor as

Operating conditions factor  $a_0$  is used to compensate for when lubrication condition worsens due to rise in temperature or rotational speed, lubricant deteriorates, or becomes contaminated with foreign matter.

Generally speaking, when lubricating conditions are satisfactory, the  $a_3$  factor has a value of one; and when lubricating conditions are exceptionally favorable, and all other operating conditions are normal,  $a_3$  can have a value greater than one.  $a_3$  is however less than 1 in the following cases:

- Dynamic viscosity of lubricating oil is too low for bearing operating temperature (13 mm²/s or less for ball bearings, 20 mm²/s for roller bearings)
- Rotational speed is particularly low (If sum of rotational speed  $n \text{ min}^{-1}$  and rolling element pitch diameter  $D_{\text{pw}}$  mm is  $D_{\text{pw}} \cdot n < 10,000$ )
- Bearing operating temperature is too high
  If bearing operating temperature is too high, the
  raceway becomes softened, thereby shortening life.
  Life is adjusted by multiplying by the values given in
  Fig. 3.2 as the operating condition factor according to
  operating temperature. This however does not apply to
  bearings that have been treated to stabilize
  dimensions.
- Lubricant contaminated with foreign matter or moisture
   If using special operating condition, consult with NTN
   Engineering. Even if a₂ > 1 is used for specially
   bearings made of enhanced materials or produced by
   special manufacturing methods, a₂ x a₃ < 1 is used if
   Iubricating conditions are not favorable.</li>

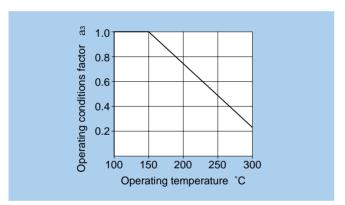



Fig. 3.2 Operating conditions factor according to operating temperature

When a super heavy load is applied, harmful plastic distortion could be produced on the contact surfaces of the rolling elements and raceway. The formulae for determining basic rating life (3.1, 3.2, and 3.6) do not apply if  $P_{\rm r}$  exceeds either  $C_{\rm or}$  (Basic static load rating) or 0.5  $C_{\rm r}$  for radial bearings, or if  $P_{\rm r}$  exceeds 0.5  $C_{\rm r}$  for thrust bearings.

#### 3.4 Machine applications and requisite life

When selecting a bearing, it is essential that the requisite life of the bearing be established in relation to the operating conditions. The requisite life of the bearing is usually determined by the type of machine in which the bearing will be used, and duration of service and operational reliability requirements. A general guide to these requisite life criteria is shown in **Table 3.4**. When determining bearing size, the fatigue life of the bearing is an important factor; however, besides bearing life, the strength and rigidity of the shaft and housing must also be taken into consideration.

#### 3.5 Basic static load rating

When stationary rolling bearings are subjected to static loads, they suffer from partial permanent deformation of the contact surfaces at the contact point between the rolling elements and the raceway. The amount of deformity increases as the load increases, and if this increase in load exceeds certain limits, the subsequent smooth operation of the bearings is impaired.

It has been found through experience that a permanent deformity of 0.0001 times the diameter of the rolling element, occurring at the most heavily stressed contact point between the raceway and the rolling elements, can be tolerated without any impairment in running efficiency.

Table 3.4 Machine application and requisite life (reference)

| Service                                                                  | Mad                                          | chine application and re                                                                                          | quisite life (reference)                                                                                            | <i>L</i> <sub>10h</sub>                                                      | × 10 <sup>3</sup> h                                                                   |
|--------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| classification                                                           | ~ 4                                          | 4 ~ 12                                                                                                            | 12~30                                                                                                               | 30 ~ 60                                                                      | 60 ~                                                                                  |
| Machines used for short periods or used only occasionally                | Household appliances     Electric hand tools | Farm machinery     Office equipment                                                                               |                                                                                                                     |                                                                              |                                                                                       |
| Short period or intermittent use, but with high reliability requirements | Medical appliances     Measuring instruments | <ul> <li>Home airconditioning motor</li> <li>Construction equipment</li> <li>Elevators</li> <li>Cranes</li> </ul> | • Crane (sheaves)                                                                                                   |                                                                              |                                                                                       |
| Machines not in constant use, but used for long periods                  | Automobiles     Two-wheeled vehicles         | <ul><li>Small motors</li><li>Buses/trucks</li><li>General gear drives</li><li>Woodworking<br/>machines</li></ul>  | <ul><li>Machine spindles</li><li>Industrial motors</li><li>Crushers</li><li>Vibrating screens</li></ul>             | Main gear drives     Rubber/plastic     Calender rolls     Printing machines |                                                                                       |
| Machines in constant use over 8 hours a day                              |                                              | Rolling mills     Escalators     Conveyors     Centrifuges                                                        | <ul> <li>Railway vehicle axles</li> <li>Air conditioners</li> <li>Large motors</li> <li>Compressor pumps</li> </ul> | Locomotive axles     Traction motors     Mine hoists     Pressed flywheels   | Papermaking machines     Propulsion equipment for marine vessels                      |
| 24 hour continuous operation, non-interruptable                          |                                              |                                                                                                                   |                                                                                                                     |                                                                              | Water supply equipment     Mine drain pumps/ventlators     Power generating equipment |

The basic static load rating refers to a fixed static load limit at which a specified amount of permanent deformation occurs. It applies to pure radial loads for radial bearings and to pure axial loads for thrust bearings. The maximum applied load values for contact stress occurring at the rolling element and raceway contact points are given below.

For ball bearings 4,200 MPa {428kgf/mm²} For self-aligning ball bearings 4,600 MPa {469kgf/mm²} For roller bearings 4,000 MPa {408kgf/mm²}

Referred to as "basic static radial load rating" for radial bearings and "basic static axial load rating" for thrust bearings, basic static load rating is expressed as  $\mathcal{C}_{\text{or}}$  or  $\mathcal{C}_{\text{oa}}$  respectively and is provided in the bearing dimensions table.

#### 3.6 Allowable static equivalent load

Generally the static equivalent load which can be permitted (See page A-25) is limited by the basic static rating load as stated in **Section 3.5**. However, depending on requirements regarding friction and smooth operation, these limits may be greater or lesser than the basic static rating load.

This is generally determined by taking the safety factor So given in **Table 3.5** and formula (3.7) into account.

$$S_0 = C_0 / P_0 \dots (3.7)$$

where,

 $S_0$ : Safety factor

*C*₀: Basic static load rating, N {kgf}

(radial bearings:  $C_{or}$ , thrust bearings:  $C_{oa}$ )

Po: Static equivalent load, N {kgf}

(radial:  $P_{or}$ , thrust:  $C_{oa}$ )

Table 3.5 Minimum safety factor values  $S_0$ 

| Operating conditions                                                                      | Ball<br>bearings | Roller<br>bearings |
|-------------------------------------------------------------------------------------------|------------------|--------------------|
| High rotational accuracy demand                                                           | 2                | 3                  |
| Normal rotating accuracy demand (Universal application)                                   | 1                | 1.5                |
| Slight rotational accuracy<br>deterioration permitted<br>(Low speed, heavy loading, etc.) | 0.5              | 1                  |

Note 1: For spherical thrust roller bearings, min.  $S_0$  value=4.

2: For shell needle roller bearings, min. So value=3.

3: When vibration and/or shock loads are present, a load factor based on the shock load needs to be included in the  $P_0$  max value.

4: If a large axial load is applied to deep groove ball bearings or angular ball bearings, the contact oval may exceed the raceway surface. For more information, please contact NTN Engineering.

# 4. Bearing Load Calculation

To compute bearing loads, the forces which act on the shaft being supported by the bearing must be determined. Loads which act on the shaft and its related parts include dead load of the rotator, load produced when the machine performs work, and load produced by transmission of dynamic force. These can theoretically be mathematically calculated, but calculation is difficult in many cases.

A method of calculating loads that act upon shafts that convey dynamic force, which is the primary application of bearings, is provided herein.

#### 4.1 Load acting on shafts

#### 4.1.1 Load factor

There are many instances where the actual operational shaft load is much greater than the theoretically calculated load, due to machine vibration and/or shock. This actual shaft load can be found by using formula (4.1).

$$K = f_{W} \cdot K_{C} \quad ... \quad (4.1)$$

where,

K: Actual shaft load N { kgf }
f<sub>w</sub>: Load factor (**Table 4.1**)

 $K_c$ : Theoretically calculated value N { kgf }

Table 4.1 Load factor  $f_w$ 

| Amount of shock         | f <sub>w</sub> | Application                                                                                                                                                                    |
|-------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Very little or no shock | 1.0 ~ 1.2      | Electric machines, machine tools, measuring instruments.                                                                                                                       |
| Light shock             | 1.2 ~ 1.5      | Railway vehicles, automobiles, rolling mills, metal working machines, paper making machines, printing machines, aircraft, textile machines, electrical units, office machines. |
| Heavy shock             | 1.5 ~ 3.0      | Crushers, agricultural equipment, construction equipment, cranes.                                                                                                              |

#### 4.1.2 Gear load

The loads operating on gears can be divided into three main types according to the direction in which the load is applied; i.e. tangential  $(K_1)$ , radial  $(K_5)$ , and axial  $(K_6)$ . The magnitude and direction of these loads differ according to the types of gears involved. The load calculation methods given herein are for two general-use gear and shaft arrangements: parallel shaft gears, and cross shaft gears.

#### (1)Loads acting on parallel shaft gears

The forces acting on spur gears and helical gears are depicted in **Figs. 4.1**, **4.2**, and **4.3**. The load magnitude can be found by using or formulas (4.2), through (4.5).

$$K_{t} = \frac{19.1 \times 10^{6} \cdot H}{D_{p} \cdot n} \qquad N$$

$$= \frac{1.95 \times 10^{6} \cdot H}{D_{p} \cdot n} \qquad \{ \text{kgf} \}$$
..... (4.2)

$$K_s = K_t \cdot \tan$$
 (Spur gear) ..... (4.3a)  
=  $K_t \cdot \frac{\tan}{\cos}$  (Helical gear) ..... (4.3b)

where.

 $K_t$ : Tangential gear load (tangential force), N {kgf}

 $K_{\rm S}$ : Radial gear load (separating force), N {kgf}  $K_{\rm r}$ : Right angle shaft load (resultant force of

tangential force and separating force), N {kgf}

 $K_a$ : Parallel load on shaft, N {kgf}

H: Transmission force , kW

n: Rotational speed, min<sup>-1</sup>

 $D_{\rm P}$ : Gear pitch circle diameter, mm

: Gear pressure angle, deg

: Gear helix angle, deg

Because the actual gear load also contains vibrations and shock loads as well, the theoretical load obtained by the above formula should also be adjusted by the gear factor  $f_a$  as shown in **Table 4.2.** 

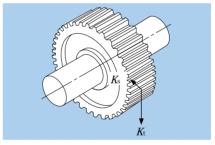



Fig. 4.1 Spur gear loads

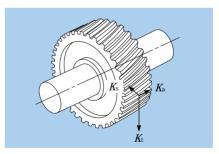



Fig. 4.2 Helical gear loads

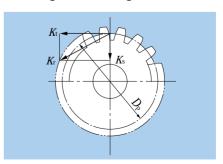



Fig. 4.3 Radial resultant forces

Table 4.2 Gear factor £

| Gear type                                                                       | fz         |
|---------------------------------------------------------------------------------|------------|
| Precision ground gears<br>(Pitch and tooth profile errors of less than 0.02 mm) | 1.05 ~ 1.1 |
| Ordinary machined gears<br>(Pitch and tooth profile errors of less than 0.1 mm) | 1.1 ~ 1.3  |

## (2)Loads acting on cross shafts

Gear loads acting on straight tooth bevel gears and spiral bevel gears on cross shafts are shown in **Figs. 4.4** and **4.5**. The calculation methods for these gear loads are shown in **Table 4.3**. Herein, to calculate gear loads for straight bevel gears, the helix angle = 0.

The symbols and units used in Table 4.3 are as follows:

Kt : Tangential gear load (tangential force), N {kgf}
 Ks : Radial gear load (separating force), N {kgf}

K<sub>a</sub>: Parallel shaft load (axial load), N {kgf}H: Transmission force, kW

n : Rotational speed, min<sup>-1</sup>

 ${\it D}_{\rm pm}$  : Mean pitch circle diameter, mm

: Gear pressure angle, deg

: Helix angle, deg: Pitch cone angle, deg

Because the two shafts intersect, the relationship of pinion and gear load is as follows:

where,

 $\mathit{K}_{sp}$  ,  $\mathit{K}_{sg}$  : Pinion and gear separating force, N {kgf}

 $\mathit{K}_{\text{ap}}$  ,  $\mathit{K}_{\text{ag}}$  : Pinion and gear axial load, N {kgf}

For spiral bevel gears, the direction of the load varies depending on the direction of the helix angle, the direction of rotation, and which side is the driving side or the driven side. The directions for the separating force ( $K_s$ ) and axial load ( $K_a$ ) shown in **Fig. 4.5** are positive directions. The direction of rotation and the helix angle direction are defined as viewed from the large end of the gear. The gear rotation direction in **Fig. 4.5** is assumed to be clockwise (right).

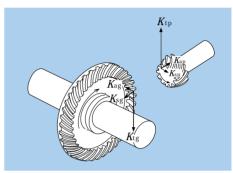



Fig. 4.4 Loads on bevel gears

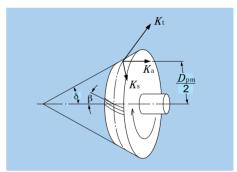



Fig. 4.5 Bevel gear diagram

Table 4.3 Loads acting on bevel gears

| Types of load                            | Rotation direction | Clockwise                                                                                                                            | Counter clockwise | Clockwise                                       | Counter clockwise |  |
|------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------|-------------------|--|
| rypes or load                            | Helix<br>direction | Right                                                                                                                                | Left              | Left                                            | Right             |  |
| Tangential load (tangential force) $K_1$ |                    | $K = \frac{19.1 \times 10^6 \cdot H}{D_{\text{pm}} \cdot n} \left\{ \frac{1.95 \times 10^6 \cdot H}{D_{\text{pm}} \cdot n} \right\}$ |                   |                                                 |                   |  |
| Radial load                              | Driving side       | $K_{\rm s}=K_{\rm t}$ $\left[ {\rm tan} \ \frac{{\rm co}}{{\rm co}} \right]$                                                         | s + tan sin       | $K_s = K_t$ $\left[ tan \frac{co}{co} \right]$  | s - tan sin       |  |
| (separation force)  Ks                   | Driven side        | $K_s = K_t$ $\left[ tan \frac{co}{co} \right]$                                                                                       | s - tan sin       | $K_s = K_t $ $\left[ tan \frac{co}{co} \right]$ | s +tan sin        |  |
| Parallel load on gear shaft (axial load) | Driving side       | $K_a = K_t$ $\left[ tan \frac{si}{co} \right]$                                                                                       | n - tan cos       | $K_a = K_t$ $\left[ tan \frac{sin}{co} \right]$ | ns + tan cos      |  |
| K <sub>a</sub>                           | Driven side        | $K_{a}=K_{t}$ $\left[ tan \frac{si}{co} \right]$                                                                                     | n<br>s + tan cos  | $K_a=K_t$ $\left[ tan \frac{sin}{co} \right]$   | ns - tan cos      |  |

#### 4.1.3 Chain / belt shaft load

The tangential loads on sprockets or pulleys when power (load) is transmitted by means of chains or belts can be calculated by formula (4.8).

$$K_{t} = \frac{19.1 \times 10^{6} \cdot H}{D_{p} \cdot n} \qquad N$$

$$= \frac{1.95 \times 10^{6} \cdot H}{D_{p} \cdot n} \quad \{ \text{ kgf } \}$$

where.

Kt: Sprocket/pulley tangential load, N {kgf}

H: Transmitted force, kW

 $D_{P}$ : Sprocket/pulley pitch diameter, mm

For belt drives, an initial tension is applied to give sufficient constant operating tension on the belt and pulley. Taking this tension into account, the radial loads acting on the pulley are expressed by formula (4.9). For chain drives, the same formula can also be used if vibrations and shock loads are taken into consideration.

$$K_{\rm r} = f_{\rm b} \cdot K_{\rm t...} (4.9)$$

where,

Kr: Sprocket or pulley radial load, N {kgf}

fb: Chain or belt factor (Table 4.4)

Table. 4.4 chain or belt factor  $f_b$ 

| Chain or belt type             | $f_{ m b}$ |
|--------------------------------|------------|
| Chain (single)                 | 1.2 ~ 1.5  |
| V-belt                         | 1.5 ~ 2.0  |
| Timing belt                    | 1.1 ~ 1.3  |
| Flat belt (w / tension pulley) | 2.5 ~ 3.0  |
| Flat belt                      | 3.0 ~ 4.0  |

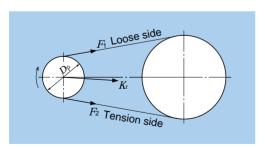



Fig. 4.6 Chain / belt loads

#### 4.2 Bearing load distribution

For shafting, the static tension is considered to be supported by the bearings, and any loads acting on the shafts are distributed to the bearings.

For example, in the gear shaft assembly depicted in **Fig. 4.7**, the applied bearing loads can be found by using formulas (4.10) and (4.11).

This example is a simple case, but in reality, many of the calculations are guite complicated.

$$F_{\text{rA}} = \frac{a+b}{b} F_{\text{I}} + \frac{d}{c+d} F_{\text{I}}$$
 ..... (4.10)

$$F_{\rm rB} = -\frac{a}{b} F_{\rm I} + \frac{c}{c+d} F_{\rm I}$$
 ..... (4.11)

where.

 $F_{\text{FA}}$ : Radial load on bearing A, N {kgf}  $F_{\text{FB}}$ : Radial load on bearing B, N {kgf}  $F_{\text{I}}$ ,  $F_{\text{I}}$ : Radial load on shaft, N {kgf}

If directions of radial load differ, the vector sum of each respective load must be determined.

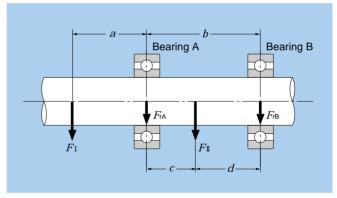



Fig. 4.7

#### 4.3 Mean load

The load on bearings used in machines under normal circumstances will, in many cases, fluctuate according to a fixed time period or planned operation schedule. The load on bearings operating under such conditions can be converted to a mean load  $(F_{\rm m})$ , this is a load which gives bearings the same life they would have under constant operating conditions.

#### (1) Fluctuating stepped load

The mean bearing load,  $F_m$ , for stepped loads is calculated from formula (4.12).  $F_1$ ,  $F_2$ ......  $F_n$  are the loads acting on the bearing;  $n_1$ ,  $n_2$ ..... $n_n$  and  $t_1$ ,  $t_2$ ......  $t_n$  are the bearing speeds and operating times respectively.

$$F_{\rm m} = \left( \frac{(F_{\rm i}^{p} n_{\rm i} t_{\rm i})}{(n_{\rm i} t_{\rm i})} \right)^{1/p} \dots (4.12)$$

where

p = 3 For ball bearings p = 10/3 For roller bearings

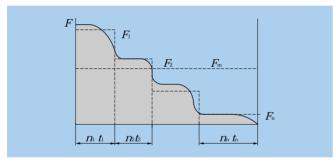



Fig. 4.8 Stepped load

#### (2) Continuously fluctuating load

Where it is possible to express the function F(t) in terms of load cycle  $t_0$  and time t, the mean load is found by using formula (4.13).

$$F_{\rm m} = \left( \begin{array}{cc} \frac{1}{t_0} & {}^{t_0} R t \end{array} \right)^p d_{\rm t} \int_{0}^{t_0} d_{\rm t} d_{\rm$$

where:

p=3 For ball bearings p=10/3 For roller bearings

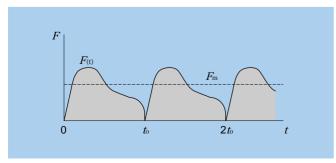



Fig. 4.9 Load that fluctuated as function of time

#### (3) Linear fluctuating load

The mean load,  $F_{\rm m}$ , can be approximated by formula (4.14).

$$F_{\rm m} = \frac{F_{\rm min} + 2F_{\rm max}}{3} \dots (4.14)$$

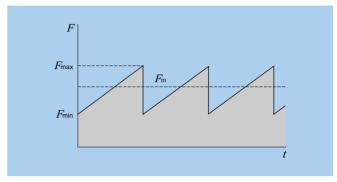



Fig. 4.10 Linear fluctuating load

#### (4) Sinusoidal fluctuating load

The mean load,  $F_{\rm m}$ , can be approximated by formulas (4.15) and (4.16).

case (a) 
$$F_{\text{m}} = 0.75 F_{\text{max}}$$
 ...................... (4.15) case (b)  $F_{\text{m}} = 0.65 F_{\text{max}}$  .................. (4.16)



Fig. 4.11 Sinusoidal variable load

#### 4.4 Equivalent load

#### 4.4.1 Dynamic equivalent load

When both dynamic radial loads and dynamic axial loads act on a bearing at the same time, the hypothetical load acting on the center of the bearing which gives the bearings the same life as if they had only a radial load or only an axial load is called the dynamic equivalent load.

For radial bearings, this load is expressed as pure radial load and is called the dynamic equivalent radial load. For thrust bearings, it is expressed as pure axial load, and is called the dynamic equivalent axial load.

#### (1) Dynamic equivalent radial load

The dynamic equivalent radial load is expressed by formula (4.17).

$$P_{\rm r} = XF_{\rm r} + YF_{\rm a}$$
..... (4.17)

where,

 $P_{r}$ : Dynamic equivalent radial load, N {kgf}

 $F_{\rm r}$ : Actual radial load, N {kgf}

 $F_a$ : Actual axial load, N {kgf}

X: Radial load factor

Y: Axial load factor

The values for *X* and *Y* are listed in the bearing tables.

#### (2) Dynamic equivalent axial load

As a rule, standard thrust bearings with a contact angle of 90° cannot carry radial loads. However, self-aligning thrust roller bearings can accept some radial load. The dynamic equivalent axial load for these bearings is given in formula (4.18).

$$P_a = F_a + 1.2F_r$$
..... (4.18)

where,

 $P_a$ : Dynamic equivalent axial load, N {kgf}

 $F_a$ : Actual axial load, N {kgf}

 $F_{\rm r}$ : Actual radial load, N {kgf}

Provided that  $F_r / F_a = 0.55$  only.

#### 4.4.2 Static equivalent load

The static equivalent load is a hypothetical load which would cause the same total permanent deformation at the most heavily stressed contact point between the rolling elements and the raceway as under actual load conditions; that is when both static radial loads and static axial loads are simultaneously applied to the bearing.

For radial bearings this hypothetical load refers to pure radial loads, and for thrust bearings it refers to pure centric axial loads. These loads are designated static equivalent radial loads and static equivalent axial loads respectively.

#### (1) Static equivalent radial load

For radial bearings the static equivalent radial load can be found by using formula (4.19) or (4.20). The greater of the two resultant values is always taken for  $P_{\text{or}}$ .

$$P_{\text{or}} = X_0 F_{\text{r}} + Y_0 F_{\text{a}}...$$
 (4.19)

$$P_{\rm or} = F_{\rm r}$$
 ..... (4.20)

where,

 $P_{or}$ : Static equivalent radial load, N {kgf}

 $F_{\rm r}$ : Actual radial load, N {kgf}

 $F_a$ : Actual axial load, N {kgf}  $X_0$ : Static radial load factor

 $Y_0$ : Static axial load factor

The values for  $X_0$  and  $Y_0$  are given in the respective bearing tables.

#### (2) Static equivalent axial load

For spherical thrust roller bearings the static equivalent axial load is expressed by formula (4.21).

$$P_{\text{oa}} = F_{\text{a}} + 2.7F_{\text{r}}...$$
 (4.21)

where.

 $P_{0a}$ : Static equivalent axial load, N {kgf}

 $F_a$ : Actual axial load, N {kgf}

 $F_{\rm r}$ : Actual radial load, N {kgf}

Provided that  $F_r / F_a = 0.55$  only.

# 4.4.3 Load calculation for angular contact ball bearings and tapered roller bearings

For angular contact ball bearings and tapered roller bearings the pressure cone apex (load center) is located as shown in **Fig. 4.12**, and their values are listed in the bearing tables.

When radial loads act on these types of bearings the component force is induced in the axial direction. For this reason, these bearings are used in pairs. For load calculation this component force must be taken into consideration and is expressed by formula (4.22).

$$F_{\rm a} = \frac{0.5F_{\rm r}}{Y}$$
 ..... (4.22)

where.

Fa: Axial component force, N {kgf}

Fr: Radial load, N {kgf}

Y: Axial load factor

The dynamic equivalent radial loads for these bearing pairs are given in **Table 4.5**.

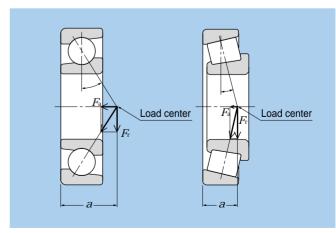



Fig. 4.12 Pressure cone apex and axial component force

Table 4.5 Bearing arrangement and dynamic equivalent load

| Bearing arrangement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Load condition                                                                                  | Axial load                                                        | Dynamic equivalent radial load                                                                                         |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|
| Rear Brg I Brg I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{0.5F_{\text{rI}}}{V_{\text{t}}}  \frac{0.5F_{\text{rII}}}{V_{\text{TI}}} + F_{\text{a}}$ | $F_{a}  I  =  \frac{0.5 F_{r  II}}{Y_{II}} + F_{a}$               | $P_{\text{TI}} = XF_{\text{TI}} + Y_{\text{II}} \left[ \frac{0.5F_{\text{TII}}}{Y_{\text{II}}} + F_{\text{a}} \right]$ |  |
| $F_{\text{r}}$ $F_{\text{r}}$ $F_{\text{r}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | II III                                                                                          |                                                                   | $P_{\rm rII} = F_{\rm rII}$                                                                                            |  |
| Front Brg □ Brg □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{0.5F_{\rm rI}}{V_{\rm t}} > \frac{0.5F_{\rm rII}}{V_{\rm tt}} + F_{\rm a}$               |                                                                   | $P_{\text{rI}} = F_{\text{rI}}$                                                                                        |  |
| $F_{a}$ $F_{c}$ $F_{c$ | $Y_{\mathrm{I}}$ $Y_{\mathrm{II}}$ $Y_{\mathrm{II}}$                                            | $F_{a}\mathbb{I}=\frac{0.5F_{rI}}{Y_{I}}-F_{a}$                   | $P_{\text{rII}} = XF_{\text{rII}} + Y_{\text{II}} \left[ \frac{0.5F_{\text{rI}}}{Y_{\text{I}}} - F_{\text{a}} \right]$ |  |
| Rear Brg I Brg I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{0.5F_{\text{TI}}}{V_{\text{TI}}}  \frac{0.5F_{\text{TI}}}{V_{\text{T}}} + F_{\text{a}}$  |                                                                   | $P_{\rm rI} = F_{\rm rI}$                                                                                              |  |
| $F_{r_{\text{I}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Υπ Υ <sub>1</sub>                                                                               | $F_{a}  \mathbb{I} = \frac{0.5 F_{r}  \mathbb{I}}{Y_{I}} + F_{a}$ | $P_{\text{rII}} = XF_{\text{rII}} + Y_{\text{II}} \left[ \frac{0.5F_{\text{rI}}}{Y_{\text{I}}} + F_{\text{a}} \right]$ |  |
| Front Brg I Brg I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{0.5F_{f\mathbb{I}}}{V_{II}} > \frac{0.5F_{f\mathbb{I}}}{V_{I}} + F_{a}$                  | $F_{a}I=\frac{0.5F_{rII}}{Y_{II}}$ - $F_{a}$                      | $P_{\text{FI}} = XF_{\text{FI}} + Y_{\text{I}} \left[ \frac{0.5F_{\text{FI}}}{Y_{\text{II}}} - F_{\text{a}} \right]$   |  |
| $F_{r_{\parallel}}$ $F_{r_{\parallel}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $Y_{\mathbb{I}}$ $Y_{\mathbb{I}}$ $Y_{\mathbb{I}}$                                              |                                                                   | $P_{\text{rII}} = F_{\text{rII}}$                                                                                      |  |

Note 1: Applies when preload is zero.

2: Radial forces in the opposite direction to the arrow in the above illustration are also regarded as positive.

# 4.5 Bearing rating life and load calculation examples

In the examples given in this section, for the purpose of calculation, all hypothetical load factors as well as all calculated load factors may be presumed to be included in the resultant load values.

#### (Example 1)

What is the rating life in hours of operation ( $L_{10h}$ ) for deep groove ball bearing **6208** operating at rotational speed n = 650 min<sup>-1</sup>, with a radial load  $F_{\rm r}$  of 3.2 kN {326 kgf} ?

From formula (4.17) the dynamic equivalent radial load:

$$P_{\rm r} = F_{\rm r} = 3.2$$
kN { 326kgf }

Basic dynamic load rating  $C_i$  for bearing 6208 given on page B-12 is 29.1 kN {2970 kgf}, ball bearing speed factor fn relative to rotational speed  $n = 650 \text{ min}^{-1}$  from **Fig. 3.1** is  $f_0 = 0.37$ . Thus life factor  $f_0$  from formula (3.5) is:

$$f_h = f_h \frac{C_r}{P_r} = 0.37 \times \frac{29.1}{3.2} = 3.36$$

Therefore, with  $f_h$  = 3.36 from **Fig. 3.1** the rated life,  $L_{10h}$ , is approximately 19,000 hours.

#### (Example 2)

What is the life rating  $L_{10h}$  for the same bearing and conditions as in **Example 1**, but with an additional axial load  $F_a$  of 1.8 kN {184 kgf} ?

To find the dynamic equivalent radial load value for  $P_{\rm F}$ , the radial load factor X and axial load factor Y are used. Basic static load rating  $C_{\rm or}$  for bearing 6208 given on page B-12 is 17.8 kN {1820 kgf} and  $f_{\rm o}$  is 14.0. Therefore:

$$\frac{f_0 \cdot F_a}{C_{\text{or}}} = \frac{14 \times 1.8}{17.8} = 1.42$$

Calculating by the proportional interpolation method given on page B-13, e = 0.30.

For the operating radial load and axial load:

$$\frac{F_a}{F_r} = \frac{1.8}{3.2} = 0.56 > e = 0.30$$

From page B-13 X = 0.56 and Y = 1.44, and from formula (4.17) the equivalent radial load,  $P_r$ , is:

$$P_r = XF_r + YF_a = 0.56 \times 3.2 + 1.43 \times 1.8$$
  
= 4.38 kN { 447kgf }

From Fig. 3.1 and formula (3.1) the life factor,  $f_h$ , is:

$$f_h = f_n \frac{C_r}{P_r} = 0.37 \times \frac{29.1}{4.38} = 2.46$$

Therefore, with life factor  $f_h$  = 2.46, from **Fig. 3.1** the rated life,  $L_{10h}$ , is approximately 7,500 hours.

#### (Example 3)

Determine the optimum model number for a cylindrical roller bearing operating at the rotational speed  $n=450 \, \mathrm{min^{-1}}$ , with a radial load  $F_{\mathrm{r}}$  of 200 kN {20,400kgf}, and which must have a life ( $L_{10\mathrm{h}}$ ) of over 20,000 hours.

From **Fig. 3.1** the life factor  $f_h = 3.02$  ( $L_{10h}$  at 20,000), and the speed factor  $f_h = 0.46$  (n = 450 min<sup>-1</sup>). To find the required basic dynamic load rating,  $C_r$ , formula (3.1) is used.

$$C_{\rm r} = \frac{f_{\rm h}}{f_{\rm n}} P_{\rm r} = \frac{3.02}{0.46} \times 200$$
  
= 1,313kN { 134,000kgf }

From page B-106, the smallest bearing that fulfills all the requirements is **NU2336** ( $C_r = 1,380 \text{ kN } \{141,000 \text{kgf}\}$ ).

#### (Example 4)

The spur gear shown in **Fig. 4.13** (pitch diameter  $D_{\rm p}$  = 150 mm, pressure angle = 20°) is supported by a pair of tapered roller bearings, 4T-32206 ( $C_{\rm r}$  = 54.5 kN {5,600 kgf}) and 4T-32205 ( $C_{\rm r}$  = 42 kN {4300 kfg}). Find rating life for each bearing when gear transfer power H = 150 kW and rotational speed n = 2,000 min<sup>-1</sup>.

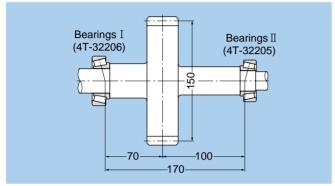



Fig. 4.13 Spur gear diagram

The gear load from formulas (4.2), (4.3a) and (4.4) is:

$$\begin{split} K_{\rm f} &= \frac{19.1 \times 10^6 \cdot H}{D_{\rm p} \cdot n} = \frac{19,100 \times 150}{150 \times 2,000} \\ &= 9.55 \text{kN } \{ \ 974 \text{kgf} \ \} \\ K_{\rm s} &= K_{\rm f} \cdot \text{tan} = 9.55 \times \text{tan20}^{\circ} \\ &= 3.48 \text{kN } \{ \ 355 \text{kgf} \ \} \\ K_{\rm f} &= \overline{K_{\rm f}^2 + K_{\rm s}^2} = \overline{9.55^2 + 3.48^2} \\ &= 10.16 \text{kN } \{ \ 1,040 \text{kgf} \ \} \end{split}$$

The radial loads for bearings I and II are:

$$F_{\rm r\,I} = \frac{100}{170} \ K_{\rm r} = \frac{100}{170} \times 10.16 = 5.98 \,\text{kN} \ \{ 610 \,\text{kgf} \}$$
  
 $F_{\rm r\,II} = \frac{70}{170} \ K_{\rm r} = \frac{70}{170} \times 10.16 = 4.18 \,\text{kN} \ \{ 426 \,\text{kgf} \}$   
 $\frac{0.5 F_{\rm r\,I}}{Y_{\rm I}} = 1.87 > \frac{0.5 F_{\rm r\,II}}{Y_{\rm II}} = 1.25$ 

From Table 4.5, equivalent radial load:

$$P_{\text{FI}} = F_{\text{FI}} = 5.98 \text{kN } \{ 610 \text{kgf} \}$$
  
 $P_{\text{FII}} = X F_{\text{FII}} + Y_{\text{II}} \frac{0.5 F_{\text{FI}}}{Y_{\text{I}}}$   
 $= 0.4 \times 4.18 + 1.67 \times 1.87$   
 $= 4.79 \text{kN } \{ 489 \text{kgf} \}$ 

From formula (3.5) and **Fig. 3.1** the life factor,  $f_n$ , for each bearing is:

$$f_{\rm h\,I} = f_{\rm h} \frac{C_{\rm r\,I}}{P_{\rm r\,I}} = 0.293 \times 54.5 / 5.98 = 2.67$$
  
 $f_{\rm h\,II} = f_{\rm h} \frac{C_{\rm r\,II}}{P_{\rm r\,II}} = 0.293 \times 42.0 / 4.79 = 2.57$ 

Therefore:  $a_2 = 1.4$ ( 4T-tapered roller bearings shown in **B-144**)

$$L_{h_1} = 13,200 \times a_2$$
  
= 13,200 × 1.4  
= 18,480 hour  
 $L_{h_2} = 11,600 \times a_2$   
= 11,600 × 1.4  
= 16,240 hour

The combined bearing life,  $L_h$ , from formula (3.3) is:

$$L_{h} = \frac{1}{\left(\frac{1}{L_{h1}^{e}} + \frac{1}{L_{h2}^{e}}\right)^{1/e}}$$

$$= \frac{1}{\left(\frac{1}{18,480^{9/8}} + \frac{1}{16,240^{9/8}}\right)^{8/9}}$$
= 9,330 hour

#### (Example 5)

Find the mean load for spherical roller bearing **23932** ( $L_a$  = 320 kN {33,000 kgf}) when operated under the fluctuating conditions shown in **Table 4.6**.

Table 4.6

| Condition<br>No. | Operating time ' | Radial load<br>F <sub>ri</sub><br>kN{ kgf } | Axial load $F_{ m ai}$ kN{ kgf } | Revolution  n min-1 |
|------------------|------------------|---------------------------------------------|----------------------------------|---------------------|
| 1                | 5                | 10 { 1020 }                                 | 2 { 204 }                        | 1200                |
| 2                | 10               | 12 { 1220 }                                 | 4 { 408 }                        | 1000                |
| 3                | 60               | 20 { 2040 }                                 | 6 { 612 }                        | 800                 |
| 4                | 15               | 25 { 2550 }                                 | 7 { 714 }                        | 600                 |
| 5                | 10               | 30 { 3060 }                                 | 10 { 1020 }                      | 400                 |

The equivalent radial load,  $P_{\rm r}$ , for each operating condition is found by using formula (4.17) and shown in **Table 4.7**. Because all the values for  $F_{\rm ri}$  and  $F_{\rm ai}$  from the bearing tables are greater than  $F_{\rm a}$  /  $F_{\rm r}$  > e = 0.18, X = 0.67,  $Y_{\rm 2}$  = 5.50.

$$P_{\text{ri}} = XF_{\text{ri}} + Y_2 F_{\text{ai}} = 0.67F_{\text{ri}} + 5.50F_{\text{ai}}$$

From formula (4.12) the mean load,  $F_{\rm m}$ , is:

$$F_{\rm m} = \left( \frac{(P_{\rm ri}^{10/3} \cdot n_{\rm i} \cdot r_{\rm i})^{3/10}}{(n_{\rm i} \cdot r_{\rm i})} \right)^{3/10} = 48.1 \, \text{kN} \, \{4,906 \, \text{kgf} \}$$

Table 4.7

| Condition No. | Equivalent radial load. $P_{\text{ri}}$ kN{ kgf } |
|---------------|---------------------------------------------------|
| 1             | 17.7 { 1805 }                                     |
| 2             | 30.0 { 3060 }                                     |
| 3             | 46.4 { 4733 }                                     |
| 4             | 55.3 { 5641 }                                     |
| 5             | 75.1 { 7660 }                                     |

#### (Example 6)

Find the threshold values for rating life time and allowable axial load when cylindrical roller bearing NUP312 is used under the following conditions: Provided that intermittent axial load and oil lubricant.

Radial load 
$$F_r$$
 = 10kN { 1,020kgf }  
Rotational speed  $n$  = 2,000 min<sup>-1</sup>

Radial load is:

$$P_{\rm r} = F_{\rm r} = 10 \, \text{kN} \{ 1,020 \, \text{kgf} \}$$

The speed factor of cylindrical roller bearing,  $f_n$ , at  $n = 2,000 \text{ min}^{-1}$ , from **Table 3.1** 

$$f_0 = \left( \frac{33.3}{2.000} \right)^{3/10} = 0.293$$

The life factor,  $f_h$ , from formula (3.4)

$$f_h = 0.293 \times \frac{124}{10} = 3.63$$

Therefore the basic rated life,  $L_{10h}$  , from **Table 3.1** 

$$L_{10h} = 500 \times 3.63^{10/3}$$
 37,000

And next, allowable axial load of cylindrical roller bearing is shown in page B-93.

In formula (1) on page B-93, based on NUP312 from Table 4 on page B-93, k = 0.065.

$$d_0 = (60 + 130) \text{ } 2 = 95 \text{mm}$$
 ,  $n = 2.000 \text{ min}^{-1}$ 

Take into consideration that intermittent axial load.

$$d_{\rm p} \cdot n \times 10^4 = 19 \times 10^4$$

In **Fig. 1** on page B-93,  $d_P \cdot n = 19 \times 10^4$ . In the case of intermittent axial load, allowable surface pressure at the lip  $P_1$  = 40 MPa.

Therefore the allowable axial load,  $P_1$ , following

$$P_z = 0.065 \times 60^2 \times 40 = 9,360 \text{N} \{ 954 \text{kgf} \}$$

Based on **Table 4** of page B-93, it is within the limits of  $F_{a \text{ max}} < 0.4 \times 10,000 = 4,000 \text{ N}$ . Therefore  $P_1 < 4,000 \text{ N} = 4000 \text{ kgf}$ .

# 5. Boundary Dimensions and Bearing Number Codes

# 5.1 Boundary dimensions

A rolling bearing's major dimensions, known as "boundary dimensions," are shown in **Figs. 5.1** - **5.3**. To facilitate international bearing interchangeability and economical bearing production, bearing boundary dimensions have been standardized by the International Standards Organization (ISO). In Japan, rolling bearing boundary dimensions are regulated by Japanese Industrial Standards (JIS B 1512).

Those boundary dimensions which have been standardized include: bearing bore diameter, outside diameter, width/height, and chamfer dimensions - all important dimensions when considering the compatibility of shafts, bearings, and housings. However, as a general rule,

bearing internal construction dimensions are not covered by these dimensions.

For metric series rolling bearings there are 90 standardized bore diameters (*d*) ranging in size from 0.6mm - 2.500mm.

Outer diameter dimensions (*D*) for radial bearings with standardized bore diameter dimensions are covered in the "diameter series;" their corresponding width dimensions (*B*) are covered in the "width series." For thrust bearings there is no width series; instead, these dimensions are covered in the "height series." The combination of all these series is known as the "dimension series." All series numbers are shown in **Table 5.1**.

Although many rolling bearing dimensions are standardized, and have been listed here for purposes of

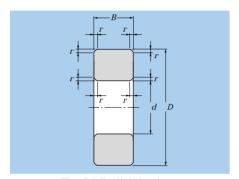



Fig. 5.1 Radial bearings (excluding tapered roller bearings)

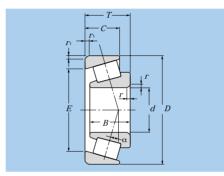



Fig. 5.2 Tapered roller bearings

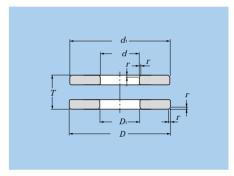



Fig. 5.3 Single direction thrust bearings

|                                           | Dimension series |                                      |                                 |                                   |                      |  |  |
|-------------------------------------------|------------------|--------------------------------------|---------------------------------|-----------------------------------|----------------------|--|--|
|                                           |                  | Diameter series diameter dimensions) | Width series (width dimensions) | Height series (height dimensions) | Reference<br>diagram |  |  |
| Radial bearings (excluding tapered roller | number           | 7, 8, 9, 0, 1, 2, 3, 4               | 8, 0, 1, 2, 3, 4, 5, 6          |                                   | Diagram 5.4          |  |  |
| bearings)                                 | dimensions       | small <del>→</del> large             | small <del>←</del> large        |                                   | g v                  |  |  |
| Tapered roller bearings                   | number           | 9, 0, 1, 2, 3                        | 0, 1, 2, 3                      |                                   | Diagram 5.5          |  |  |
| rapered roller bearings                   | dimensions       | small ← ► large                      | small ← ► large                 |                                   | Diagram 0.0          |  |  |
| Thrust bearings                           | number           | 0, 1, 2, 3, 4                        |                                 | 7, 9, 1, 2                        | Diagram 5.6          |  |  |
|                                           | dimensions       | small ← ► large                      |                                 | small ← ► large                   | Diagram 5.0          |  |  |

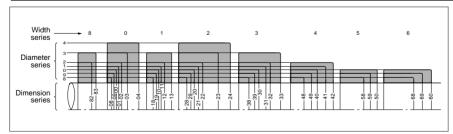



Fig. 5.4 Dimension series for radial bearings (excluding tapered roller bearings; diameter series 7 has been omitted)



Fig. 5.5 Dimension series for tapered roller bearings

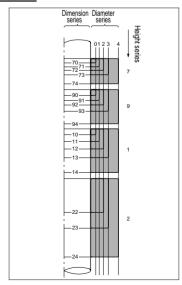



Fig. 5.6 Dimension series for thrust bearings (excluding diameter series 5)



future standardization, there are many standard bearing dimensions which are not presently manufactured.

Boundary dimensions for radial bearings (excluding tapered roller bearings) are shown in the attached tables.

#### 5.2 Bearing numbers

Rolling bearing part numbers indicate bearing type, dimensions, tolerances, internal construction, and other related specifications. Bearing numbers are comprised of a "basic number" followed by "supplementary codes." The makeup and order of bearing numbers is shown in **Table 5.2**.

The basic number indicates general information about a bearing, such as its fundamental type, boundary dimensions, series number, bore diameter code and contact angle. The supplementary codes derive from prefixes and suffixes which indicate a bearing's tolerances, internal clearances, and related specifications.

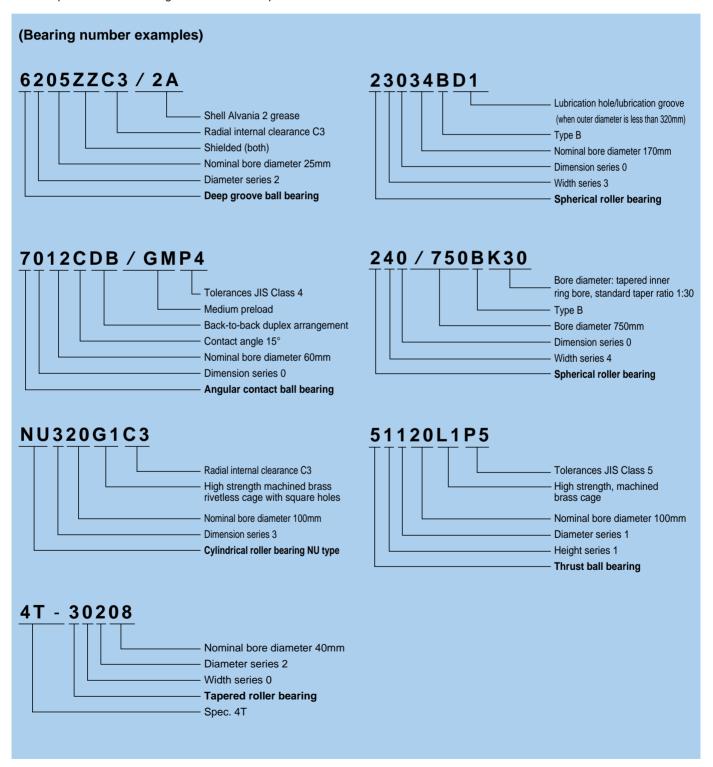



Table 5.2 Bearing number composition and arrangement

|                                                      |                                                       | Basic number                          |                                  |                  |              |                    |         |                                                          |
|------------------------------------------------------|-------------------------------------------------------|---------------------------------------|----------------------------------|------------------|--------------|--------------------|---------|----------------------------------------------------------|
| Sup                                                  | plementary prefix code                                |                                       |                                  |                  |              |                    |         |                                                          |
| Special application/material/<br>heat treatment code |                                                       | Bearing series  Dimension series code |                                  | Bore dian        | neter code   | Contact angle code |         |                                                          |
|                                                      |                                                       | Bearing series code                   | Width/height series <sup>●</sup> | Diameter series  | Code         | bore diameter mm   | Code    | Contact angle                                            |
| 4T:                                                  | 4T tapered roller bearings                            | Deen groov                            | e ball bearings (                | tyne code 6)     | /0.6         | 0.6                | Angular | contact ball bearings                                    |
| ET:                                                  | ET tapered roller bearings                            | 68                                    | (1)                              | 8                | /1.5<br>/2.5 | 1.5<br>2.5         | (A)     | Standard contact angle 30°                               |
| ETA:                                                 | ET+special heat treatment                             | 69<br>60                              | (1)<br>(1)                       | 9                | /2.5         | 2.5                | B<br>C  | Standard contact angle 40°<br>Standard contact angle 15° |
|                                                      | ·                                                     | 62<br>63                              | (0)                              | 2 3              | . 1<br>:     | 1 :                | Tape    | red roller bearings                                      |
| E:                                                   | Bearing using case<br>hardened steel                  | Angular cont                          | act ball bearings                | (type code 7)    | 9            | 9                  | (B)     | Contact angle over 10°                                   |
| EA:                                                  | Bearing made of                                       | 78<br>79                              | (1)<br>(1)                       | 8<br>9           | 00           | 40                 | C       | to/including 17° Contact angle over 17°                  |
|                                                      | nitride-treated case                                  | 70                                    | (1)                              | 0                | 00<br>01     | 10<br>12           |         | to/including 24°                                         |
|                                                      | hardened steel                                        | 72<br>73                              | (0)<br>(0)                       | 2 3              | 02           | 15                 |         | Contact angle over 24°                                   |
| TA:                                                  | Bearing made of                                       |                                       | ` '                              |                  | 03           | 17                 |         | to/including 32°                                         |
|                                                      | nitride-treated bearing                               | Self-aligning                         | ball bearings (t                 |                  |              |                    |         |                                                          |
|                                                      | steel (SUJ3)                                          | 13                                    | (0)                              | 2 3              | /22          | 22                 |         |                                                          |
| TM:                                                  | Bearing made of special                               | 22                                    | (2)                              | 2                | /28          | 28                 |         |                                                          |
|                                                      | heat-treated bearing                                  | 23                                    | (2)                              | 3                | /32          | 32                 |         |                                                          |
|                                                      | steel (SUJ3)                                          |                                       | earings (type code NU,           |                  | 04           | 20                 |         |                                                          |
| F:                                                   | Stainless steel bearings                              | NU10<br>NU2                           | (0)                              | 0 2              | 05           | 25                 |         |                                                          |
| N:                                                   | High speed steel bearings                             | NU22                                  | 2                                | 2                | 06           | 30                 |         |                                                          |
| M:                                                   | Plated bearings                                       | NU3<br>NU23                           | (0)                              | 3 3              | :<br>88      | 440                |         |                                                          |
|                                                      | ŭ                                                     | NU4                                   | (0)                              | 4                | 92           | 460                |         |                                                          |
| 5S:                                                  | Ceramic rolling element bearings                      | NNU49<br>NN30                         | 4 3                              | 9                | 96           | 480                |         |                                                          |
| ш.                                                   | ŭ                                                     | Tapered re                            | oller bearings (ty               | pe code 3)       | /500         | 500                |         |                                                          |
| HL:                                                  | HL roller bearings                                    | 329X                                  | 2                                | 9                | /500<br>/530 | 500<br>530         |         |                                                          |
| ECO:                                                 | ECO-Top tapered roller                                | 320X<br>302                           | 2                                | 0 2              | /560         | 560                |         |                                                          |
|                                                      | bearings                                              | 322                                   | 2                                | 2                |              | :                  |         |                                                          |
| LH:                                                  | Bearing made of bearing                               | 303<br>303D                           | 0                                | 3 3              | /2,360       | 2,360              |         |                                                          |
|                                                      | steel that provides long                              | 313X                                  | 1                                | 3                | /2,500       | 2,500              |         |                                                          |
|                                                      | life at high temperatures (STJ2), which is treated to | 323                                   | 2                                | 3                |              |                    |         |                                                          |
|                                                      | stabilize dimensions at                               | Spherical r                           | oller bearings (t                | ype code 2)      |              |                    |         |                                                          |
|                                                      | temperatures up to 250°C                              | 239<br>230                            | 3                                | 9 0              |              |                    |         |                                                          |
| TS3:                                                 | Dimension stabilized                                  | 240                                   | 4                                | 0                |              |                    |         |                                                          |
| . 00.                                                | bearing for high                                      | 231                                   | 3                                | 1                |              |                    |         |                                                          |
|                                                      | temperature use                                       | 241<br>222                            | 4 2                              | 1 2              |              |                    |         |                                                          |
|                                                      | (to 200°C)                                            | 232                                   | 3                                | 2                |              |                    |         |                                                          |
| TS4:                                                 | Dimension stabilized                                  | 213<br>223                            | 1 2                              | 3                |              |                    |         |                                                          |
|                                                      | bearing for high                                      |                                       | thrust ball bearin               |                  |              |                    |         |                                                          |
|                                                      | temperature use (to 250°C)                            | 511                                   | i thrust ball bearin             | gs (type code 5) |              |                    |         |                                                          |
|                                                      | (10 230 0)                                            | 512                                   | 1                                | 2                |              |                    |         |                                                          |
|                                                      |                                                       | 513<br>514                            | 1                                | 3<br>4           |              |                    |         |                                                          |
|                                                      |                                                       |                                       | er thrust bearing                | •                |              |                    |         |                                                          |
|                                                      |                                                       | 811                                   | 1                                | 1                |              |                    |         |                                                          |
|                                                      |                                                       | 812<br>893                            | 1 9                              | 2 3              |              |                    |         |                                                          |
|                                                      |                                                       | Spherical thru                        |                                  |                  |              |                    |         |                                                          |
| 292                                                  |                                                       |                                       | 9                                | 2                |              |                    |         |                                                          |
|                                                      |                                                       | 293                                   | 9                                | 3                |              |                    |         |                                                          |
|                                                      |                                                       | 294                                   | 9                                | 4                |              |                    |         |                                                          |

Ocodes in ( ) are not shown in nominal numbers.

Note: Please consult NTN Engineering concerning bearing series codes, and supplementary prefix/suffix codes not listed in the above table.



| Supplementary suffix codes                                                                                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                                                          |                                                                                                                                                                                                                    |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                   |                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Internal modifications code                                                                                                                                                                                              | cage code                                                                                                                                                                                              | Seal /<br>Shield code                                                                                                                                    | External configuration code                                                                                                                                                                                        | Duplex arrangement code                                                                                                                                                                   | Internal clearance /preload code                                                                                                                                                                                                                                                                                                    | Tolerance code                                                                                                                    | Lubrication code                                                                                                                                                                               |
| U: Internationally interchangeable tapered roller bearings  R: Non- internationally interchangeable tapered roller bearings  ST: Low torque tapered roller bearings  HT: High axial load use cylindrical roller bearings | L1: High strength, machined brass cage F1: Machined carbon steel cage G1: High strength machined brass rivetless cage with square holes, G2: Pin type cage J: Pressed steel cage T2: Plastic mold cage | LLB: Synthetic rubber seal (non-contact type)  LLU: Synthetic rubber seal (contact type)  LLH: Synthetic rubber seal (low-torque type)  ZZ: Steel shield | K: Tapered inner ring bore, standard taper ratio 1:12 K30: Tapered inner ring bore, standard taper ratio 1:30 N: With snap ring groove NR: With snap ring D: With oil hole D1: Lubrication hole/lubrication groove | DB: Back-to-back arrangement  DF: Face-to-face arrangement  DT: Tandem arrangement  D2: Two matched, paired bearings  G: Flush ground  + : Spacer ( = spacer's standard width dimensions) | C2: Internal clearance less than normal  (CN): Normal clearance  C3: Internal clearance greater than normal  C4: Internal clearance greater than C3  C5: Internal clearance greater than C4  CM: Radial internal clearance for electric motor use  /GL: Light preload  /GN: Normal preload  /GM: Medium preload  /GH: Heavy preload | P6: JIS Class 6 P5: JIS Class 5 P4: JIS Class 4 P2: JIS Class 2 2: ABMA Class 2 3: ABMA Class 3 0: ABMA Class 0 00: ABMA Class 00 | /2A: Shell Alvania 2 grease  /3A: Shell Alvania 3 grease  /8A: Shell Alvania EP2 grease  /5K: MULTEMP SRL  /LX11: Barierta JFE552  /LP03: Thermosetting grease (grease for poly-lube bearings) |





# 6. Bearing Tolerances

# 6.1 Dimensional accuracy and running accuracy

Bearing "tolerances" or dimensional accuracy and running accuracy, are regulated by ISO and JIS B 1514 standards (rolling bearing tolerances). For dimensional accuracy, these standards prescribe the tolerances necessary when installing bearings on shafts or in housings. Running accuracy is defined as the allowable limits for bearing runout during operation.

# **Dimensional accuracy**

Dimensional accuracy constitutes the acceptable values for bore diameter, outer diameter, assembled bearing width, and bore diameter uniformity as seen in chamfer dimensions, allowable inner ring tapered bore deviation and shape error. Also included are, average bore diameter variation, outer diameter variation, average outer diameter unevenness, as well as raceway width and height variation (for thrust bearings).

# **Running accuracy**

Running accuracy constitutes the acceptable values for inner and outer ring radial runout and axial runout, inner ring side runout, and outer ring outer diameter runout.

Allowable rolling bearing tolerances have been established according to precision classes. Bearing precision is stipulated as JIS class 6, class 5, class 4, or class 2, with precision rising from ordinary precision indicated by class 0.

Table 6.1 indicates which standards and precision classes are applicable to the major bearing types. Table 6.2 shows a relative comparison between JIS B 1514 precision class standards and other standards. For greater detail on allowable limitations and values, refer to Tables 6.3 - 6.9. Allowable values for chamfer dimensions are shown in Table 6.10, and allowable limitations and values for radial bearing inner ring tapered bores are shown in Table 6.11.

Table 6.1 Bearing types and applicable tolerance

|                | Bearing type                              | Applicable standard |            | Toler   | ance class | S       |          | Tolerance table |
|----------------|-------------------------------------------|---------------------|------------|---------|------------|---------|----------|-----------------|
| Deep groove    | e ball bearings                           |                     | class 0    | class 6 | class 5    | class 4 | class 2  |                 |
| Angular con    | tact ball bearings                        |                     | class 0    | class 6 | class 5    | class 4 | class 2  |                 |
| Self-aligning  | ball bearings                             | JIS B 1514          | class 0    | _       | _          | _       | _        | Table 0.0       |
| Cylindrical ro | oller bearigns                            | (ISO492)            | class 0    | class 6 | class 5    | class 4 | class 2  | Table 6.3       |
| Needle rolle   | r bearings                                |                     | class 0    | class 6 | class 5    | class 4 | _        |                 |
| Spherical ro   | ller bearings                             |                     | class 0    | _       | _          | _       | _        |                 |
| Tapered        | metric                                    | JIS B 1514          | class 0,6X | class 6 | class 5    | class 5 | _        | Table 6.4       |
| roller         | Inch                                      | ANSI/ABMA Std.19    | class 4    | class 2 | class 3    | class 0 | class 00 | Table 6.5       |
| bearings       | J series                                  | ANSI/ABMA Std.19.1  | class K    | class N | class C    | class B | class A  | Table 6.6       |
| Thrust ball b  | earings                                   | JIS B 1514          | class 0    | class 6 | class 5    | class 4 | _        | Table 6.7       |
| Spherical ro   | ller thrust bearings                      | (ISO199)            | class 0    | _       | _          | _       | _        | Table 6.8       |
| Double direct  | tion angular contact thrust ball bearings | NTN standard        | _          | _       | class 5    | class 4 | _        | Table 6.9       |

Table 6.2 Comparison of tolerance classifications of national standards

| Standard                                             | Applicable standerd |                             | Toler            | ance Clas        | s        |          | Bearing Types                                    |
|------------------------------------------------------|---------------------|-----------------------------|------------------|------------------|----------|----------|--------------------------------------------------|
| Japanese industrial standard (JIS)                   | JIS B 1514          | Class 0,6X                  | Class 6          | Class 5          | Class 4  | Class 2  | All type                                         |
|                                                      | ISO 492             | Normal<br>class<br>Class 6X | Class 6          | Class 5          | Class 4  | Class 2  | Radial bearings                                  |
| International Organization for Standardization (ISO) | ISO 199             | Normal<br>Class             | Class 6          | Class 5          | Class 4  | _        | Thrust ball bearings                             |
|                                                      | ISO 578             | Class 4                     | _                | Class 3          | Class 0  | Class 00 | Tapered roller bearings (Inch series)            |
|                                                      | ISO 1224            | _                           | _                | Class 5A         | Class 4A | _        | Precision instrument bearings                    |
| Deutsches Institut fur Normung(DIN)                  | DIN 620             | P0                          | P6               | P5               | P4       | P2       | All type                                         |
| American National<br>Standards Institute (ANSI)      | ANSI/ABMA Std.20    | ABEC-1<br>RBEC-1            | ABEC-3<br>RBEC-3 | ABEC-5<br>RBEC-5 | ABEC-7   | ABEC-9   | Radial bearings (Except tapered roller bearings) |
| American Bearing Manufacturer's Association          | ANSI/ABMA Std.19.1  | Class K                     | Class N          | Class C          | Class B  | Class A  | Tapered roller bearings (Metric series)          |
| (ABMA)                                               | ANSI/ABMA Std.19    | Class 4                     | Class 2          | Class 3          | Class 0  | Class 00 | Tapered roller bearings (Inch series)            |

■ "ABEC" is applied for ball bearings and "RBEC" for roller bearings.

Notes 1: JIS B 1514, ISO 492 and 199, and DIN 620 have the same specification level.

<sup>2:</sup> The tolerance and allowance of JIS B 1514 are a little different from those of ABMA standards.

Table 6.3 Tolerance of radial bearings (Except tapered roller bearings) Table 6.3 (1) Inner rings

| Table 6.3 | (.,          |           | go   |          |      |                  |            |          |        |          |      |              |            |       |            |            |            |         |         |            |            |            |            |            |            |            |            |
|-----------|--------------|-----------|------|----------|------|------------------|------------|----------|--------|----------|------|--------------|------------|-------|------------|------------|------------|---------|---------|------------|------------|------------|------------|------------|------------|------------|------------|
|           | minal        |           |      |          |      | ension           |            |          |        |          |      |              |            |       |            |            | Е          | Bore o  | liam    | eter       | vari       | iatior     | 1          |            |            |            |            |
|           | ore<br>meter |           |      |          | bo   | ore dia          | metei      | withi    | n plan | ie       |      |              |            |       |            |            |            |         |         | $V_{dc}$   | )          |            |            |            |            |            |            |
|           |              |           |      |          |      |                  | $\Delta d$ | mp       |        |          |      |              |            |       |            |            |            |         |         |            |            |            |            |            |            |            |            |
|           | d            |           |      |          |      |                  |            |          |        |          |      |              |            |       |            |            |            |         |         |            |            |            |            |            |            |            |            |
| n         | nm           |           |      |          |      |                  |            |          |        |          |      | _            | di         | iame  | ter se     | eries      | 9          | dia     | mete    | er sei     | ries       | 0.1        | dia        | nete       | r seri     | es 2       | .3.4       |
|           |              |           | cla  | ss 0     | clas | ss 6             | clas       | s 5      | clas   | ss 4 •   | clas | ss 2         | class<br>0 | class | class<br>5 | class<br>4 | class<br>2 | class 0 | class ( | class<br>5 | class<br>4 | class<br>2 | class<br>0 | class<br>6 | class<br>5 | class<br>4 | class<br>2 |
| over      | in           | ncl.      | high | low      | high | low              | high       | low      | high   | low      |      | low          | "          | O     | max        |            | 2          | 0       | _       | nax        | •          | 2          | U          | _          | max        | •          | 2          |
| 0.6       | · A          | 2.5       |      | -8       | 0    | -7               | 0          | -5       | 0      | -4       | 0    | -2.5         | 10         | 9     | 5          | 1          | 2.5        | 8       | 7       | 4          | 3          | 2.5        | 6          | 5          | 4          | 3          | 2.5        |
| 2.5       |              | 2.5<br>10 | 0    | -o<br>-8 | 0    | - <i>1</i><br>-7 | 0          | -5<br>-5 | 0      | -4<br>-4 | 0    | -2.5<br>-2.5 | 10         | 9     | 5<br>5     |            | 2.5        | 8       | 7       | 4          | 3          | 2.5        | 6          | 5<br>5     | 4          | 3          | 2.5        |
| 10        |              | 18        | 0    | -8       | 0    | -7<br>-7         | 0          | -5<br>-5 | 0      | -4<br>-4 | 0    | -2.5<br>-2.5 | 10         | 9     | 5          | 4          | 2.5        | 8       | 7       | 4          | 3          | 2.5        | 6          | 5          | 4          | 3          | 2.5        |
| 10        |              |           | U    |          | U    |                  | U          |          | U      |          | U    |              |            |       | 3          |            |            |         | ′       | _          | 3          | 2.5        | U          | J          | 7          | 5          | 2.5        |
| 18        |              | 30        | 0    | -10      | 0    | -8               | 0          | -6       | 0      | -5       | 0    | -2.5         | 13         | 10    | 6          |            | 2.5        | 10      | 8       | 5          | 4          | 2.5        | 8          | 6          | 5          | 4          | 2.5        |
| 30        |              | 50        | 0    | -12      | 0    | -10              | 0          | -8       | 0      | -6       | 0    | -2.5         | 15         | 13    | 8          |            | 2.5        | 12      | 10      | 6          | 5          | 2.5        | 9          | 8          | 6          | 5          | 2.5        |
| 50        | 8            | 80        | 0    | -15      | 0    | -12              | 0          | -9       | 0      | -7       | 0    | -4           | 19         | 15    | 9          | 7          | 4          | 19      | 15      | 7          | 5          | 4          | 11         | 9          | 7          | 5          | 4          |
| 80        | 12           | 20        | 0    | -20      | 0    | -15              | 0          | -10      | 0      | -8       | 0    | -5           | 25         | 19    | 10         | 8          | 5          | 25      | 19      | 8          | 6          | 5          | 15         | 11         | 8          | 6          | 5          |
| 120       | 15           | 50        | 0    | -25      | 0    | -18              | 0          | -13      | 0      | -10      | 0    | -7           | 31         | 23    | 13         | 10         | 7          | 31      | 23      | 10         | 8          | 7          | 19         | 14         | 10         | 8          | 7          |
| 150       | 18           | 80        | 0    | -25      | 0    | -18              | 0          | -13      | 0      | -10      | 0    | -7           | 31         | 23    | 13         | 10         | 7          | 31      | 23      | 10         | 8          | 7          | 19         | 14         | 10         | 8          | 7          |
| 180       | 25           | 50        | 0    | -30      | 0    | -22              | 0          | -15      | 0      | -12      | 0    | -8           | 38         | 28    | 15         | 12         | Ω          | 38      | 28      | 12         | a          | 8          | 23         | 17         | 12         | 9          | 8          |
| 250       | 31           |           | 0    | -35      | 0    | -25              | 0          | -18      | _      | -12      | _    | _            | 44         | 31    | 18         |            | _          | 44      | 31      |            | _          | _          | 26         | 19         | 14         | _          | _          |
| 315       | 40           | -         | 0    | -40      | 0    | -30              | 0          | -23      | _      | _        | _    | _            | 50         | 38    | 23         | _          | _          | 50      |         | 18         | _          | _          | 30         | 23         |            | _          | _          |
|           |              |           |      |          |      |                  | Ü          | _5       |        |          |      |              |            |       | _0         |            |            |         |         |            |            |            |            |            |            |            |            |
| 400       | 50           |           | 0    | -45      | 0    | -35              | _          | _        | _      | -        | _    | _            | 56         | 44    | _          | _          | _          | 56      | 44      | _          | _          | _          | 34         | 26         | _          | _          | _          |
| 500       | 63           |           | 0    | -50      | 0    | -40              | _          | _        | _      | _        | _    | _            | 63         | 50    | _          | _          | _          | 63      | 50      | _          | _          | _          | 38         | 30         | _          | _          | _          |
| 630       | 80           | 00        | 0    | -75      | _    | _                | _          | _        | _      | _        | _    | _            | _          | _     | _          | _          | _          | _       | _       | _          | _          | _          | _          | _          | _          | _          | _          |
| 800       | 1 00         | 00        | 0    | -100     | -    | _                | _          | _        | _      | -        | _    | -            | _          | _     | _          | -          | _          | _       | _       | -          | _          | _          | _          | -          | _          | _          | _          |
| 1 000     | 1 25         | 50        | 0    | -125     | -    | _                | _          | _        | _      | -        | _    | _            | _          | _     | _          | -          | _          | _       | -       | -          | _          | _          | _          | -          | _          | _          | _          |
| 1 250     | 1 60         | 00        | 0    | -160     | _    | _                | -          | _        | -      | -        | _    | -            | _          | -     | -          | -          | _          | _       | -       | -          | _          | _          | _          | -          | -          | _          | _          |
| 1 600     | 2 00         | 00        | 0    | -200     |      |                  | _          |          | _      |          | _    |              | _          |       |            | _          | _          | _       | _       | _          | _          |            | _          | _          | _          | _          | _          |

<sup>•</sup> The dimensional difference Δds of bore diameter to applied for class 4 and 2 is the same as the tolerance of dimentional difference Δdmp of average bore diameter. However, the dimensional difference is applied to diameter series 0, 1, 2, 3 and 4 against Class 4, and to all the diameter series against Class 2.

Table 6.3 (2) Outer rings

| Nomi  |            |      | Dir  | mensi |         |            | ce of i |      | outsio | de   |      |     |      |          |       | 0     | utside | e dia | met      | er v | ariati | on 6 |      |          |      |      |
|-------|------------|------|------|-------|---------|------------|---------|------|--------|------|------|-----|------|----------|-------|-------|--------|-------|----------|------|--------|------|------|----------|------|------|
| diame |            |      |      |       | ularrie |            |         | лапе |        |      |      |     |      |          |       |       |        |       | $V_{Dp}$ |      |        |      |      |          |      |      |
| D     |            |      |      |       |         | $\Delta L$ | )mp     |      |        |      |      |     |      |          |       |       |        | ope   | en ty    | γре  |        |      |      |          |      |      |
| mn    | n          |      |      |       |         |            |         |      |        |      |      | d   | iame | ter s    | eries | 9     | dia    | mete  | er se    | ries | 0.1    | dia  | mete | r seri   | es 2 | .3.4 |
|       | '          | cla  | ss 0 | cla   | ss 6    | clas       | ss 5    | clas | ss 4   | cla  | ss 2 |     |      |          |       | class |        |       |          |      |        |      |      | class    |      |      |
| over  | incl.      | high | low  | high  | low     | high       | low     | high | low    | high |      | 0   | 6    | 5<br>max | 4     | 2     | 0      | 6     | 5<br>max | 4    | 2      | 0    | 6    | 5<br>max | 4    | 2    |
| 2.5   | <b>9</b> 6 | 0    | -8   | 0     | -7      | 0          | -5      | 0    | -4     | 0    | -2.5 | 10  | 9    | 5        | 4     | 2.5   | 8      | 7     | 4        | 3    | 2.5    | 6    | 5    | 4        | 3    | 2.5  |
| 6     | 18         | 0    | -8   | 0     | -7      | 0          | -5      | 0    | -4     | 0    | -2.5 | 10  |      |          | 4     | 2.5   | 8      | 7     | 4        | 3    | 2.5    | 6    | 5    | 4        | 3    | 2.5  |
| 18    | 30         | 0    | -9   | 0     | -8      | 0          | -6      | 0    | -5     | 0    | -4   | 12  |      |          | 5     | 4     | 9      | 8     | 5        | 4    | 4      | 7    | 6    | 5        | 4    | 4    |
| 30    | 50         | 0    | -11  | 0     | -9      | 0          | -7      | 0    | -6     | 0    | -4   | 14  | 11   | 7        | 6     | 4     | 11     | 9     | 5        | 5    | 4      | 8    | 7    | 5        | 5    | 4    |
| 50    | 80         | 0    | -13  | 0     | -11     | 0          | -9      | 0    | -7     | 0    | -4   | 16  |      | 9        | 7     | 4     | 13     | 11    | 7        | 5    | 4      | 10   | 8    | 7        | 5    | 4    |
| 80    | 120        | 0    | -15  | 0     | -13     | 0          | -10     | 0    | -8     | 0    | -5   | 19  | 16   | 10       | 8     | 5     | 19     | 16    | 8        | 6    | 5      | 11   | 10   | 8        | 6    | 5    |
| 120   | 150        | 0    | -18  | 0     | -15     | 0          | -11     | 0    | -9     | 0    | -5   | 23  | 19   | 11       | 9     | 5     | 23     | 19    | 8        | 7    | 5      | 14   | 11   | 8        | 7    | 5    |
| 150   | 180        | 0    | -25  | 0     | -18     | 0          | -13     | 0    | -10    | 0    | -7   | 31  | 23   | 13       | 10    | 7     | 31     | 23    | 10       | 8    | 7      | 19   | 14   | 10       | 8    | 7    |
| 180   | 250        | 0    | -30  | 0     | -20     | 0          | -15     | 0    | -11    | 0    | -8   | 38  | 25   | 15       | 11    | 8     | 38     | 25    | 11       | 8    | 8      | 23   | 15   | 11       | 8    | 8    |
| 250   | 315        | 0    | -35  | 0     | -25     | 0          | -18     | 0    | -13    | 0    | -8   | 44  | 31   | 18       | 13    | 8     | 44     | 31    | 14       | 10   | 8      | 26   | 19   | 14       | 10   | 8    |
| 315   | 400        | 0    | -40  | 0     | -28     | 0          | -20     | 0    | -15    | 0    | -10  | 50  | 35   | 20       | 15    | 10    | 50     | 35    | 15       | 11   | 10     | 30   | 21   | 15       | 11   | 10   |
| 400   | 500        | 0    | -45  | 0     | -33     | 0          | -23     | -    | -      | -    | -    | 56  | 41   | 23       | -     | -     | 56     | 41    | 17       | -    | -      | 34   | 25   | 17       | -    | -    |
| 500   | 630        | 0    | -50  | 0     | -38     | 0          | -28     | _    | _      | _    | _    | 63  | 48   | 28       | _     | _     | 63     | 48    | 21       | _    | _      | 38   | 29   | 21       | _    | _    |
| 630   | 800        | 0    | -75  | 0     | -45     | 0          | -35     | _    | _      | _    | _    | 94  | - 56 | 35       | _     | -     | 94     | 56    | 26       | _    | _      | 55   | 34   | 26       | _    | _    |
| 800   | 1 000      | 0    | -100 | 0     | -60     | -          | -       | -    | -      | -    | -    | 125 | 75   | -        | -     | -     | 125    | 75    | -        | -    | -      | 75   | 45   | -        | -    | _    |
| 1 000 | 1 250      | 0    | -125 | _     | _       | _          | _       | _    | _      | _    | _    | _   | _    | _        | _     | _     | _      | _     | _        | _    | _      | _    | _    | _        | _    | _    |
| 1 250 | 1 600      | 0    | -160 | _     | -       | -          | -       | -    | _      | _    | -    | -   | -    | -        | -     | -     | -      | -     | -        | -    | _      | _    | -    | -        | -    | _    |
| 1 600 | 2 000      | 0    | -200 | -     | -       | -          | -       | -    | -      | -    | -    | _   | -    | -        | -     | -     | _      | -     | -        | -    | _      | _    | -    | -        | -    | _    |
| 2 000 | 2 500      | 0    | -250 | _     | _       | _          | _       | _    | _      | _    | _    | _   | _    | _        | -     | _     | _      | -     | _        | _    | _      | _    |      | _        | -    | _    |

The dimensional difference ΔDs of outer diameter to be applied for classes 4 and 2 is the same as the tolerance of dimensional difference ΔDmp of average outer diameter. However, the dimensional difference is applied to diameter series 0, 1, 2, 3 and 4 against Class 4, and also to all the diameter series against Class 2.

Unit µ m

| Mean bore diameter variation $Vamp$             | Inner ring Side runout radial runout with bore                                                                                                                       | Inner ring axial runout  Sia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | viation Inner ring width variation $V_{B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| class class class class class 0 6 5 4 2         | class class class class class class class class class                                                                                                                | normal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | modified class cla |
| max                                             | max max                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | high low high low max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6 5 3 2 1.5<br>6 5 3 2 1.5<br>6 5 3 2 1.5       | 10     5     4     2.5     1.5     7     3     1.5       10     6     4     2.5     1.5     7     3     1.5       10     7     4     2.5     1.5     7     3     1.5 | 7 3 1.5 0 -40 0 -40 0 -40<br>7 3 1.5 0 -120 0 -40 0 -40<br>7 3 1.5 0 -120 0 -80 0 -80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -     -     0     -250     12     12     5     2.5     1.5       0     -250     0     -250     15     15     5     2.5     1.5       0     -250     0     -250     20     20     5     2.5     1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8 6 3 2.5 1.5<br>9 8 4 3 1.5<br>11 9 5 3.5 2    | 13 8 4 3 2.5 8 4 1.5<br>15 10 5 4 2.5 8 4 1.5<br>20 10 5 4 2.5 8 5 1.5                                                                                               | 8     4     2.5     0     -120     0     -120     0     -120       8     4     2.5     0     -120     0     -120     0     -120       8     5     2.5     0     -150     0     -150     0     -150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 -250 0 -250 20 20 5 2.5 1.5<br>0 -250 0 -250 20 20 5 3 1.5<br>0 -380 0 -250 25 25 6 4 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 15 11 5 4 2.5<br>19 14 7 5 3.5<br>19 14 7 5 3.5 | 25     13     6     5     2.5     9     5     2.5       30     18     8     6     2.5     10     6     2.5       30     18     8     6     5     10     6     4      | 9     5     2.5     0     -200     0     -200     0     -200       10     7     2.5     0     -250     0     -250     0     -250       10     7     5     0     -250     0     -250     0     -250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 -380 0 -380 25 25 7 4 2.5<br>0 -500 0 -380 30 30 8 5 2.5<br>0 -500 0 -380 30 30 8 5 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 23 17 8 6 4<br>26 19 9 — —<br>30 23 12 — —      | 40     20     10     8     5     11     7     5       50     25     13     -     -     13     -     -       60     30     15     -     -     15     -     -          | 13 8 5 0 -300 0 -300 0 -300<br>15 0 -350 0<br>20 0 -400 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 -500 0 -500 30 30 10 6 5<br>0 -500 0 - 35 35 13<br>0 -630 0 - 40 40 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 34 26<br>38 30<br>55                            | 65 35                                                                                                                                                                | 0 -450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50 45<br>60 50<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 75<br>94<br>120<br>150                          | 90                                                                                                                                                                   | -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     - <td> 80</td> | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

- Applies to ball bearings such as deep groove ball bearings and angular ball bearings.
- To be applied for individual raceway rings manufactured for combined bearing use.

  Nominal bore diameter of bearings of 0.6 mm is included in this dimensional division.

Unit µm

| Outside di<br>variatio<br>Sealed/s<br>bearii<br>diameter | n V <sub>DP</sub> <b>6</b><br>shield<br>ngs | Me                                       |                                                                                   | ore d<br>ariation<br><i>VD</i> mp                                      | on                                                      | ter                                                           | Oute                                                                                                           | er ring                                                                             | g rad<br><i>K</i> ea | lial ru                                                | unout                                                  |                                                                            | ide su<br>clinati<br><i>S</i> o                 |                                                              |                                                                         | side r<br>al run<br>Sea | out                                                    | Outer ring width deviation $\Delta c_{ m s}$                                    | Outer rir<br>varia                                                              |                            | lth                                   |                                                              |
|----------------------------------------------------------|---------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------|---------------------------------------|--------------------------------------------------------------|
| 2,3,4<br>class 0<br>ma                                   | 0,1,2,3,4<br>class 6                        | class<br>0                               | class<br>6                                                                        | class<br>5<br>max                                                      | class<br>4                                              | class<br>2                                                    | class<br>0                                                                                                     | class<br>6                                                                          | class<br>5<br>max    | class<br>4                                             | class<br>2                                             | class<br>5                                                                 | class<br>4<br>max                               | class<br>2                                                   | class<br>5                                                              | class<br>4<br>max       | class<br>2                                             | all type                                                                        | 0,000 0,0                                                                       | class cl<br>5<br>ax        | lass<br>4                             | class<br>2                                                   |
| 10<br>10<br>12<br>16<br>20<br>26<br>30<br>38             | 9<br>9<br>10<br>13<br>16<br>20<br>25<br>30  | 6 6 7 8 10 11 14 19 23 26 30 34 38 55 75 | 5<br>5<br>6<br>7<br>8<br>10<br>11<br>14<br>15<br>19<br>21<br>25<br>29<br>34<br>45 | 3<br>3<br>3<br>4<br>5<br>5<br>6<br>7<br>8<br>9<br>10<br>12<br>14<br>18 | 2<br>2<br>2.5<br>3<br>3.5<br>4<br>5<br>5<br>6<br>7<br>8 | 1.5<br>1.5<br>2<br>2<br>2<br>2.5<br>2.5<br>3.5<br>4<br>4<br>5 | 15<br>15<br>15<br>20<br>25<br>35<br>40<br>45<br>50<br>60<br>70<br>80<br>120<br>140<br>160<br>190<br>220<br>250 | 8<br>8<br>9<br>10<br>13<br>18<br>20<br>23<br>25<br>30<br>35<br>40<br>50<br>60<br>75 | 18                   | 3<br>3<br>4<br>5<br>5<br>6<br>7<br>8<br>10<br>11<br>13 | 1.5<br>1.5<br>2.5<br>2.5<br>4<br>5<br>5<br>7<br>7<br>8 | 8<br>8<br>8<br>8<br>8<br>9<br>10<br>10<br>11<br>13<br>13<br>15<br>18<br>20 | 4<br>4<br>4<br>4<br>5<br>5<br>5<br>7<br>8<br>10 | 1.5<br>1.5<br>1.5<br>1.5<br>2.5<br>2.5<br>2.5<br>4<br>5<br>7 | 8<br>8<br>8<br>10<br>11<br>13<br>14<br>15<br>18<br>20<br>23<br>25<br>30 | 5 5 5 5 6 7 8 10 13     | 1.5<br>1.5<br>2.5<br>2.5<br>4<br>5<br>5<br>7<br>7<br>8 | Depends on tolerance of Δ <sub>Bs</sub> in relation to <i>d</i> of same bearing | Depends on tolerance of Δ <sub>Bs</sub> in relation to <i>d</i> of same bearing | 5<br>5<br>6<br>8<br>8<br>8 | 2.5<br>2.5<br>2.5<br>3<br>4<br>5<br>7 | 1.5<br>1.5<br>1.5<br>1.5<br>2.5<br>2.5<br>2.5<br>4<br>5<br>7 |

- To be applied in case snap rings are not installed on the bearings.
  Applies to ball bearings such as deep groove ball bearings and angular ball bearings.
  Nominal outer diameter of bearings of 2.5 mm is included in this dimensional division.

Table 6.4 Tolerance of tapered roller bearings (Metric series)

Table 6.4 (1) Inner rings

| Nominal<br>bore<br>diameter<br>d                                                                 | Dimensional tolerance of mean bore diameter within plane $\Delta_{dmp}$                                                             | Bore diameter variation $V_{c\!p}$                                                                     | Mean bore diameter variation $V_{chap}$                                                       | Inner ring radial runout  Kia                                                                       | Side<br>runout<br>with bore                     |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------|
| mm over incl.                                                                                    | class 0,6X class 5,6 class 4                                                                                                        | class class class class 0,6X 6 5 4                                                                     | class class class class 0,6X 6 5 4 max                                                        | class class class class 0,6X 6 5 4 max                                                              | class class<br>5 4<br>max                       |
| 10 18 18 30 30 50 50 80 80 120 120 180 180 250 250 315 315 400 400 500 500 630 630 800 800 1,000 | 0 -12 0 -7 0 -5 0 -12 0 -8 0 -6 0 -12 0 -10 0 -8 0 -15 0 -12 0 -6 0 -20 0 -15 0 -10 0 -25 0 -18 0 -13 0 -30 0 -22 0 -15 0 -35 0 -40 | 12 7 5 4<br>12 8 6 5<br>12 10 8 6<br>15 12 9 7<br>20 15 11 8<br>25 18 14 10<br>30 22 17 11<br>35<br>40 | 9 5 5 4<br>9 6 5 4<br>9 8 5 5<br>11 9 6 5<br>15 11 8 5<br>19 14 9 7<br>23 16 11 8<br>26<br>30 | 15 7 5 3<br>18 8 5 3<br>20 10 6 4<br>25 10 7 4<br>30 13 8 5<br>35 18 11 6<br>50 20 13 8<br>60<br>70 | 7 3<br>8 4<br>8 4<br>8 5<br>9 5<br>10 6<br>11 7 |

<sup>•</sup> The dimensional difference Δ<sub>db</sub> of bore diameter to be applied for class 4 is the same as the tolerance of dimensional difference Δ<sub>dmp</sub> of average bore diameter.

Table 6.4 (2) Outer rings

| out<br>dian | ninal<br>side<br>neter |       |      | nal tole<br>diamet<br>Dz | er witl |      |       | Ot            |            | diamet<br>ation<br>D <sub>P</sub> | ter        | Mea           |            | e diam<br>ation | eter       | Oute          | r ring i   | radial r<br>Kea | unout      | surf<br>inclin |            |
|-------------|------------------------|-------|------|--------------------------|---------|------|-------|---------------|------------|-----------------------------------|------------|---------------|------------|-----------------|------------|---------------|------------|-----------------|------------|----------------|------------|
| m           | nm                     | class | 0,6X | clas                     | s 5,6   | cla  | ıss 4 | class<br>0,6X | class<br>6 | class<br>5                        | class<br>4 | class<br>0,6X | class<br>6 | class<br>5      | class<br>4 | class<br>0,6X | class<br>6 | class<br>5      | class<br>4 | class<br>5     | class<br>4 |
| over        | incl.                  | high  | low  | high                     | low     | high | low   |               | n          | nax                               |            | ·             | n          | nax             |            |               | n          | nax             |            | r              | nax        |
| 18          | 30                     | 0     | -12  | 0                        | -8      | 0    | -6    | 12            | 8          | 6                                 | 5          | 9             | 6          | 5               | 4          | 18            | 9          | 6               | 4          | 8              | 4          |
| 30          | 50                     | 0     | -14  | 0                        | -9      | 0    | -7    | 14            | 9          | 7                                 | 5          | 11            | 7          | 5               | 5          | 20            | 10         | 7               | 5          | 8              | 4          |
| 50          | 80                     | 0     | -16  | 0                        | -11     | 0    | -9    | 16            | 11         | 8                                 | 7          | 12            | 8          | 6               | 5          | 25            | 13         | 8               | 5          | 8              | 4          |
| 80          | 120                    | 0     | -18  | 0                        | -13     | 0    | -10   | 18            | 13         | 10                                | 8          | 14            | 10         | 7               | 5          | 35            | 18         | 10              | 6          | 9              | 5          |
| 120         | 150                    | 0     | -20  | 0                        | -15     | 0    | -11   | 20            | 15         | 11                                | 8          | 15            | 11         | 8               | 6          | 40            | 20         | 11              | 7          | 10             | 5          |
| 150         | 180                    | 0     | -25  | 0                        | -18     | 0    | -13   | 25            | 18         | 14                                | 10         | 19            | 14         | 9               | 7          | 45            | 23         | 13              | 8          | 10             | 5          |
| 180         | 250                    | 0     | -30  | 0                        | -20     | 0    | -15   | 30            | 20         | 15                                | 11         | 23            | 15         | 10              | 8          | 50            | 25         | 15              | 10         | 11             | 7          |
| 250         | 315                    | 0     | -35  | 0                        | -25     | 0    | -18   | 35            | 25         | 19                                | 14         | 26            | 19         | 13              | 9          | 60            | 30         | 18              | 11         | 13             | 8          |
| 315         | 400                    | 0     | -40  | 0                        | -28     | 0    | -20   | 40            | 28         | 22                                | 15         | 30            | 21         | 14              | 10         | 70            | 35         | 20              | 13         | 13             | 10         |
| 400         | 500                    | 0     | -45  |                          |         |      |       | 45            |            |                                   |            | 34            |            |                 |            | 80            |            |                 |            |                |            |
| 500         | 630                    | 0     | -50  |                          |         |      |       | 50            |            |                                   |            | 38            |            |                 |            | 100           |            |                 |            |                |            |

Does not apply to bearings with flange.
 The dimensional difference D<sub>Ds</sub> of outside diameter to be applied for class 4 is the same as the tolerance of dimensional difference D<sub>Dmp</sub> of average outside diameter.

Unit  $\mu$  m

| Inner ring axial runout |       | Inner | Ŭ     | dth de | viation | ı     | Asse  | •    | vidth devi<br>ered rolle<br>Δ | er bea |       | -row | Combinat<br>deviation<br>row be | of double     | Combinati<br>deviation<br>beari | of 4-row      |
|-------------------------|-------|-------|-------|--------|---------|-------|-------|------|-------------------------------|--------|-------|------|---------------------------------|---------------|---------------------------------|---------------|
| Sia                     |       |       |       |        |         |       |       |      | Δ.                            | 15     |       |      | $\Delta \mathit{B}$ 1s,         | $\Delta c$ 1s | $\Delta \mathit{B}$ 2s,         | $\Delta c$ 2s |
| class 4                 | class | s 0,6 | class | s 6X   | clas    | s 4,5 | class | 0,6  | class                         | 6X     | class | 4,5  | class                           | 0,6,5         | class                           | 0,6,5         |
| max                     | high  | low   | high  | low    | high    | low   | high  | low  | high                          | low    | high  | low  | high                            | low           | high                            | low           |
| 3                       | 0     | -120  | 0     | -50    | 0       | -200  | +200  | 0    | +100                          | 0      | +200  | -200 | _                               | _             | _                               | _             |
| 4                       | 0     | -120  | 0     | -50    | 0       | -200  | +200  | 0    | +100                          | 0      | +200  | -200 | _                               | _             | _                               | _             |
| 4                       | 0     | -120  | 0     | -50    | 0       | -240  | +200  | 0    | +100                          | 0      | +200  | -200 | +240                            | -240          | _                               | -             |
| 4                       | 0     | -150  | 0     | -50    | 0       | -300  | +200  | 0    | +100                          | 0      | +200  | -200 | +300                            | -300          | _                               | _             |
| 5                       | 0     | -200  | 0     | -50    | 0       | -400  | +200  | -200 | +100                          | 0      | +200  | -200 | +400                            | -400          | +500                            | -500          |
| 7                       | 0     | -250  | 0     | -50    | 0       | -500  | +350  | -250 | +150                          | 0      | +350  | -250 | +500                            | -500          | +600                            | -600          |
| 8                       | 0     | -300  | 0     | -50    | 0       | -600  | +350  | -250 | +150                          | 0      | +350  | -250 | +600                            | -600          | +750                            | -750          |
| _                       | 0     | -350  | 0     | -50    | _       | _     | +350  | -250 | +200                          | 0      | _     | -    | +700                            | -700          | +900                            | -900          |
| _                       | 0     | -400  | 0     | -50    | -       | -     | +400  | -400 | +200                          | 0      | -     | -    | +800                            | -800          | +1 000                          | -1 000        |
| _                       | _     | -     | _     | _      | _       | _     | _     | _    | _                             | _      | _     | _    | +900                            | -900          | +1 200                          | -1 200        |
| _                       | _     | -     | -     | -      | -       | _     | _     | _    | -                             | -      | -     | -    | +1 000                          | -1 000        | +1 200                          | -1 200        |
| _                       | _     | -     | _     | _      | -       | -     | _     | _    | _                             | _      | _     | -    | +1 500                          | -1 500        | +1 500                          | -1 500        |
| _                       | _     | -     | _     | _      | -       | -     | _     | -    | -                             | _      | -     | -    | +1 500                          | -1 500        | +1 500                          | -1 500        |

Unit  $\mu$  m

| Outer ring axial runout Sea            | Outer ring wi                                                            |                            | riation                                                      |
|----------------------------------------|--------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------|
| class 4                                | class 0,6,5,4                                                            | clas                       | s 6X 4                                                       |
| max                                    | sup. inf.                                                                | sup.                       | inf.                                                         |
| 5<br>5<br>5<br>6<br>7<br>8<br>10<br>10 | Depends on tolerance of $\Delta_{Bs}$ in relation to $d$ of same bearing | 0<br>0<br>0<br>0<br>0<br>0 | -100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100<br>-100 |
|                                        |                                                                          | 0<br>0                     | -100<br>-100                                                 |

4 Applies to bearing where *d* is greater than 10 mm but is less than or equal to 400 mm.

Table 6.4 (3) Effective width of outer and inner rings with roller  $\;\;$   $Unit\,\mu\,m$ 

| Nom<br>bo<br>diam<br>d | eter  | Effective<br>of roller a<br>of tapere | nd inner | ring asse<br>bearing | embly |      |      | bearing<br>vidth devi |     |
|------------------------|-------|---------------------------------------|----------|----------------------|-------|------|------|-----------------------|-----|
| mn                     | 11    | class                                 | s 0      | class                | 6X    | clas | s 0  | class                 | 6X  |
| over                   | incl. | high                                  | low      | high                 | low   | high | low  | high                  | low |
| 10                     | 18    | +100                                  | 0        | +50                  | 0     | +100 | 0    | +50                   | 0   |
| 18                     | 30    | +100                                  | 0        | +50                  | 0     | +100 | 0    | +50                   | 0   |
| 30                     | 50    | +100                                  | 0        | +50                  | 0     | +100 | 0    | +50                   | 0   |
| 50                     | 80    | +100                                  | 0        | +50                  | 0     | +100 | 0    | +50                   | 0   |
| 80                     | 120   | +100                                  | -100     | +50                  | 0     | +100 | -100 | +50                   | 0   |
| 120                    | 180   | +150                                  | -150     | +50                  | 0     | +200 | -100 | +100                  | 0   |
| 180                    | 250   | +150                                  | -150     | +50                  | 0     | +200 | -100 | +100                  | 0   |
| 250                    | 315   | +150                                  | -150     | +100                 | 0     | +200 | -100 | +100                  | 0   |
| 315                    | 400   | +200                                  | -200     | +100                 | 0     | +200 | -200 | +100                  | 0   |

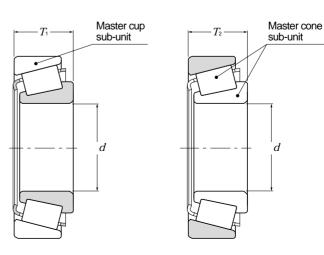



Table 6.5 Tolerance of tapered roller bearings (Inch series)

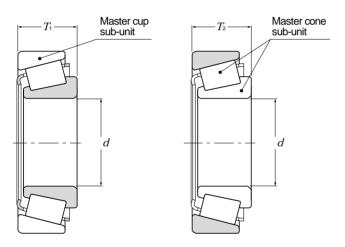
Table 6.5 (1) Inner rings

| Nominal bo    | ore diameter  |      |     |       | Single bo | re diameter  | deviation |       |     |       |     |
|---------------|---------------|------|-----|-------|-----------|--------------|-----------|-------|-----|-------|-----|
|               | d             |      |     |       |           | $\Delta d$ s |           |       |     |       |     |
|               |               |      |     |       |           |              |           |       |     |       |     |
| mm            | (inch)        |      |     |       |           |              |           |       |     |       |     |
|               |               | Clas | s 4 | Class | s 2       | Clas         | s 3       | Class | s 0 | Class | 00  |
| over          | incl.         | high | low | high  | low       | high         | low       | high  | low | high  | low |
| -             | 76.2 ( 3 )    | +13  | 0   | +13   | 0         | +13          | 0         | +13   | 0   | +8    | 0   |
| 76.2 (3)      | 266.7 (10.5)  | +25  | 0   | +25   | 0         | +13          | 0         | +13   | 0   | +8    | 0   |
| 266.7 (10.5)  | 304.8 (12 )   | +25  | 0   | +25   | 0         | +13          | 0         | +13   | 0   |       |     |
| 304.8 (12 )   | 609.6 (24 )   | +51  | 0   | +51   | 0         | +25          | 0         |       |     |       |     |
| 609.6 (24 )   | 914.4 (36 )   | +76  | 0   |       |           | +38          | 0         |       |     |       |     |
| 914.4 (36 )   | 1 219.2 (48 ) | +102 | 0   |       |           | +51          | 0         |       |     |       |     |
| 1 219.2 (48 ) | -             | +127 | 0   |       |           | +76          | 0         |       |     |       |     |

Table 6.5 (2) Outer rings

Unit µ m

| No. 1. Action      |            |       |     |       | 0: 1 .      |              | 1         |       |     |       | Onit p in |
|--------------------|------------|-------|-----|-------|-------------|--------------|-----------|-------|-----|-------|-----------|
| Nominal outside di | ameter     |       |     |       | Single outs | ide diamete  | deviation |       |     |       |           |
| D                  |            |       |     |       |             | $\Delta D$ 8 |           |       |     |       |           |
|                    |            |       |     |       |             |              |           |       |     |       |           |
| 01                 |            |       |     |       |             |              |           |       |     |       |           |
| mm (inch)          |            |       |     |       |             |              |           |       |     |       |           |
|                    |            | Class | s 4 | Class | s 2         | Clas         | s 3       | Class | s 0 | Class | s 00      |
| over               | incl.      | high  | low | high  | low         | high         | low       | high  | low | high  | low       |
| - 266              | 6.7 (10.5) | +25   | 0   | +25   | 0           | +13          | 0         | +13   | 0   | +8    | 0         |
|                    | 4.8 (12 )  | +25   | 0   | +25   | 0           | +13          | 0         | +13   | 0   |       |           |
| ` '                | 9.6 (24 )  | +51   | 0   | +51   | 0           | +25          | 0         |       |     |       |           |
| ,                  | ,          | 70    | •   | 70    | •           | 00           | •         |       |     |       |           |
| 609.6 (24 ) 914    | 4.4 (36 )  | +76   | 0   | +76   | 0           | +38          | 0         |       |     |       |           |
| 914.4 (36 ) 1 219  | 9.2 (48 )  | +102  | 0   |       |             | +51          | 0         |       |     |       |           |
| 1 219.2 (48 )      | -          | +127  | 0   |       |             | +76          | 0         |       |     |       |           |


Table 6.5 (3) Single-row tapered roller bearing assembly width, combination width of 4-row bearings, effective width of inner ring with rollers, effective width of outer ring

| bo                       | ninal<br>ore<br>neter | out        | ninal<br>side<br>neter | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Overall widt | h deviation |      | oled single ro $\Delta 	au_{	extsf{S}}$ | w tapered    | roller beari | ng    | Overall widt<br>of assemb<br>tapered rolle | led 4-row        |
|--------------------------|-----------------------|------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|------|-----------------------------------------|--------------|--------------|-------|--------------------------------------------|------------------|
| (                        | d                     | j          | D                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |             |      |                                         |              |              |       | $\Delta B2s$ .                             | $\Delta c$ 2s    |
| mm (                     | (inch)                | mm (       | (inch)                 | Class 4 Class 2 Class 2 Class 3 Class |              |             |      |                                         |              |              | ,     |                                            |                  |
|                          |                       |            |                        | Class 4 Class 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |             | Cla  | iss 3                                   | Class        | s 0,00       | Class | 4,2,3,0                                    |                  |
| over                     | incl.                 | over       | incl.                  | high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | low          | high        | low  | high                                    | low          | high         | low   | high                                       | low              |
| -                        | 101.6 ( 4)            |            |                        | +203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0            | +203        | 0    | +203                                    | -203         | +203         | -203  | +1 524                                     | -1 524           |
|                          | 304.8 (12)            |            |                        | +356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -254         | +203        | 0    | +203                                    | -203         | +203         | -203  | +1 524                                     | -1 524           |
| 304.8 (12)               | 609.6 (24)            | -          | 508.0 (20)             | +381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -381         | +381        | -381 | +203                                    | -203         |              |       | +1 524                                     | -1 524           |
| 304.8 (12)<br>609.6 (24) | 609.6 (36)            | 508.0 (20) | -                      | +381<br>+381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -381<br>-381 | +381        | -381 | +381<br>+381                            | -381<br>-381 |              |       | +1 524<br>+1 524                           | -1 524<br>-1 524 |

Table 6.5 (4) Radial deflection of inner and outer rings

Unit µ m

| Nominal out | side diameter |         | Inne    | r ring radial rund | out <i>K</i> ia | <u> </u> |
|-------------|---------------|---------|---------|--------------------|-----------------|----------|
|             | D             |         | Oute    | r ring radial rund | out Kea         |          |
|             |               |         |         |                    |                 |          |
| mm          | (inch)        |         |         |                    |                 |          |
|             |               | Class 4 | Class 2 | Class 3            | Class 0         | Class 00 |
| over        | incl.         |         |         | max                |                 |          |
|             | 304.8 (14)    | 51      | 38      | 8                  | 4               | 2        |
| 304.8 (14)  | 609.6 (24)    | 51      | 38      | 18                 |                 |          |
| 609.6 (24)  | 914.4 (36)    | 76      | 51      | 51                 |                 |          |
| 914.4 (36)  |               | 76      |         | 76                 |                 |          |



|              |            | width deviatisembly of tap $\Delta 	au$ | ered roller b           |                      |                        | Таре         | ered roller be | earing outer Δ       | Ŭ                       | width devia          | Unit µ m                      |
|--------------|------------|-----------------------------------------|-------------------------|----------------------|------------------------|--------------|----------------|----------------------|-------------------------|----------------------|-------------------------------|
| Clas<br>high | s 4<br>low | Clas                                    | ss 2<br>low             | Cla<br>high          | ss 3<br>low            | Clas<br>high | ss 4<br>low    | Cla<br>high          | ss 2                    | Cla<br>high          | lss 3                         |
| +102<br>+152 | 0<br>-152  | +102<br>+102<br>+178                    | 0<br>0<br>-178 <b>●</b> | +102<br>+102<br>+102 | -102<br>-102<br>-102 ● | +102<br>+203 | 0<br>-102      | +102<br>+102<br>+203 | 0<br>0<br>-203 <b>●</b> | +102<br>+102<br>+102 | -102<br>-102<br>-102 <b>●</b> |

lacktriangledown To be applied for nominal bore diameters d of 406.400 mm (16 inch) or less.

Table 6.6 Tolerance of tapered roller bearings of J series (Metric series)

Table 6.6 (1) Inner rings

| Non<br>bo<br>dian |       |      | ١   | Mean bo |     | meter de | eviation | 1    |     | Bore  | e diame | ter var | iation | Ме    | vari  | e diame<br>ation | eter  |
|-------------------|-------|------|-----|---------|-----|----------|----------|------|-----|-------|---------|---------|--------|-------|-------|------------------|-------|
| (                 | 1     |      |     |         |     |          |          |      |     |       |         |         |        |       |       | ·                |       |
| m                 | m     | Cla  | SS  | Cla     | SS  | Cla      | SS       | Clas | SS  | Class | Class   | Class   | Class  | Class | Class | Class            | Class |
|                   |       | ŀ    | (   | N       | 1   | C        | ;        | В    |     | K     | N       | С       | В      | K     | N     | С                | В     |
| over              | incl. | high | low | high    | low | high     | low      | high | low |       | n       | nax     |        |       | n     | nax              |       |
| 10                | 18    | 0    | -12 | 0       | -12 | 0        | -7       | 0    | -5  | 12    | 12      | 4       | 3      | 9     | 9     | 5                | 4     |
| 18                | 30    | 0    | -12 | 0       | -12 | 0        | -8       | 0    | -6  | 12    | 12      | 4       | 3      | 9     | 9     | 5                | 4     |
| 30                | 50    | 0    | -12 | 0       | -12 | 0        | -10      | 0    | -8  | 12    | 12      | 4       | 3      | 9     | 9     | 5                | 5     |
| 50                | 80    | 0    | -15 | 0       | -15 | 0        | -12      | 0    | -9  | 15    | 15      | 5       | 3      | 11    | 11    | 5                | 5     |
| 80                | 120   | 0    | -20 | 0       | -20 | 0        | -15      | 0    | -10 | 20    | 20      | 5       | 3      | 15    | 15    | 5                | 5     |
| 120               | 180   | 0    | -25 | 0       | -25 | 0        | -18      | 0    | -13 | 25    | 25      | 5       | 3      | 19    | 19    | 5                | 7     |
| 180               | 250   | 0    | -30 | 0       | -30 | 0        | -22      | 0    | -15 | 30    | 30      | 6       | 4      | 23    | 23    | 5                | 8     |

Note: Please consult NTN Engineering for Class A bearings.

Table 6.6 (2) Outer rings

| ou   | minal<br>tside<br>meter |      | М   | ean out |     | ameter ( | deviation | on   |     | С     |       | ation           | er    | di    | Mean of | variati |       | outer ring<br>axial runout |
|------|-------------------------|------|-----|---------|-----|----------|-----------|------|-----|-------|-------|-----------------|-------|-------|---------|---------|-------|----------------------------|
|      | D                       |      |     |         |     |          |           |      |     |       | V     | / <sub>Dp</sub> |       |       | VI      | Omp     |       | Sea                        |
| r    | nm                      | Cla  | SS  | Cla     | ISS | Cla      | ISS       | Cla  | ISS | Class | Class | Class           | Class | Class | Class   | Class   | Class | Class                      |
|      |                         | ŀ    | (   | ١       | 1   | (        |           | E    | 3   | K     | Ν     | С               | В     | K     | N       | С       | В     | В                          |
| over | incl.                   | high | low | high    | low | high     | low       | high | low |       | m     | nax             |       |       | m       | nax     |       | max                        |
| 18   | 30                      | 0    | -12 | 0       | -12 | 0        | -8        | 0    | -6  | 12    | 12    | 4               | 3     | 9     | 9       | 5       | 4     | 3                          |
| 30   | 50                      | 0    | -14 | 0       | -14 | 0        | -9        | 0    | -7  | 14    | 14    | 4               | 3     | 11    | 11      | 5       | 5     | 3                          |
| 50   | 80                      | 0    | -16 | 0       | -16 | 0        | -11       | 0    | -9  | 16    | 16    | 4               | 3     | 12    | 12      | 6       | 5     | 4                          |
| 80   | 120                     | 0    | -18 | 0       | -18 | 0        | -13       | 0    | -10 | 18    | 18    | 5               | 3     | 14    | 14      | 7       | 5     | 4                          |
| 120  | 150                     | 0    | -20 | 0       | -20 | 0        | -15       | 0    | -11 | 20    | 20    | 5               | 3     | 15    | 15      | 8       | 6     | 4                          |
| 150  | 180                     | 0    | -25 | 0       | -25 | 0        | -18       | 0    | -13 | 25    | 25    | 5               | 3     | 19    | 19      | 9       | 7     | 5                          |
| 180  | 250                     | 0    | -30 | 0       | -30 | 0        | -20       | 0    | -15 | 30    | 30    | 6               | 4     | 23    | 23      | 10      | 8     | 6                          |
| 250  | 315                     | 0    | -35 | 0       | -35 | 0        | -25       | 0    | -18 | 35    | 35    | 8               | 5     | 26    | 26      | 13      | 9     | 6                          |
| 315  | 400                     | 0    | -40 | 0       | -40 | 0        | -28       | 0    | -20 | 40    | 40    | 10              | 5     | 30    | 30      | 14      | 10    | 6                          |

Note: Please consult NTN Engineering for Class A bearings.

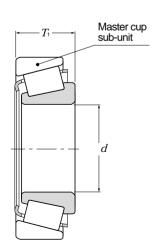
Table 6.6 (3) Effective width of inner and outer rings

Unit u m

|                   | ` '   |      |      |                       |               |           |      |      |     |      |      |                      |              |          |      |      | Offic p III |
|-------------------|-------|------|------|-----------------------|---------------|-----------|------|------|-----|------|------|----------------------|--------------|----------|------|------|-------------|
| Nom<br>bo<br>diam | re    | Ef   |      | vidth dev<br>embly of | tapere        | ed roller |      |      | g   |      | Та   | pered ro<br>effectiv | e widt       | th devia |      | ng   |             |
| C                 | 4     |      |      |                       | $\Delta T$ 1s | 5         |      |      |     |      |      |                      | $\Delta T_2$ | 2s       |      |      |             |
|                   |       | Cla  | ass  | Cla                   | ss            | Cla       | ass  | Cla  | ass | C    | ass  | Cla                  | ss           | Cla      | ass  | Cla  | ss          |
| mm                |       | ŀ    | <    | N                     | l             | (         | С    | Е    | 3   |      | K    | N                    |              | C        |      | В    | 3           |
| over              | incl. | high | low  | high                  | low           | high      | low  | high | low | high | low  | high                 | low          | high     | low  | high | low         |
| 10                | 80    | +100 | 0    | +50                   | 0             | +100      | -100 | *    | *   | +100 | 0    | +50                  | 0            | +100     | -100 | *    | *           |
| 80                | 120   | +100 | -100 | +50                   | 0             | +100      | -100 | *    | *   | +100 | -100 | +50                  | 0            | +100     | -100 | *    | *           |
| 120               | 180   | +150 | -150 | +50                   | 0             | +100      | -100 | *    | *   | +200 | -100 | +100                 | 0            | +100     | -150 | *    | *           |
| 180               | 250   | +150 | -150 | +50                   | 0             | +100      | -150 | *    | *   | +200 | -100 | +100                 | 0            | +100     | -150 | *    | *           |

Note 1: "\*" mark are to be manufactured only for combined bearings.

2: Please consult NTN Engineering for Class A bearings.


Unit µ m

|                         |                   |      |      |     |                        |      |      | OTHE P III |  |  |  |
|-------------------------|-------------------|------|------|-----|------------------------|------|------|------------|--|--|--|
| Inner ring axial runout |                   | Ove  |      |     | iation of<br>ller bear |      | bled |            |  |  |  |
| Sia                     |                   |      |      | Δ   | ∆ <i>T</i> s           |      |      |            |  |  |  |
| Class                   | Class Class Class |      |      |     |                        |      |      |            |  |  |  |
| В                       | K N C I           |      |      |     |                        |      |      |            |  |  |  |
| max                     | sup               | inf  | sup  | inf | sup                    | inf  | sup  | inf        |  |  |  |
| 3                       | +200              | 0    | +100 | 0   | +200                   | -200 | +200 | -200       |  |  |  |
| 4                       | +200              | 0    | +100 | 0   | +200                   | -200 | +200 | -200       |  |  |  |
| 4                       | +200              | 0    | +100 | 0   | +200                   | -200 | +200 | -200       |  |  |  |
| 4                       | +200              | 0    | +100 | 0   | +200                   | -200 | +200 | -200       |  |  |  |
| 5                       | +200              | -200 | +100 | 0   | +200                   | -200 | +200 | -200       |  |  |  |
| 7                       | +350              | -250 | +150 | 0   | +350                   | -250 | +200 | -250       |  |  |  |
| 8                       | +350              | -250 | +150 | 0   | +350                   | -300 | +200 | -300       |  |  |  |

Table 6.6 (4) Radial runout of inner and outer rings

|      |       |       |                 |           | Unit µ m    |
|------|-------|-------|-----------------|-----------|-------------|
| Nom  |       | Inner | ring radi<br>ar | al runout | <i>K</i> ia |
| diam |       | Outer |                 | al runout | <i>K</i> ea |
| 1    | )     |       |                 |           |             |
| m    | m     | Class | Class           | Class     | Class       |
|      |       | K     | N               | С         | В           |
| over | incl. |       |                 |           |             |
| 18   | 30    | 18    | 18 18           |           | 3           |
| 30   | 50    | 20    | 20              | 6         | 3           |
| 50   | 80    | 25    | 25              | 6         | 4           |
| 80   | 120   | 35    | 35              | 6         | 4           |
| 120  | 150   | 40    | 40              | 7         | 4           |
| 150  | 180   | 45    | 45              | 8         | 4           |
| 180  | 250   | 50    | 50              | 10        | 5           |
| 250  | 315   | 60    | 60              | 11        | 5           |
| 315  | 400   | 70    | 70              | 13        | 5           |

Note: Please consult NTN Engineering for Class A bearings.



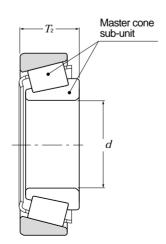



Table 6.7 Tolerance of thrust ball bearings

Table 6.7 (1) Shaft raceway disc

Unit  $\mu$  m

| b    | Nominal Mean bore bore diameter |      |     | meter deviatio | on  | vari  | ameter<br>ation | F        | Raceway thick | kness variatio<br>Si | n     |
|------|---------------------------------|------|-----|----------------|-----|-------|-----------------|----------|---------------|----------------------|-------|
|      | d                               |      |     | <b>.</b>       |     |       |                 | <u>.</u> | 0.1           | 0.                   | 0.1   |
| r    | nm                              | Cla  | ass | Cla            | SS  | Class | Class           | Class    | Class         | Class                | Class |
|      |                                 | 0,0  | 6,5 | 4              | ļ   | 0,6,5 | 4               | 0        | 6             | 5                    | 4     |
| over | incl.                           | high | low | high           | low | m     | ax              |          | m             | nax                  |       |
|      | 18                              | 0    | -8  | 0              | -7  | 6     | 5               | 10       | 5             | 3                    | 2     |
| 18   | 30                              | 0    | -10 | 0              | -8  | 8     | 6               | 10       | 5             | 3                    | 2     |
| 30   | 50                              | 0    | -12 | 0              | -10 | 9     | 8               | 10       | 6             | 3                    | 2     |
| 50   | 80                              | 0    | -15 | 0              | -12 | 11    | 9               | 10       | 7             | 4                    | 3     |
| 80   | 120                             | 0    | -20 | 0              | -15 | 15    | 11              | 15       | 8             | 4                    | 3     |
| 120  | 180                             | 0    | -25 | 0              | -18 | 19    | 14              | 15       | 9             | 5                    | 4     |
| 180  | 250                             | 0    | -30 | 0              | -22 | 23    | 17              | 20       | 10            | 5                    | 4     |
| 250  | 315                             | 0    | -35 | 0              | -25 | 26    | 19              | 25       | 13            | 7                    | 5     |
| 315  | 400                             | 0    | -40 | 0              | -30 | 30    | 23              | 30       | 15            | 7                    | 5     |
| 400  | 500                             | 0    | -45 | 0              | -35 | 34    | 26              | 30       | 18            | 9                    | 6     |
| 500  | 630                             | 0    | -50 | 0              | -40 | 38    | 30              | 35       | 21            | 11                   | 7     |

# Table 6.7 (2) Housing raceway disc

Unit  $\mu$  m

| out<br>diar | minal<br>tside<br>meter | М    |     | iameter devia | tion | varia   | diameter<br>ation<br>/pp | Raceway thickness variation $S_{ m e}$ |                        |               | n     |
|-------------|-------------------------|------|-----|---------------|------|---------|--------------------------|----------------------------------------|------------------------|---------------|-------|
|             | D                       | Cli  | ass | Cli           | ass  | Class   | Class                    | Class                                  | Class                  | Class         | Class |
| m           | nm                      |      | 6,5 |               | 4    | 0,6,5 4 |                          | 0                                      | 6                      | 5             | 4     |
|             |                         |      |     |               |      |         |                          |                                        |                        |               | 7     |
| over        | incl.                   | high | low | high          | low  | m       | ax                       |                                        | m                      | nax           |       |
| 10          | 18                      | 0    | -11 | 0             | -7   | 8       | 5                        |                                        |                        |               |       |
| 18          | 30                      | 0    | -13 | 0             | -8   | 10      | 6                        |                                        |                        |               |       |
| 30          | 50                      | 0    | -16 | 0             | -9   | 12      | 7                        |                                        |                        |               |       |
| 50          | 80                      | 0    | -19 | 0             | -11  | 14      | 8                        |                                        |                        |               |       |
| 80          | 120                     | 0    | -22 | 0             | -13  | 17      | 10                       |                                        |                        |               |       |
| 120         | 180                     | 0    | -25 | 0             | -15  | 19      | 11                       |                                        | According to th        |               |       |
| 180         | 250                     | 0    | -30 | 0             | -20  | 23      | 15                       |                                        | of $S_1$ against " $a$ | T of the same | )     |
| 250         | 315                     | 0    | -35 | 0             | -25  | 26      | 19                       | `                                      | carrigs                |               |       |
| 315         | 400                     | 0    | -40 | 0             | -28  | 30      | 21                       |                                        |                        |               |       |
| 400         | 500                     | 0    | -45 | 0             | -33  | 34      | 25                       |                                        |                        |               |       |
| 500         | 630                     | Ö    | -50 | Ö             | -38  | 38      | 29                       |                                        |                        |               |       |
| 630         | 800                     | 0    | -75 | 0             | -45  | 55      | 34                       |                                        |                        |               |       |

Table 6.7 (3) Bearing height

Unit µ m

| Nom<br>boi<br>diam<br><i>d</i><br>mr | re<br>eter | Bearing<br>devi | direction<br>g height <b>①</b><br>ation |
|--------------------------------------|------------|-----------------|-----------------------------------------|
| over                                 | incl.      | high            | low                                     |
|                                      | 30         | 0               | -75                                     |
| 30                                   | 50         | 0               | -100                                    |
| 50                                   | 80         | 0               | -125                                    |
| 80                                   | 120        | 0               | -150                                    |
| 120                                  | 180        | 0               | -175                                    |
| 180                                  | 250        | 0               | -200                                    |
| 250                                  | 315        | 0               | -225                                    |
| 315                                  | 400        | 0               | -300                                    |
| 400                                  | 500        | 0               | -350                                    |
| 500                                  | 630        | 0               | -400                                    |

<sup>1</sup> This standard is applied for flat back face bearing of class 0.

Table 6.8 Tolerance of spherical thrust roller bearing

Table 6.8 (1) Shaft raceway disc

|         | Unit µ m               |                                                    |               |  |  |
|---------|------------------------|----------------------------------------------------|---------------|--|--|
| outside | ninal<br>diameter<br>D | Single plane mean<br>outside diameter<br>deviation |               |  |  |
| m       | nm                     |                                                    | $\Delta D$ mp |  |  |
| over    | incl.                  | high                                               | low           |  |  |
| 120     | 180                    | 0                                                  | -25           |  |  |
| 180     | 250                    | 0                                                  | -30           |  |  |
| 250     | 315                    | 0                                                  | -35           |  |  |
| 315     | 400                    | 0                                                  | -40           |  |  |
| 400     | 500                    | 0                                                  | -45           |  |  |

0

0

0

-50

-75

-100

500

630

800

630

800

1,000

Table 6.8 (2) Housing raceway disc

| Table 6.5 (1) Shart raserray also |       |                        |           |                                  |                       |      |                   |  |  |
|-----------------------------------|-------|------------------------|-----------|----------------------------------|-----------------------|------|-------------------|--|--|
| Nominal bore diameter d           |       | Mean<br>diameter<br>Δα | deviation | Bore diameter variation $V_{dp}$ | Side runout with bore |      | g height<br>ation |  |  |
| over                              | incl. | high                   | low       | max                              | max                   | high | low               |  |  |
| 50                                | 80    | 0                      | -15       | 11                               | 25                    | +150 | -150              |  |  |
| 80                                | 120   | 0                      | -20       | 15                               | 25                    | +200 | -200              |  |  |
| 120                               | 180   | 0                      | -25       | 19                               | 30                    | +250 | -250              |  |  |
| 180                               | 250   | 0                      | -30       | 23                               | 30                    | +300 | -300              |  |  |
| 250                               | 315   | 0                      | -35       | 26                               | 35                    | +350 | -350              |  |  |
| 315                               | 400   | 0                      | -40       | 30                               | 40                    | +400 | -400              |  |  |
| 400                               | 500   | 0                      | -45       | 34                               | 45                    | +450 | -450              |  |  |

Table 6.9 Tolerance of double direction type angular contact thrust ball bearings

Table 6.9 (1) Inner rings and bearing height

Unit  $\mu$  m

| 1 4 5 10 0 | able 6.5 (1) finder rings and bearing neight |      |                                                                                           |             |       |                |                         |         |         |                      |         |                      |                |
|------------|----------------------------------------------|------|-------------------------------------------------------------------------------------------|-------------|-------|----------------|-------------------------|---------|---------|----------------------|---------|----------------------|----------------|
|            | ominal<br>diameter                           |      | Mean bore diameter deviation \( \Delta_{dmp} \) Bore diameter deviation \( \Delta_{ds} \) |             |       | runout<br>bore | Inner ring axial runout |         |         | er ring<br>variation |         | ng height<br>viation |                |
|            | d                                            | Bore | e diamete                                                                                 | r deviatior | ∩ ∆ds |                | Sd                      | ٤       | Sia     | $\nu$                | Bs      |                      | $\Delta 	au$ s |
|            | mm                                           | Cla  | ss 5                                                                                      | Clas        | s 4   | Class 5        | Class 4                 | Class 5 | Class 4 | Class 5              | Class 4 | Class 5              | 5, Class 4     |
| over       | incl.                                        | high | low                                                                                       | high        | low   | m              | ax                      | m       | ıax     | m                    | nax     | high                 | low            |
| 18         | 30                                           | 0    | -6                                                                                        | 0           | -5    | 8              | 4                       | 5       | 3       | 5                    | 2.5     | 0                    | -300           |
| 30         | 50                                           | 0    | -8                                                                                        | 0           | -6    | 8              | 4                       | 5       | 3       | 5                    | 3       | 0                    | -400           |
| 50         | 80                                           | 0    | -9                                                                                        | 0           | -7    | 8              | 5                       | 6       | 5       | 6                    | 4       | 0                    | -500           |
| 80         | 120                                          | 0    | -10                                                                                       | 0           | -8    | 9              | 5                       | 6       | 5       | 7                    | 4       | 0                    | -600           |
| 120        | 180                                          | 0    | -13                                                                                       | 0           | -10   | 10             | 6                       | 8       | 6       | 8                    | 5       | 0                    | -700           |
| 180        | 250                                          | 0    | -15                                                                                       | 0           | -12   | 11             | 7                       | 8       | 6       | 10                   | 6       | 0                    | -800           |
| 250        | 315                                          | 0    | -18                                                                                       | 0           | -15   | 13             | 8                       | 10      | 8       | 13                   | 7       | 0                    | -900           |
| 315        | 400                                          | 0    | -23                                                                                       | 0           | -18   | 15             | 9                       | 13      | 10      | 15                   | 9       | 0                    | -1,000         |

Table 6.9 (2) Outer rings

Unit  $\mu$  m

| outside | ninal<br>diameter<br><i>D</i><br>nm | Mean outsid<br>deviatio<br>Outside deviatio | n $\Delta \it{D}_{mp}$ diameter |         | ace inclination $S_{\!\scriptscriptstyle D}$ | ŭ        | axial runout   |         | idth variation |
|---------|-------------------------------------|---------------------------------------------|---------------------------------|---------|----------------------------------------------|----------|----------------|---------|----------------|
|         |                                     | Class 5                                     | Class 4                         | Class 5 | Class 4                                      | Class 5  | Class 4        | Class 5 | Class 4        |
| over    | incl.                               | high                                        | low                             | r       | max                                          | n        | nax            | n       | nax            |
| 30      | 50                                  | -30                                         | -40                             | 8       | 4                                            | Accordi  | ng to          | 5       | 2.5            |
| 50      | 80                                  | -40                                         | -50                             | 8       | 4                                            | toleranc | e of Sia       | 6       | 3              |
| 80      | 120                                 | -50                                         | -60                             | 9       | 5                                            | against  | " $d$ " of the | 8       | 4              |
| 120     | 150                                 | -60                                         | -75                             | 10      | 5                                            | same be  | earings        | 8       | 5              |
| 150     | 180                                 | -60                                         | -75<br>-75                      | 10      | 5                                            |          |                | 8       | 5              |
| 180     | 250                                 | -75                                         | -90                             | 11      | 7                                            |          |                | 10      | 7              |
| 100     | 250                                 | -75                                         | -90                             | 11      | ′                                            |          |                | 10      | 1              |
| 250     | 315                                 | -90                                         | -105                            | 13      | 8                                            |          |                | 11      | 7              |
| 315     | 400                                 | -110                                        | -125                            | 13      | 10                                           |          |                | 13      | 8              |
| 400     | 500                                 | -120                                        | -140                            | 15      | 13                                           |          |                | 15      | 10             |

# 6.2 Chamfer measurements and tolerance or allowable values of tapered bore

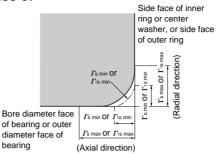



Table 6.10 Allowable critical-value of bearing chamfer
Table 6.10 (1) Radial bearing (Except tapered roller bearing)

it mm

|                   | (1) Itaalal bearing      | (Exoopt tapered i        | Unit mm           |
|-------------------|--------------------------|--------------------------|-------------------|
| <b>I</b> 's min ● | Nominal<br>bore diameter | <i>I</i> 's max <b>O</b> | Γ <i>Γ</i> ₁s max |
| or                | d                        | Radial                   | Axial             |
| I¹s min           | over incl.               | direction                | direction         |
| 0.05              |                          | 0.1                      | 0.2               |
| 0.08              |                          | 0.16                     | 0.3               |
| 0.1               |                          | 0.2                      | 0.4               |
| 0.15              |                          | 0.3                      | 0.6               |
| 0.2               |                          | 0.5                      | 0.8               |
| 0.3               | 40                       | 0.6                      | 1                 |
| 0.5               | 40                       | 0.8                      | 1                 |
| 0.6               | 40                       | 1                        | 2                 |
| 0.6               | 40                       | 1.3                      | 2                 |
| 1                 | 50                       | 1.5                      | 3                 |
|                   | 50                       | 1.9                      | 3                 |
| 4.4               | 120                      | 2                        | 3.5               |
| 1.1               | 120                      | 2.5                      | 4                 |
| 4.5               | 120                      | 2.3                      | 4                 |
| 1.5               | 120                      | 3                        | 5                 |
|                   | 80                       | 3                        | 4.5               |
| 2                 | 80 220                   | 3.5                      | 5                 |
|                   | 220                      | 3.8                      | 6                 |
| 0.4               | 280                      | 4                        | 6.5               |
| 2.1               | 280                      | 4.5                      | 7                 |
|                   | 100                      | 3.8                      | 6                 |
| 2.5               | 100 280                  | 4.5                      | 6                 |
|                   | 280                      | 5                        | 7                 |
|                   | 280                      | 5                        | 8                 |
| 3                 | 280                      | 5.5                      | 8                 |
| 4                 |                          | 6.5                      | 9                 |
| 5                 |                          | 8                        | 10                |
| 6                 |                          | 10                       | 13                |
| 7.5               |                          | 12.5                     | 17                |
| 9.5               |                          | 15                       | 19                |
| 12                |                          | 18                       | 24                |
| 15                |                          | 21                       | 30                |
| 19                |                          | 25                       | 38                |

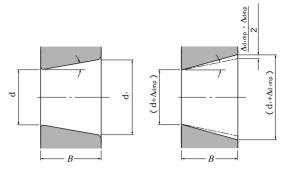
• These are the allowable minimum dimensions of the chamfer dimension "r" or "r" and are described in the dimensional table.

Table 6.10 (2) Tapered roller bearings of metric series

|  | n |  |  |
|--|---|--|--|
|  |   |  |  |

| Unit mm                  |                                               |                       |                            |           |  |  |  |  |  |
|--------------------------|-----------------------------------------------|-----------------------|----------------------------|-----------|--|--|--|--|--|
| <i>I</i> 's min <b>②</b> | Nomina<br>diameter<br>"d" or r<br>outside dia | l bore <sup>6</sup>   | <b>I</b> 's max <b>O</b> I | rıs max   |  |  |  |  |  |
| or                       | "d" or r                                      | nominal<br>ameter "D" | Radial                     | Axial     |  |  |  |  |  |
| $arGamma_1$ s min        | over                                          | incl.                 | direction                  | direction |  |  |  |  |  |
| 2.2                      |                                               | 40                    | 0.7                        | 1.4       |  |  |  |  |  |
| 0.3                      | 40                                            |                       | 0.9                        | 1.6       |  |  |  |  |  |
| 0.0                      |                                               | 40                    | 1.1                        | 1.7       |  |  |  |  |  |
| 0.6                      | 40                                            |                       | 1.3                        | 2         |  |  |  |  |  |
| 1                        |                                               | 50                    | 1.6                        | 2.5       |  |  |  |  |  |
| '                        | 50                                            |                       | 1.9                        | 3         |  |  |  |  |  |
|                          |                                               | 120                   | 2.3                        | 3         |  |  |  |  |  |
| 1.5                      | 120                                           | 250                   | 2.8                        | 3.5       |  |  |  |  |  |
|                          | 250                                           |                       | 3.5                        | 4         |  |  |  |  |  |
|                          |                                               | 120                   | 2.8                        | 4         |  |  |  |  |  |
| 2                        | 120                                           | 250                   | 3.5                        | 4.5       |  |  |  |  |  |
|                          | 250                                           |                       | 4                          | 5         |  |  |  |  |  |
|                          |                                               | 120                   | 3.5                        | 5         |  |  |  |  |  |
| 2.5                      | 120                                           | 250                   | 4                          | 5.5       |  |  |  |  |  |
|                          | 250                                           |                       | 4.5                        | 6         |  |  |  |  |  |
|                          |                                               | 120                   | 4                          | 5.5       |  |  |  |  |  |
| 3                        | 120                                           | 250                   | 4.5                        | 6.5       |  |  |  |  |  |
| 3                        | 250                                           | 400                   | 5                          | 7         |  |  |  |  |  |
|                          | 400                                           |                       | 5.5                        | 7.5       |  |  |  |  |  |
|                          |                                               | 120                   | 5                          | 7         |  |  |  |  |  |
| 4                        | 120                                           | 250                   | 5.5                        | 7.5       |  |  |  |  |  |
| 4                        | 250                                           | 400                   | 6                          | 8         |  |  |  |  |  |
|                          | 400                                           |                       | 6.5                        | 8.5       |  |  |  |  |  |
| 5                        |                                               | 180                   | 6.5                        | 8         |  |  |  |  |  |
| <u> </u>                 | 180                                           |                       | 7.5                        | 9         |  |  |  |  |  |
| 6                        |                                               | 180                   | 7.5                        | 10        |  |  |  |  |  |
| О                        | 180                                           |                       | 9                          | 11        |  |  |  |  |  |
| <b>△</b>                 |                                               |                       |                            |           |  |  |  |  |  |

② These are the allowable minimum dimensions of the chamfer dimension "r" or "rn" and are described in the dimensional table.


Note: This standard will be applied to the bearings whose dimensional series (refer to the dimensional table) are specified in the standard of ISO 355 or JIS B 1512. For further information concerning bearings outside of these standards or tapered roller bearings using US customary unit, please contact NTN Engineering.

Inner rings shall be in accordance with the division of "d" and outer rings with that of "D".

Table 6.10 (3) Thrust bearings

|                      | Unit mm                                      |
|----------------------|----------------------------------------------|
| I's min Of I's min ● | Ts max OT Ts max Radial and axial direcition |
| 0.05                 | 0.1                                          |
| 0.08                 | 0.16                                         |
| 0.1                  | 0.2                                          |
| 0.15                 | 0.3                                          |
| 0.2                  | 0.5                                          |
| 0.3                  | 0.8                                          |
| 0.6                  | 1.5                                          |
| 1                    | 2.2                                          |
| 1.1                  | 2.7                                          |
| 1.5                  | 3.5                                          |
| 2                    | 4                                            |
| 2.1                  | 4.5                                          |
| 3                    | 5.5                                          |
| 4                    | 6.5                                          |
| 5                    | 8                                            |
| 6                    | 10                                           |
| 7.5                  | 12.5                                         |
| 9.5                  | 15                                           |
| 12                   | 18                                           |
| 15                   | 21                                           |
| 19                   | 25                                           |
|                      |                                              |

4 These are the allowable minimum dimensions of the chamfer dimension "r" or "r1" and are described in the dimensional table.



Theoretical tapered bore

Tapered bore having dimensional difference of the average bore diameter within the flat surface

Table 6.11 (1) Tolerance of and tolerance values for tapered bore of radial bearings Standard taper ratio 1:12 tapared hole (class 0)  $_{\rm Unit~\mu~m}$ 

|       |               |      | <u> </u>    |                | 7 4 11010 (0141 |                                                             |
|-------|---------------|------|-------------|----------------|-----------------|-------------------------------------------------------------|
|       | $rac{d}{mm}$ |      | <i>i</i> mp | $\Delta d$ ımp | - $\Delta d$ mp | V <sub>dp</sub> <b>0                                   </b> |
| over  | incl.         | high | low         | high           | low             | max                                                         |
|       | 10            | + 22 | 0           | + 15           | 0               | 9                                                           |
| 10    | 18            | + 27 | 0           | + 18           | 0               | 11                                                          |
| 18    | 30            | + 33 | 0           | + 21           | 0               | 13                                                          |
| 30    | 50            | + 39 | 0           | + 25           | 0               | 16                                                          |
| 50    | 80            | + 46 | 0           | + 30           | 0               | 19                                                          |
| 80    | 120           | + 54 | 0           | + 35           | 0               | 22                                                          |
| 120   | 180           | + 63 | 0           | + 40           | 0               | 40                                                          |
| 180   | 250           | + 72 | 0           | + 46           | 0               | 46                                                          |
| 250   | 315           | + 81 | 0           | + 52           | 0               | 52                                                          |
| 315   | 400           | + 89 | 0           | + 57           | 0               | 57                                                          |
| 400   | 500           | + 97 | 0           | + 63           | 0               | 63                                                          |
| 500   | 630           | +110 | 0           | + 70           | 0               | 70                                                          |
| 630   | 800           | +125 | 0           | + 80           | 0               |                                                             |
| 800   | 1,000         | +140 | 0           | + 90           | 0               |                                                             |
| 1,000 | 1,250         | +165 | 0           | +105           | 0               |                                                             |
| 1,250 | 1,600         | +195 | 0           | +125           | 0               |                                                             |

Table 6.11 (2) Tolerance of and tolerance values for tapered bore of radial bearings Standard taper ratio 1:30 tapered bore (class 0) Units  $\,\mu$  m

| the μ |       |            |     |                |                 |                            |  |  |  |
|-------|-------|------------|-----|----------------|-----------------|----------------------------|--|--|--|
| d     |       | $\Delta d$ | mp  | $\Delta d$ ımp | - $\Delta d$ mp | V <sub>dp</sub> <b>0 2</b> |  |  |  |
| mm    |       |            |     |                |                 |                            |  |  |  |
| over  | incl. | high       | low | high           | low             | max                        |  |  |  |
| 50    | 80    | +15        | 0   | +30            | 0               | 19                         |  |  |  |
| 80    | 120   | +20        | 0   | +35            | 0               | 22                         |  |  |  |
| 120   | 180   | +25        | 0   | +40            | 0               | 40                         |  |  |  |
| 180   | 250   | +30        | 0   | +46            | 0               | 46                         |  |  |  |
| 250   | 315   | +35        | 0   | +52            | 0               | 52                         |  |  |  |
| 315   | 400   | +40        | 0   | +57            | 0               | 57                         |  |  |  |
| 400   | 500   | +45        | 0   | +63            | 0               | 63                         |  |  |  |
| 500   | 630   | +50        | 0   | +70            | 0               | 70                         |  |  |  |

1 Applies to all radial flat planes of inner ring tapered bore.

2 Does not apply to diameter series 7 and 8.

Note: Quantifiers

For a standard taper ratio of 1:12  $d_1 = d + \frac{1}{12}B$ 

For a standard taper ratio of 1:30  $d_1 = d + \frac{1}{30} B$ 

 $\Delta_{\textit{dmp}}~$  : Dimensional difference of the average bore diameter within the flat surface at the theoretical

small end of the tapered bore.  $\Delta_{d^{\text{Imp}}}$  : Dimensional difference of the average bore diameter within the flat surface at the theoretical large end of the tapered bore.

 $V_{dp}$ : Unevenness of the bore diameter with the flat surface

 $\boldsymbol{B}\,$  : Nominal width of inner ring

: Half of the tapered bore's nominal taper angle For a standard taper ratio of 1:12 = 2 23 9.4 For a standard taper ratio of 1:30 = 0 57 7.4

# 6.3 Bearing tolerance measurement methods

For reference, measurement methods for rolling bearing tolerances are in JIS B 1515.

**Table 6.12** shows some of the major methods of measuring rotation tolerances.

Table 6.12 Rotation tolerance measurement methods

| Characteristic tolerance                                                                                                  |                | Measurement method |                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------|----------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inner ring radial runout $(K_{ m ia})$                                                                                    | Measuring load | Measuring load     | Radial runout of the inner ring is<br>the difference between the<br>maximum and minimum reading<br>of the measuring device when<br>the inner ring is turned one<br>revolution.                       |
| Outer ring radial runout $(K_{\scriptscriptstyle\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | Measuring load | Measuring load     | Radial runout of the outer ring is<br>the difference between the<br>maximum and minimum reading<br>of the measuring device when<br>the outer ring is turned one<br>revolution.                       |
| Inner ring axial runout $(S_{\!\scriptscriptstyle \mathrm{ia}})$                                                          | Measuring load | Measuring load     | Axial runout of the inner ring is the difference between the maximum and minimum reading of the measuring device when the inner ring is turned one revolution.                                       |
| Outer ring axial runout $(S_{\hspace{-0.08cm}	ext{	iny a}})$                                                              | Measuring load | Measuring load     | Axial runout of the outer ring is the difference between the maximum and minimum reading of the measuring device when the outer ring is turned one revolution.                                       |
| Inner ring side runout with bore $(S_3)$                                                                                  |                |                    | Inner ring side runout with bore is the difference between the maximum and minimum reading of the measuring device when the inner ring is turned one revolution together with the tapered mandrel.   |
| Outer ring outside surface inclination $(S_0)$                                                                            | 1.2rs max      | ing                | Outer ring outside surface inclination is the difference between the maximum and minimum reading of the measuring device when the outside ring is turned one revolution along the reinforcing plate. |



# 7 Bearing Fits

# 7.1 Fitting

For rolling bearings, inner and outer rings are fixed on the shaft or in the housing so that relative movement does not occur between fitting surfaces during operation or under load. This relative movement between the fitting surfaces of the bearing and the shaft or housing can occur in a radial direction, an axial direction, or in the direction of rotation. Types of fitting include tight, transition and loose fitting, which may be selected depending on whether or not there is interference.

The most effective way to fix the fitting surfaces between a bearing's raceway and shaft or housing is to apply a "tight fit." The advantage of this tight fit for thin walled bearings is that it provides uniform load support over the entire ring circumference without any loss of load carrying capacity. However, with a tight fit, ease of installation and disassembly is lost; and when using a non-separable bearing as the floating-side bearing, axial displacement is not possible. For this reason, a tight fit cannot be recommended in all cases.

# 7.2 The necessity of a proper fit

In some cases, improper fit may lead to damage and shorten bearing life, therefore it is necessary to make a careful investigation in selecting a proper fit. Some of the bearing failure caused by improper fit are listed below.

- Raceway cracking, early flaking and displacement of raceway
- Raceway and shaft or housing abrasion caused by creeping and fretting corrosion
- Seizing caused by negative internal clearances

 Increased noise and deteriorated rotational accuracy due to raceway groove deformation

Please refer to insert pages A-96 ~ A-99 for information concerning diagnosis of these conditions.

#### 7.3 Fit selection

Selection of a proper fit is dependent upon thorough analysis of bearing operating conditions, including consideration of:

- Shaft and housing material, wall thickness, finished surface accuracy, etc.
- Machinery operating conditions (nature and magnitude of load, rotational speed, temperature, etc.)

#### 7.3.1 "Tight fit" or "Loose fit"

(1) For raceways under rotating loads, a tight fit is necessary. (Refer to **Table 7.1**) "Raceways under rotating loads" refers to raceways receiving loads rotating relative to their radial direction. For raceways under static loads, on the other hand, a loose fit is sufficient.

(Example) Rotating inner ring load = the direction of the radial load on the inner ring is rotating relatively

(2) For non-separable bearings, such as deep groove ball bearings, it is generally recommended that either the inner ring or outer ring be given a loose fit.

Table 7.1 Radial load and bearing fit

| Illustration    | Bearing rotation | า                                                    | Ring load                | Fit                       |
|-----------------|------------------|------------------------------------------------------|--------------------------|---------------------------|
| Static load     |                  | Inner ring:<br>Rotating<br>Outer ring:<br>Stationary | Rotating inner ring load | Inner ring :<br>Tight fit |
| Unbalanced load |                  | Inner ring:<br>Stationary<br>Outer ring:<br>Rotating | Static outer ring load   | Outer ring :<br>Loose fit |
| Static load     |                  | Inner ring:<br>Stationary<br>Outer ring:<br>Rotating | Static inner ring load   | Inner ring :<br>Loose fit |
| Unbalanced load |                  | Inner ring:<br>Rotating<br>Outer ring:<br>Stationary | Rotating outer ring load | Outer ring :<br>Tight fit |

#### 7.3.2 Recommended Fits

Bearing fit is governed by the selection tolerances for bearing shaft diameters and housing bore diameters.

Widely used fits for 0 Class tolerance bearings and various shaft and housing bore diameter tolerances are shown in **Table 7.1**.

Generally-used, standard fits for most types of bearings and operating conditions are shown in **Tables 7.2 - 7.7**.

Table 7.2: Fits for radial bearings

Table 7.3: Fits for thrust bearings

Table 7.4: Fits for electric motor bearings

**Table 7.6**: Fits for inch series tapered roller bearings (ANSI Class 4)

**Table 7.7**: Fits for inch series tapered roller bearings (ANSI Class 3 and 0)

**Table 7.5**. shows fits and their numerical values. For special fits or applications, please consult NTN Engineering.

#### 7.3.3 Interference minimum and maximum values

The following points should be considered when it is necessary to calculate the interference for an application:

- In calculating the minimum required amount of interference keep in mind that:
  - 1) interference is reduced by radial loads
  - 2) interference is reduced by differences between bearing temperature and ambient temperature
  - interference is reduced by variation of fitting surfaces
- The upper limit value should not exceed 1/1000 of the shaft diameter.

Required interference calculations are shown below.

# (1) Radial loads and required interference

Interference of the inner ring and shaft decreases when a radial load is applied to the bearing. The interference required to secure effective interference is expressed by formulae (7.1) and (7.2).

$$F_{r} = 0.3 C_{or}$$

$$\Delta_{dF} = 0.08 (d \cdot F_{r} / B)^{1/2}$$

$$= 0.25 (d \cdot F_{r} / B)^{1/2}$$

$$F_{r} > 0.3 C_{or}$$

$$\Delta_{dF} = 0.02 (F_{r} / B)$$

$$= 0.2 (F_{r} / B)$$

$$= 0.2 (F_{r} / B)$$

$$\{ kgf \} \} \dots (7.2)$$

Where,

 $\Delta_{\, \emph{a} \emph{F}}$  : Required effective interference according to radial load  $\, \mu \, m$ 

d: Bearing bore diameter mm

B: Inner ring width mm  $F_c$ : Radial load N { kgf }

 $C_{or}$ : Basic static load rating N { kgf }

#### (2) Temperature difference and required interference

Interference between inner rings and steel shafts is reduced as a result of temperature increases (difference between bearing temperature and ambient temperature,  $\Delta T)$  caused by bearing rotation. Calculation of the minimum required amount of interference in such cases is

shown in formula (7.3).

 $\Delta dT = 0.0015 \cdot d \cdot \Delta T \dots (7.3)$ 

 $\Delta_{\it aT}$  : Required effective interference for temperature difference  $\mu$  m

 $\Delta T$ : Difference between bearing temperature and ambient temperature  ${^\circ \text{C}}$ 

 $\emph{d}$  : Bearing bore diameter mm

# (3) Fitting surface variation and required interference

Interference decreases because the fitting surface is smoothened by fitting (surface roughness is reduced). The amount the interference decreases depends on roughness of the fitting surface. It is generally necessary to anticipate the following decrease in interference.

For ground shafts:  $1.0 \sim 2.5 \,\mu$  m For lathed shafts:  $5.0 \sim 7.0 \,\mu$  m

# (4) Maximum interference

When bearing rings are installed with an interference fit, tension or compression stress may occur along their raceways. If interference is too great, this may cause damage to the rings and reduce bearing life. You should try to obtain the previously described upper limit.

#### 7.3.4 Other details

- (1) Tight interference fits are recommended for,
  - Operating conditions with large vibration or shock loads
  - Applications using hollow shafts or housings with thin walls
  - Applications using housings made of light alloys or plastic
- (2) Small interference fits are preferable for,
  - Applications requiring high running accuracy
  - Applications using small sized bearings or thin walled bearings
- (3) Consideration must also be given to the fact that fit selection will effect internal bearing clearance selection. (refer to page insert A-58)

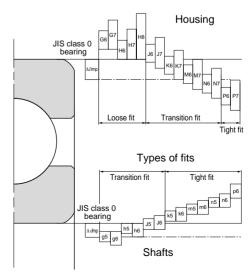



Fig 7.1 State of fitting



(4) A particular type of fit is recommended for SL type cylindrical roller bearings.(See page C-44.)

# Table 7.2 General standards for radial bearing fits (JIS Class 0, 6X, 6)

Table 7.2 (1) Tolerance class of shafts commonly used for radial bearings (classes 0, 6X and 6)

|                                                              |                                                         | Ball be                                               | earings                        | Cylindrical r           |                                | Spherical ro                  | oller bearing                        | Shaft                                                                                                     |                                                                                                                                                                                                       |
|--------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|--------------------------------|-------------------------|--------------------------------|-------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C                                                            | onditions                                               |                                                       |                                | <u> </u>                | ller bearing                   |                               |                                      | tolerance                                                                                                 | Remarks                                                                                                                                                                                               |
|                                                              |                                                         | Shaft diameter (mm)  Over Under Over Under Over Under |                                |                         |                                |                               |                                      |                                                                                                           |                                                                                                                                                                                                       |
|                                                              |                                                         | Cylindrical bore bearing (Classes 0, 6X and 6)        |                                |                         |                                |                               |                                      |                                                                                                           |                                                                                                                                                                                                       |
| Inner rir<br>of ur                                           | Light load or fluctuating load                          | 18<br>100                                             | 18<br>100<br>200               | 40<br>140               | 40<br>140<br>200               | 9 (0.000000                   | , or and of                          | h5<br>js6<br>k6<br>m6                                                                                     | When greater accuracy is required js5, k5, and m5 may be substituted for js6, k6, and m6.                                                                                                             |
| Inner ring rotational load or load of undetermined direction | Ordinary <sup>10</sup> load                             | 18<br>100<br>140<br>200                               | 18<br>100<br>140<br>200<br>280 | 40<br>100<br>140<br>200 | 40<br>100<br>140<br>200<br>400 | 40<br>65<br>100<br>140<br>280 | 40<br>65<br>100<br>140<br>280<br>500 | js5<br>k5<br>m5<br>m6<br>n6<br>p6<br>r6                                                                   | Alteration of inner clearances to accommodate fit is not a consideration with single-row angular contact bearings and tapered roller bearings. Therefore, k5 and m5 may be substituted for k6 and m6. |
| or load<br>ion                                               | Heavy load  or impact load                              |                                                       |                                | 50<br>140<br>200        | 140<br>200                     | 50<br>100<br>140              | 100<br>140<br>200                    | n6<br>p6<br>r6                                                                                            | Use bearings with larger internal clearances than CN clearance bearings.                                                                                                                              |
| Inne<br>statio                                               | Inner ring must<br>move easily<br>over shaft            |                                                       |                                | Overall sha             | aft diameter                   |                               | g6                                   | When greater accuracy is required use g5. For large bearings, f6 will suffice for to facilitate movement. |                                                                                                                                                                                                       |
| Inner ring<br>static load                                    | Inner does not<br>have to move<br>easily over shaft     |                                                       |                                | Overall sha             | aft diameter                   |                               |                                      | h6                                                                                                        | When greater accuracy is required use h5.                                                                                                                                                             |
| Center axial load                                            |                                                         |                                                       | Overall shaft diameter         |                         |                                |                               |                                      |                                                                                                           | Generally, shaft and inner rings are not fixed using interferance.                                                                                                                                    |
|                                                              | Tapered bore bearing (class 0) (with adapter or withdra |                                                       |                                |                         |                                |                               | or withdrawa                         | al sleeve)                                                                                                |                                                                                                                                                                                                       |
| 0                                                            | verall load                                             |                                                       |                                | Overall sha             | aft diameter                   |                               |                                      | h9/IT5                                                                                                    | h10/IT7  will suffice for power transmitting shafts.                                                                                                                                                  |

Table 7.2 (2) Fit with shaft (fits for tapered bore bearings (Class 0) with adapter assembly/withdrawal sleeve)

| All loads | All bearing types | All shaft diameters | Tolerance | h9 / IT5 <b>②</b>     | General applications      |
|-----------|-------------------|---------------------|-----------|-----------------------|---------------------------|
| All loads | All bearing types | All Shall diameters | class     | h10/ IT7 <sup>❷</sup> | Transmission shafts, etc. |

1 Standards for light loads, normal loads, and heavy loads

 $\begin{cases} \text{Light loads: equivalent radial load} & 0.06 \ \textit{C}_{\text{r}} \\ \text{Normal loads: } 0.06 \ \textit{C}_{\text{r}} < \text{equivalent radial load} & 0.12 \ \textit{C}_{\text{r}} \end{cases}$ 

Heavy loads: 0.12  $C_r$  < equivalent radial load

2 IT5 and IT7 show shaft roundness tolerances, cylindricity tolerances, and related values.

Note: All values and fits listed in the above tables are for solid steel shafts.



Table 7.2 (3) Tolerance class of housing bore commonly used for radial bearings (classes 0, 6X and 6)

|                                         |                        | Toleration class                                      |                                                  |                 |                                                                                                                                 |  |
|-----------------------------------------|------------------------|-------------------------------------------------------|--------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| Housing                                 | Туре                   | s of load                                             | Outer ring axial <sup>2</sup> direction movement | of housing bore | Remarks                                                                                                                         |  |
|                                         |                        | All types of loads                                    | Able to move.                                    | H7              | G7 will suffice for large bearings or bearings with large temperature differential between the outer ring and housing.          |  |
| Single housing<br>or<br>divided housing |                        | Light load <sup>●</sup> or ordinary load <sup>●</sup> | Able to move.                                    | H8              | _                                                                                                                               |  |
|                                         | Outer ring static load | Shaft and inner ring become hot.                      | Able to move easily.                             | G7              | F7 will suffice for large bearings<br>or bearings with large<br>temperature differential between<br>the outer ring and housing. |  |
|                                         |                        | Requires precision rotation with light                | As a rule, cannot move.                          | K6              | Primarily applies to roller bearings.                                                                                           |  |
|                                         |                        | or ordinary loads.                                    | Able to move.                                    | JS6             | Primarily applies to ball bearings.                                                                                             |  |
|                                         |                        | Requires quiet operation.                             | Able to move.                                    | H6              |                                                                                                                                 |  |
|                                         |                        | Light or ordinary load                                | Able to move.                                    | JS7             | If precision is required, JS6 and K6 are used in place of                                                                       |  |
| Single housing                          | Indeterminate<br>load  | Ordinary load or heavy load •                         | As a rule, cannot move.                          | K7              | JS7 and K7.                                                                                                                     |  |
|                                         |                        | Large impact load                                     | Cannot move.                                     | M7              |                                                                                                                                 |  |
|                                         |                        | Light or fluctuating load                             | Cannot move.                                     | M7              | _                                                                                                                               |  |
|                                         | Outer ring             | Ordinary or heavy load                                | Cannot move.                                     | N7              | Primarily applies to ball bearings.                                                                                             |  |
|                                         | rotational load        | Heavy load or large impact load with thin housing     | Cannot move.                                     | P7              | Primarily applies to roller bearings.                                                                                           |  |

1 Standards for light loads, normal loads, and heavy loads

Light loads: equivalent radial load 0.06 C

Normal loads:  $0.06 C_{\rm f}$  < equivalent radial load 0.12  $C_{\rm f}$ 

Heavy loads: 0.12 *C* < equivalent radial load

2 Indicates whether or not outer ring axial displacement is possible with non-separable type bearings.

Note 1: All values and fits listed in the above tables are for cast iron or steel housings.

2: If only center axial load is applied to the bearing, select a tolerance class that provides clearance for the outer ring in the axial direction.

# Table 7.3 Standard fits for thrust bearings (JIS Class 0 and 6)

Table 7.3 (1) Shaft fits

| Bearing type                     |               | Load conditions                                      | Fit                      | Shaft diameter<br>mm<br>over incl. | Tolerance class                   |
|----------------------------------|---------------|------------------------------------------------------|--------------------------|------------------------------------|-----------------------------------|
| All thrust bearings              |               | Centered axial load only                             | Transition fit           | All sizes                          | js6 or h6                         |
|                                  | Con           | Inner ring static load                               | Transition fit           | All sizes                          | js6                               |
| Spherical roller thrust bearings | Combined load | Inner ring rotating load<br>or<br>Indeterminate load | Transition fit Tight fit | — ~ 200<br>200 ~ 400<br>400 ~      | k6 or js6<br>m6 or k6<br>n6 or m6 |

Table 7.3 (2) Housing fits

|   | Bearing type              |                          | Load conditions                  | Fit            | Tolerance<br>class | Remarks                                                           |
|---|---------------------------|--------------------------|----------------------------------|----------------|--------------------|-------------------------------------------------------------------|
|   | All thrust                | C 0.                     | ntored evial load only           |                | Select a tolerance | class that will provide clearance between outer ring and housing. |
|   | bearings                  | Centered axial load only |                                  | Loose fit      | H8                 | Greater accuracy required with thrust ball bearings               |
| Ī | Spherical                 | Com                      | Outer ring static load           |                | H7                 | <u>—</u>                                                          |
|   | roller thrust<br>bearings | Combined                 | Indeterminate                    |                | K7                 | Normal operating conditions                                       |
|   |                           | lload                    | load or outer ring rotating load | Transition fit | M7                 | For relatively large radial loads                                 |

Note: All values and fits listed in the above tables are for cast iron or steel housings.

Table 7.4 Fits for electric motor bearings

|    |                             |                               | ft fits         | Housing fits          |                 |  |
|----|-----------------------------|-------------------------------|-----------------|-----------------------|-----------------|--|
| Be | Bearing type                | Shaft diameter mm over incl.  | Tolerance class | Housing bore diameter | Tolerance class |  |
|    | Deep groove ball bearings   | ~ 18<br>18 ~ 100<br>100 ~ 160 | j5<br>k5<br>m5  | All sizes             | H6 or J6        |  |
|    | Cylindrical roller bearings | ~ 40<br>40 ~ 160<br>160 ~ 200 | k5<br>m5<br>n6  | All sizes             | H6 or J6        |  |

Table 7.5 Numeric value table of fitting for radial bearing of 0 class

Table 7.5 (1) Fitting against shaft

| Table 7.5 (1) Fitting against snart |            |          |             |               |               |               |               |               |               |               |
|-------------------------------------|------------|----------|-------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Nomina<br>diame                     |            |          | bore ter    | g5            | g6            | h5            | h6            | j5            | js5           | j6            |
|                                     | ring       |          | ation       | bearing shaft |
|                                     | 1          | Λ,       | <i>l</i> mp |               |               |               |               |               |               |               |
| m                                   |            |          |             |               |               |               |               |               |               |               |
| over                                | incl.      | high low |             | ·             | ·             | ·             | ·             | ·             | ·             | ·             |
| 3                                   | 6          | 0        | -8          | 4T~ 9L        | 4T ~ 12L      | 8T~ 5L        | 8T~ 8L        | 11T~ 2L       | 10.5T ~ 2.5L  | 14T~ 2L       |
| 6                                   | 10         | 0        | -8          | 3T ~ 11L      | 3T ~ 14L      | 8T~ 6L        | 8T~ 9L        | 12T~ 2L       | 11T ~ 3L      | 15T~ 2L       |
| 10                                  | 18         | 0        | -8          | 2T ~ 14L      | 2T ~ 17L      | 8T~ 8L        | 8T ~ 11L      | 13T~ 3L       | 12T ~ 4L      | 16T~ 3L       |
| 18                                  | 30         | 0        | -10         | 3T ~ 16L      | 3T ~ 20L      | 10T~ 9L       | 10T ~ 13L     | 15T~ 4L       | 14.5T ~ 4.5L  | 19T~ 4L       |
| 30                                  | 50         | 0        | -12         | 3T ~ 20L      | 3T ~ 25L      | 12T ~ 11L     | 12T ~ 16L     | 18T~ 5L       | 17.5T ~ 5.5L  | 23T ~ 5L      |
| 50                                  | 80         | 0 -15    |             | 5T ~ 23L      | 5T ~ 29L      | 15T ~ 13L     | 15T ~ 19L     | 21T~ 7L       | 21.5T ~ 6.5L  | 27T~ 7L       |
| 80                                  | 120        | 0        | -20         | 8T ~ 27L      | 8T ~ 34L      | 20T ~ 15L     | 20T ~ 22L     | 26T~ 9L       | 27.5T ~ 7.5L  | 33T~ 9L       |
| 120                                 | 140        |          |             |               |               |               |               |               |               |               |
| 140                                 | 160        | 0        | -25         | 11T ~ 32L     | 11T ~ 39L     | 25T ~ 18L     | 25T ~ 25L     | 32T ~ 11L     | 34T ~ 9L      | 39T ~ 11L     |
| 160                                 | 180<br>200 |          |             |               |               |               |               |               |               |               |
| 200                                 | 225        | 0        | -30         | 15T ~ 35L     | 15T ~ 44L     | 30T ~ 20L     | 30T ~ 29L     | 37T ~ 13L     | 40T ~ 10L     | 46T ~ 13L     |
| 225                                 | 250        |          |             |               |               |               |               |               |               |               |
| 250                                 | 280        | 0        | -35         | 18T ~ 40L     | 18T ~ 49L     | 35T ~ 23L     | 35T ~ 32L     | 42T ~ 16L     | 46.5T ~ 11.5L | 51T ~ 16L     |
| 280                                 | 315        | 0 -35    |             | 101 102       | 101 102       | 001 202       | 001 022       | 121 102       | 10.01         | 011 102       |
| 315                                 | 355        | 0        | -40         | 22T ~ 43L     | 22T ~ 54L     | 40T ~ 25L     | 40T ~ 36L     | 47T ~ 18L     | 52.5T ~ 12.5L | 58T ~ 18L     |
| 355                                 | 400        |          |             |               |               |               |               |               |               |               |
| 400<br>450                          | 450<br>500 | 0        | -45         | 25T ~ 47L     | 25T ~ 60L     | 45T ~ 27L     | 45T ~ 40L     | 52T ~ 20L     | 58.5T ~ 13.5L | 65T ~ 20L     |
| 100                                 | 500        |          |             |               |               |               |               |               |               |               |

lacktriangle Above table is not applicable to tapered roller bearings whose bore diameter d is 30mm or less.

Table 7.5 (2) Fitting against housing

|      | The state of the s |        |                     |                 |                 |                 |                 |                 |                 |                 |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|--|
|      | minal<br>tside                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mean o | utside <sup>2</sup> | G7              | H6              | H7              | J6              | J7              | Js7             | K6              |  |  |
| dian | diameter of bearing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | ation               | housing bearing |  |  |
|      | <i>D</i><br>mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | )mp                 |                 |                 |                 |                 |                 |                 |                 |  |  |
| over | incl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | high   | low                 | ,               | '               | '               | '               | -               | ,               | ,               |  |  |
| 6    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0      | -8                  | 5L~ 28L         | 0 ~ 17L         | 0 ~ 23L         | 4T ~ 13L        | 7T ~ 16L        | 7.5T ~ 15.5L    | 7T ~ 10L        |  |  |
| 10   | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0      | -8                  | 6L~ 32L         | 0 ~ 19L         | 0 ~ 26L         | 5T ~ 14L        | 8T ~ 18L        | 9T ~ 17L        | 9T ~ 10L        |  |  |
| 18   | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0      | -9                  | 7L~ 37L         | 0 ~ 22L         | 0 ~ 30L         | 5T ~ 17L        | 9T ~ 21L        | 10.5T ~ 19.5L   | 11T ~ 11L       |  |  |
| 30   | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0      | -11                 | 9L~ 45L         | 0 ~ 27L         | 0 ~ 36L         | 6T ~ 21L        | 11T ~ 25L       | 12.5T ~ 23.5L   | 13T ~ 14L       |  |  |
| 50   | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0      | -13                 | 10L~ 53L        | 0 ~ 32L         | 0 ~ 43L         | 6T ~ 26L        | 12T ~ 31L       | 15T ~ 28L       | 15T ~ 17L       |  |  |
| 80   | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0      | -15                 | 12L~ 62L        | 0 ~ 37L         | 0 ~ 50L         | 6T ~ 31L        | 13T ~ 37L       | 17.5T ~ 32.5L   | 18T ~ 19L       |  |  |
| 120  | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0      | -18                 | 14L~ 72L        | 0 ~ 43L         | 0 ~ 58L         | 7T ~ 36L        | 14T ~ 44L       | 20T ~ 38L       | 21T ~ 22L       |  |  |
| 150  | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0      | -25                 | 14L~ 79L        | 0 ~ 50L         | 0 ~ 65L         | 7T ~ 43L        | 14T ~ 51L       | 20T ~ 45L       | 21T ~ 29L       |  |  |
| 180  | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0      | -30                 | 15L~ 91L        | 0 ~ 59L         | 0 ~ 76L         | 7T ~ 52L        | 16T ~ 60L       | 23T ~53L        | 24T ~ 35L       |  |  |
| 250  | 315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0      | -35                 | 17L ~ 104L      | 0 ~ 67L         | 0 ~ 87L         | 7T ~ 60L        | 16T ~ 71L       | 26T ~61L        | 27T ~ 40L       |  |  |
| 315  | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0      | -40                 | 18L ~ 115L      | 0 ~ 76L         | 0~ 97L          | 7T ~ 69L        | 18T ~ 79L       | 28.5T ~ 68.5L   | 29T ~ 47L       |  |  |
| 400  | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0      | -45                 | 20L ~ 128L      | 0 ~ 85L         | 0 ~ 108L        | 7T ~ 78L        | 20T ~ 88L       | 31.5T ~ 76.5L   | 32T ~ 53L       |  |  |

② Above table is not applicable to tapered roller bearings whose outside diameter *D* is 150mm or less. Note: Fitting symbol "L" indicates clearance and "T" indicates interference.

69T ~ 4T

77T ~ 5T

58T ~ 18L

65T ~ 20L



|               |               |               |               |               |               |               |                                        |                   | Unit µ m          |
|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------------------------------|-------------------|-------------------|
| js6           | k5            | k6            | m5            | m6            | n6            | p6            | r6                                     | Nomina<br>diame   |                   |
| bearing shaft                          | bear              |                   |
| #             | #             | #             |               |               |               |               |                                        | a<br>mr<br>over   |                   |
| 12T ~ 4L      | 14T ~ 1T      | 17T ~ 1T      | 17T~ 4T       | 20T~ 4T       | 24T~ 8T       | 28T ~ 12T     |                                        | 3                 | 6                 |
| 12.5T~ 4.5L   | 15T ~ 1T      | 18T ~ 1T      | 20T~ 6T       | 23T ~ 6T      | 27T ~ 10T     | 32T ~ 15T     |                                        | 6                 | 10                |
| 13.5T~ 5.5L   | 17T ~ 1T      | 20T ~ 1T      | 23T ~ 7T      | 26T ~ 7T      | 31T ~ 12T     | 37T ~ 18T     |                                        | 10                | 18                |
| 16.5T~ 6.5L   | 21T ~ 2T      | 25T ~ 2T      | 27T~ 8T       | 31T ~ 8T      | 38T ~ 15T     | 45T ~ 22T     |                                        | 18                | 30                |
| 20T ~ 8L      | 25T ~ 2T      | 30T ~ 2T      | 32T ~ 9T      | 37T ~ 9T      | 45T ~ 17T     | 54T ~ 26T     |                                        | 30                | 50                |
| 24.5T~ 9.5L   | 30T ~ 2T      | 36T ~ 2T      | 39T ~ 11T     | 45T ~ 11T     | 54T ~ 20T     | 66T ~ 32T     |                                        | 50                | 80                |
| 31T ~11L      | 38T ~ 3T      | 45T ~ 2T      | 48T ~ 13T     | 55T ~ 13T     | 65T ~ 23T     | 79T ~ 37T     |                                        | 80                | 120               |
| 37.5T~ 12.5L  | 46T ~ 3T      | 53T ~ 3T      | 58T ~ 15T     | 65T ~ 15T     | 77T ~ 27T     | 93T ~ 43T     | 113T ~ 63T<br>115T ~ 65T<br>118T ~ 68T | 120<br>140<br>160 | 140<br>160<br>180 |
| 44.5T~ 14.5L  | 54T ~ 4T      | 63T ~ 4T      | 67T ~ 17T     | 76T ~ 17T     | 90T~31T       | 109T ~ 50T    | 136T ~ 77T<br>139T ~ 80T<br>143T ~ 84T | 180<br>200<br>225 | 200<br>225<br>250 |
| 51T ~16L      | 62T ~ 4T      | 71T ~ 4T      | 78T ~ 20T     | 87T ~ 20T     | 101T ~ 34T    | 123T ~ 56T    | 161T ~ 94T<br>165T ~ 98T               | 250<br>280        | 280<br>315        |
| 58T ~ 18L     | 69T ~ 4T      | 80T ~ 4T      | 86T ~ 21T     | 97T ~ 21T     | 113T ~ 37T    | 138T ~ 62T    | 184T ~ 108T                            | 315               | 355               |

97T ~ 21T

108T ~ 23T

113T ~ 37T

125T ~ 40T

138T ~ 62T

153T ~ 68T

190T ~ 114T

211T~126T

217T ~ 132T

400

450

500

400

450

|                 |                 |                 |                 | Unit µ m               |
|-----------------|-----------------|-----------------|-----------------|------------------------|
| K7              | M7              | N7              | P7              | Nominal outside        |
| housing bearing | housing bearing | housing bearing | housing bearing | diameter of<br>bearing |
| H-              | <u> </u>        | <u> </u>        | <u> </u>        | D                      |
|                 |                 |                 |                 | mm                     |
|                 |                 |                 |                 | over incl.             |
| 10T ~ 13L       | 15T~ 8L         | 19T~ 4L         | 24T~ 1T         | 6 10                   |
| 12T ~ 14L       | 18T~ 8L         | 23T ~ 3L        | 29T~ 3T         | 10 18                  |
| 15T ~ 15L       | 21T~ 9L         | 28T ~ 2L        | 35T~ 5T         | 18 30                  |
| 18T ~ 18L       | 25T ~ 11L       | 33T ~ 3L        | 42T ~ 6T        | 30 50                  |
| 21T ~ 22L       | 30T ~ 13L       | 39T~ 4L         | 51T~ 8T         | 50 80                  |
| 25T ~ 25L       | 35T ~ 15L       | 45T ~ 5L        | 59T~ 9T         | 80 120                 |
| 28T ~ 30L       | 40T ~ 18L       | 52T ~ 6L        | 68T ~ 10T       | 120 150                |
| 28T ~ 37L       | 40T ~ 25L       | 52T ~ 13L       | 68T~ 3T         | 150 180                |
| 33T ~ 43L       | 46T ~ 30L       | 60T ~ 16L       | 79T~ 3T         | 180 250                |
| 36T ~ 51L       | 52T ~ 35L       | 66T ~ 21L       | 88T~ 1T         | 250 315                |
| 40T ~ 57L       | 57T ~ 40L       | 73T ~ 24L       | 98T~ 1T         | 315 400                |
| 45T ~ 63L       | 63T ~ 45L       | 80T ~ 28L       | 108T ~ 0        | 400 500                |

80T ~ 4T

90T ~ 4T

86T ~ 21T

95T ~ 23T

Table 7.6 General fitting standards for tapered roller bearings using US customary unit (ANSI class 4)

Table 7.6 (1) Fit with shaft

Unitur

|                            | Unit µ m                                                                           |                                                          |                                                           |                  |                              |                                                                                                                                                                                                |                                    |                        |                                                        |  |  |
|----------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------|--------------------------------------------------------|--|--|
| Ope                        | rating conditions                                                                  | Nominal bearing bore diameter $d$ mm over incl.          | Bore diameter<br>tolerance<br>Δ <sub>ds</sub><br>high low |                  |                              | Shaft diameter tolerance                                                                                                                                                                       |                                    | ng <sup>●</sup><br>min | Remark                                                 |  |  |
| Inner ring rotational load | Ordinary load                                                                      | ~ 76.2<br>76.2 ~ 304.8<br>304.8 ~ 609.6<br>609.6 ~ 914.4 | +13<br>+25<br>+51<br>+76                                  | 0<br>0<br>0      | + 38<br>+ 64<br>+127<br>+190 | + 25<br>+ 38<br>+ 76<br>+114                                                                                                                                                                   | 38T ~<br>64T ~<br>127T ~<br>190T ~ | 13T<br>25T             | Applicable when slight impact load is applied as well. |  |  |
|                            | Heavy load<br>Impact load                                                          | ~ 76.2<br>76.2 ~ 304.8<br>304.8 ~ 609.6<br>609.6 ~ 914.4 | +13<br>+25<br>+51<br>+76                                  | 0<br>0<br>0<br>0 | diamete                      | + 64 + 38 38T ~ 12T 0.5 μm mean interference per 1 mm of inner ring bore diameter. Minimum interference is 25 μm. Tolerance for the shaft is adjusted to match tolerance of bearing bore diame |                                    |                        |                                                        |  |  |
| Outer ring ro              | Inner ring does<br>not have to<br>move easily<br>over shaft with<br>ordinary load. | ~ 76.2<br>76.2 ~ 304.8<br>304.8 ~ 609.6<br>609.6 ~ 914.4 | +13<br>+25<br>+51<br>+76                                  | 0<br>0<br>0<br>0 | + 13<br>+ 25<br>+ 51<br>+ 76 | 0<br>0<br>0                                                                                                                                                                                    | 13T ~<br>25T ~<br>51T ~<br>76T ~   | 51L                    | Not applicable when impact                             |  |  |
| Outer ring rotational load | Inner ring must<br>move easily<br>over shaft with<br>ordinary load.                | ~ 76.2<br>76.2 ~ 304.8<br>304.8 ~ 609.6<br>609.6 ~ 914.4 | +13<br>+25<br>+51<br>+76                                  | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0             | - 13<br>- 25<br>- 51<br>- 76                                                                                                                                                                   | 0 ~<br>0 ~<br>0 ~<br>0 ~           | 50L<br>102L            | load is applied.                                       |  |  |

Table 7.6 (2) Fit with housing

Unit µ m

| Ope                        | rating conditions                                  |                                                                           |                                 | Housing bore diameter tolerance high low |                                      | Fitting fritting max min             | Types of fit                                                    |                |
|----------------------------|----------------------------------------------------|---------------------------------------------------------------------------|---------------------------------|------------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------------------------------|----------------|
| Inn                        | When used on floating- or fixed side               | ~ 76.2<br>76.2 ~ 127.0<br>127.0 ~ 304.8<br>304.8 ~ 609.6<br>609.6 ~ 914.4 | +25<br>+25<br>+25<br>+51<br>+76 | 0<br>0<br>0<br>0                         | + 76<br>+ 76<br>+ 76<br>+152<br>+229 | + 51<br>+ 51<br>+ 51<br>+102<br>+152 | 26L ~ 76L<br>26L ~ 76L<br>26L ~ 76L<br>51L ~ 152L<br>76L ~ 229L | loose fit      |
| Inner ring rotational load | When outer ring is adjusted in axial direction     | ~ 76.2<br>76.2 ~ 127.0<br>127.0 ~ 304.8<br>304.8 ~ 609.6<br>609.6 ~ 914.4 | +25<br>+25<br>+25<br>+51<br>+76 | 0<br>0<br>0<br>0                         | + 25<br>+ 25<br>+ 51<br>+ 76<br>+127 | 0<br>0<br>0<br>+ 26<br>+ 51          | 25T ~ 25L<br>25T ~ 25L<br>25T ~ 51L<br>25T ~ 76L<br>25T ~ 127L  | transition fit |
| load                       | When outer ring is not adjusted in axial direction | ~ 76.2<br>76.2 ~ 127.0<br>127.0 ~ 304.8<br>304.8 ~ 609.6<br>609.6 ~ 914.4 | +25<br>+25<br>+25<br>+51<br>+76 | 0<br>0<br>0<br>0                         | - 13<br>- 25<br>- 25<br>- 25<br>- 25 | - 38<br>- 51<br>- 51<br>- 76<br>-102 | 63T ~ 13T<br>76T ~ 25T<br>76T ~ 25T<br>127T ~ 25T<br>178T ~ 25T | tinha fa       |
| Outer ring rotational load | When outer ring is not adjusted in axial direction | ~ 76.2<br>76.2 ~ 127.0<br>127.0 ~ 304.8<br>304.8 ~ 609.6<br>609.6 ~ 914.4 | +25<br>+25<br>+25<br>+51<br>+76 | 0<br>0<br>0<br>0                         | - 13<br>- 25<br>- 25<br>- 25<br>- 25 | - 38<br>- 51<br>- 51<br>- 76<br>-102 | 63T ~ 13T<br>76T ~ 25T<br>76T ~ 25T<br>127T ~ 25T<br>178T ~ 25T | - tight fit    |

<sup>•</sup> Fitting symbol "L" indicates clearance and "T" indicates interference.

Table 7.7 General fitting standards for tapered roller bearings using US customary unit (ANSI classes 3 and 0)

Table 7. (1) Fit with shaft

Unit  $\mu$  m

| Oper                       | rating conditions      | Nominal bearing bore diameter d mm | Bore di | ance |          | diameter<br>rance | Fittir      | ng <b>0</b> |
|----------------------------|------------------------|------------------------------------|---------|------|----------|-------------------|-------------|-------------|
|                            |                        | over incl.                         | high    | low  | high     | low               | max         | min         |
| nr                         | Precision              | ~ 304.8                            | +13     | 0    | + 30     | + 18              | 30T ~       | 5T          |
| ल्                         | machine tool           | 304.8 ~ 609.6                      | +25     | 0    | + 64     | + 38              | 64T ~       | 13T         |
| ring                       | spindles               | 609.6 ~ 914.4                      | +38     | 0    | +102     | + 64              | 102T ~      | 26T         |
| Inner ring rotational load | Heavy load             | ~ 76.2                             | +13     | 0    |          |                   |             |             |
| iti<br>Or                  | Impact load            | 76.2 ~ 304.8                       | +13     | 0    | Minimu   | um interfere      | ence is 0.2 | 5 μm per    |
| <u>a</u>                   | High-speed             | 304.8 ~ 609.6                      | +25     | 0    | inner ri | ing bore dia      | ameter.     |             |
|                            | rotation               | 609.6 ~ 914.4                      | +38     | 0    |          |                   |             |             |
| Total C                    |                        | ~ 304.8                            | +13     | 0    | + 13     | 0                 | 30T ~       | 5T          |
| ute                        | Precision machine tool |                                    | -       | 0    | _        | -                 |             | 13T         |
| <u>≅</u> =                 | spindles               | 304.8 ~ 609.6                      | +25     | -    | + 25     | 0                 | 0+1         | . • .       |
| Outer ring rotational load | opinaios               | 609.6 ~ 914.4                      | +38     | 0    | +102     | 0                 | 102T ~      | 26T         |

Note: For class 0, bearing bore diameter d applies to 241.3 mm or less.

Table 7.7 (2) Fit with housing

Unit  $\mu$  m

|                            |                                     |                                      |                    |            |         |                         |       |             | 01111 10 1111       |
|----------------------------|-------------------------------------|--------------------------------------|--------------------|------------|---------|-------------------------|-------|-------------|---------------------|
| Ор                         | erating conditions                  | Nominal bearing outer diameter  D mm | Outer di<br>tolera | ance<br>Ds | diamete | ing bore<br>r tolerance |       | ng <b>0</b> | Type of fit         |
|                            |                                     | over incl.                           | high               | low        | high    | low                     | max   | min         |                     |
|                            |                                     | ~ 152.4                              | +13                | 0          | + 38    | + 25                    | 12L - | - 38L       |                     |
|                            |                                     | 152.4 ~ 304.8                        | +13                | 0          | + 38    | + 25                    | 12L - | ~ 38L       |                     |
|                            | When used for                       | 304.8 ~ 609.6                        | +25                | 0          | + 64    | + 38                    | 13L ~ | - 64L       |                     |
|                            | floating-side                       | 609.6 ~ 914.4                        | +38                | 0          | + 89    | + 51                    | 13L - |             |                     |
| =                          |                                     | ~ 152.4                              | +13                | 0          | + 25    | + 13                    | 0 -   |             | loose fit           |
| The                        | VA (1)                              |                                      | _                  |            | + 25    | + 13                    |       |             |                     |
| <u>∓</u>                   | When used for fixed side            | 152.4 ~ 304.8                        | +13                | 0          | _       | -                       | ·     |             |                     |
| g                          | lixed side                          | 304.8 ~ 609.6                        | +25                | 0          | + 51    | + 25                    | 0 -   | · · -       |                     |
| 3                          |                                     | 609.6 ~ 914.4                        | +38                | 0          | + 76    | + 38                    | 0 -   | - 76L       |                     |
| ati                        |                                     | ~ 152.4                              | +13                | 0          | + 13    | 0                       | 13T - | - 13L       |                     |
| 200                        | When outer                          | 152.4 ~ 304.8                        | +13                | 0          | + 13    | 0                       | 13T - | - 13L       | (mana 20° a a - 6°) |
| Inner ring rotational load | ring is adjusted in axial direction | 304.8 ~ 609.6                        | +13                | 0          | + 25    | 0                       | 25T ~ | - 25L       | transition fit      |
| ad                         | iii axiai direction                 | 609.6 ~ 914.4                        | +38                | 0          | + 38    | 0                       | 38T ~ | - 38L       |                     |
|                            | VA //                               | ~ 152.4                              | +13                | 0          | 0       | - 13                    | 26T ~ | - 0         |                     |
|                            | When outer ring is not              | 152.4 ~ 304.8                        | +13                | 0          | 0       | - 25                    | 38T - |             |                     |
|                            | adjusted in                         | 304.8 ~ 609.6                        | +25                | 0          | 0       | - 25                    | 50T - |             |                     |
|                            | axial direction                     | 609.6 ~ 914.4                        | +38                | 0          | 0       | - 38                    | 76T - |             |                     |
| _                          |                                     |                                      |                    |            |         |                         |       |             | tight fit           |
| rotational load            | Ordinary load                       | ~ 152.4                              | +13                | 0          | - 13    | - 25                    | 38T - |             |                     |
| tion d                     | When outer ring                     | 152.4 ~ 304.8                        | +13                | 0          | - 13    | - 38                    | 51T - | - 13T       |                     |
| <u>a</u> =                 | is not adjusted                     | 304.8 ~ 609.6                        | +25                | 0          | - 13    | - 38                    | 63T - | - 13T       |                     |
| ad                         | in axial direction                  | 609.6 ~ 914.4                        | +38                | 0          | - 13    | - 51                    | 89T - | ~ 13T       |                     |

<sup>•</sup> Fitting symbol "L" indicates clearance and "T" indicates interference. Note: For class 0, bearing outer diameter D applies to 304.8 mm or less.

# 8. Bearing Internal Clearance and Preload

#### 8.1 Bearing internal clearance

Bearing internal clearance is the amount of internal free movement before mounting.

As shown in **Fig. 8.1**, when either the inner ring or the outer ring is fixed and the other ring is free to move, displacement can take place in either an axial or radial direction. This amount of displacement (radially or axially) is termed the internal clearance and, depending on the direction, is called the radial internal clearance or the axial internal clearance.

When the internal clearance of a bearing is measured, a slight measurement load is applied to the raceway so the internal clearance may be measured accurately. However, at this time, a slight amount of elastic deformation of the bearing occurs under the measurement load, and the clearance measurement value (measured clearance) is slightly larger than the true clearance. This difference between the true bearing clearance and the increased amount due to the elastic deformation must be compensated for. These compensation values are given in **Table 8.1**. For roller bearings the amount of elastic deformation can be ignored.

The internal clearance values for each bearing class are shown in **Tables 8.3** through **8.11**.

# 8.2 Internal clearance selection

The internal clearance of a bearing under operating conditions (effective clearance) is usually smaller than the same bearing's initial clearance before being installed and operated. This is due to several factors including bearing fit, the difference in temperature between the inner and outer rings, etc. As a bearing's operating clearance has an effect on bearing life, heat generation, vibration, noise, etc.; care must be taken in selecting the most suitable operating clearance.

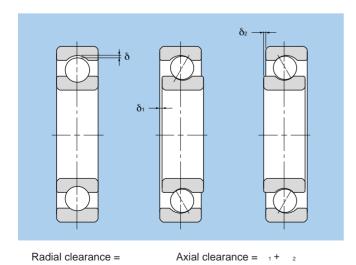



Fig. 8.1 Internal clearance

### 8.2.1 Criteria for selecting bearing internal clearance

A bearing's life is theoretically maximum when operating clearance is slightly negative at steady operation. In reality it is however difficult to constantly maintain this optimal condition. If the negative clearance becomes enlarged by fluctuating operating conditions, heat will be produced and life will decrease dramatically. Under ordinary circumstances you should therefore select an initial internal clearance where the operating clearance is slightly larger than zero.

For ordinary operating conditions, use fitting for ordinary loads. If rotational speed and operating temperature are ordinary, selecting normal clearance enables you to obtain the proper operating clearance. **Table 8.2** gives examples applying internal clearances other than CN (normal) clearance.

#### 8.2.2 Calculation of operating clearance

Operating clearance of a bearing can be calculated from initial bearing internal clearance and decrease in internal clearance due to interference and decrease in internal clearance due to difference in temperature of the inner and outer rings.

eff: Effective internal clearance, mm: Bearing internal clearance, mm

f: Reduced amount of clearance due to

Table 8.1 Adjustment of radial internal clearance based on measured load (deep groove ball bearing)

|                 |                    |      |          |         |          |      |      | тис р тт |
|-----------------|--------------------|------|----------|---------|----------|------|------|----------|
|                 | ore Diameter<br>mm |      | ing Load | Interna | al clear | ance | adju | stmer    |
| over            | incl.              | N {  | kgf }    | C2      | CN       | СЗ   | C4   | C5       |
| 10 <sup>1</sup> | 18                 | 24.5 | { 2.5 }  | 3~4     | 4        | 4    | 4    | 4        |
| 18              | 50                 | 49   | {5}      | 4~5     | 5        | 6    | 6    | 6        |
| 50              | 200                | 147  | { 15 }   | 6~8     | 8        | 9    | 9    | 9        |

1 This diameter is included in the group.

Table 8.2 Examples of applications where bearing clearances other than CN (normal) clearance are used

| Operating conditions                              | Applications                                                           | Selected clearance |
|---------------------------------------------------|------------------------------------------------------------------------|--------------------|
| With heavy or shock                               | Railway vehicle axles                                                  | C3                 |
| load, clearance is large.                         | Vibration screens                                                      | C3 , C4            |
| With indeterminate load, both inner and outer     | Railway vehicle traction motors                                        | C4                 |
| rings are tight-fitted.                           | Tractors and final speed regulators                                    | C4                 |
| Shaft or inner ring is heated.                    | Paper making machines and driers                                       | C3 , C4            |
| nealed.                                           | Rolling mill table rollers                                             | C3                 |
| Reduction of noise and vibration when rotating.   | Micromotors                                                            | C2 , CM            |
| Adjustment of clearance to minimize shaft runout. | Main spindles of lathes<br>(Double-row cylindrical roller<br>bearings) | C9NA ,<br>C0NA     |
| Loose fitting for both inner and outer rings.     | Compressor roll neck                                                   | C2                 |



interference, mm

 t : Reduced amount of clearance due to temperature differential of inner and outer rings, mm

# (1) Reduced clearance due to interference

When bearings are installed with interference fits on shafts and in housings, the inner ring will expand and the outer ring will contract; thus reducing the bearings' internal clearance. The amount of expansion or contraction varies depending on the shape of the bearing, the shape of the shaft or housing, dimensions of the respective parts, and the type of materials used. The differential can range from approximately 70% to 90% of the effective interference.

$$f = (0.70 \sim 0.90) \Delta deff \dots (8.2)$$

where,

Reduced amount of clearance due to interference, mm

 $\Delta d$ eff: Effective interference, mm

# (2) Reduced internal clearance due to inner/outer ring temperature difference.

During operation, normally the outer ring will range from 5 to 10°C cooler than the inner ring or rotating parts. However, if the cooling effect of the housing is large, the

shaft is connected to a heat source, or a heated substance is conducted through the hollow shaft; the temperature difference between the two rings can be even greater. The amount of internal clearance is thus further reduced by the differential expansion of the two rings.

$$t = \bullet \Delta T \bullet D_0 \dots (8.3)$$

where,

t: Amount of reduced clearance due to heat differential, mm

: Bearing material expansion coefficient 12.5 × 10<sup>-6</sup>/°C

 $\Delta T$ : Inner/outer ring temperature differential,

D₀: Outer ring raceway diameter, mm

Outer ring raceway diameter,  $D_0$ , values can be approximated by using formula (8.4) or (8.5).

$$D_0 = 0.20 (d + 4.0D) \dots (8.4)$$

For roller bearings (except Spherical roller bearing),  

$$D_0 = 0.25 (d + 3.0D)$$
 (8.5)

where.

d: Bearing bore diameter, mm

D: Bearing outside diameter, mm

Table 8.3 Radial internal clearance of deep groove ball bearings

Unit µ m

| Nominal bo |                | (           | C2          | (           | CN             | (            | C3             |     | C4  |     | C5  |
|------------|----------------|-------------|-------------|-------------|----------------|--------------|----------------|-----|-----|-----|-----|
| over       | incl.          | min         | max         | min         | max            | min          | max            | min | max | min | max |
| 2.5<br>6   | 2.5<br>6<br>10 | 0<br>0<br>0 | 6<br>7<br>7 | 4<br>2<br>2 | 11<br>13<br>13 | 10<br>8<br>8 | 20<br>23<br>23 | 14  | 29  | 20  | 37  |
| 10         | 18             | 0           | 9           | 3           | 18             | 11           | 25             | 18  | 33  | 25  | 45  |
| 18         | 24             | 0           | 10          | 5           | 20             | 13           | 28             | 20  | 36  | 28  | 48  |
| 24         | 30             | 1           | 11          | 5           | 20             | 13           | 28             | 23  | 41  | 30  | 53  |
| 30         | 40             | 1           | 11          | 6           | 20             | 15           | 33             | 28  | 46  | 40  | 64  |
| 40         | 50             | 1           | 11          | 6           | 23             | 18           | 36             | 30  | 51  | 45  | 73  |
| 50         | 65             | 1           | 15          | 8           | 28             | 23           | 43             | 38  | 61  | 55  | 90  |
| 65         | 80             | 1           | 15          | 10          | 30             | 25           | 51             | 46  | 71  | 65  | 105 |
| 80         | 100            | 1           | 18          | 12          | 36             | 30           | 58             | 53  | 84  | 75  | 120 |
| 100        | 120            | 2           | 20          | 15          | 41             | 36           | 66             | 61  | 97  | 90  | 140 |
| 120        | 140            | 2           | 23          | 18          | 48             | 41           | 81             | 71  | 114 | 105 | 160 |
| 140        | 160            | 2           | 23          | 18          | 53             | 46           | 91             | 81  | 130 | 120 | 180 |
| 160        | 180            | 2           | 25          | 20          | 61             | 53           | 102            | 91  | 147 | 135 | 200 |
| 180        | 200            | 2           | 30          | 25          | 71             | 63           | 117            | 107 | 163 | 150 | 230 |
| 200        | 225            | 2           | 35          | 25          | 85             | 75           | 140            | 125 | 195 | 175 | 265 |
| 225        | 250            | 2           | 40          | 30          | 95             | 85           | 160            | 145 | 225 | 205 | 300 |
| 250        | 280            | 2           | 45          | 35          | 105            | 90           | 170            | 155 | 245 | 225 | 340 |
| 280        | 315            | 2           | 55          | 40          | 115            | 100          | 190            | 175 | 270 | 245 | 370 |
| 315        | 355            | 3           | 60          | 45          | 125            | 110          | 210            | 195 | 300 | 275 | 410 |
| 355        | 400            | 3           | 70          | 55          | 145            | 130          | 240            | 225 | 340 | 315 | 460 |
| 400        | 450            | 3           | 80          | 60          | 170            | 150          | 270            | 250 | 380 | 350 | 510 |
| 450        | 500            | 3           | 90          | 70          | 190            | 170          | 300            | 280 | 420 | 390 | 570 |
| 500        | 560            | 10          | 100         | 80          | 210            | 190          | 330            | 310 | 470 | 440 | 630 |
| 560        | 630            | 10          | 110         | 90          | 230            | 210          | 360            | 340 | 520 | 490 | 690 |

Table 8.4 Radial internal clearance of self-aligning ball bearings

| Nominal bo | ore diameter |     |     |     | В   | earing with | cylindrical bo | re  |     |     |     |
|------------|--------------|-----|-----|-----|-----|-------------|----------------|-----|-----|-----|-----|
| d          | mm           | C   | 2   | C   | N   | C           | 3              | С   | 4   | C   | 5   |
| over       | incl.        | min | max | min | max | min         | max            | min | max | min | max |
| 2.5        | 6            | 1   | 8   | 5   | 15  | 10          | 20             | 15  | 25  | 21  | 33  |
| 6          | 10           | 2   | 9   | 6   | 17  | 12          | 25             | 19  | 33  | 27  | 42  |
| 10         | 14           | 2   | 10  | 6   | 19  | 13          | 26             | 21  | 35  | 30  | 48  |
| 14         | 18           | 3   | 12  | 8   | 21  | 15          | 28             | 23  | 37  | 32  | 50  |
| 18         | 24           | 4   | 14  | 10  | 23  | 17          | 30             | 25  | 39  | 34  | 52  |
| 24         | 30           | 5   | 16  | 11  | 24  | 19          | 35             | 29  | 46  | 40  | 58  |
| 30         | 40           | 6   | 18  | 13  | 29  | 23          | 40             | 34  | 53  | 46  | 66  |
| 40         | 50           | 6   | 19  | 14  | 31  | 25          | 44             | 37  | 57  | 50  | 71  |
| 50         | 65           | 7   | 21  | 16  | 36  | 30          | 50             | 45  | 69  | 62  | 88  |
| 65         | 80           | 8   | 24  | 18  | 40  | 35          | 60             | 54  | 83  | 76  | 108 |
| 80         | 100          | 9   | 27  | 22  | 48  | 42          | 70             | 64  | 96  | 89  | 124 |
| 100        | 120          | 10  | 31  | 25  | 56  | 50          | 83             | 75  | 114 | 105 | 145 |
| 120        | 140          | 10  | 38  | 30  | 68  | 60          | 100            | 90  | 135 | 125 | 175 |
| 140        | 160          | 15  | 44  | 35  | 80  | 70          | 120            | 110 | 161 | 150 | 210 |

Table 8.5 (1) Radial internal clearance for duplex angular contact ball bearings  $$\sf Unit~\mu\,n$$ 

|  |                 |                  |     |     |     |         |    | Onit pin |     |     |         |     |
|--|-----------------|------------------|-----|-----|-----|---------|----|----------|-----|-----|---------|-----|
|  | Nomina<br>diam  | al bore<br>neter | C   | 21  | C   | 2       | C  | N        | C   | 3   | С       | :4  |
|  | d mm over incl. |                  | min | max | min | min max |    | max      | min | max | min max |     |
|  |                 | 10               | 3   | 8   | 6   | 12      | 8  | 15       | 15  | 22  | 22      | 30  |
|  | 10              | 18               | 3   | 8   | 6   | 12      | 8  | 15       | 15  | 24  | 30      | 40  |
|  | 18              | 30               | 3   | 10  | 6   | 12      | 10 | 20       | 20  | 32  | 40      | 55  |
|  | 30              | 50               | 3   | 10  | 8   | 14      | 14 | 25       | 25  | 40  | 55      | 75  |
|  | 50              | 80               | 3   | 11  | 11  | 17      | 17 | 32       | 32  | 50  | 75      | 95  |
|  | 80              | 100              | 3   | 13  | 13  | 22      | 22 | 40       | 40  | 60  | 95      | 120 |
|  | 100             | 120              | 3   | 15  | 15  | 30      | 30 | 50       | 50  | 75  | 110     | 140 |
|  | 120             | 150              | 3   | 16  | 16  | 33      | 35 | 55       | 55  | 80  | 130     | 170 |
|  | 150             | 180              | 3   | 18  | 18  | 35      | 35 | 60       | 60  | 90  | 150     | 200 |
|  | 180             | 200              | 3   | 20  | 20  | 40      | 40 | 65       | 65  | 100 | 180     | 240 |

Note: The clearance group in the table is applied only to contact angles in the table below.

| Contact angle symbol | Nominal contact angle | Applicable clearance group <sup>2</sup> |
|----------------------|-----------------------|-----------------------------------------|
| С                    | 15°                   | C1 , C2                                 |
| A                    | 30°                   | C2 , CN , C3                            |
| R                    | 40°                   | CN C3 C4                                |

- Not indicated for bearing number.
- Por information concerning clearance other than applicable clearance, please contact NTN Engineering.

Table 8.5 (2) Radial internal clearance of self-aligning ball bearings

|                                       |      |               |    |               |    |    |    |    |    | U  | nit µm   |
|---------------------------------------|------|---------------|----|---------------|----|----|----|----|----|----|----------|
| Nominal bore diameter d mm over incl. |      | C2<br>min max |    | CN<br>min max |    | C3 |    | C4 |    |    | 5<br>max |
| 10                                    | only | 0             | 10 | 5             | 15 | 10 | 21 | 16 | 28 | 24 | 36       |
| 10                                    | 18   | 1             | 11 | 6             | 16 | 12 | 23 | 19 | 31 | 28 | 40       |
| 18                                    | 24   | 1             | 11 | 6             | 16 | 13 | 24 | 21 | 33 | 31 | 43       |
| 24                                    | 30   | 1             | 13 | 6             | 19 | 13 | 26 | 21 | 35 | 31 | 45       |
| 30                                    | 40   | 2             | 15 | 7             | 22 | 15 | 30 | 24 | 39 | 35 | 50       |
| 40                                    | 50   | 2             | 15 | 9             | 24 | 17 | 32 | 28 | 45 | 40 | 57       |
| 50                                    | 65   | 0             | 15 | 7             | 24 | 16 | 33 | 28 | 48 | 41 | 61       |
| 65                                    | 80   | 1             | 17 | 11            | 31 | 21 | 42 | 34 | 56 | 50 | 74       |
| 80                                    | 100  | 3             | 20 | 13            | 36 | 25 | 49 | 40 | 65 | 58 | 67       |

Table 8.6 Radial internal clearance of bearings for electric motor

Unit  $\mu$  m

| Nominal<br>diame |       | Rad         | dial internal | clearance     | e CM           |
|------------------|-------|-------------|---------------|---------------|----------------|
|                  | nm    | Deep groove | ball bearings | Cylindrical r | oller bearings |
| over             | incl. | min         | max           | min           | max            |
| 10 (incl.)       | 18    | 4           | 11            |               |                |
| 18               | 24    | 5           | 12            |               |                |
| 24               | 30    | 5           | 12            | 15            | 30             |
| 30               | 40    | 9           | 17            | 15            | 30             |
| 40               | 50    | 9           | 17            | 20            | 35             |
| 50               | 65    | 12          | 22            | 25            | 40             |
| 65               | 80    | 12          | 22            | 30            | 45             |
| 80               | 100   | 18          | 30            | 35            | 55             |
| 100              | 120   | 18          | 30            | 35            | 60             |
| 120              | 140   | 24          | 38            | 40            | 65             |
| 140              | 160   | 24          | 38            | 50            | 80             |
| 160              | 180   |             |               | 60            | 90             |
| 180              | 200   |             |               | 65            | 100            |

Note 1: Suffix CM is added to bearing numbers.

Example: 6205ZZCM

2: Clearance not interchangeable for cylindrical roller bearings.



Unit  $\mu$  m

|     | Bearing with tapered bore N |     |     |     |     |     |     |     |     |      |       |  |  |
|-----|-----------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|-------|--|--|
| C   | 2                           | С   | N   | С   | 3   | С   | :4  | C   | 5   | d n  | nm    |  |  |
| min | max                         | min | max | min | max | min | max | min | max | over | incl. |  |  |
|     |                             |     |     |     |     |     |     |     |     | 2.5  | 6     |  |  |
|     |                             |     |     |     |     |     |     |     |     | 6    | 10    |  |  |
|     |                             |     |     |     |     |     |     |     |     | 10   | 14    |  |  |
|     |                             |     |     |     |     |     |     |     |     | 14   | 18    |  |  |
| 7   | 17                          | 13  | 26  | 20  | 33  | 28  | 42  | 37  | 55  | 18   | 24    |  |  |
| 9   | 20                          | 15  | 28  | 23  | 39  | 33  | 50  | 44  | 62  | 24   | 30    |  |  |
| 12  | 24                          | 19  | 35  | 29  | 46  | 40  | 59  | 52  | 72  | 30   | 40    |  |  |
| 14  | 27                          | 22  | 39  | 33  | 52  | 45  | 65  | 58  | 79  | 40   | 50    |  |  |
| 18  | 32                          | 27  | 47  | 41  | 61  | 56  | 80  | 73  | 99  | 50   | 65    |  |  |
| 23  | 39                          | 35  | 57  | 50  | 75  | 69  | 98  | 91  | 123 | 65   | 80    |  |  |
| 29  | 47                          | 42  | 68  | 62  | 90  | 84  | 116 | 109 | 144 | 80   | 100   |  |  |
| 35  | 56                          | 50  | 81  | 75  | 108 | 100 | 139 | 130 | 170 | 100  | 120   |  |  |
| 40  | 68                          | 60  | 98  | 90  | 130 | 120 | 165 | 155 | 205 | 120  | 140   |  |  |
| 45  | 74                          | 65  | 110 | 100 | 150 | 140 | 191 | 180 | 240 | 140  | 160   |  |  |

Table 8.7 Interchangeable radial internal clearance for cylindrical roller bearing (cylindrical bore)

Unit  $\mu$  m

|            |                |             |                |                |                |                |                |                |                |          | Onition  |
|------------|----------------|-------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------|----------|
| Nominal bo |                | (           | C2             |                | CN             |                | C3             |                | C4             |          | C5       |
| over       | incl.          | min         | max            | min            | max            | min            | max            | min            | max            | min      | max      |
| 10<br>24   | 10<br>24<br>30 | 0<br>0<br>0 | 25<br>25<br>25 | 20<br>20<br>20 | 45<br>45<br>45 | 35<br>35<br>35 | 60<br>60<br>60 | 50<br>50<br>50 | 75<br>75<br>75 | 65<br>70 | 90<br>95 |
| 30         | 40             | 5           | 30             | 25             | 50             | 45             | 70             | 60             | 85             | 80       | 105      |
| 40         | 50             | 5           | 35             | 30             | 60             | 50             | 80             | 70             | 100            | 95       | 125      |
| 50         | 65             | 10          | 40             | 40             | 70             | 60             | 90             | 80             | 110            | 110      | 140      |
| 65         | 80             | 10          | 45             | 40             | 75             | 65             | 100            | 90             | 125            | 130      | 165      |
| 80         | 100            | 15          | 50             | 50             | 85             | 75             | 110            | 105            | 140            | 155      | 190      |
| 100        | 120            | 15          | 55             | 50             | 90             | 85             | 125            | 125            | 165            | 180      | 220      |
| 120        | 140            | 15          | 60             | 60             | 105            | 100            | 145            | 145            | 190            | 200      | 245      |
| 140        | 160            | 20          | 70             | 70             | 120            | 115            | 165            | 165            | 215            | 225      | 275      |
| 160        | 180            | 25          | 75             | 75             | 125            | 120            | 170            | 170            | 220            | 250      | 300      |
| 180        | 200            | 35          | 90             | 90             | 145            | 140            | 195            | 195            | 250            | 275      | 330      |
| 200        | 225            | 45          | 105            | 105            | 165            | 160            | 220            | 220            | 280            | 305      | 365      |
| 225        | 250            | 45          | 110            | 110            | 175            | 170            | 235            | 235            | 300            | 330      | 395      |
| 250        | 280            | 55          | 125            | 125            | 195            | 190            | 260            | 260            | 330            | 370      | 440      |
| 280        | 315            | 55          | 130            | 130            | 205            | 200            | 275            | 275            | 350            | 410      | 485      |
| 315        | 355            | 65          | 145            | 145            | 225            | 225            | 305            | 305            | 385            | 455      | 535      |
| 355        | 400            | 100         | 190            | 190            | 280            | 280            | 370            | 370            | 460            | 510      | 600      |
| 400        | 450            | 110         | 210            | 210            | 310            | 310            | 410            | 410            | 510            | 565      | 665      |
| 450        | 500            | 110         | 220            | 220            | 330            | 330            | 440            | 440            | 550            | 625      | 735      |

Table 8.8 Non-interchangeable radial internal clearance for cylindrical roller bearing

| Nominal bore diameter |                |             |                |                |                | Bea            | aring with c   | ylindrical b   | oore           |                |                |          |          |
|-----------------------|----------------|-------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------|----------|
|                       | mm             | C1          | INA            | C              | 2NA            | N              | A <b>•</b>     | C3             | BNA            | C4             | INA            | C5       | SNA      |
| over                  | incl.          | min         | max            | min            | max            | min            | max            | min            | max            | min            | max            | min      | max      |
| 10<br>18              | 10<br>18<br>24 | 5<br>5<br>5 | 10<br>10<br>10 | 10<br>10<br>10 | 20<br>20<br>20 | 20<br>20<br>20 | 30<br>30<br>30 | 35<br>35<br>35 | 45<br>45<br>45 | 45<br>45<br>45 | 55<br>55<br>55 | 65<br>65 | 75<br>75 |
| 24                    | 30             | 5           | 10             | 10             | 25             | 25             | 35             | 40             | 50             | 50             | 60             | 70       | 80       |
| 30                    | 40             | 5           | 12             | 12             | 25             | 25             | 40             | 45             | 55             | 55             | 70             | 80       | 95       |
| 40                    | 50             | 5           | 15             | 15             | 30             | 30             | 45             | 50             | 65             | 65             | 80             | 95       | 110      |
| 50                    | 65             | 5           | 15             | 15             | 35             | 35             | 50             | 55             | 75             | 75             | 90             | 110      | 130      |
| 65                    | 80             | 10          | 20             | 20             | 40             | 40             | 60             | 70             | 90             | 90             | 110            | 130      | 150      |
| 80                    | 100            | 10          | 25             | 25             | 45             | 45             | 70             | 80             | 105            | 105            | 125            | 155      | 180      |
| 100                   | 120            | 10          | 25             | 25             | 50             | 50             | 80             | 95             | 120            | 120            | 145            | 180      | 205      |
| 120                   | 140            | 15          | 30             | 30             | 60             | 60             | 90             | 105            | 135            | 135            | 160            | 200      | 230      |
| 140                   | 160            | 15          | 35             | 35             | 65             | 65             | 100            | 115            | 150            | 150            | 180            | 225      | 260      |
| 160                   | 180            | 15          | 35             | 35             | 75             | 75             | 110            | 125            | 165            | 165            | 200            | 250      | 285      |
| 180                   | 200            | 20          | 40             | 40             | 80             | 80             | 120            | 140            | 180            | 180            | 220            | 275      | 315      |
| 200                   | 225            | 20          | 45             | 45             | 90             | 90             | 135            | 155            | 200            | 200            | 240            | 305      | 350      |
| 225                   | 250            | 25          | 50             | 50             | 100            | 100            | 150            | 170            | 215            | 215            | 265            | 330      | 380      |
| 250                   | 280            | 25          | 55             | 55             | 110            | 110            | 165            | 185            | 240            | 240            | 295            | 370      | 420      |
| 280                   | 315            | 30          | 60             | 60             | 120            | 120            | 180            | 205            | 265            | 265            | 325            | 410      | 470      |
| 315                   | 355            | 30          | 65             | 65             | 135            | 135            | 200            | 225            | 295            | 295            | 360            | 455      | 520      |
| 355                   | 400            | 35          | 75             | 75             | 150            | 150            | 225            | 255            | 330            | 330            | 405            | 510      | 585      |
| 400                   | 450            | 45          | 85             | 85             | 170            | 170            | 255            | 285            | 370            | 370            | 455            | 565      | 650      |
| 450                   | 500            | 50          | 95             | 95             | 190            | 190            | 285            | 315            | 410            | 410            | 505            | 625      | 720      |

<sup>•</sup> For bearings with normal clearance, only NA is added to bearing numbers. Ex. NU310NA

Table 8.9 Axial internal clearance for double row and duplex tapered roller bearings (metric series)

| Nomin | al bore |     |     | Conta | ct angle 2 | 7° (e 0.76) |       |       |       |
|-------|---------|-----|-----|-------|------------|-------------|-------|-------|-------|
|       | mm      | С   | 2   | C     | N          |             | C3    |       | C4    |
| over  | incl.   | min | max | min   | max        | min         | max   | min   | max   |
| 18    | 24      | 25  | 75  | 75    | 125        | 125         | 170   | 170   | 220   |
| 24    | 30      | 25  | 75  | 75    | 125        | 145         | 195   | 195   | 245   |
| 30    | 40      | 25  | 95  | 95    | 165        | 165         | 235   | 210   | 280   |
| 40    | 50      | 20  | 85  | 85    | 150        | 175         | 240   | 240   | 305   |
| 50    | 65      | 20  | 85  | 110   | 175        | 195         | 260   | 280   | 350   |
| 65    | 80      | 20  | 110 | 130   | 220        | 240         | 325   | 325   | 410   |
| 80    | 100     | 45  | 150 | 150   | 260        | 280         | 390   | 390   | 500   |
| 100   | 120     | 45  | 175 | 175   | 305        | 350         | 480   | 455   | 585   |
| 120   | 140     | 45  | 175 | 175   | 305        | 390         | 520   | 500   | 630   |
| 140   | 160     | 60  | 200 | 200   | 340        | 400         | 540   | 520   | 660   |
| 160   | 180     | 80  | 220 | 240   | 380        | 440         | 580   | 600   | 740   |
| 180   | 200     | 100 | 260 | 260   | 420        | 500         | 660   | 660   | 820   |
| 200   | 225     | 120 | 300 | 300   | 480        | 560         | 740   | 720   | 900   |
| 225   | 250     | 160 | 360 | 360   | 560        | 620         | 820   | 820   | 1,020 |
| 250   | 280     | 180 | 400 | 400   | 620        | 700         | 920   | 920   | 1,140 |
| 280   | 315     | 200 | 440 | 440   | 680        | 780         | 1,020 | 1,020 | 1,260 |
| 315   | 355     | 220 | 480 | 500   | 760        | 860         | 1,120 | 1,120 | 1,380 |
| 355   | 400     | 260 | 560 | 560   | 860        | 980         | 1,280 | 1,280 | 1,580 |
| 400   | 500     | 300 | 600 | 620   | 920        | 1,100       | 1,400 | 1,440 | 1,740 |

Note1: This table applies to bearings contained in the catalog. For information concerning other bearings or bearings using US customary unit, please contact NTN Engineering.

<sup>2:</sup> The correlation of axial internal clearance ( $\Delta a$ ) and radial internal clearance ( $\Delta r$ ) is expressed as  $\Delta r = 0.667 \cdot e \cdot \Delta a$ .

 $<sup>\</sup>emph{e}$ : Constant (see dimensions table)

<sup>3:</sup> Bearing series 329X, 330, 322C and 323Cdo not apply to the table.



Unit  $\mu$  m

|     | Bearing with tapered bore  C9NA® C0NA® C1NA C2NA NA® C3NA |     |              |     |     |     |     |     |            |     |     |        |       |  |
|-----|-----------------------------------------------------------|-----|--------------|-----|-----|-----|-----|-----|------------|-----|-----|--------|-------|--|
| C   | 9NA <b>®</b>                                              | C   | ONA <b>®</b> | C.  | 1NA | C   | 2NA | N   | A <b>®</b> | C   | BNA | diam d | mm    |  |
| min | max                                                       | min | max          | min | max | min | max | min | max        | min | max | over   | incl. |  |
| 5   | 5                                                         | 7   | 17           | 10  | 20  | 20  | 30  | 35  | 45         | 45  | 55  |        | 10    |  |
| 5   | 10                                                        | 7   | 17           | 10  | 20  | 20  | 30  | 35  | 45         | 45  | 55  | 10     | 18    |  |
| 5   | 10                                                        | 7   | 17           | 10  | 20  | 20  | 30  | 35  | 45         | 45  | 55  | 18     | 24    |  |
| 5   | 10                                                        | 10  | 20           | 10  | 25  | 25  | 35  | 40  | 50         | 50  | 60  | 24     | 30    |  |
| 5   | 12                                                        | 10  | 20           | 12  | 25  | 25  | 40  | 45  | 55         | 55  | 70  | 30     | 40    |  |
| 5   | 15                                                        | 10  | 20           | 15  | 30  | 30  | 45  | 50  | 65         | 65  | 80  | 40     | 50    |  |
| 5   | 15                                                        | 10  | 20           | 15  | 35  | 35  | 50  | 55  | 75         | 75  | 90  | 50     | 65    |  |
| 10  | 20                                                        | 15  | 30           | 20  | 40  | 40  | 60  | 70  | 90         | 90  | 110 | 65     | 80    |  |
| 10  | 25                                                        | 20  | 35           | 25  | 45  | 45  | 70  | 80  | 105        | 105 | 125 | 80     | 100   |  |
| 10  | 25                                                        | 20  | 35           | 25  | 50  | 50  | 80  | 95  | 120        | 120 | 145 | 100    | 120   |  |
| 15  | 30                                                        | 25  | 40           | 30  | 60  | 60  | 90  | 105 | 135        | 135 | 160 | 120    | 140   |  |
| 15  | 35                                                        | 30  | 45           | 35  | 65  | 65  | 100 | 115 | 150        | 150 | 180 | 140    | 160   |  |
| 15  | 35                                                        | 30  | 45           | 35  | 75  | 75  | 110 | 125 | 165        | 165 | 200 | 160    | 180   |  |
| 20  | 40                                                        | 30  | 50           | 40  | 80  | 80  | 120 | 140 | 180        | 180 | 220 | 180    | 200   |  |
| 20  | 45                                                        | 35  | 55           | 45  | 90  | 90  | 135 | 155 | 200        | 200 | 240 | 200    | 225   |  |
| 25  | 50                                                        | 40  | 65           | 50  | 100 | 100 | 150 | 170 | 215        | 215 | 265 | 225    | 250   |  |
| 25  | 55                                                        | 40  | 65           | 55  | 110 | 110 | 165 | 185 | 240        | 240 | 295 | 250    | 280   |  |
| 30  | 60                                                        | 45  | 75           | 60  | 120 | 120 | 180 | 205 | 265        | 265 | 325 | 280    | 315   |  |
| 30  | 65                                                        | 45  | 75           | 65  | 135 | 135 | 200 | 225 | 295        | 295 | 360 | 315    | 355   |  |
| 35  | 75                                                        | 50  | 90           | 75  | 150 | 150 | 225 | 255 | 330        | 330 | 405 | 355    | 400   |  |
| 45  | 85                                                        | 60  | 100          | 85  | 170 | 170 | 255 | 285 | 370        | 370 | 455 | 400    | 450   |  |
| 50  | 95                                                        | 70  | 115          | 95  | 190 | 190 | 285 | 315 | 410        | 410 | 505 | 450    | 500   |  |

 $<sup>\</sup>ensuremath{\mathbf{2}}$  C9NA, C0NA and C1NA are applied only to precision bearings of Class 5 and higher.

Unit  $\mu$  m

|                            |                            | C                          | ontact angle               | > 27° (e > 0.              | 76)                           |                              |                                | Nominal bo                 | re diameter                |
|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-------------------------------|------------------------------|--------------------------------|----------------------------|----------------------------|
| (                          | C2                         | C                          | CN                         | (                          | C3                            | C                            | 24                             | d r                        | nm                         |
| min                        | max                        | min                        | max                        | min                        | max                           | min                          | max                            | over                       | incl.                      |
| 10<br>10<br>10<br>10<br>10 | 30<br>30<br>40<br>40<br>40 | 30<br>30<br>40<br>40<br>50 | 50<br>50<br>70<br>70<br>80 | 50<br>60<br>70<br>80<br>90 | 70<br>80<br>100<br>110<br>120 | 70<br>80<br>90<br>110<br>130 | 90<br>100<br>120<br>140<br>160 | 18<br>24<br>30<br>40<br>50 | 24<br>30<br>40<br>50<br>65 |
| 10                         | 50                         | 60                         | 100                        | 110                        | 150                           | 150                          | 190                            | 65                         | 80                         |
| 20<br>20<br>20             | 70<br>70<br>70             | 70<br>70<br>70             | 120<br>120<br>120          | 130<br>150<br>160          | 180<br>200<br>210             | 180<br>210<br>210            | 230<br>260<br>260              | 80<br>100<br>120           | 100<br>120<br>140          |
| 30                         | 100                        | 100                        | 160                        | 180                        | 240                           | 240                          | 300                            | 140<br>160<br>180          | 160<br>180<br>200          |
|                            |                            |                            |                            |                            |                               |                              |                                | 200<br>225<br>250          | 225<br>250<br>280          |
|                            |                            |                            |                            |                            |                               |                              |                                | 280<br>315<br>355<br>400   | 315<br>355<br>400<br>500   |

Table 8.10 Radial internal clearance of spherical roller bearings

| Nominal be | ore diameter |     |     |     | В   | earing with | cylindrical bo | re    |       |       |       |
|------------|--------------|-----|-----|-----|-----|-------------|----------------|-------|-------|-------|-------|
| C          | d mm         | (   | C2  | С   | :N  |             | C3             | (     | C4    |       | C5    |
| over       | incl.        | min | max | min | max | min         | max            | min   | max   | min   | max   |
| 14         | 18           | 10  | 20  | 20  | 35  | 35          | 45             | 45    | 60    | 60    | 75    |
| 18         | 24           | 10  | 20  | 20  | 35  | 35          | 45             | 45    | 60    | 60    | 75    |
| 24         | 30           | 15  | 25  | 25  | 40  | 40          | 55             | 55    | 75    | 75    | 95    |
| 30         | 40           | 15  | 30  | 30  | 45  | 45          | 60             | 60    | 80    | 80    | 100   |
| 40         | 50           | 20  | 35  | 35  | 55  | 55          | 75             | 75    | 100   | 100   | 125   |
| 50         | 65           | 20  | 40  | 40  | 65  | 65          | 90             | 90    | 120   | 120   | 150   |
| 65         | 80           | 30  | 50  | 50  | 80  | 80          | 110            | 110   | 145   | 145   | 180   |
| 80         | 100          | 35  | 60  | 60  | 100 | 100         | 135            | 135   | 180   | 180   | 225   |
| 100        | 120          | 40  | 75  | 75  | 120 | 120         | 160            | 160   | 210   | 210   | 260   |
| 120        | 140          | 50  | 95  | 95  | 145 | 145         | 190            | 190   | 240   | 240   | 300   |
| 140        | 160          | 60  | 110 | 110 | 170 | 170         | 220            | 220   | 280   | 280   | 350   |
| 160        | 180          | 65  | 120 | 120 | 180 | 180         | 240            | 240   | 310   | 310   | 390   |
| 180        | 200          | 70  | 130 | 130 | 200 | 200         | 260            | 260   | 340   | 340   | 430   |
| 200        | 225          | 80  | 140 | 140 | 220 | 220         | 290            | 290   | 380   | 380   | 470   |
| 225        | 250          | 90  | 150 | 150 | 240 | 240         | 320            | 320   | 420   | 420   | 520   |
| 250        | 280          | 100 | 170 | 170 | 260 | 260         | 350            | 350   | 460   | 460   | 570   |
| 280        | 315          | 110 | 190 | 190 | 280 | 280         | 370            | 370   | 500   | 500   | 630   |
| 315        | 355          | 120 | 200 | 200 | 310 | 310         | 410            | 410   | 550   | 550   | 690   |
| 355        | 400          | 130 | 220 | 220 | 340 | 340         | 450            | 450   | 600   | 600   | 750   |
| 400        | 450          | 140 | 240 | 240 | 370 | 370         | 500            | 500   | 660   | 660   | 820   |
| 450        | 500          | 140 | 260 | 260 | 410 | 410         | 550            | 550   | 720   | 720   | 900   |
| 500        | 560          | 150 | 280 | 280 | 440 | 440         | 600            | 600   | 780   | 780   | 1,000 |
| 560        | 630          | 170 | 310 | 310 | 480 | 480         | 650            | 650   | 850   | 850   | 1,100 |
| 630        | 710          | 190 | 350 | 350 | 530 | 530         | 700            | 700   | 920   | 920   | 1,190 |
| 710        | 800          | 210 | 390 | 390 | 580 | 580         | 770            | 770   | 1,010 | 1,010 | 1,300 |
| 800        | 900          | 230 | 430 | 430 | 650 | 650         | 860            | 860   | 1,120 | 1,120 | 1,440 |
| 900        | 1,000        | 260 | 480 | 480 | 710 | 710         | 930            | 930   | 1,220 | 1,220 | 1,570 |
| 1,000      | 1,120        | 290 | 530 | 530 | 780 | 780         | 1,020          | 1,020 | 1,330 | 1,330 | 1,720 |
| 1,120      | 1,250        | 320 | 580 | 580 | 860 | 860         | 1,120          | 1,120 | 1,460 | 1,460 | 1,870 |
| 1,250      | 1,400        | 350 | 640 | 640 | 950 | 950         | 1,240          | 1,240 | 1,620 | 1,620 | 2,080 |

Table 8.11 Axial internal clearance of four points contact ball bearings

Unit µm

| Nominal | bore diameter | С   | 2   | C   | CN  | C   | 23  | C4  |     |
|---------|---------------|-----|-----|-----|-----|-----|-----|-----|-----|
| over    | incl.         | min | max | min | max | min | max | min | max |
| 17      | 40            | 26  | 66  | 56  | 106 | 96  | 146 | 136 | 186 |
| 40      | 60            | 36  | 86  | 76  | 126 | 116 | 166 | 156 | 206 |
| 60      | 80            | 46  | 96  | 86  | 136 | 126 | 176 | 166 | 226 |
| 80      | 100           | 56  | 106 | 96  | 156 | 136 | 196 | 186 | 246 |
| 100     | 140           | 66  | 126 | 116 | 176 | 156 | 216 | 206 | 266 |
| 140     | 180           | 76  | 156 | 136 | 196 | 176 | 236 | 226 | 296 |
| 180     | 220           | 96  | 176 | 156 | 216 | 196 | 256 | 246 | 316 |



Unit  $\mu$  m

|          | Bearing with tapered bore  C2 CN C3 C4 C5 |                |          |          |          |          |          |          |                |                |  |  |
|----------|-------------------------------------------|----------------|----------|----------|----------|----------|----------|----------|----------------|----------------|--|--|
|          | C2                                        | CN             |          | C3       |          | C4       |          | C5       | d              | mm .           |  |  |
| min      | max                                       | min max        | min      | max      | min      | max      | min      | max      | over           | incl.          |  |  |
| 15<br>20 | 25<br>30                                  | 25 35<br>30 40 | 35<br>40 | 45<br>55 | 45<br>55 | 60<br>75 | 60<br>75 | 75<br>95 | 14<br>18<br>24 | 18<br>24<br>30 |  |  |
| 25       | 35                                        | 35 50          | 50       | 65       | 65       | 85       | 85       | 105      | 30             | 40             |  |  |
| 30       | 45                                        | 45 60          | 60       | 80       | 80       | 100      | 100      | 130      | 40             | 50             |  |  |
| 40       | 55                                        | 55 75          | 75       | 95       | 95       | 120      | 120      | 160      | 50             | 65             |  |  |
| 50       | 70                                        | 70 95          | 95       | 120      | 120      | 150      | 150      | 200      | 65             | 80             |  |  |
| 55       | 80                                        | 80 110         | 110      | 140      | 140      | 180      | 180      | 230      | 80             | 100            |  |  |
| 65       | 100                                       | 100 135        | 135      | 170      | 170      | 220      | 220      | 280      | 100            | 120            |  |  |
| 80       | 120                                       | 120 160        | 160      | 200      | 200      | 260      | 260      | 330      | 120            | 140            |  |  |
| 90       | 130                                       | 130 180        | 180      | 230      | 230      | 300      | 300      | 380      | 140            | 160            |  |  |
| 100      | 140                                       | 140 200        | 200      | 260      | 260      | 340      | 340      | 430      | 160            | 180            |  |  |
| 110      | 160                                       | 160 220        | 220      | 290      | 290      | 370      | 370      | 470      | 180            | 200            |  |  |
| 120      | 180                                       | 180 250        | 250      | 320      | 320      | 410      | 410      | 520      | 200            | 225            |  |  |
| 140      | 200                                       | 200 270        | 270      | 350      | 350      | 450      | 450      | 570      | 225            | 250            |  |  |
| 150      | 220                                       | 220 300        | 300      | 390      | 390      | 490      | 490      | 620      | 250            | 280            |  |  |
| 170      | 240                                       | 240 330        | 330      | 430      | 430      | 540      | 540      | 680      | 280            | 315            |  |  |
| 190      | 270                                       | 270 360        | 360      | 470      | 470      | 590      | 590      | 740      | 315            | 355            |  |  |
| 210      | 300                                       | 300 400        | 400      | 520      | 520      | 650      | 650      | 820      | 355            | 400            |  |  |
| 230      | 330                                       | 330 440        | 440      | 570      | 570      | 720      | 720      | 910      | 400            | 450            |  |  |
| 260      | 370                                       | 370 490        | 490      | 630      | 630      | 790      | 790      | 1,000    | 450            | 500            |  |  |
| 290      | 410                                       | 410 540        | 540      | 680      | 680      | 870      | 870      | 1,100    | 500            | 560            |  |  |
| 320      | 460                                       | 460 600        | 600      | 760      | 760      | 980      | 980      | 1,230    | 560            | 630            |  |  |
| 350      | 510                                       | 510 670        | 670      | 850      | 850      | 1,090    | 1,090    | 1,360    | 630            | 710            |  |  |
| 390      | 570                                       | 570 750        | 750      | 960      | 960      | 1,220    | 1,220    | 1,500    | 710            | 800            |  |  |
| 440      | 640                                       | 640 840        | 840      | 1,070    | 1,070    | 1,370    | 1,370    | 1,690    | 800            | 900            |  |  |
| 490      | 710                                       | 710 930        | 930      | 1,190    | 1,190    | 1,520    | 1,520    | 1,860    | 900            | 1,000          |  |  |
| 530      | 770                                       | 770 1,030      | 1,030    | 1,300    | 1,300    | 1,670    | 1,670    | 2,050    | 1,000          | 1,120          |  |  |
| 570      | 830                                       | 830 1,120      | 1,120    | 1,420    | 1,420    | 1,830    | 1,830    | 2,250    | 1,120          | 1,250          |  |  |
| 620      | 910                                       | 910 1,230      | 1,230    | 1,560    | 1,560    | 2,000    | 2,000    | 2,470    | 1,250          | 1,400          |  |  |

#### 8.3 Preload

Normally, bearings are used with a slight internal clearance under operating conditions. However, in some applications, bearings are given an initial load; this means that the bearings' internal clearance is negative before operation. This is called "preload" and is commonly applied to angular ball bearings and tapered roller bearings.

# 8.3.1 Purpose of preload

The following results are obtained by constant elastic compressive force applied to the contact points of rolling elements and raceway by providing preload.

- Bearing's rigidity increases, internal clearance tends not to be produced even when heavy load is applied.
- (2) The particular frequency of the bearing increases and is becomes suitable for high-speed rotation.
- (3) Shaft runout is suppressed; rotation and position precision are enhanced.
- (4) Vibration and noise are controlled.
- (5) Sliding of rolling elements by turning, spinning, or pivoting, is controlled and smearing is reduced.
- (6) Fretting produced by external vibration is prevented.

Applying excessive preload could result in reduction of life, abnormal heating, or increase in turning torque. You should therefore consider the objectives before determining the amount of preload.

Table 8.12 Preloading methods and characteristics

| Method                    | Basic pattern | Applicable bearings                                                                                              | Object                                                                                                                                   | Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Applications                                                                                             |
|---------------------------|---------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|                           |               | Angular contact ball bearings                                                                                    | Maintaining<br>accuracy of<br>rotating shaft,<br>preventing<br>vibration<br>increasing<br>rigidity                                       | Preloading is accomplished by a predetermined offset of the rings or by using spacers. For the standard preload see <b>Table 8.13</b> .                                                                                                                                                                                                                                                                                                                           | Grinding machines,<br>lathes,<br>milling machines,<br>measuring instruments                              |
| Fixed position preload    |               | Tapered roller<br>bearings, thrust<br>ball bearings,<br>angular contact<br>ball bearings                         | Increasing bearing rigidity                                                                                                              | Preload is accomplished by adjusting a threaded screw. The amount of preload is set by measuring the starting torque or axial displacement.                                                                                                                                                                                                                                                                                                                       | Lathes,<br>milling machines,<br>differential gears of automotives,<br>printing machines, wheel axles     |
| Cons                      |               | Angular contact<br>ball bearings,<br>deep groove<br>ball bearings,<br>tapered roller<br>bearings (high<br>speed) | Maintaining accuracy and preventing vibration and noise with a constant amount of preload without being affected by loads or temperature | Preloading is accomplished by using coil or belleville springs. for deep groove ball bearings: 4~10 d N 0.4~1.0 d { kgf } d: Shaft diameter mm for angular contact ball bearings: see Table 8.13.                                                                                                                                                                                                                                                                 | Internal grinding machines,<br>electric motors,<br>high speed shafts in small machines,<br>tension reels |
| Constant pressure preload |               | Spherical roller<br>thrust bearings,<br>cylindrical roller<br>thrust bearings,<br>thrust ball<br>bearings        | Preload is<br>primarily used to<br>prevent<br>smearing of<br>oposite axial<br>load side when<br>bearing an axial<br>load.                | Preload is accomplished by using coil or belleville springs. Recommended preloads are as follows: for thrust ball bearings: $T_{\rm i}=0.42~(nC_{\rm oa})^{1.9}\times10^{-13}~{\rm N} \\ =3.275(nC_{\rm oa})^{1.9}\times10^{-13}~{\rm kgf}\}$ $T_{\rm 2}=0.00083~C_{\rm oa}~{\rm N}~{\rm kgf}~{\rm yhich~ever~is~greater}$ for spherical roller thrust bearing, cylindrical roller thrust bearing $T=0.025~C_{\rm oa}^{0.8}~{\rm N}~{\rm kgf}~{\rm yhich~coller}$ | Rolling mills, extruding machines                                                                        |

Note: In the above formulas

 $T = \text{preload}, N \{kgf}$ 

 $n = \text{number of revolutions, min}^{-1}$ 

 $C_{\text{oa}}$  = basic static axial load rating, N {kgf}

#### 8.3.2 Preloading methods and amounts

The most common method of applying preload on a bearing is change the relative position of the inner and outer rings of the bearing in the axial direction while applying an axial load between bearings on opposing sides. There are two types of preload: fixed position preload and constant pressure preload.

The basic pattern, purpose and characteristics of bearing preloads are shown in **Table 8.12**. The fixed position preload is effective for positioning the two bearings and also for increasing the rigidity. Due to the use of a spring for the constant pressure preload, the preloading amount can be kept constantly, even when the distance between the two bearings fluctuates under the influence of operating heat and load.

Also, the standard preloading amount for the paired angular contact ball bearings is shown in **Table 8.13**. Light and normal preload is applied to prevent general vibration, and medium and heavy preload is applied especially when rigidity is required.

### 8.3.3 Preload and rigidity

The increased rigidity effect preloading has on bearings is shown in **Fig. 8.2**. When the offset inner rings of the two paired angular contact ball bearings are pressed together, each inner ring is displaced axially by the amount  $_{0}$  and is thus given a preload,  $F_{0}$ , in the direction. Under this condition, when external axial load  $F_{a}$  is applied, bearing I will have an increased displacement by the amount  $_{a}$  and bearing I 's displacement will decrease. At this time the loads applied to bearing I and II are  $F_{I}$  and  $F_{II}$ , respectively.

Under the condition of no preload, bearing I will be displaced by the amount  $_{\rm b}$  when axial load  $F_{\rm a}$  is applied. Since the amount of displacement,  $_{\rm a}$ , is less than  $_{\rm b}$ , it indicates a higher rigidity for  $_{\rm a}$ .

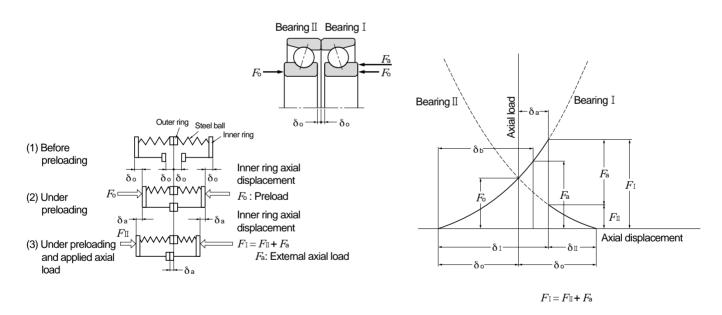



Fig. 8.2 Fixed position preload model diagram and preload diagram

Table 8.13 The normal preload of duplex angular contact ball bearings

| bo | Nom        | inal<br>ameter |                        |              |                              |                              |                        |                           |                              |                              |                        | Bearing                      |
|----|------------|----------------|------------------------|--------------|------------------------------|------------------------------|------------------------|---------------------------|------------------------------|------------------------------|------------------------|------------------------------|
|    | d n        |                |                        |              | 78C                          |                              |                        | 79C                       | , HSB9C                      |                              |                        | 70C, BNT0,                   |
|    | over       | inch           | Low<br>GL              | Normal<br>GN | Central<br>GM                | Heavy<br>GH                  | Low<br>GL              | Normal<br>GN              | Central<br>GM                | Heavy<br>GH                  | Low<br>GL              | Normal<br>GN                 |
|    | -          | 12             | -                      | -            | -                            | -                            | -                      | -                         | -                            | -                            | 20( 2)                 | 29( 3)                       |
|    | 12         | 18             | -                      | -            | -                            | -                            | -                      | -                         | -                            | -                            | 20( 2)                 | 29( 3)                       |
|    | 18         | 32             | 10( 1)                 | 29( 3)       | 78( 8}                       | 147{ 15}                     | 20{ 2}                 | 49( 5)                    | 98( 10}                      | 196( 20 }                    | 29( 3)                 | 78( 8)                       |
|    | 32         | 40             | 10( 1)                 | 29(3)        | 78( 8)                       | 147( 15 )                    | 29( 3 )                | 78( 8)                    | 196( 20 )                    | 294( 30 )                    | 49( 5)                 | 147( 15)                     |
|    | 40         | 50             | 20( 2)                 | 49(5)        | 98( 10)                      | 196( 20 )                    | 39( 4 )                | 98( 10)                   | 245( 25 )                    | 490( 50 )                    | 49( 5)                 | 147( 15)                     |
|    | 50         | 65             | 29( 3)                 | 98(10)       | 196( 20)                     | 390( 40 )                    | 49( 5 )                | 118( 12)                  | 294( 30 )                    | 590( 60 )                    | 98(10)                 | 196( 20)                     |
|    | 65         | 80             | 29( 3)                 | 98{ 10 }     | 196{ 20 }                    | 390{ 40 }                    | 78( 8 }                | 196( 20 )                 | 390{ 40 }                    | 785( 80 )                    | 98( 10 }               | 294( 30 )                    |
|    | 80         | 90             | 49( 5)                 | 147{ 15 }    | 294{ 30 }                    | 590{ 60 }                    | 98( 10 }               | 245( 25 )                 | 490{ 50 }                    | 980( 100 )                   | 147( 15 }              | 390( 40 )                    |
|    | 90         | 95             | 49( 5)                 | 147{ 15 }    | 294{ 30 }                    | 590{ 60 }                    | 98( 10 }               | 245( 25 )                 | 490{ 50 }                    | 980( 100 )                   | 147( 15 }              | 390( 40 )                    |
|    | 95         | 100            | 49( 5)                 | 147{ 15 }    | 294( 30 )                    | 590{ 60 }                    | 118( 12 }              | 294( 30 )                 | 685( 70 )                    | 1,470{ 150 }                 | 147( 15 }              | 390{ 40 }                    |
|    | 100        | 105            | 49( 5)                 | 147{ 15 }    | 294( 30 )                    | 590{ 60 }                    | 118( 12 }              | 294( 30 )                 | 685( 70 )                    | 1,470{ 150 }                 | 196( 20 }              | 590{ 60 }                    |
|    | 105        | 110            | 78( 8)                 | 196{ 20 }    | 490( 50 )                    | 980{ 100 }                   | 118( 12 }              | 294( 30 )                 | 685( 70 )                    | 1,470{ 150 }                 | 196( 20 }              | 590{ 60 }                    |
| •  | 110        | 120            | 78( 8 )                | 196{ 20 }    | 490{ 50 }                    | 980{ 100 }                   | 147{ 15 }              | 390{ 40 }                 | 880{ 90 }                    | 1,960{ 200 }                 | 196( 20 )              | 590{ 60 }                    |
|    | 120        | 140            | 98( 10 )               | 294{ 30 }    | 590{ 60 }                    | 1,270{ 130 }                 | 196{ 20 }              | 490{ 50 }                 | 980{ 100 }                   | 2,450{ 250 }                 | 294( 30 )              | 785{ 80 }                    |
|    | 140        | 150            | 147( 15 )              | 390{ 40 }    | 785{ 80 }                    | 1,470{ 150 }                 | 245{ 25 }              | 685{ 70 }                 | 1,470{ 150 }                 | 2,940{ 300 }                 | 294( 30 )              | 785{ 80 }                    |
| •  | 150        | 160            | 147{ 15 }              | 390{ 40 }    | 785( 80 )                    | 1,470{ 150 }                 | 245{ 25 }              | 685( 70 )                 | 1,470{ 150 }                 | 2,940{ 300 }                 | 490( 50 )              | 980{ 100 }                   |
|    | 160        | 170            | 147{ 15 }              | 490{ 50 }    | 980( 100 )                   | 1,960{ 200 }                 | 245{ 25 }              | 685( 70 )                 | 1,470{ 150 }                 | 2,940{ 300 }                 | 490( 50 )              | 980{ 100 }                   |
|    | 170        | 180            | 147{ 15 }              | 490{ 50 }    | 980( 100 )                   | 1,960{ 200 }                 | 294{ 30 }              | 880( 90 )                 | 1,960{ 200 }                 | 3,900{ 400 }                 | 490( 50 )              | 980{ 100 }                   |
|    | 180<br>190 | 190<br>200     | 196{ 20 }<br>196{ 20 } |              | 1,270{ 130 }<br>1,270{ 130 } | 2,450{ 250 }<br>2,450{ 250 } | 294{ 30 }<br>490{ 50 } | 880{ 90 }<br>1,270{ 130 } | 1,960{ 200 }<br>2,940{ 300 } | 3,900( 400 }<br>5,900( 600 } | 590( 60 }<br>590( 60 } | 1,470{ 150 }<br>1,470{ 150 } |

| Nominal bo | re diameter |              |               |              |           |              |               | Bearing        |
|------------|-------------|--------------|---------------|--------------|-----------|--------------|---------------|----------------|
| <i>d</i> r | mm          |              | 79, HSB9      |              |           | 70,          | HSB0          |                |
| over       | inch        | Normal<br>GN | Central<br>GM | Heavy<br>GH  | Low<br>GL | Normal<br>GN | Central<br>GM | Heavy<br>GH    |
| -          | 12          | 39( 4)       | 78( 8)        | 147( 15 )    | 29(3)     | 78( 8)       | 147( 15}      | 196( 20 )      |
| 12         | 18          | 49( 5)       | 147( 15)      | 196( 20 )    | 29(3)     | 78( 8)       | 147( 15}      | 294( 30 )      |
| 18         | 32          | 98( 10)      | 196( 20)      | 294( 30 )    | 49(5)     | 147( 15)     | 294( 30}      | 490( 50 )      |
| 32         | 40          | 147{ 15}     | 294( 30 )     | 590{ 60 }    | 78( 8 }   | 294( 30 )    | 590( 60 )     | 880( 90)       |
| 40         | 50          | 196{ 20}     | 390( 40 )     | 635{ 70 }    | 78( 8 }   | 294( 30 )    | 590( 60 )     | 980( 100)      |
| 50         | 65          | 245{ 25}     | 490( 50 )     | 785{ 80 }    | 147( 15 } | 490( 50 )    | 880( 90 )     | 1,470( 150)    |
| 65         | 80          | 390{ 40 }    | 785( 80 }     | 1,180{ 120 } | 147{ 15 } | 590( 60 }    | 1,470{ 150 }  | 1,960( 200 )   |
| 80         | 90          | 490{ 50 }    | 980( 100 }    | 1,470{ 150 } | 196{ 20 } | 880( 90 }    | 1,960{ 200 }  | 2,940( 300 )   |
| 90         | 95          | 490{ 50 }    | 980( 100 }    | 1,470{ 150 } | 196{ 20 } | 880( 90 }    | 1,960{ 200 }  | 2,940( 300 )   |
| 95         | 100         | 685( 70 )    | 1,274{ 130 }  | 1,960{ 200 } | 196{ 20 } | 880{ 90 }    | 1,960{ 200 }  | 2,940( 300 )   |
| 100        | 105         | 685( 70 )    | 1,274{ 130 }  | 1,960{ 200 } | 294{ 30 } | 980{ 100 }   | 2,450{ 250 }  | 3,900( 400 )   |
| 105        | 110         | 685( 70 )    | 1,274{ 130 }  | 1,960{ 200 } | 294{ 30 } | 980{ 100 }   | 2,450{ 250 }  | 3,900( 400 )   |
| 110        | 120         | 880{ 90 }    | 1,780{ 180 }  | 2,940( 300 ) | 294{ 30 } | 980{ 100 }   | 2,450{ 250 }  | 3,900( 400)    |
| 120        | 140         | 980{ 100 }   | 1,960{ 200 }  | 3,450( 350 ) | 490{ 50 } | 1,470{ 150 } | 3,450{ 350 }  | 5,900( 600)    |
| 140        | 150         | 1,270{ 130 } | 2,450{ 250 }  | 4,400( 450 ) | 490{ 50 } | 1,470{ 150 } | 3,450{ 350 }  | 5,900( 600)    |
| 150        | 160         | 1,270{ 130 } | 2,450{ 250 }  | 4,400( 450 } | 685{ 70 } | 2,450{ 250 } | 4,900( 500 )  | 8,800( 900)    |
| 160        | 170         | 1,270{ 130 } | 2,450{ 250 }  | 4,400( 450 } | 685{ 70 } | 2,450{ 250 } | 4,900( 500 )  | 8,800( 900)    |
| 170        | 180         | 1,780{ 180 } | 3,450{ 350 }  | 5,900( 600 } | 685{ 70 } | 2,450{ 250 } | 4,900( 500 )  | 8,800( 900)    |
| 180        | 190         | 1,780{ 180 } | 3,450{ 350 }  | 5,900( 600 } | 880{ 90 } | 3,450{ 350 } | 6,850{ 700 }  | 9,800( 1,000 ) |
| 190        | 200         | 2,450{ 250 } | 4,900{ 500 }  | 7,850( 800 } | 880{ 90 } | 3,450{ 350 } | 6,850{ 700 }  | 9,800( 1,000 ) |



Unit N { kgf }

|                                              |                                              |                                     |                                              |                                              |                                              |           |                                               |                                              | Unit N { Kgf }                                     |
|----------------------------------------------|----------------------------------------------|-------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|-----------|-----------------------------------------------|----------------------------------------------|----------------------------------------------------|
| series HSB0C                                 |                                              |                                     | 720                                          | C, BNT2                                      |                                              |           |                                               | 73C                                          |                                                    |
| Central<br>GM                                | Heavy<br>GH                                  | Low<br>GL                           | Normal<br>GN                                 | Central<br>GM                                | Heavy<br>GH                                  | Low<br>GL | Normal<br>GN                                  | Central<br>GM                                | Heavy<br>GH                                        |
| 98( 10 }<br>98( 10 }<br>147( 15 }            | 147( 15 )<br>196( 20 )<br>294( 30 )          | 20{ 2 }<br>20{ 2 }<br>49{ 5 }       | 49( 5)<br>49( 5)<br>98( 10)                  | 98( 10 )<br>147( 15 )<br>294( 30 )           | 196( 20 )<br>294( 30 )<br>490( 50 )          | 29( 3     | 78( 8 } 3 } 78( 8 } 3 } 78( 8 } 3 } 147( 15 } | 147{ 15 }<br>196{ 20 }<br>390{ 40 }          | 294( 30 }<br>390( 40 }<br>685( 70 }                |
| 294( 30 )<br>294( 30 )<br>490( 50 )          | 590( 60 )<br>685( 70 )<br>980( 100 )         | 78( 8 }<br>98( 10 }<br>147( 15 }    | 196{ 20 }<br>294{ 30 }<br>390{ 40 }          | 490{ 50 }<br>590{ 60 }<br>785{ 80 }          | 785( 80)<br>980( 100)<br>1,470( 150)         | 145{ 15   | 390(40)                                       | 590( 60 )<br>980( 100 )<br>1,470( 150 )      | 980{ 100 }<br>1,960{ 200 }<br>2,940{ 300 }         |
| 685( 70 }<br>980( 100 }<br>980( 100 }        | 1,470{ 150 }<br>1,960{ 200 }<br>1,960{ 200 } | 196{ 20 }<br>294{ 30 }<br>294{ 30 } | 490{ 50 }<br>685{ 70 }<br>685{ 70 }          | 980{ 100 }<br>1,470{ 150 }<br>1,960{ 200 }   | 1,960( 200 )<br>2,940( 300 )<br>3,900( 400 ) | 390( 40   | 980(100)                                      | 1,960{ 200 }<br>2,450{ 250 }<br>2,950{ 300 } | 3,900{ 400 }<br>4,900{ 500 }<br>5,900{ 600 }       |
| 980{ 100 }<br>1,470{ 150 }<br>1,470{ 150 }   | 1,960{ 200 }<br>2,450{ 250 }<br>2,450{ 250 } | 294{ 30 }<br>390{ 40 }<br>390{ 40 } | 685{ 70 }<br>980{ 100 }<br>980{ 100 }        | 1,960{ 200 }<br>2,450{ 250 }<br>2,450{ 250 } | 3,900( 400)<br>4,900( 500)<br>4,900( 500)    | 590( 60   | 1,470(150)                                    | 2,950{ 300 }<br>3,450{ 350 }<br>3,450{ 350 } | 5,900{ 600 }<br>6,850{ 700 }<br>6,850{ 700 }       |
| 1,470{ 150 }<br>1,960{ 200 }<br>1,960{ 200 } | 2,450( 250 )<br>3,900( 400 )<br>3,900( 400 ) | 390{ 40 }<br>490{ 50 }<br>490{ 50 } | 980{ 100 }<br>1,470{ 150 }<br>1,470{ 150 }   | 2,450{ 250 }<br>2,940{ 300 }<br>2,940{ 300 } | 4,900( 500)<br>5,900( 600)<br>5,900( 600)    | 785( 80   | 1,960(200)                                    | 3,450{ 350 }<br>4,400{ 450 }<br>4,400{ 450 } | 6,850{ 700 }<br>8,800{ 900 }<br>8,800{ 900 }       |
| 2,450{ 250 }<br>2,450{ 250 }<br>2,450{ 250 } | 5,900( 600 }<br>5,900( 600 }<br>5,900( 600 } | 685{ 70 }<br>685{ 70 }<br>685{ 70 } | 1,960{ 200 }<br>1,960{ 200 }<br>1,960{ 200 } | 4,400{ 450 }<br>4,400{ 450 }<br>4,400{ 450 } | 7,850( 800)<br>7,850( 800)<br>7,850( 800)    | 880( 90   | )                                             | 5,900{ 600 }<br>5,900{ 600 }<br>5,900{ 600 } | 9,800{ 1,100 }<br>9,800{ 1,100 }<br>9,800{ 1,100 } |
| 3,450{ 350 }<br>3,450{ 350 }                 | 6,850{ 700 }<br>6,850{ 700 }                 | 785{ 80 }<br>785{ 80 }              | 2,450{ 250 }<br>2,450{ 250 }                 | 4,900{ 500 }<br>4,900{ 500 }                 | 9,800( 1,000 )<br>9,800( 1,000 )             | _         | 2,940(300)<br>2,940(300)                      | 6,850{ 700 }<br>6,850{ 700 }                 | 11,800{ 1,200 }<br>11,800{ 1,200 }                 |

Unit N { kgf }

| series    |              |              |                 |              |              |                 |                 |
|-----------|--------------|--------------|-----------------|--------------|--------------|-----------------|-----------------|
|           | 72           | 2, 72B       |                 |              | 73           | , 73B           |                 |
| Low       | Normal       | Central      | Heavy           | Low          | Normal       | Central         | Heavy           |
| GL        | GN           | GM           | GH              | GL           | GN           | GM              | GH              |
| 29( 3)    | 98( 10 }     | 196{ 20 }    | 294( 30 }       | 49( 5)       | 147( 15 }    | 294{ 30 }       | 390{ 40 }       |
| 29( 3)    | 98( 10 }     | 294{ 30 }    | 390( 40 }       | 49( 5)       | 147( 15 }    | 390{ 40 }       | 490{ 50 }       |
| 78( 8)    | 196( 20 }    | 490{ 50 }    | 785( 80 }       | 98( 10)      | 294( 30 }    | 590{ 60 }       | 980{ 100 }      |
| 98( 10 }  | 390( 40 )    | 880{ 90 }    | 1,470{ 150 }    | 147{ 15 }    | 490( 50 )    | 980{ 100 }      | 1,960{ 200 }    |
| 147( 15 } | 590( 60 )    | 980{ 100 }   | 1,960{ 200 }    | 196{ 20 }    | 785( 80 )    | 1,470{ 150 }    | 2,450{ 250 }    |
| 196( 20 } | 785( 80 )    | 1,470{ 150 } | 2,940{ 300 }    | 294{ 30 }    | 980( 100 )   | 2,450{ 250 }    | 3,900{ 400 }    |
|           | 980( 100 }   | 2,450{ 250 } | 3,900( 400 }    | 390( 40 }    | 1,470( 150 } | 3,450( 350 )    | 4,900{ 500 }    |
|           | 1,470( 150 } | 2,940{ 300 } | 4,900( 500 }    | 590( 60 }    | 1,960( 200 } | 3,900( 400 )    | 5,880{ 600 }    |
|           | 1,960( 200 } | 3,900{ 400 } | 5,900( 600 }    | 590( 60 }    | 2,450( 250 } | 4,900( 500 )    | 6,854{ 700 }    |
| 590( 60 } | 1,960{ 200 } | 3,900{ 400 } | 5,900( 600 }    | 590( 60 }    | 2,450( 250 ) | 4,900( 500)     | 6,860( 700)     |
|           | 2,450{ 250 } | 4,900{ 500 } | 7,850( 800 }    | 685( 70 }    | 2,940( 300 ) | 5,900( 600)     | 8,800( 900)     |
|           | 2,450{ 250 } | 4,900{ 500 } | 7,850( 800 }    | 685( 70 }    | 2,940( 300 ) | 5,900( 600)     | 8,800( 900)     |
| 785(80}   | 2,450{ 250 } | 4,900( 500 } | 7,850( 800 }    | 685( 70 )    | 2,940( 300 } | 5,900( 600)     | 8,800( 900 )    |
|           | 2,940{ 300 } | 5,900( 600 } | 9,800( 1,000 }  | 880( 90 )    | 3,900( 400 } | 7,850( 800)     | 11,800( 1,200 ) |
|           | 2,940{ 300 } | 5,900( 600 } | 9,800( 1,000 }  | 880( 90 )    | 3,900( 400 } | 7,850( 800)     | 11,800( 1,200 ) |
| 880{ 90 } | 3,900( 400 } | 7,850( 800 } | 11,800{ 1,200 } | 980{ 100 }   | 4,400( 450 } | 8,800( 900 )    | 13,700{ 1,400 } |
|           | 3,900( 400 } | 7,850( 800 } | 11,800{ 1,200 } | 980{ 100 }   | 4,400( 450 } | 8,800( 900 )    | 13,700{ 1,400 } |
|           | 3,900( 400 } | 7,850( 800 } | 11,800{ 1,200 } | 980{ 100 }   | 4,400( 450 } | 8,800( 900 )    | 13,700{ 1,400 } |
|           | 4,400{ 450 } | 8,800{ 900 } | 13,700{ 1,400 } | 1,470{ 150 } | 5,900{ 600 } | 11,800{ 1,200 } | 15,700{ 1,600 } |
|           | 4,400{ 450 } | 8,800{ 900 } | 13,700{ 1,400 } | 1,470{ 150 } | 5,900{ 600 } | 11,800{ 1,200 } | 15,700{ 1,600 } |

# 9. Allowable Speed

As rotational speed of the bearing increase, the temperature of the bearing also rises due to heat produced inside the bearing by friction. This causes damage to the bearing such as seizure, and the bearing will be unable to continue stable operation. Therefore, the maximum speed at which it is possible for the bearing to continuously operate without the generation of excessive heat beyond specified limits, is called the **allowable speed** (min<sup>-1</sup>).

The allowable speed of a bearing depends on the type of bearing, bearing dimensions, type of cage, load, lubricating conditions, and cooling conditions.

The bearing dimensions table gives approximate allowable rotational speeds for grease and oil lubrication. The values are based on the following:

- The bearing must have the proper internal clearance prescribed in the NTN Engineering standard design specifications and must be properly installed.
- A quality lubricant must be used. The lubricant must be replenished and changed when necessary.
- The bearing must be operated at normal operating temperature under ordinary load conditions (P 0.09 C<sub>1</sub>, F<sub>a</sub>/F<sub>a</sub> 0.3).

If load is P 0.04  $\mathcal{C}_{or}$ , the rolling elements may not turn smoothly. If so, please contact NTN Engineering for more information. Allowable rotational speed for deep groove ball bearings with contact seal (LLU type) or low-torque seal (LLH type) is determined according to the circumferential speed of the seal.

For bearings to be used under heavier than normal load conditions, the allowable speed values listed in the bearing tables must be multiplied by an adjustment factor. The adjustment factors  $f_{\rm L}$  and  $f_{\rm C}$  are given in **Figs. 9.1** and **9.2**.

Also, when radial bearings are mounted on vertical shafts, lubricant retentions and cage guidance are not favorable compared to horizontal shaft mounting.

Therefore, the allowable speed should be reduced to approximately 80% of the listed speed.

For speeds other than those mentioned above, and for which data is incomplete, please consult NTN Engineering.

If rotational speed is to exceed allowable rotational speed given in the dimensions table, it will require special considerations such as using a bearing for which cage specifications, internal clearance and precision have been thoroughly checked. It will also require adopting forced circulation, jet oil or mist oil lubrication as the lubrication method.

Under such high speed operating conditions, when special care is taken, the standard allowable speeds given in the bearing tables can be adjusted upward. The maximum speed adjustment values,  $f_{\rm B}$ , by which the bearing table speeds can be multiplied, are shown in **Table 9.1**. However, for any application requiring speeds in excess of the standard allowable speed, please consult NTN Engineering.




Fig. 9.1 Value of adjustment factor  $f_{\ell}$  depends on bearing load

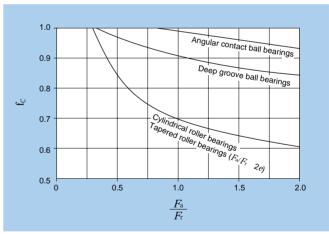



Fig. 9.2 Value of adjustment factor  $f_{\!\!\!\!c}$  depends on combined load

Table 9.1 Adjustment factor,  $f_{\rm B}$ , for allowable number of revolutions

| Type of bearing               | Adjustment factor f <sub>B</sub> |
|-------------------------------|----------------------------------|
| Deep groove ball bearings     | 3.0                              |
| Angular contact ball bearings | 2.0                              |
| Cylindrical roller bearings   | 2.5                              |
| Tapered roller bearings       | 2.0                              |

# 10. Friction and Temperature Rise

#### 10.1 Friction

One of the main functions required of a bearing is that it must have low friction. Under normal operating conditions rolling bearings have a much smaller friction coefficient than the slide bearings, especially starting friction.

The friction coefficient for rolling bearings is expressed by formula (10.1).

$$\mu = \frac{2M}{Pd} \tag{10.1}$$

μ: Friction coefficient

*M*: Friction moment, N ⋅ mm { kgf ⋅ fmm }

P: Load, N { kgf }

d: Bearing bore diameter, mm

Although the dynamic friction coefficient for rolling bearings varies with the type of bearings, load, lubrication, speed, and other factors; for normal operating conditions, the approximate friction coefficients for various bearing types are listed in Table 10.1.

Table 10.1 Friction coefficient for bearings (reference)

| Bearing type                  | Coefficient $\mu \times 10^{-3}$ |
|-------------------------------|----------------------------------|
| Deep groove ball bearings     | 1.0 ~ 1.5                        |
| Angular contact ball bearings | 1.2 ~ 1.8                        |
| Self-aligning ball bearings   | 0.8 ~ 1.2                        |
| Cylindrical roller bearings   | 1.0 ~ 1.5                        |
| Needle roller bearings        | 2.0 ~ 3.0                        |
| Tapered roller bearings       | 1.7 ~ 2.5                        |
| Spherical roller bearings     | 2.0 ~ 2.5                        |
| Thrust ball bearings          | 1.0 ~ 1.5                        |
| Thrust roller bearings        | 2.0 ~ 3.0                        |

#### 10.2 Temperature rise

Almost all friction loss in a bearing is transformed into heat within the bearing itself and causes the temperature of the bearing to rise. The amount of thermal generation caused by friction moment can be calculated using formula (10.2).

$$Q = 0.105 \times 10^{-6} \text{M} n \text{ N}$$
  
= 1.03 × 10<sup>-6</sup> M n { kgf } } ......(10.2)  
where,

Q: Thermal value, kW

*M*: Friction moment, N ⋅ mm { kgf ⋅ fmm }

n: Rotational speed, min-1

Bearing operating temperature is determined by the equilibrium or balance between the amount of heat generated by the bearing and the amount of heat conducted away from the bearing. In most cases the temperature rises sharply during initial operation, then increases slowly until it reaches a stable condition and then remains constant. The time it takes to reach this stable state depends on the amount of heat produced, heat capacity/diffusion of the shaft and bearing housing, amount of lubricant and method of lubrication. If the temperature continues to rise and does not become constant, it must be assumed that there is some improper function.

Possible causes of abnormal temperature include bearing misalignment (due to moment load or incorrect installation), insufficient internal clearance, excessive preload, too much or too little lubricant, or heat produced from sealed units. Check the mechanical equipment, and if necessary, remove and inspect the bearing.

#### 11. Lubrication

#### 11.1 Purpose of lubrication

The purpose of bearing lubrication is to prevent direct metallic contact between the various rolling and sliding elements. This is accomplished through the formation of a thin oil (or grease) film on the contact surfaces. However, for rolling bearings, lubrication has the following advantages:

- (1) Reduction of friction and wear
- (2) Dissipation of friction heat
- (3) Prolonged bearing life
- (4) Prevention of rust
- (5) Protection against harmful elements

In order to exhibit these effects, a lubrication method that matches service conditions. In addition to this, a quality lubricant must be selected, the proper amount of lubricant must be used and the bearing must be designed to prevent foreign matter from getting in or lubricant from leaking out.

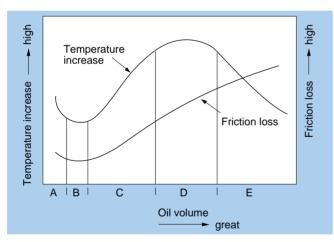



Fig. 11.1

Table 11.1 Oil volume, friction loss, bearing temperature (See Fig. 11.1)

| Range | Characteristics                                                                                                                                                   | Lubrication method                                  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Α     | When oil volume is extremely low, direct metallic contact occurs in places between the rolling elements and raceway surfaces. Bearing abrasion and seizing occur. |                                                     |
| В     | A thin oil film develops over all surfaces, friction is minimal and bearing temperature is low.                                                                   | Grease lubrication, oil mist, air-oil lubrication   |
| С     | As oil volume increases, heat buildup is balanced by cooling.                                                                                                     | Circulating lubrication                             |
| D     | Regardless of oil volume, temperature increases at a fixed rate.                                                                                                  | Circulating lubrication                             |
| Е     | As oil volume increases, cooling predominates and bearing temperature decreases.                                                                                  | Forced circulation lubrication, Oil jet lubrication |

**Fig. 11.1** shows the relationship between oil volume, friction loss, and bearing temperature. **Table 11.1** details the characteristics of this relationship.

#### 11.2 Lubrication methods and characteristics

Lubrication method for bearings can be roughly divided into grease and oil lubrication. Each of these has its own features, so the lubrication method that best offers the required function must be selected.

The characteristic are shown in Table 11.2.

Table 11.2 Comparison of grease lubrication and oil lubrication characteristics

| Method                    | Grease<br>lubrication | Oil lubrication         |
|---------------------------|-----------------------|-------------------------|
| Handling                  |                       |                         |
| Reliability               |                       |                         |
| Cooling effect            | ×                     | (Circulation necessary) |
| Seal structure            |                       |                         |
| Power loss                |                       |                         |
| Environment contamination |                       |                         |
| High speed rotation       | ×                     |                         |

: Very good : Good : Fair x : Poor

#### 11.3 Grease lubrication

Grease lubricants are relatively easy to handle and require only the simplest sealing devices. For these reasons, grease is the most widely used lubricant for rolling bearings. It is used a bearing that is pre-sealed with grease (sealed/shield bearing), or if using an unsealed bearing, fill the bearing and housing with the proper amount of grease, and replenish or change the grease regularly.

### 11.3.1 Types and characteristics of grease

Lubricating grease are composed of either a mineral oil base or a synthetic oil base. To this base a thickener and other additives are added. The properties of all greases are mainly determined by the kind of base oil used and by the combination of thickening agent and various additives. **Table 11.5** shows general grease varieties and characteristics, and **Table 11.6** shows grease brand names and their natures. (See pages A-74 and A-75.) As performance characteristics of even the same type of grease will vary widely from brand to brand, **it is necessary to check the manufacturers' data when selecting a grease.** 

#### (1) Base oil

Mineral oil or synthetics such as ester or ether oil are used as the base of the grease.

Mainly, the properties of any grease is determined by the properties of the base oil. Generally, greases with low viscosity base oil are best suited for low temperatures and high speeds; Grease using high-viscosity base oil has superior high-temperature and high-load characteristics.

#### (2) Thickening agents

Thickening agents are compounded with base oils to maintain the semi-solid state of the grease. Thickening agents consist of two types of bases, metallic soaps and non-soaps. Metallic soap thickeners include: lithium, sodium, calcium, etc.

Non-soap base thickeners are divided into two groups; inorganic (silica gel, bentonite, etc.) and organic (polyurea, fluorocarbon, etc.).

The various special characteristics of a grease, such as limiting temperature range, mechanical stability, water resistance, etc. depend largely on the type of thickening agent used. For example, a sodium based grease is generally poor in water resistance properties, while greases with bentone, poly-urea and other non-metallic soaps as the thickening agent are generally superior in high temperature properties.

#### (3) Additives

Various additives are added to greases to improve various properties and efficiency. For example, there are anti-oxidents, high-pressure additives (EP additives), rust preventives, and anti-corrosives.

For bearings subject to heavy loads and/or shock loads, a grease containing high-pressure additives should be used. For comparatively high operating temperatures or in applications where the grease cannot be replenished for long periods, a grease with an oxidation stabilizer is best to use.

#### (4) Consistency

Consistency is an index that indicates hardness and fluidity of grease. The higher the number, the softer the grease is. The consistency of a grease is determined by the amount of thickening agent used and the viscosity of the base oil. For the lubrication of rolling bearings, greases with the NLGI consistency numbers of 1, 2, and 3 are used.

General relationships between consistency and application of grease are shown in **Table 11.3**.

#### (5) Mixing of greases

When greases of different kinds are mixed together, the consistency of the greases will change (usually softer), the operating temperature range will be lowered, and other changes in characteristics will occur. As a rule, grease should not be mixed with grease of any other brand.

However, if different greases must be mixed, at least greases with the same base oil and thickening agent should be selected.

Table 11.3 Consistency of grease

| NLGI<br>Consis-<br>tency No. | JIS (ASTM)<br>60 times blend<br>consistency | Applications                             |
|------------------------------|---------------------------------------------|------------------------------------------|
| 0                            | 355 ~ 385                                   | For centralized greasing use             |
| 1                            | 310 ~ 340                                   | For centralized greasing use             |
| 2                            | 265 ~ 295                                   | For general use and sealed bearing use   |
| 3                            | 220 ~ 250                                   | For general use and high temperature use |
| 4                            | 175 ~ 205                                   | For special use                          |

#### 11.3.2 Amount of grease

The amount of grease used in any given situation will depend on many factors relating to the size and shape of the housing, space limitations, bearing's rotating speed and type of grease used.

As a rule of thumb, bearings should be filled to 30 to 40% of their space and housing should be filled 30 to 60%.

Where speeds are high and temperature rises need to be kept to a minimum, a reduced amount of grease should be used. Excessive amount of grease cause temperature rise which in turn causes the grease to soften and may allow leakage. With excessive grease fills oxidation and deterioration may cause lubricating efficiency to be lowered.

Moreover, the standard bearing space can be found by formula (11.1)

$$V = K \cdot W \dots (11.1)$$
 where

V: Quantity of bearing space open type (approx.), cm<sup>3</sup>

K: Bearing space factor (see value of K in **Table 11.4**)

W: Mass of bearing, kg

Table 11.4 Bearing space factor K

| Bearing type                                    | Cage type                     | K        |
|-------------------------------------------------|-------------------------------|----------|
| Ball bearings •                                 | Pressed cage                  | 61       |
| NU-type cylindrical roller bearings @           | Pressed cage<br>Machined cage | 50<br>36 |
| N-type cylindrical roller bearings <sup>3</sup> | Pressed cage<br>Machined cage | 55<br>37 |
| Tapered roller bearings                         | Pressed cage                  | 46       |
| Spherical roller bearings                       | Pressed cage<br>Machined cage | 35<br>28 |

- Does not apply top 160 series bearings.
- 2 Does not apply to NU4 series bearings.
- 3 Does not apply to N4 series bearings.

Table 11.5 Grease varieties and characteristics

| Grease name                    | Lithium grease                                                                          |                                                                                                       |                                                                                                               | Sodium grease<br>(Fiber grease)                                                                           | Calcium compound base grease                                                                          |
|--------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Thickener                      | Li soap                                                                                 |                                                                                                       |                                                                                                               | Na soap                                                                                                   | Ca+Na soap<br>Ca+Li soap                                                                              |
| Base oil                       | Mineral oil                                                                             | Diester oil                                                                                           | Silicone oil                                                                                                  | Mineral oil                                                                                               | Mineral oil                                                                                           |
| Dropping point °C              | 170 ~ 190                                                                               | 170 ~ 190                                                                                             | 200 ~ 250                                                                                                     | 150 ~ 180                                                                                                 | 150 ~ 180                                                                                             |
| Operating temperature range °C | -30 ~ +130                                                                              | -50 ~ +130                                                                                            | -50 ~ +160                                                                                                    | -20 ~ +130                                                                                                | -20 ~ +120                                                                                            |
| Mechanical stability           | Excellent                                                                               | Good                                                                                                  | Good                                                                                                          | Excellent ~ Good                                                                                          | Excellent ~ Good                                                                                      |
| Pressure resistance            | Good                                                                                    | Good                                                                                                  | Poor                                                                                                          | Good                                                                                                      | Excellent ~ Good                                                                                      |
| Water resistance               | Good                                                                                    | Good                                                                                                  | Good                                                                                                          | Good ~ Poor                                                                                               | Good ~ Poor                                                                                           |
| Applications                   | Widest range of<br>applications.<br>Grease used in all<br>types of rolling<br>bearings. | Excellent low temperature and wear characteristics.  Suitable for small sized and miniature bearings. | Suitable for high and low temperatures.  Unsuitable for heavy load applications due to low oil film strength. | Some emulsification when water is introduced.  Excellent characteristics at relatively high temperatures. | Excellent pressure resistance and mechanical stability.  Suitable for bearings receiving shock loads. |

Table 11.6 Grease brands and their nature

| Manufacturer       | Brand name             | NTN<br>code | Thickener        | Base oil                                      |
|--------------------|------------------------|-------------|------------------|-----------------------------------------------|
|                    | Alvania Grease 2       | 2A          | Lithium          | Mineral oil                                   |
|                    | Alvania Grease 3       | ЗА          | Lithium          | Mineral oil                                   |
| Showa Shell Sekiyu | Alvania Grease RA      | 4A          | Lithium          | Mineral oil                                   |
|                    | Alvania EP Grease 2    | 8A          | Lithium          | Mineral oil                                   |
|                    | Aero Shell Grease 7    | 5S          | Microgel         | Diester                                       |
|                    | Multemp PS No. 2       | 1K          | Lithium          | Diester                                       |
| Kyodo Yushi        | Multemp SRL            | 5K          | Lithium          | Tetraesterdiester                             |
|                    | E5                     | L417        | Urea             | Ether                                         |
| Fara Oalling       | Temprex N3 / Unilex N3 | 2E          | Complex Li       | Synthetic hydrocarbon                         |
| Esso Sekiyu        | Beacon 325             | 3E          | Lithium          | Diester                                       |
|                    | Isoflex Super LDS18    | 6K          | Lithium          | Diester                                       |
| NOK Kluber         | Barrierta JFE552       | LX11        | Fluoride         | Fluoride oil                                  |
|                    | Grease J               | L353        | Urea             | Ester                                         |
| Toray Dow Corning, | SH33L                  | 3L          | Lithium          | Methyl phenyl oil                             |
| Silicone           | SH44M                  | 4M          | Lithium          | Methyl phenyl oil                             |
| Nimmon Oil         | Multi Nok wide No. 2   | 6N          | Sodium lithium   | Diester mineral oil                           |
| Nippon Oil         | U-4                    | L412        | Urea             | Synthetic hydrocarbon + dialkyldiphenyl ether |
| Nihon Grease       | MP-1                   | L448        | Diurea           | PAO + ester                                   |
| Idemitsu Kosan     | Apolo Autolex A        | 5A          | Lithium          | Mineral oil                                   |
| Mobil Sekiyu       | Mobile Grease 28       | 9B          | Bentone          | Synthetic hydrocarbon                         |
| Cosmo Oil          | Cosmo Wide Grease WR3  | 2M          | Na terephthalate | Diester mineral oil                           |
| Daikin             | Demnum L200            | LX23        | PTFE             | Fluoride oil                                  |

Note: For nature, see the manufacturer's catalog.

| Aluminum grease                           | Non-soap base grease                                                                                                                                                                                           |               |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|
| Al soap                                   | Bentone, silica gel, urea, carbon black, fluorine compounds, etc.                                                                                                                                              |               |  |
| Mineral oil                               | Mineral oil                                                                                                                                                                                                    | Synthetic oil |  |
| 70 ~ 90                                   | 250 or above                                                                                                                                                                                                   | 250 or above  |  |
| -10 ~ +80                                 | -10 ~ +130                                                                                                                                                                                                     | -50 ~ +200    |  |
| Good ~ Poor                               | Good                                                                                                                                                                                                           | Good          |  |
| Good                                      | Good Good                                                                                                                                                                                                      |               |  |
| Good                                      | Good Good                                                                                                                                                                                                      |               |  |
| Excellent adhesion                        | Can be used in a wide range of low to high temperatures. Shows excellent heat resistance, cold resistance, chemical resistance, and other characteristics when matched with a suitable base oil and thickener. |               |  |
| Suitable for bearings receiving vibration | Grease used in all types of rolling bearings.                                                                                                                                                                  |               |  |

| Base oi | l viscosity            | Consistency | Dropping point °C | Operating temperature °C | Color          | Characteristics                    |
|---------|------------------------|-------------|-------------------|--------------------------|----------------|------------------------------------|
| 37.8°C  | 140mm <sup>2</sup> /s  | 273         | 181               | - 25 ~ 120               | Amber          | All-purpose grease                 |
| 37.8°C  | 140mm²/s               | 232         | 183               | - 25 ~ 135               | Amber          | All-purpose grease                 |
| 37.8°C  | 45mm²/s                | 252         | 183               | - 40 ~ 120               | Amber          | For low temperature                |
| 98.9°C  | 15.3mm <sup>2</sup> /s | 276         | 187               | - 20 ~ 110               | Brown          | All-purpose extreme-pressure       |
| 98.9°C  | 3.1mm <sup>2</sup> /s  | 288         | Min. 260          | - 73 ~ 149               | Yellow-brown   | MIL-G-23827                        |
| 37.8°C  | 15.3mm <sup>2</sup> /s | 265 ~ 295   | 190               | - 55 ~ 130               | White          | For low temperature and low torque |
| 40°C    | 26mm²/s                | 250         | 192               | - 40 ~ 150               | White          | Wide range                         |
| 40°C    | 72.3mm²/s              | 300         | 240               | - 30 ~ 180               | White          | For high temperature               |
| 40°C    | 113mm²/s               | 220 ~ 250   | Min. 300          | - 30 ~ 160               | Green          | For high temperature               |
| 40°C    | 11.5mm <sup>2</sup> /s | 265 ~ 295   | 177               | - 60 ~ 120               | Brown          | For low temperature and low torque |
| 40°C    | 16.0mm <sup>2</sup> /s | 265 ~ 295   | Min. 180          | - 60 ~ 130               | Yellow-green   | For low temperature and low torque |
| 40°C    | 400mm <sup>2</sup> /s  | 290         |                   | - 35 ~ 250               | White          |                                    |
| 40°C    | 75mm²/s                |             | 280               | - 20 ~ 180               | Gray-white     | For high temperature               |
| 25°C    | 100mm <sup>2</sup> /s  | 300         | 200               | - 70 ~ 160               | Light red-gray | For low temperature                |
| 40°C    | 32mm²/s                | 260         | 210               | - 40 ~ 180               | Brown          | For high temperature               |
| 37.8°C  | 30.9mm <sup>2</sup> /s | 265 ~ 295   | 215               | - 40 ~ 135               | Light brown    | Wide range                         |
| 40°C    | 58mm²/s                | 255         | 260               | - 40 ~ 180               | Milk-white     | For high temperature               |
| 40°C    | 40.6mm <sup>2</sup> /s | 243         | 254               | - 40 ~ 150               | Light brown    | Wide range                         |
| 37.8°C  | 50mm²/s                | 265 ~ 295   | 192               | - 25 ~ 150               | Yellow         | All-purpose grease                 |
| 40°C    | 28mm²/s                | 315         | Min. 260          | - 62 ~ 177               | Red            | MIL-G-81322C Wide range            |
| 37.8°C  | 30.1mm <sup>2</sup> /s | 265 ~ 295   | Min. 230          | - 40 ~ 150               | Light brown    | Wide range                         |
| 40°C    | 200mm <sup>2</sup> /s  | 280         |                   | - 60 ~ 300               | White          |                                    |

#### 11.3.3 Grease replenishment

As the lubricating efficiency of grease declines with the passage of time, fresh grease must be re-supplied at proper intervals. The replenishment time interval depends on the type of bearing, dimensions, bearing's rotating speed, bearing temperature, and type of grease.

An easy reference chart for calculating grease replenishment intervals is shown in **Fig. 11.2**.

This chart indicates the replenishment interval for standard rolling bearing grease when used under normal operating conditions.

As operating temperatures increase, the grease resupply interval should be shortened accordingly.

Generally, for every 10°C increase in bearing temperature above 80°C, the relubrication period is reduced by exponent "1/1.5".

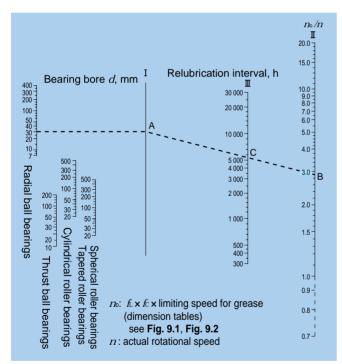



Fig. 11.2 Diagram for relubrication interval of greasing

#### (Example)

Find the grease relubrication time limit for deep groove ball bearing **6206**, with a radial load of 2.0 kN {204kgf} operating at 3,600 min<sup>-1</sup>.

 $C_{\rm r}/P_{\rm r}$  = 19.5/2.0 kN = 9.8 from **Fig. 11.1**, the ajustment factor, £, is 0.96.

Allowable rotational speed from the dimensions tables for bearing 6206 is 11,000 min<sup>-1</sup>. Allowable rotational speed  $n_0$  for a 2.0 kN {204 kgf} radial load is:

$$n_0 = 0.96 \times 11,000 = 10,560 \text{ min}^{-1}$$

therefore, 
$$\frac{n_0}{n} = \frac{10,560}{3,600} = 2.93$$

The point where vertical line I intersects a horizontal line drawn from the point equivalent of d=30 for the radial ball bearing shown in **Fig. 11.2** shall be point A. Find intersection point C where vertical line II intersects the straight line formed by joining point B (n/n=2.93) with A with a straight line. It shows that grease life in this case is approximately 5,500 hours.

#### 11.4 Solid grease (For bearings with solid grease)

"Solid grease" is a lubricant composed mainly of lubricating grease and ultra-high polymer polyethylene. Solid grease has the same viscosity as grease at normal temperature, If heated once and cooled (this process is referred to as "calcination") the grease hardens while maintaining a large quantity of lubricant. The result of this solidification is that the grease does not easily leak from the bearing, even when the bearing is subjected to strong vibrations or centrifugal force.

Bearings with solid grease are available in two types: the spot-pack type in which solid grease is injected into the cage, and the full-pack type in which all empty space around the rolling elements is filled with solid grease.

Spot-pack solid grease is standard for deep groove ball bearings, small diameter ball bearings, and bearing units. Full-pack solid grease is standard for self-aligning ball bearings, spherical roller bearings, and needle roller bearings.

Primary advantages:

- (1) Grease leakage is minimal.
- (2) Low bearing torque with spot-pack type solid grease

For more details, please refer to NTN special catalog of **Solid grease bearings**.




Fig. 11.3 Deep groove ball bearing with spot-pack solid grease (Z shield) (Standard for deep groove ball bearings)

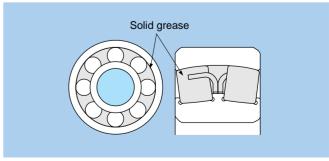



Fig. 11.4 Spherical roller bearing with full-pack solid grease (Standard for spherical roller bearings)

#### 11.5 Oil lubrication

Oil lubrication is suitable for applications requiring that bearing-generated heat or heat applied to the bearing from other sources be carried away from the bearing and

dissipated to the outside. **Table 11.7** shows the main methods of oil lubrication.

Table 11.7 Oil lubrication methods

| Lubrication method                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Example | Lubrication method                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Example                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| (Oil bath lubrication)  Oil bath lubrication is the most generally used method of lubrication and is widely used for low to moderate rotation speed applications. For horizontal shaft applications, oil level should be maintained at approximately the center of the lowest rolling element, according to the oil gauge, when the bearing is at rest. For vertical shafts at low speeds, oil level should be maintained at 50-80% submergence of the rolling elements. |         | (Disc lubrication)  In this method, a partially submerged disc rotates and pulls oil up into a reservoir from which it then drains down through the bearing, lubricating it.                                                                                                                                                                                                                                                                                                        |                                                                                                                   |
| (Oil spray lubrication)  In this method, an impeller or similar device mounted on the shaft draws up oil and sprays it onto the bearing. This method can be used at considerably high speeds.                                                                                                                                                                                                                                                                            |         | (Oil mist lubrication)  • Using pressurized air, lubricating oil is atomized before passing through the bearing.  • Due to the low lubricant resistance, this method is well suited to high speed applications.                                                                                                                                                                                                                                                                     |                                                                                                                   |
| (Drip lubrication)  In this method, oil is collected above the bearing and allowed to drip down into the housing where it becomes a lubricating mist as it strikes the rolling elements.  Another version allows only slight amounts of oil to pass through the bearing.  Used at relatively high speeds for light to moderate load applications.  In most cases, oil volume is a few drops per minute.                                                                  |         | (Air-oil lubrication)  In this method, the required minimum amount of lubricating oil is measured and fed to each bearing at ideal intervals using compressed air.  With fresh lubricating oil constantly being fed to the bearing, and with the cooling effect of the compressed air, bearing temperature rise can be minimized.  Because the required oil quantity is infinitesimal, the working environment can be kept clean. Air-oil lubrication units are available from NTN. | Mist separator Reservoir (level switch)  Air oil line  Air filter Solenoid valve  Air filter Air  Pressure switch |
| (Circulating lubrication)  Used for bearing cooling applications or for automatic oil supply systems in which the oil supply is centrally located.  One of the advantages of this method is that oil cooling devices and filters to maintain oil purity can be installed within the system.  In order for oil to thoroughly lubricate the bearing, oil inlets and outlets must be provided on opposite sides of the bearing.                                             |         | (Oil jet lubrication)  This method lubricates by injecting oil under high pressure directly into the side of the bearing. This is a reliable system for high speed, high temperature or otherwise severe conditions.  Used for lubricating the bearings in jet engines, gas turbines, and other high speed equipment.  Under-race lubrication for machine tools is one example of this type of lubrication.                                                                         |                                                                                                                   |

#### 11.5.1 Selection of lubricating oil

Under normal operating conditions, **spindle oil**, **machine oil**, **turbine oil**, and other mineral oils are widely used for the lubrication of rolling bearings. However, for temperatures **above 150**°C or **below -30**°C, synthetic oils such as **diester oil**, **silicone oil**, and **fluorocarbon oil** are used.

For lubricating oils, viscosity is one of the most important properties and determines an oil's lubricating efficiency. If viscosity is too low, formation of the oil film will be insufficient, and damage will occur to the raceways of the bearing. If viscosity is too high, viscous resistance will also be great and result in temperature increases and friction loss. In general, for higher speed applications a lower viscosity oil should be used; for heavier load applications, a higher viscosity oil should be used.

In regard to operating temperature, **Table 11.8** lists the required oil viscosity for different types of rolling bearings. **Fig. 11.5** is an oil viscosity - operating temperature comparison chart for the purpose of selecting a lubrication oil with viscosity characteristics appropriate to an application.

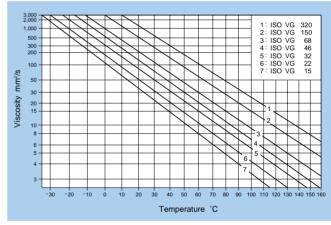
**Table 11.9** lists the selection standards for lubricating oil viscosity with reference to bearing operating conditions.

Table 11.8 Required lubricating oil viscosity for bearings

| Bearing type                                                                      | Dynamic viscosity mm <sup>2</sup> /s |
|-----------------------------------------------------------------------------------|--------------------------------------|
| Ball bearings, Cylindrical roller bearings,<br>Needle roller bearings             | 13                                   |
| Spherical roller bearings, Tapered roller bearings, Needle roller thrust bearings | 20                                   |
| Self-aligning roller thrust bearings                                              | 30                                   |

#### 11.5.2 Oil quantity

In forced oil lubrication systems, the heat radiated away by the housing and surrounding parts plus the heat carried away by the lubricating oil is approximately equal to the amount of heat generated by the bearing and other sources.


For general housing applications, the required quantity of oil can be found by formula (11.2).

$$Q = K \cdot q \dots (11.2)$$

where,

- Q: Quantity of oil for one bearing cm<sup>3</sup>/min.
- K: Allowable oil temperature rise factor (Table 11.10)
- *q*: Amount of lubrication determined by diagram cm<sup>3</sup>/min. (**Fig. 11.4**)

Because the amount of heat radiated will vary according to the type of housing, for actual operation it is advisable that the quantity of oil calculated by formula



Flg. 11.5 Relation between lubricating oil viscosity and temperature

Table 11.8 Selection standards for lubricating oils (Reference)

| Bearing operating | <i>dn</i> -value                 | Lubricating | oil ISO viscosity grade (VG) | Cuitable begring                                             |  |
|-------------------|----------------------------------|-------------|------------------------------|--------------------------------------------------------------|--|
| temperature<br>°C | <i>un</i> -value                 | Normal load | Heavy load or shock load     | Suitable bearing                                             |  |
| - 30 ~ 0          | Up to allowable rotational speed | 22 , 32     | 46                           | All types                                                    |  |
|                   | Up to 15,000                     | 46 , 68     | 100                          | All types                                                    |  |
| 0 60              | 15,000 ~ 80,000                  | 32 , 46     | 68                           | All types                                                    |  |
| 0 ~ 60            | 80,000 ~ 150,000                 | 22 , 32     | 32                           | All types but thrust ball bearings                           |  |
|                   | 150,000 ~ 500,000                | 10          | 22 , 32                      | Single row radial ball bearings, cylindrical roller bearings |  |
|                   | Up to 15,000                     | 150         | 220                          | All types                                                    |  |
| 00 400            | 15,000 ~ 80,000                  | 100         | 150                          | All types                                                    |  |
| 60 ~ 100          | 80,000 ~ 150,000                 | 68          | 100 , 150                    | All types but thrust ball bearings                           |  |
|                   | 150,000 ~ 500,000                | 32          | 68                           | Single row radial ball bearings, cylindrical roller bearings |  |
| 100 ~ 150         | Up to allowable rotational speed | 320         |                              | All types                                                    |  |
| 0 ~ 60            | Up to allowable rotational speed | 46 , 68     |                              | Solf oligning roller hearings                                |  |
| 60 ~ 100          | Up to allowable rotational speed | 150         |                              | Self-aligning roller bearings                                |  |

Note 1: Applied when lubrication method is either oil bath or circulating lubrication.

<sup>2:</sup> Please consult NTN Engineering in cases where operating conditions fall outside the range covered by this table.

Table 11.9 Factor K

| Expelled oil temp minus supplied oil temp °C | K    |
|----------------------------------------------|------|
| 10                                           | 1.5  |
| 15                                           | 1    |
| 20                                           | 0.75 |
| 25                                           | 0.6  |

(11.2) be multiplied by a factor or 1.5 or 2.0. Then, the amount of oil can be adjusted to correspond to actual operating conditions.

Furthermore, if it is assumed for calculation purposes that no heat is radiated by the housing, and that all bearing heat is removed by the oil, then the value for shaft diameter, d = 0.

**(Example)** For tapered roller bearing **30220U** mounted on a flywheel shaft with a radial load of 9.5 kN  $\{$  969 kgf  $\}$ , operating at 1,800 r/min, what is the amount of lubricating oil ' Q' required to keep the bearing temperature rise below 15°C.

$$d = 100 \text{ mm}$$
,  
 $dn = 100 \times 1,800 = 18 \times 10^4$ 

From **Fig. 11.6**  $q = 180 \text{cm}^3 / \text{min}$ 

Assume the bearing temperature is approximately equal to the expelled oil temperature,

from **Table 11.10**, since K = 1

$$Q = 1 \times 180 = 180 \text{cm}^3 / \text{min}$$

#### 11.5.3 Relubrication intervals

The intervals at which lubricating oil should be changed varies depending upon operating conditions, oil quantity, and type of oil used. In general, for oil bath lubrication where the operating temperature is 50°C or less, oil should be replaced once a year. When the operating temperature is between 80°C – 100°C, oil should be replaced at least every three months. For important equipment, it is advisable that lubricating efficiency and oil purity deterioration be checked regularly to determine when oil replacement is necessary.

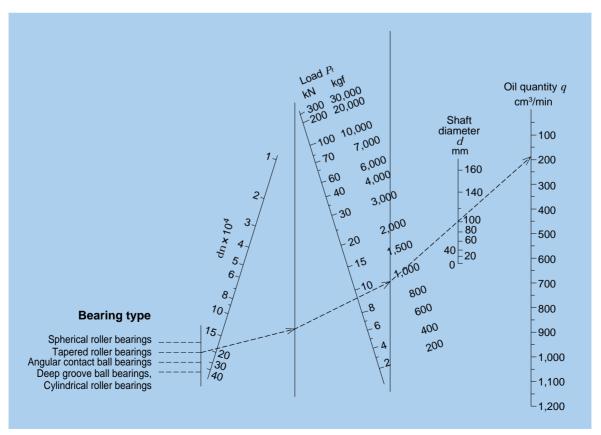



Fig. 11.6 Oil quantity guidelines

# 12. External bearing sealing devices

External seals have two main functions: to prevent lubricating oil from leaking out, and, to prevent dust, water, and other contaminants from entering the bearing. When selecting a seal, the following factors need to be taken into consideration: the type of lubricant (oil or grease), seal peripheral speed, shaft fitting errors, space limitations, seal friction and resultant heat increase, and cost.

Sealing devices for rolling bearings fall into two main classifications: non-contact seals and contact seals.

 Non-contact seals: Non-contact seals utilize a small clearance between the shaft and the housing cover.
 Therefore friction is negligible, making them suitable for high speed applications.

In order to improve sealing capability, clearance spaces are often filled with lubricant.

• Contact seals: A contact seal is a seal whereby a

formed synthetic rubber lip on a steel plate is pressed against the shaft. Contact seals are generally far superior to non-contact seals in sealing efficiency, although their friction torque and temperature rise coefficients are higher. Furthermore, because the lip portion of a contact seal slides while in contact with the shaft, the allowable seal peripheral speed varies depending on seal type.

Lubrication is required in the place where the seal lip makes contact with the shaft. Ordinary bearing lubricant can also be used for this purpose.

The following chart lists the special characteristics of seals and other points to be considered when choosing an appropriate seal.

| Туре              | Seal construction | Name                                                             | Seal characteristics an                                                                                                                                      | nd selection considerations                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|-------------------|-------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                   |                   | Clearance seal                                                   | This is an extremely simple seal design with a small radial clearance.                                                                                       | Cautionary points regarding selectio     In order to improve sealing efficiency, clearances between the shaft and housing should be minimized. However, care should be taken to confirm shaft/bearing rigidity and other factors to avoid direct shaft-housing contact during                                                                                                                                                                                 |  |  |  |
|                   | ·                 | Oil groove seal                                                  | Several concentric oil grooves are                                                                                                                           | operation.  Oil groove clearance (reference)                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                   |                   | (oil grooves on housing side)                                    | provided on the housing inner diameter to greatly improve the                                                                                                | Shaft diameter mm Clearance mm                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                   | nonn.             | nodsing side)                                                    | sealing effect. When the grooves are filled with lubricant, the intrusion of contaminants from the                                                           | Up to 50                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Non-contact seals |                   | Oil groove seal<br>(oil grooves on<br>shaft and housing<br>side) | outside is prevented.  Oil grooves are provided on both the shaft outer diameter and housing inner diameter for a seal with even greater sealing efficiency. | <ul> <li>Oil groove width, depth (reference) width: 2~5 mm depth: 4~5 mm</li> <li>Three or more oil grooves should be provided.</li> <li>Sealing efficiency can be further improved by filling the oil groove portion with grease of which the consistency grade is 150 to 200.</li> <li>Grease is generally used as the lubricant for labyrinth seals, and except in low speed applications is commonly used together with other sealing devices.</li> </ul> |  |  |  |
| seals             | t seals           | Axial labyrinth seal                                             | This seal has a labyrinth passageway on the axial side of the housing.                                                                                       | Cautionary points regarding selection In order to improve sealing efficiency, labyrinth passageway clearances should be minimized. However, care should be taken to confirm shaft/bearing rigidity, fit, internal clearances and other                                                                                                                                                                                                                        |  |  |  |
|                   | _                 | Radial                                                           | A labyrinth passageway is affixed                                                                                                                            | factors to avoid direct contact between labyrinth projections                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|                   |                   | labyrinth seal                                                   | to the radial side of the housing.  For use with split housings. This                                                                                        | during operation.  Labyrinth clearance (reference)                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                   |                   |                                                                  | offers better sealing efficiency than axial labyrinth seals.                                                                                                 | Shaft diameter mm Radial direction Axial direction                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                   |                   | Aligning                                                         | The seal's labyrinth passageway is                                                                                                                           | -~ 50 0.2~0.4 1.0~2.0 50~200 0.5~1.0 3.0~5.0                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                   |                   | labyrinth seal                                                   | slanted and has sufficient clearance to prevent contact between the housing projections and the shaft even as the shaft realigns.                            | Sealing efficiency can be further improved by filling the labyrinth passageway with grease of which the consistency grade is 150 to 200.     Labyrinth seals are suitable for high speed applications.                                                                                                                                                                                                                                                        |  |  |  |



| Туре              | Seal construction                               | Name                                          | Seal characteris                                                                                                                                        | ics and selection considerations                                                                                                                                                                                                                  |  |  |  |  |  |
|-------------------|-------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1                 | Oil surface Oil comb sleeve                     | Oil comb sleeve                               | In this design, lubricating oil tha makes its way out of the housin along the shaft is thrown off by projections on the oil comb slee and recirculated. | • Seal type whereby a slinger that utilizes centrifugal force is                                                                                                                                                                                  |  |  |  |  |  |
| Non-contact seals | Oil flow<br>Slinger                             | Slinger<br>provided in the<br>housing         | Seal type whereby a slinger is provided in the housing that prevents lubricant from leaking centrifugal force produced by rotation.                     | function to seal in lubricant by centrifugal force produced by rotation.  If mounted on the outside of the housing, the slinger should function to seal out foreign matter by fan effect produced by rotation.                                    |  |  |  |  |  |
| S                 | Air flow<br>Slinger                             | Slinger<br>provided<br>outside the<br>housing | By mounting a slinger on the outs of the housing, centrifugal force helps to prevent dust and other s contaminants from entering.                       | sealing devices.                                                                                                                                                                                                                                  |  |  |  |  |  |
|                   | Z grease seal                                   | Z grease seal                                 | grease.                                                                                                                                                 | a plummer block (bearing housing).                                                                                                                                                                                                                |  |  |  |  |  |
|                   | V-ring seal                                     | V-ring seal                                   | With the aid of centrifugal force, t dust, water, and other contamina and grease lubrication.                                                           | ciency with a lip that seals from the axial direction. nis seal also offers effective protection against nts entering the bearing. Can be used for both oil less of 12 m/s, seal ring fit is lost due to centrifugal cessary to hold it in place. |  |  |  |  |  |
|                   | Back up metal                                   | Oil seal                                      | Oil seals are widely used, and their shapes and dimensions are                                                                                          |                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                   | Spring                                          |                                               | standardized under JIS B 2402.<br>In this design, a ring-shaped sp                                                                                      | ring Curface roughness                                                                                                                                                                                                                            |  |  |  |  |  |
|                   | Spring                                          |                                               | is installed in the lip section. As result, optimal contact pressure                                                                                    | a Peripheral                                                                                                                                                                                                                                      |  |  |  |  |  |
| Conta             | Seal lip                                        |                                               | exerted between the lip edge ar shaft surface, and sealing                                                                                              |                                                                                                                                                                                                                                                   |  |  |  |  |  |
| itact             | Lip edge                                        |                                               | efficiency is good.                                                                                                                                     | 5~10 0.4a 1.6s<br>10~ 0.2a 0.8s                                                                                                                                                                                                                   |  |  |  |  |  |
| t seals           |                                                 |                                               | When the bearing and oil seal a in close proximity, the internal                                                                                        |                                                                                                                                                                                                                                                   |  |  |  |  |  |
| als               |                                                 |                                               | clearance of the bearing may be reduced by heat produced by the oil seal. In addition to considering the heat generated by contact                      | e Machine structural                                                                                                                                                                                                                              |  |  |  |  |  |
|                   |                                                 |                                               | seals at various peripheral spee<br>internal bearing clearances mus<br>also be selected with caution.                                                   |                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                   | For dust proof For preventing lubricant leakage |                                               | Depending on its orientation, the seal may function to prevent lubricant from leaking out or foreign matter from getting in.                            | Processing method  Final grinding without repeat (moving), or buffed after hard chrome plating                                                                                                                                                    |  |  |  |  |  |
|                   |                                                 |                                               | Allowable speed/temperature                                                                                                                             | according to seal type/material (reference)                                                                                                                                                                                                       |  |  |  |  |  |
|                   |                                                 |                                               |                                                                                                                                                         | Allowable m/sc (I/m/s) = x d(mm) x r(r/min) \ Allowable temp °C                                                                                                                                                                                   |  |  |  |  |  |
|                   |                                                 |                                               | Nitrile rubber                                                                                                                                          | 16 or less -25 ~ +120                                                                                                                                                                                                                             |  |  |  |  |  |
|                   |                                                 |                                               | Oil seals Acrylic rubber                                                                                                                                | 26 or less -15 ~ +150                                                                                                                                                                                                                             |  |  |  |  |  |
|                   |                                                 |                                               | Fluorinated rubber                                                                                                                                      | 32 or less -30 ~ +200                                                                                                                                                                                                                             |  |  |  |  |  |
|                   |                                                 |                                               | Z-seal Nitrile rubber V-ring Nitrile rubber                                                                                                             | 6 or less -25 ~+120<br>40 or less -25 ~+120                                                                                                                                                                                                       |  |  |  |  |  |
|                   |                                                 |                                               | villig Millie Tubbet                                                                                                                                    | 40 or less -25 ~ +120                                                                                                                                                                                                                             |  |  |  |  |  |



| Туре              | Seal construction | Name                                             | Seal characteristics and selection considerations                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------|-------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                   | Z-seal +<br>Labyrinth seal                       | This is an example of an axial labyrinth seal which has been combined with a Z-seal to increase its sealing efficiency. The axial labyrinth seal is affixed to the shaft with a setting bolt or other method. In the diagram on the left, both the direction of the Z-seal and the labyrinth seal are oriented to keep dust and other contaminants out of the bearing.  Because a Z-seal has been incorporated, the allowable peripheral speed should not exceed 6 m/s. |
| Combination seals |                   | Labyrinth seal<br>+ Oil groove seal<br>+ Slinger | This is an example of a combination of three different non-contact seals. It has the advantage of preventing both lubricant leakage from inside the bearing and infiltration of dust and other contaminants from the outside. It is widely used on mining equipment and as a sealing system with plummer blocks in extremely dusty application conditions.                                                                                                              |
|                   |                   | Oil groove seal<br>+ Slinger<br>+ Z-seal         | This is an example where an oil groove seal and slinger have been combined with a Z-seal to increase its sealing efficiency. In the diagram on the left, all three seals have been oriented to keep dust and other contaminants out of the bearing. The combination is widely used on mining equipment and as a sealing system with plummer blocks in extremely dusty application conditions.                                                                           |



# 13. Bearing Materials

#### 13.1 Raceway and rolling element materials

While the contact surfaces of a bearing's raceways and rolling elements are subjected to repeated heavy stress, they still must maintain high precision and rotational accuracy. To accomplish this, the raceways and rolling elements must be made of a material that has high hardness, is resistant to rolling fatigue, is wear resistant, and has good dimensional stability. The most common cause of fatigue in bearings is the inclusion of non-metallic impurities in the steel. Non-metallic inclusion includes hard oxides that can cause fatigue crack. Clean steel with minimal non-metallic inclusion must therefore be used.

For all NTN bearings, steel low in oxygen content and nonmetallic impurities, then refined by a vacuum degassing process as well as outside hearth smelting, is used. For bearings requiring especially high reliability and long life, steels of even higher in purity, such as vacuum melted steel (VIM, VAR) and electro-slag melted steel (ESR), are used.

#### 1) High/mid carbon alloy steel

In general, steel varieties which can be hardened not just on the surface but also deep hardened by the so-called "through hardening method" are used for the raceways and rolling elements of bearings. Foremost among these is high carbon chromium bearing steel, which is widely used. For large type bearings and bearings with large cross sectional dimensions, induction hardened bearing steel incorporating manganese or molybdenum is used. Also in use is midcarbon chromium steel incorporating silicone and manganese, which gives it hardening properties comparable to high carbon chromium steel.

Table 13.1 gives chemical composition of representative high carbon chrome bearing steel that meets JIS standards. SUJ2 is frequently used. SUJ3 with enhanced hardening characteristics containing a large quantity of Mn is used for large bearings. SUJ5 is SUJ3 to which Mo has been added to further enhance hardening characteristics, and is used for oversized bearings or bearings with thick walls.

The chemical composition of SUJ2 is equivalent to AISI 52100 (US) and DIN 100Cr6 (Germany).

#### 2) Case hardened (carburizing) steel

Carburizing hardens the steel from the surface to the proper depth, forming a relatively soft core. This provides hardness and toughness, making the material suitable for impact loads. NTN uses case hardened steel for almost all of its tapered roller bearings. In terms of case hardened steel for NTN's other bearings, chromium steel and chrome molybdenum steel are used for small to medium sized bearings, and nickel chrome molybdenum steel is used for large sized bearings.

**Table 13.2** gives the chemical composition of representative JIS case hardened steel.

#### 3) Heat resistant bearing steel

When bearings made of ordinary high carbon chromium

steel which have undergone standard heat treatment are used at temperatures above 120°C for long durations, unacceptably large dimensional changes can occur. For this reason, a dimension stabilizing treatment (TS treatment) has been devised for very high temperature applications. This treatment however reduces hardness of the material, thereby reducing rolling fatigue life. (See item 3.3.2 on page A-18.)

For standard high temperature bearings used at temperatures from 150°C – 200°C, the addition of silicone to the steel improves heat resistance and results in a bearing with excellent rolling fatigue life with minimal dimensional change or softening at high temperatures.

A variety of heat resistant steels are also incorporated in bearings to minimize softening and dimensional changes when used at high temperatures. Two of these are high speed molybdenum steel and high speed tungsten steel. For bearings requiring heat resistance in high speed applications, there is also heat resistant case hardening molybdenum steel. (refer to **Table 13.3**)

#### 4) Corrosion resistant bearing steel

For applications requiring high corrosion resistance, stainless steel is used. To achieve this corrosion resistance a large proportion of the alloying element chrome is added to martensite stainless steel. (**Table 13.4**)

#### 5) Induction hardened steel

Besides the use of surface hardening steel, induction hardening is also utilized for bearing raceway surfaces, and for this purpose mid-carbon steel is used for its lower carbon content instead of through hardened steel. For induction hardening of the deep layers required for larger bearings and bearings with large surface dimensions, mid-carbon steel is fortified with chrome and molybdenum.

#### 6) Other bearing materials

For ultra high speed applications and applications requiring very high level corrosion resistance, ceramic bearing materials such as Si<sub>3</sub>N<sub>4</sub> are also available.

#### 13.2 Cage materials

Bearing cage materials must have the strength to withstand rotational vibrations and shock loads. These materials must also have a low friction coefficient, be light weight, and be able to withstand bearing operation temperatures.

For small and medium sized bearings, pressed cages of cold or hot rolled steel with a low carbon content of approx. 0.1% are used. However, depending on the application, austenitic stainless steel is also used.

Machined cages are generally used for large bearings. Carbon steel for machine structures or high-strength cast brass is frequently used for the cages, but other materials such as aluminum alloy are also used.

**Tables 13.5** and **13.6** give the chemical composition for these representative cage materials.

Besides high-strength brass, medium carbon nickel, chrome and molybdenum that has been hardened and tempered at high temperatures are also used for bearings used in aircraft. The materials are often plated with silver to enhance lubrication characteristics.

High polymer materials that can be injection molded are

also widely used for cages. Polyamide resin reinforced with glass fibers is generally used. Cages made of high-polymer materials are lightweight and corrosion resistant. They also have superior damping and characteristics and lubrication performance. Heat resistant polyimide resins now enable the production of cages that perform well in applications ranging between -40°C – 120°C. However, they are not recommended for use at temperatures exceeding 120°C.

Table 13.1 Chemical composition of representative high carbon chrome bearing steels

| 0, 1, 1          |         |             |             | Chem        | ical composit | ion (%)    |             |             | Remarks         |
|------------------|---------|-------------|-------------|-------------|---------------|------------|-------------|-------------|-----------------|
| Standard         | Symbol  | С           | Si          | Mn          | Р             | S          | Cr          | Мо          |                 |
|                  | SUJ2    | 0.95 ~ 1.10 | 0.15 ~ 0.35 | Max. 0.50   | Max. 0.025    | Max. 0.025 | 1.30 ~ 1.60 | Max. 0.08   |                 |
| JIS G 4805       | SUJ3    | 0.95 ~ 1.10 | 0.40 ~ 0.70 | 0.90 ~ 1.15 | Max. 0.025    | Max. 0.025 | 0.90 ~ 1.20 | Max. 0.08   |                 |
|                  | SUJ5    | 0.95 ~ 1.10 | 0.40 ~ 0.70 | 0.90 ~ 1.15 | Max. 0.025    | Max. 0.025 | 0.90 ~ 1.20 | 0.10 ~ 0.25 |                 |
| <b>ASTM A295</b> | 52100   | 0.98 ~ 1.10 | 0.15 ~ 0.35 | 0.25 ~ 0.45 | Max. 0.025    | Max. 0.025 | 1.30 ~ 1.60 | Max. 0.10   | SUJ2 equivalent |
| ASTM A485        | Grade 1 | 0.90 ~ 1.05 | 0.45 ~ 0.75 | 0.95 ~ 1.25 | Max. 0.025    | Max. 0.025 | 0.90 ~ 1.20 | Max. 0.10   | SUJ3 equivalent |
| ASTIVI A485      | Grade 3 | 0.95 ~ 1.10 | 0.15 ~ 0.35 | 0.65 ~ 0.90 | Max. 0.025    | Max. 0.025 | 1.10 ~ 1.50 | 0.20 ~ 0.30 | SUJ5 equivalent |

Table 13.2 Chemical composition of representative case hardened steel (carburizing steel)

| Standard   | Symbol  |             |             |             | Chemical cor | mposition (%) |             |             |             |
|------------|---------|-------------|-------------|-------------|--------------|---------------|-------------|-------------|-------------|
| Standard   | Symbol  | С           | Si          | Mn          | Р            | S             | Ni          | Cr          | Мо          |
| JIS G 4104 | SCr420  | 0.18 ~ 0.23 | 0.15 ~ 0.35 | 0.60 ~ 0.85 | Max. 0.030   | Max. 0.030    |             | 0.90 ~ 1.20 |             |
| JIS G 4105 | SCM420  | 0.18 ~ 0.23 | 0.15 ~ 0.35 | 0.60 ~ 0.85 | Max. 0.030   | Max. 0.030    |             | 0.90 ~ 1.20 | 0.15 ~ 0.30 |
|            | SNCM220 | 0.17 ~ 0.23 | 0.15 ~ 0.35 | 0.60 ~ 0.90 | Max. 0.030   | Max. 0.030    | 0.40 ~ 0.70 | 0.40 ~ 0.65 | 0.15 ~ 0.30 |
| JIS G 4103 | SNCM420 | 0.17 ~ 0.23 | 0.15 ~ 0.35 | 0.40 ~ 0.70 | Max. 0.030   | Max. 0.030    | 1.60 ~ 2.00 | 0.40 ~ 0.65 | 0.15 ~ 0.30 |
|            | SNCM815 | 0.12 ~ 0.18 | 0.15 ~ 0.35 | 0.30 ~ 0.60 | Max. 0.030   | Max. 0.030    | 4.00 ~ 4.50 | 0.70 ~ 1.00 | 0.15 ~ 0.30 |
|            | 5120    | 0.17 ~ 0.22 | 0.15 ~ 0.35 | 0.70 ~ 0.90 | Max. 0.030   | Max. 0.040    |             | 0.70 ~ 0.90 |             |
|            | 4118    | 0.18 ~ 0.23 | 0.15 ~ 0.35 | 0.70 ~ 0.90 | Max. 0.030   | Max. 0.040    |             | 0.40 ~ 0.60 | 0.08 ~ 0.15 |
| ASTM A534  | 8620    | 0.18 ~ 0.23 | 0.15 ~ 0.35 | 0.70 ~ 0.90 | Max. 0.030   | Max. 0.040    | 0.40 ~ 0.70 | 0.40 ~ 0.60 | 0.15 ~ 0.25 |
|            | 4320    | 0.17 ~ 0.22 | 0.15 ~ 0.35 | 0.45 ~ 0.65 | Max. 0.030   | Max. 0.040    | 1.65 ~ 2.00 | 0.40 ~ 0.60 | 0.20 ~ 0.30 |
|            | 9310    | 0.08 ~ 0.13 | 0.15 ~ 0.35 | 0.45 ~ 0.65 | Max. 0.025   | Max. 0.025    | 3.00 ~ 3.50 | 1.00 ~ 1.40 | 0.08 ~ 0.15 |

Table 13.3 Chemical composition of high-speed steel

| Standard |               |             | Chemical composition (%) |             |            |            |             |             |             |             |           |           |               |  |
|----------|---------------|-------------|--------------------------|-------------|------------|------------|-------------|-------------|-------------|-------------|-----------|-----------|---------------|--|
|          |               | С           | Si                       | Mn          | Р          | S          | Cr          | Мо          | ٧           | Ni          | Cu        | Co        | W             |  |
|          | 6491 (M50)    | 0.77 ~ 0.85 | Max. 0.25                | Max. 0.35   | Max. 0.015 | Max. 0.015 | 3.75 ~ 4.25 | 4.00 ~ 4.50 | 0.90 ~ 1.10 | Max. 0.15   | Max. 0.10 | Max. 0.25 | Max. 0.25     |  |
| AMS      | 5626          | 0.65 ~ 0.80 | 0.20 ~ 0.40              | 0.20 ~ 0.40 | Max. 0.030 | Max. 0.030 | 3.75 ~ 4.50 | Max. 1.00   | 0.90 ~ 1.30 |             |           |           | 17.25 ~ 18.25 |  |
|          | 2315 (M50NiL) | 0.11 ~ 0.15 | 0.10 ~ 0.25              | 0.15 ~ 035  | Max. 0.015 | Max. 0.010 | 4.00 ~ 4.25 | 4.00 ~ 4.50 | 1.13 ~ 1.33 | 3.20 ~ 3.60 | Max. 0.10 | Max. 0.25 | Max. 0.25     |  |

Table 13.4 Chemical composition of stainless steel

| Standard   | Symbol   | Chemical composition (%) |           |           |            |            |               |           |  |  |  |  |
|------------|----------|--------------------------|-----------|-----------|------------|------------|---------------|-----------|--|--|--|--|
| Statiuaru  | Syllibol | С                        | Si        | Mn        | Р          | S          | Cr            | Мо        |  |  |  |  |
| JIS G 4303 | SUS440C  | 0.95 ~ 1.20              | Max. 1.00 | Max. 1.00 | Max. 0.040 | Max. 0.030 | 16.00 ~ 18.00 | Max. 0.75 |  |  |  |  |
| AISI       | 440C     | 0.95 ~ 1.20              | Max. 1.00 | Max. 1.00 | Max. 0.040 | Max. 0.030 | 16.00 ~ 18.00 | Max. 0.75 |  |  |  |  |

Table 13.5 Chemical composition of steel plate for pressed cages and carbon steel for machined cages

|                   | Standard   | Symbol | Chemical composition (%) |             |             |            |            |              |               |  |  |  |
|-------------------|------------|--------|--------------------------|-------------|-------------|------------|------------|--------------|---------------|--|--|--|
|                   | Standard   | Symbol | С                        | Si          | Mn          | Р          | S          | Ni           | Cr            |  |  |  |
|                   | JIS G 3141 | SPCC   |                          |             |             |            |            |              |               |  |  |  |
| Pressed           | JIS G 3131 | SPHC   |                          |             |             | Max. 0.050 | Max. 0.050 |              |               |  |  |  |
| retainer          | BAS 361    | SPB2   | 0.13 ~ 0.20              | Max. 0.04   | 0.25 ~ 0.60 | Max. 0.030 | Max. 0.030 |              |               |  |  |  |
|                   | JIS G 4305 | SUS304 | Max. 0.08                | Max. 1.00   | Max. 2.00   | Max. 0.045 | Max. 0.030 | 8.00 ~ 10.50 | 18.00 ~ 20.00 |  |  |  |
| Machined retainer | JIS G 4051 | S25C   | 0.22 ~ 0.28              | 0.15 ~ 0.35 | 0.30 ~ 0.60 | Max. 0.030 | Max. 0.035 |              |               |  |  |  |

Table 13.6 Chemical composition of high-strength cast brass for machined cages

| Standard   | Symbol   |             |                   | Chemic    |           | Impurities |          |          |          |          |
|------------|----------|-------------|-------------------|-----------|-----------|------------|----------|----------|----------|----------|
| Standard   | Syllibol | Cu          | Cu Zn Mn Fe Al Sn |           |           |            |          |          | Pb       | Si       |
| JIS H 5120 | CAC301   | 55.0 ~ 60.0 | 33.0 ~ 42.0       | 0.1 ~ 1.5 | 0.5 ~ 1.5 | 0.5 ~ 1.5  | Max. 1.0 | Max. 1.0 | Max. 0.4 | Max. 0.1 |

# 14. Shaft and Housing Design

Depending upon the design of a shaft or housing, the shaft may be influenced by an unbalanced load or other factors which can then cause large fluctuations in bearing efficiency. For this reason, it is necessary to pay attention to the following when designing shaft and housing:

- Bearing arrangement selection; most effective fixing method for bearing arrangement
- 2) Selection of shoulder height and fillet radius of housing and shaft.
- 3) Shape precision and dimensions of fitting; area runout tolerance of shoulder.
- 4) Machining precision and mounting error of housing and shaft suitable for allowable alignment angle and inclination of bearing.

#### 14.1 Fixing of bearings

When fixing a bearing in position on a shaft or housing, there are many instances where the interference fit alone is not enough to hold the bearing in place. Bearings must be fixed in place by various methods so that they do not move axially when placed under load.

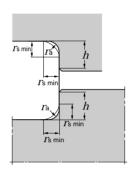
Moreover, even bearings which are not subjected to axial loads (such as cylindrical roller bearings, etc.), must be fixed in place axially because of the potential for ring displacement due to shaft deflection by moment load which may cause damage.

**Table 14.1** shows general bearing fixing methods, and **Table 14.2** shows fixing methods for bearings with tapered bores.

Table 14.1 General bearing fixing methods

| Inner ring clamp                                                                              | Outer ring clamp | Snap ring                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                               |                  |                                                                                                                                                                                                                                                                                                                                                                  |
| The most common method of fixin clamping nuts or bolts to hold the against the ring end face. |                  | Use of snap rings regulated under JIS B 2804, B 2805, and B 2806, makes construction very simple. However, interference with chamfers, bearing installation dimensions, and other related specifications must be considered carefully.  Snap rings are not suitable for applications requiring high accuracy and where the snap ring receives large axial loads. |

Table 14.2 Fixing methods for bearings with tapered bores


| Adapter sleeve mounting                                                                                                                                    | Withdrawal sleeve mounting                                    | Split ring mounting                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                            |                                                               |                                                                                                                                                                                                             |
| When installing bearings on cylindric withdrawal sleeves can be used to fi.  The adapter sleeve is fastened in plate the shaft and inner diameter of the s | x bearings in place axially.  ace by frictional force between | For installation of tapered bore bearings directly on tapered shafts, the bearing is held in place by a split ring inserted into a groove on the shaft, and is fixed in place by a split ring nut or screw. |

#### 14.2 Bearing fitting dimensions

#### 14.2.1 Abutment height and fillet radius

The shaft and housing abutment height (h) should be larger than the bearings' maximum allowable chamfer dimensions ( $r_s$  max), and the abutment should be designed so that it directly contacts the flat part of the bearing end face. The fillet radius  $(r_a)$  must be smaller than the bearing's minimum allowable chamfer dimension (rs min) so that it does not interfere with bearing seating. Table **14.3** lists abutment height (h) and fillet radius ( $r_a$ ).

For bearings to be applied to very large axial loads as well, shaft abutments (h) should be higher than the values in the table.



| Table 14.3 Fillet | radius and abut            | ment height             | Unit mm                         |
|-------------------|----------------------------|-------------------------|---------------------------------|
|                   | .,                         | <i>h</i> (n             | nin)                            |
| <i>I</i> 's min   | $\emph{\textbf{r}}$ as max | Normal use <sup>●</sup> | Special use <sup><b>②</b></sup> |
| 0.05              | 0.05                       | 0.                      | 3                               |
| 0.08              | 0.08                       | 0.                      | 3                               |
| 0.1               | 0.1                        | 0.                      | 4                               |
| 0.15              | 0.15                       | 0.                      | 6                               |
| 0.2               | 0.2                        | 0.                      | 8                               |
| 0.3               | 0.3                        | 1.25                    | 1                               |
| 0.6               | 0.6                        | 2.25                    | 2                               |
| 1                 | 1                          | 2.75                    | 2.5                             |
| 1.1               | 1                          | 3.5                     | 3.25                            |
| 1.5               | 1.5                        | 4.25                    | 4                               |
| 2                 | 2                          | 5                       | 4.5                             |
| 2.1               | 2                          | 6                       | 5.5                             |
| 2.5               | 2                          | 6                       | 5.5                             |
| 3                 | 2.5                        | 7                       | 6.5                             |
| 4                 | 3                          | 9                       | 8                               |
| 5                 | 4                          | 11                      | 10                              |
| 6                 | 5                          | 14                      | 12                              |
| 7.5               | 6                          | 18                      | 16                              |
| 9.5               | 8                          | 22                      | 20                              |
| 12                | 10                         | 27                      | 24                              |
| 15                | 12                         | 32                      | 29                              |
| 19                | 15                         | 42                      | 38                              |

<sup>1</sup> If bearing supports large axial load, the height of the shoulder must exceed the value given here.

Note: ras max maximum allowable fillet radius.

#### 14.2.2 For spacer and ground undercut

In cases where a fillet radius ( $r_a$  max) larger than the bearing chamfer dimension is required to strengthen the shaft or to relieve stress concentration (Fig. 14.1a), or where the shaft abutment height is too low to afford adequate contact surface with the bearing (Fig. 14.1b), spacers may be used effectively.

Relief dimensions for ground shaft and housing fitting surfaces are given in Table 14.4.

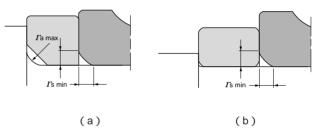



Fig. 14.1 Bearing mounting with spacer

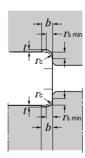



Table 14.4 Relief dimensions for ground shaft

|                   |     |     | ,           |  |  |
|-------------------|-----|-----|-------------|--|--|
|                   |     |     | Unit mm     |  |  |
| Relief dimensions |     |     |             |  |  |
| 1 S min           | b   | t   | <i>I</i> 'c |  |  |
| 1                 | 2   | 0.2 | 1.3         |  |  |
| 1.1               | 2.4 | 0.3 | 1.5         |  |  |
| 1.5               | 3.2 | 0.4 | 2           |  |  |
| 2                 | 4   | 0.5 | 2.5         |  |  |
| 2.1               | 4   | 0.5 | 2.5         |  |  |
| 2.5               | 4   | 0.5 | 2.5         |  |  |
| 3                 | 4.7 | 0.5 | 3           |  |  |
| 4                 | 5.9 | 0.5 | 4           |  |  |
| 5                 | 7.4 | 0.6 | 5           |  |  |
| 6                 | 8.6 | 0.6 | 6           |  |  |
| 7.5               | 10  | 0.6 | 7           |  |  |

<sup>2</sup> Used when axial load is light. These values are not suitable for tapered roller bearings, angular ball bearings and spherical roller

#### 14.2.3 Thrust bearings and fitting dimensions

For thrust bearings, it is necessary to make the raceway disc back face sufficiently broad in relation to load and rigidity, and fitting dimensions from the dimension tables should be adopted. (Figs. 14.2 and 14.3)

For this reason, shaft and abutment heights will be larger than for radial bearings. (Refer to dimension tables for all thrust bearing fitting dimensions.)

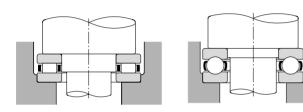



Fig. 14.2

Fig. 14.3

#### 14.3 Shaft and housing accuracy

**Table 14.5** shows the accuracies for shaft and housing fitting surface dimensions and configurations, as well as fitting surface roughness and abutment squareness for normal operating conditions.

Table 14.5 Shaft and housing accuracy

| Char                             | acteristics             | Shaft     | Housing   |
|----------------------------------|-------------------------|-----------|-----------|
| Dimensional accuracy             |                         | IT6 (IT5) | IT7 (IT5) |
| Roundness (max.)<br>Cylindricity |                         | IT3       | IT4       |
| Abutment squareness              |                         | IT3       | IT3       |
| Fitting<br>surface<br>roughness  | Small size bearings     | 0.8a      | 1.6a      |
|                                  | Mid-large size bearings | 1.6a      | 3.2a      |

Note: For precision bearings (P4, P5 accuracy), it is necessary to increase the circularity and cylindricity accuracies in this table by approximately 50%. For more specific information, please consult the NTN precision rolling bearing catalog.

#### 14.4 Allowable bearing misalignment

A certain amount of misalignment of a bearing's inner and outer rings occurs as a result of shaft flexure, shaft or housing finishing irregularities, and minor installation error. In situations where the degree of misalignment is liable to be relatively large, self-aligning ball bearings, spherical roller bearings, bearing units and other bearings with aligning properties are advisable. Although allowable misalignment will vary according to bearing type, load conditions, internal clearances, etc., **Table 14.6** lists some general misalignment standards for normal applications. In order to avoid shorter bearing life and cage failure, it is necessary to maintain levels of misalignment below these standard levels.

Table 14.6 Bearing type and allowable misalignment/alignment allowance

| Allowable misalignme                                                      | nt              |
|---------------------------------------------------------------------------|-----------------|
| Deep groove ball bearings Angular contact ball bearings                   | 1/1,000 ~ 1/300 |
| Single row                                                                | 1/1,000         |
| Multi row                                                                 | 1/10,000        |
| back to back arrangement                                                  | 1/10,000        |
| Face to face arrangement                                                  | 1/1,000         |
| Cylindrical roller bearings                                               |                 |
| Bearing series 2, 3, 4                                                    | 1/1,000         |
| Bearing series 22, 23, 49, 30                                             | 1/2,000         |
| Tapered roller bearings                                                   |                 |
| Single row/back to back arrangement                                       | 1/2,000         |
| Face-to-face arrangement                                                  | 1/1,000         |
| Needle roller bearings                                                    | 1/2,000         |
| Thrust bearings  ( excluding     self-aligning roller     thrust bearings | 1/10,000        |
| Alignment allowance                                                       |                 |
| Self-aligning ball bearings                                               | 1/20 ~ 1/15     |
| Spherical roller bearings                                                 | 1/50 ~ 1/30     |
| Self-aligning roller thrust bearings                                      | 1/30            |
| Ball bearing units                                                        |                 |
| Without cover                                                             | 1/30            |
| With cover                                                                | 1/50            |

# 15. Bearing Handling

Bearings are precision parts and, in order to preserve their accuracy and reliability, care must be exercised in their handling.

In particular, bearing cleanliness must be maintained, sharp impacts avoided, and rust prevented.

#### 15.1 Bearing storage

Most rolling bearings are coated with a rust prevent oil before being packed and shipped, and they should be stored at room temperature with a relative humidity of less than 60%.

#### 15.2 Installation



When bearings are being installed on shafts or in housings, the bearing rings should never be struck directly with a hammer or a drift, as shown in Fig. 15.1, because damage to the bearing may result. Any force applied to the bearing should always be evenly distributed over the entire bearing ring face. Also, when fitting both rings simultaneously, applying pressure to one ring only, as shown in Fig. 15.2, should be avoided because indentations in the raceway surface may be caused by the rolling elements, or other internal damage may result.

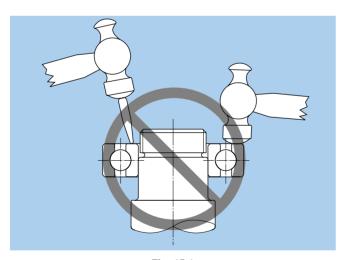



Fig. 15.1

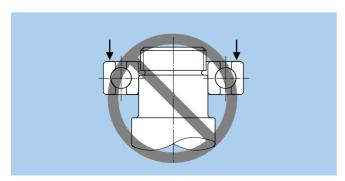



Fig. 15.2

#### 15.2.1 Installation preparations

Bearings should be fitted in a clean, dry work area. Especially for small and miniature bearings, a "clean room" should be provided as any contamination particles in the bearing will greatly affect bearing efficiency.

All dirt, burrs or metal filings must be removed from the shaft, housing and tools used for mounting the bearings. Shaft and housing fitting surfaces should also be checked for roughness, dimensional and design accuracy, and to ensure that they are within allowable tolerance limits.

Bearings should not be unwrapped until just prior to installation. Normally, bearings to be used with grease lubricant can be installed as is, without removing the rust prevent oil. However, for bearings which will use oil lubricant, or in cases where mixing the grease and rust prevent oil would result in loss of lubrication efficiency, the rust prevent oil should be removed by washing with benzene or petroleum solvent and dried before installation. Bearings should also be washed and dried before installation if the package has been damaged or there are other chances that the bearings have been contaminated. Double shielded bearings and sealed bearings should never be washed.

#### 15.2.2 Installing cylindrical bore bearings

For bearings with relatively small interference, the entire circumference of the raceway can be uniformly press-fit at room temperature as shown in **Fig. 15.3**. Usually, bearings are installed by striking the sleeve with a hammer; however, when installing a large number of bearings, a mechanical or hydraulic press should be used.

When installing non-separable bearings on a shaft and in a housing simultaneously, a pad which distributes the fitting pressure evenly over the inner and outer rings is used as shown in **Fig. 15.4**. If the fitting is too tight or bearing size is large, a considerable amount of force is required to install the bearing at room temperature. Installation can be facilitated by heating and expanding the inner ring beforehand. The required relative temperature difference between the inner ring and the shaft depends on the amount of interference and the shaft fitting surface diameter. **Fig. 15.5** shows the relation between the bearing inner bore diameter temperature differential and the amount of thermal expansion. **In any** 

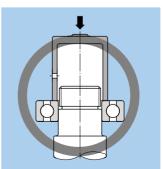



Fig. 15.3 Fitting sleeve pressure against inner ring

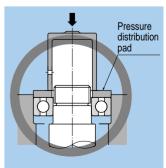



Fig. 15.4 Fitting sleeve pressure against inner /outer ring simultaneously

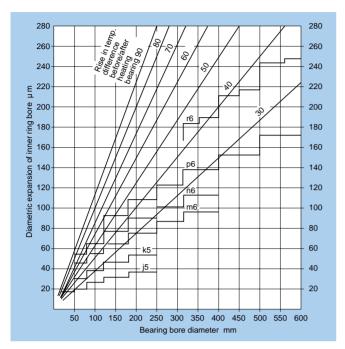



Fig. 15.5 Temperature required for heat-fitting inner ring

#### event, bearings should never be heated above 120°C.

The most commonly used method of heating bearings is to immerse them in hot oil. This method must not be used for sealed bearings or shield bearings with grease sealed inside

To avoid overheating parts of the bearings they should never be brought into direct contact with the heat source, but instead should be suspended inside the heating tank or placed on a wire grid.

If heating the bearing with air in a device such as a thermostatic chamber, the bearing can be handled while dry.

For heating the inner rings of NU, NJ or NUP cylindrical and similar type bearings without any ribs or with only a single rib, an induction heater can be used to quickly heat bearings in a dry state (must demagnetize).

When heated bearings are installed on shafts, the inner rings must be held against the shaft abutment until the bearing has been cooled in order to prevent clearance between the ring and the abutment face.

As shown in **Fig. 15.6**, a removal pawl, or tool, can also be used to dismount the inner ring when using the induction heating method described above.

#### 15.2.3 Installation of tapered bore bearings

Small type bearings with tapered bores are installed over a tapered shaft, withdrawal sleeves, or adapter sleeves by driving the bearing into place using a locknut. The locknut is tightened using a hammer or impact wrench. (Fig. 15.7)

Large size bearings require considerable fitting force and must be installed hydraulically.

In **Fig. 15.8** the fitting surface friction and nut tightening torque needed to install bearings with tapered bores directly onto tapered shafts are decreased by injecting

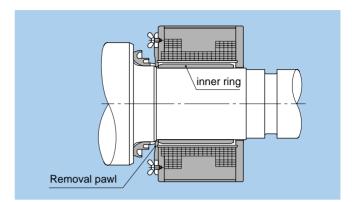



Fig. 15.6 Removal of inner ring using an induction heater

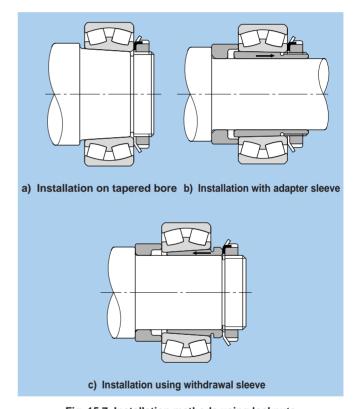



Fig. 15.7 Installation methods using locknuts

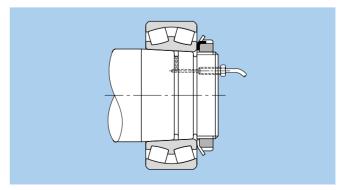



Fig. 15.8 Installation utilizing oil injection

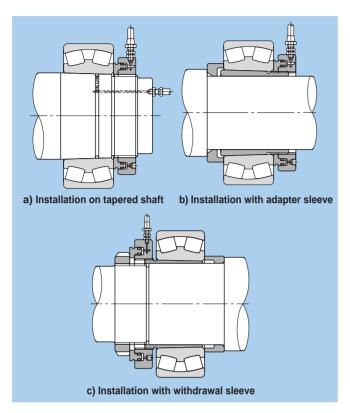



Fig. 15.9 Installation using hydraulic nut

high pressure oil between the fitting surfaces.

**Fig. 15.9 a**) shows one method of installation where a hydraulic nut is used to drive the bearing onto a tapered shaft.

Fig. 15.9 b) and c) show installation using a hydraulic nut with adapter sleeves and withdrawal sleeves.

**Fig. 15.10** shows an installation method using a hydraulic withdrawal sleeve.

With tapered bore bearings, as the inner ring is driven axially onto the shaft or adapter or withdrawal sleeve, the interference will increase and the bearing internal radial clearance will decrease. Interference can be estimated by measuring decrease in internal radial clearance. As shown in Fig. 15.11, the internal radial clearance between the rollers and outer ring of spherical roller bearings should be measured with a thickness gauge under no load while the rollers are held in the correct position. Instead of using the decrease in amount of internal radial clearance to estimate the interference, it is possible to estimate by measuring the distance the bearing has been driven onto the shaft.

For spherical roller bearings, **Table 15.1** indicates the appropriate interference which will be achieved as a result of the internal radial clearance decrease, or the distance the bearing has been driven onto the shaft.

For conditions such as heavy loads, high speeds, or when there is a large temperature differential between the inner and outer rings, etc. which require large interference fits, bearings which have a minimum internal radial clearance of C3 or greater should be used. **Table 15.1** lists the maximum values for internal radial clearance

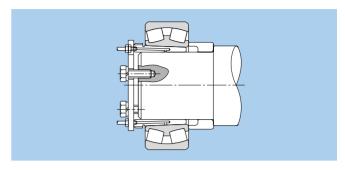



Fig. 15.10 Installation using hydraulic withdrawal sleeve

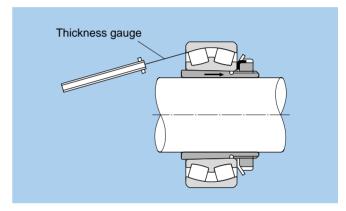



Fig. 15.11 Internal clearance measurement method for spherical roller bearings

decrease and axial displacement. For these applications, the remaining clearance must be greater than the minimum allowable residual clearance listed in **Table 15.1**.

#### 15.2.4 Installation of outer ring

Even for tight interference fits, the outer rings of small type bearings can be installed by driving them into housings at room temperature. For large interference type bearings, the housing can be heated before installing the bearing, or the bearing's outer ring can be cooled with dry ice, etc. before installing. If dry ice or other cooling agent is used, atmospheric moisture will condense on bearing surfaces, and therefore appropriate rust preventative measures are necessary.

#### 15.3 Internal clearance adjustment

As shown in **Fig. 15.12**, for angular contact ball bearings and tapered roller bearings the desired amount of axial internal clearance can be set at the time of installation by tightening or loosening the adjustment nut.

To adjust the suitable axial internal clearance or amount of bearing preload, the internal clearance can be measured while tightening the adjusting nut as shown in **Fig. 15.13**. Other methods are to check rotation torque by rotating the shaft or housing while adjusting the nut, or to insert shims of the proper thickness as shown in **Fig. 15.14**.

Table 15.1 Installation of tapered bore spherical roller bearings

Units mm

|       | l bearing<br>iameter | Reduction internal c |          | ,     | Axial displace | ement drive up | drive up  Minimum allowal residual clearan |       |                    |       |
|-------|----------------------|----------------------|----------|-------|----------------|----------------|--------------------------------------------|-------|--------------------|-------|
|       | d                    | internal C           | learance | Taper | r, 1:12        | Taper          | r, 1:30                                    | Tes   | residual clearance |       |
| over  | incl.                | Min                  | Max      | Min   | Max            | Min            | Max                                        | CN    | C3                 | C4    |
| 30    | 40                   | 0.02                 | 0.025    | 0.35  | 0.4            | -              | -                                          | 0.015 | 0.025              | 0.04  |
| 40    | 50                   | 0.025                | 0.03     | 0.4   | 0.45           | -              | -                                          | 0.02  | 0.03               | 0.05  |
| 50    | 65                   | 0.03                 | 0.035    | 0.45  | 0.6            | -              | -                                          | 0.025 | 0.035              | 0.055 |
| 65    | 80                   | 0.04                 | 0.045    | 0.6   | 0.7            | -              | -                                          | 0.025 | 0.04               | 0.07  |
| 80    | 100                  | 0.045                | 0.055    | 0.7   | 0.8            | 1.75           | 2.25                                       | 0.035 | 0.05               | 0.08  |
| 100   | 120                  | 0.05                 | 0.06     | 0.75  | 0.9            | 1.9            | 2.25                                       | 0.05  | 0.065              | 0.1   |
| 120   | 140                  | 0.065                | 0.075    | 1.1   | 1.2            | 2.75           | 3                                          | 0.055 | 0.08               | 0.11  |
| 140   | 160                  | 0.075                | 0.09     | 1.2   | 1.4            | 3              | 3.75                                       | 0.055 | 0.09               | 0.13  |
| 160   | 180                  | 0.08                 | 0.1      | 1.3   | 1.6            | 3.25           | 4                                          | 0.06  | 0.1                | 0.15  |
| 180   | 200                  | 0.09                 | 0.11     | 1.4   | 1.7            | 3.5            | 4.25                                       | 0.07  | 0.1                | 0.16  |
| 200   | 225                  | 0.1                  | 0.12     | 1.6   | 1.9            | 4              | 4.75                                       | 0.08  | 0.12               | 0.18  |
| 225   | 250                  | 0.11                 | 0.13     | 1.7   | 2              | 4.25           | 5                                          | 0.09  | 0.13               | 0.2   |
| 250   | 280                  | 0.12                 | 0.15     | 1.9   | 2.4            | 4.75           | 6                                          | 0.1   | 0.14               | 0.22  |
| 280   | 315                  | 0.13                 | 0.16     | 2     | 2.5            | 5              | 6.25                                       | 0.11  | 0.15               | 0.24  |
| 315   | 355                  | 0.15                 | 0.18     | 2.4   | 2.8            | 6              | 7                                          | 0.12  | 0.17               | 0.26  |
| 355   | 400                  | 0.17                 | 0.21     | 2.6   | 3.3            | 6.5            | 8.25                                       | 0.13  | 0.19               | 0.29  |
| 400   | 450                  | 0.2                  | 0.24     | 3.1   | 3.7            | 7.75           | 9.25                                       | 0.13  | 0.2                | 0.31  |
| 450   | 500                  | 0.21                 | 0.26     | 3.3   | 4              | 8.25           | 10                                         | 0.16  | 0.23               | 0.35  |
| 500   | 560                  | 0.24                 | 0.3      | 3.7   | 4.6            | 9.25           | 11.5                                       | 0.17  | 0.25               | 0.36  |
| 560   | 630                  | 0.26                 | 0.33     | 4     | 5.1            | 10             | 12.5                                       | 0.2   | 0.29               | 0.41  |
| 630   | 710                  | 0.3                  | 0.37     | 4.6   | 5.7            | 11.5           | 14.5                                       | 0.21  | 0.31               | 0.45  |
| 710   | 800                  | 0.34                 | 0.43     | 5.3   | 6.7            | 13.3           | 16.5                                       | 0.23  | 0.35               | 0.51  |
| 800   | 900                  | 0.37                 | 0.47     | 5.7   | 7.3            | 14.3           | 18.5                                       | 0.27  | 0.39               | 0.57  |
| 900   | 1,000                | 0.41                 | 0.53     | 6.3   | 8.2            | 15.8           | 20.5                                       | 0.3   | 0.43               | 0.64  |
| 1,000 | 1,120                | 0.45                 | 0.58     | 6.8   | 8.7            | 17             | 22.5                                       | 0.32  | 0.48               | 0.7   |
| 1,120 | 1,250                | 0.49                 | 0.63     | 7.4   | 9.4            | 18.5           | 24.5                                       | 0.34  | 0.54               | 0.77  |

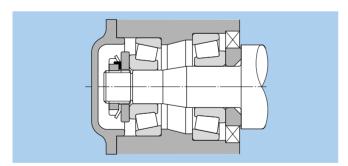



Fig. 15.12 Axial internal clearance adjustment

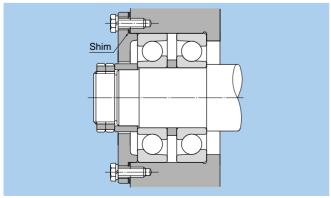



Fig. 15.14 Internal clearance adjustment using shims

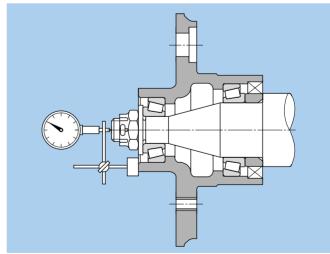



Fig. 15.13 Measurement of axial internal clearance adjustment

#### 15.4 Post installation running test

To insure that the bearing has been properly installed, a running test is performed after installation is completed. The shaft or housing is first rotated by hand and if no problems are observed low speed, no load power test is performed. If no abnormalities are observed, the load and speed are gradually increased to operating conditions. During the test if any unusual noise, vibration, or temperature rise is observed the test should be stopped and examine the equipment. If necessary, the bearing should be disassembled for inspection.

To check bearing running noise, the sound can be amplified and the type of noise ascertained with a listening instrument placed against the housing. A clear, smooth and continuous running sound is normal. A high, metallic or irregular sound indicates some error in function. Vibration can be accurately checked with a vibration measuring instrument, and the amplitude and frequency characteristics measured guantitatively.

Usually the bearing temperature can be estimated from the housing surface temperature. However, if the bearing outer ring is accessible through oil inlets, etc., the temperature can be more accurately measured.

Under normal conditions, bearing temperature rises with operation time and then reaches a stable operating temperature after a certain period of time. If the temperature does not stable and continues to rise, or if there is a sudden temperature rise, or if the temperature is extremely high, the bearing should be inspected.

#### 15.5 Bearing disassembly

Bearings are often removed as part of periodic inspection procedures or during the replacement of other parts. However, the shaft and housing are almost always reinstalled, and in more than a few cases the bearings themselves are reused. These bearings, shafts, housings, and other related parts must be designed to prevent damage during disassembly procedures, and the proper disassembly tools must be employed. When removing raceways with interference, pulling force should be applied to the raceway only. Do not remove the raceway through the rolling elements.

#### 15.5.1 Disassembly of bearings with cylindrical bores

For small type bearings, the pullers shown in Fig. 15.15 a) and b) or the press method shown in Fig. 15.16 can be used for disassembly. When used properly, these methods can improve disassembly efficiency and prevent damage to bearings.

To facilitate disassembly procedures, attention should be given to planning the designs of shafts and housings, such as providing extraction grooves on the shaft and housing for puller claws as shown **Figs. 15.17** and **15.18**. Threaded bolt holes should also be provided in housings to facilitate the pressing out of outer rings as shown in **Fig. 15.19**.

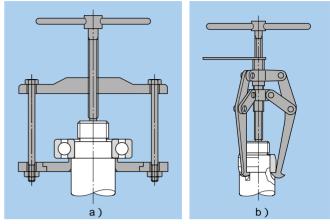



Fig. 15.15 Puller disassembly

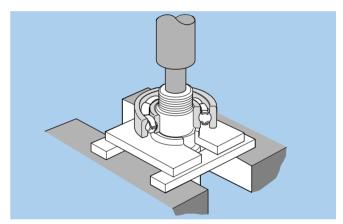



Fig. 15.16 Press disassembly

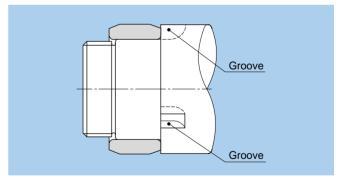



Fig. 15.17 Extracting grooves

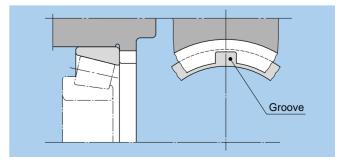



Fig. 15.18 Extraction groove for outer ring disassembly

Large bearings, installed with tight fits, and having been in service for a long period of time, will likely have developed fretting corrosion on fitting surfaces and will require considerable dismounting force. In such instances, dismounting friction can be reduced by injecting oil under high pressure between the shaft and inner ring surfaces as shown in **Fig. 15.20**.

For NU, NJ and NUP type cylindrical roller bearings, the induction heating unit shown in **Fig. 15.6** can be used to facilitate removal of the inner ring by means of thermal expansion. This method is highly efficient for frequent disassembly of bearings with identical dimensions.

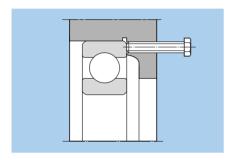



Fig. 15.19 Outer ring disassembly bolt

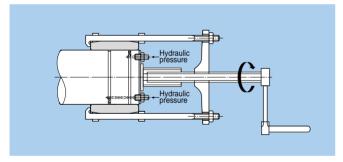



Fig. 15.20 Removal by hydraulic pressure

#### 15.5.2 Disassembly of bearings with tapered bores

Small bearings installed using an adapter are removed by loosening the locknut, placing a block on the edge of the inner ring as shown in **Fig. 15.21**, and tapping with a hammer. Bearings which have been installed with withdrawal sleeves can be disassembled by tightening down the lock nut as shown in **Fig. 15.22**.

For large type bearings on tapered shafts, adapters, or withdrawal sleeves, disassembly is greatly facilitated by hydraulic methods. **Fig. 15.23** shows the case where the bearing is removed by applying hydraulic pressure on the fitting surface of a bearing installed on a tapered shaft.

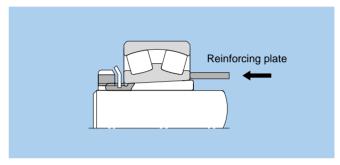



Fig. 15.21 Disassembly of bearing with adapter

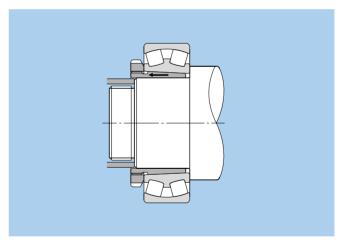



Fig. 15.22 Disassembly of bearing with withdrawal sleeve

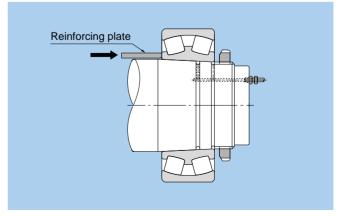



Fig. 15.23 Removal of bearing by hydraulic pressure

**Fig. 15.24** shows two methods of disassembling bearings with adapters or withdrawal sleeves using a hydraulic nut. **Fig. 15.25** shows a disassembly method using a hydraulic withdrawal sleeve where high pressure oil is injected between fitting surfaces and a nut is then employed to remove the sleeve.

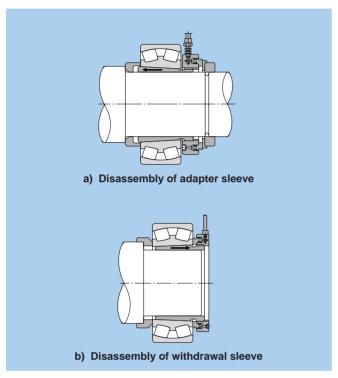



fig. 15.24 Disassembly using hydraulic nut

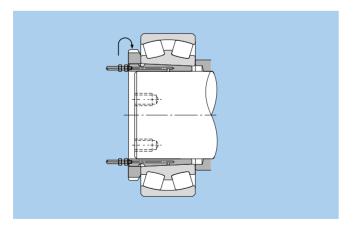



Fig. 15.25 Disassembly using hydraulic withdrawal sleeve

#### 15.6 Bearing maintenance and inspection

In order to get the use the bearing to its full potential and keep it in good working condition as long as possible, maintenance and inspections should be performed. Doing so will enable early detection of any problems with the bearing.

This will enable you to prevent bearing failure before it happens, and will enhance productivity and cost performance.

The following measures are often taken as a general method of maintaining and managing bearings.

Maintenance management requires inspection items and frequency for performing routine inspections be determined according to the importance of the device or machine.

#### 15.6.1 Inspection of machine while running

The interval for replenishing and replacing lubricant is determined by a study of lubricant nature and checking the bearing temperature, noise and vibration.

#### 15.6.2 Observation of bearing after use

Take note of any problem that may appear after the bearing is used or when performing routine inspections, and take measures for preventing reoccurrence of any damage discovered. For types of bearing damage and countermeasures for preventing damage, see section 16.

## 16. Bearing Damage and Corrective Measures

If handled correctly, bearings can generally be used for a long time before reaching their fatigue life. If damage occurs prematurely, the problem could stem from improper bearing selection, handling or lubrication. In this occurs, take note of the type of machine on which the bearings is used, the place where it is mounted, service

conditions and surrounding structure. By investigating several possible causes surmised from the type of damage and condition at the time the damage occurred, it is possible to prevent the same kind of damage from reoccurring. Table 16.1 gives the main causes of bearing damage and remedies for correcting the problem.

Table 16.1 Bearing damage, main causes of bearing damage and remedies for correcting the problem

| _  |   |    |    |     |   |
|----|---|----|----|-----|---|
| D۵ | 2 | cr | in | ١ti | n |

#### **Flaking**

Surface of the raceway and rolling elements peels away in flakes Conspicuous hills and valleys form soon afterward.





- Excessive load, fatigue life, improper handling

  Improper mounting.
- Improper precision in the shaft or housing.
- Insufficient clearance.
- Contamination.
- Rust.
- Improper lubricationDrop in hardness due to abnormally high temperatures.
- Select a different type of bearing.Reevaluate the clearance.
- Improve the precision of the shaft and housing.
- Review application conditions.
- Improve assembly method and handling.
- Reevaluate the layout (design) of the area around the bearing.

  Review lubricant type and lubrication methods.

#### Seizure

The bearing heats up and becomes discolored. Eventually the bearing will seize up.



- Insufficient clearance (including clearances made smaller by local deformation).
- Insufficient lubrication or improper lubricant
- Excessive loads (excessive preload).
- Skewed rollers.
- Reduction in hardness due to abnormal temperature rise




- Riview lubricant type and quantity.
- Check for proper clearance. (Increase clearances.)
- Take steps to prevent misalignment.
- Review application conditions.
- Improve assembly method and handling.



Localized flaking occurs. Little cracks or notches appear.





- Excessive shock loads.
- Improper handling (use of steel hammer,
- cutting by large particles of foreign matter)

   Formation of decomposed surface layer due to improper lubrication
- Excessive interference.
- Large flaking.Friction cracking.
- Imprecision of mounting mate (oversized fillet radius)

- Review lubricant (friction crack prevention).
- Select proper interference and review materials.
- Review service conditions.
- Improve assembly procedures and take more care in handling.

Table 16.1 Bearing damage, main causes of bearing damage and remedies for correcting the problem

#### Description

#### Cage damage

Rivets break or become loose resulting in cage damage.





- Excessive moment loading.
- High speed or excessive speed fluctuations.
- Inadequate lubrication.
- Impact with foreign objects.
- Excessive vibration.
- Improper mounting. (Mounted misaligned)

#### Reevaluation of lubrication conditions. • Review of cage type selection.

- Investigate shaft and housing rigidity.
- Review service conditions.
- Improve assembly method and handling.

Rolling path skewing

Abrasion or an irregular, rolling path skewing left by rolling elements along raceway surfaces.





 Shaft or housing of insufficient accuracy.

- Improper installation.
- Insufficient shaft or housing rigidity.
- Shaft whirling caused by excessive internal bearing clearances.

- Reinspect bearing's internal clearances.
- · Review accuracy of shaft and housing
- Review rigidity of shaft and housing.

Smearing and scuffing

The surface becomes rough and some small deposits form. Scuffing generally refers to roughness on the race collar and the ends of the rollers.





- Inadequate lubrication.Entrapped foreign particles.Roller skewing due to a misaligned bearing.
- Bare spots in the collar oil film due to large axial loading.
- Surface roughness
- Excessive slippage of the rolling elements.

lubrication method. Review preload.

- Reevaluation of the lubricant type and
- Bolster sealing performance.
- Review service conditions.
- Improve assembly method and handling

Rust and corrosion

The surface becomes either partially or fully rusted, and occasionally rust even occurs along the rolling element pitch lines.





- Poor storage conditions.
- Poor packaging.
- Insufficient rust inhibitor.
- Penetration by water, acid, etc.
- Handling with bare hands.

- Take measures to prevent rusting while in storage.
- Periodically inspect the lubricating oil.
- Improve sealing performance.
- Improve assembly method and handling.

Table 16.1 Bearing damage, main causes of bearing damage and remedies for correcting the problem

#### Description

#### Fretting

There are two types of fretting. In one, a rusty wear powder forms on the mating surfaces. In the other, brinelling indentations form on the raceway at the rolling element pitch.





## Insufficient interference. Small bearing appillation

- Small bearing oscillation angle.
- Insufficient lubrication.(unlubricated)
- Fluctuating loads.
- Vibration during transport, vibration while stopped.

# • S • R

- Select a different kind of bearing.
- Select a different type of lubricant.
- Review the interference and apply a coat of lubricant to fitting surface.
- Pack the inner and outer rings separately for transport.

Wear

The surfaces wear and dimensional deformation results. Wear is often accompanied by roughness and scratches.



Car

- Entrapment of foreign particles in the lubricant.
- Inadequate lubrication.
- Skewed rollers.

Correct

- Review lubricant type and lubrication methods.
- Improve sealing performance.
- Take steps to prevent misalignment.

Electrolytic corrosion

Pits form on the raceway.

The pits gradually grow into ripples.





Electric current flowing through the rollers

orrec

- Create a bypass circuit for the current.
- Insulate the bearing.

Dents and scratches Scoring during assembly, gouges due to hard foreign objects, and surface denting due to mechanical shock.





- Entrapment of foreign objects.
  - Bite-in on the flaked-off side.
  - Dropping or other mechanical shocks due to careless handling.
- Assembled misaligned.

Correction

- Improve handling and assembly methods.
- Bolster sealing performance. (measures for preventing foreign matter from getting in)
- Check area surrounding bearing. (when caused by metal fragments)

Table 16.1 Bearing damage, main causes of bearing damage and remedies for correcting the problem

#### Description

#### Creeping

Surface becomes mirrored by sliding of inside and outside diameter surfaces. May by accompanied by discoloration or score.





# • Insufficient interference in the mating section.

- Sleeve not fastened down properly.
- Abnormal temperature rise.
- Excessive loads.

# Corre

- Reevaluate the interference.
- Reevaluate usage conditions.
- Review the precision of the shaft and housing.
- Raceway end panel scuffing

Speckles and discoloration

Luster of raceway surfaces is gone; surface is matted, rough, and / or evenly dimpled. Surface covered with minute dents.





22

- Infiltration of bearing by foreign matter.
- Insufficient lubrication.

# Correcti

- Reevaluation of lubricant type and lubrication method.
- Review sealing mechanisms.
- Examine lubrication oil purity. (filter may be excessively dirty, etc.)



Patches of minute flaking or peeling (size, approx. 10  $\mu$  m). Innumerable hair-line cracks visible though not yet peeling. (This type of damage frequently seen on roller bearings.)



caus

- Infiltration of bearing by foreign matter.
- Insufficient lubrication.

orrection

- Reevaluation of lubricant type and lubrication method.
- Improve sealing performance. (to prevent infiltration of foreign matter)
- Take care to operate smoothly.

#### 17. Technical data

### 17.1 Deep groove ball bearing radial internal clearances and axial internal clearances

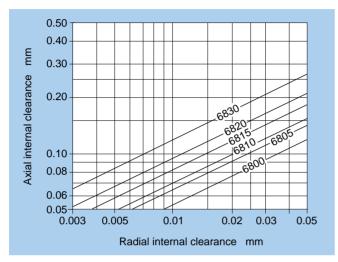



Fig. 17.1.1 Series 68 radial internal/axial internal clearances

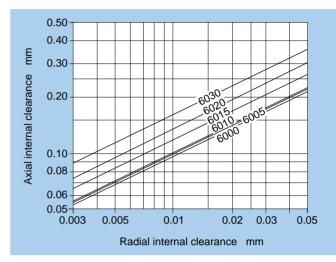



Fig. 17.1.3 Series 60 radial internal/axial internal clearances

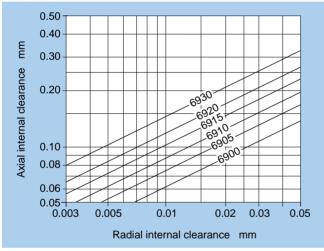



Fig. 17.1.2 Series 69 radial internal/axial internal clearances

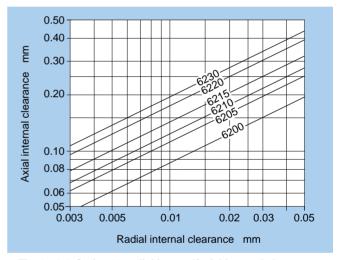



Fig. 17.1.4 Series 62 radial internal/axial internal clearances

#### 17.2 Angular contact ball bearing axial load and axial displacement

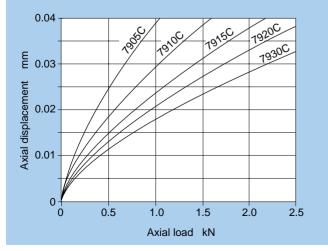



Fig. 17.2.1 Series 79 C axial load and axial displacement

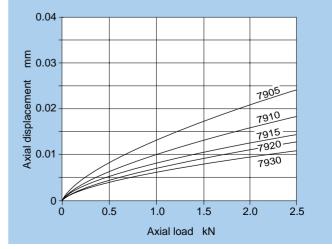



Fig. 17.2.2 Series 79 axial load and axial displacement

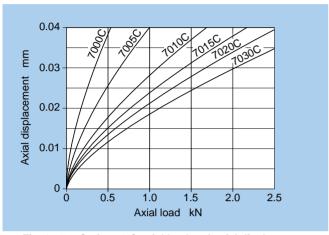



Fig. 17.2.3 Series 70 C axial load and axial displacement

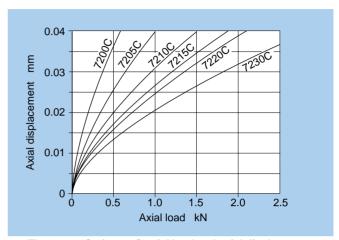



Fig. 17.2.6 Series 72 C axial load and axial displacement

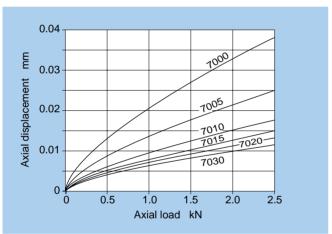



Fig. 17.2.4 Series 70 axial load and axial displacement

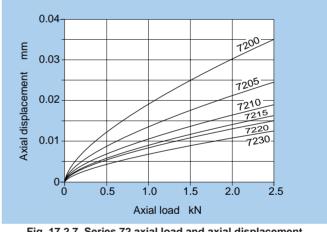



Fig. 17.2.7 Series 72 axial load and axial displacement

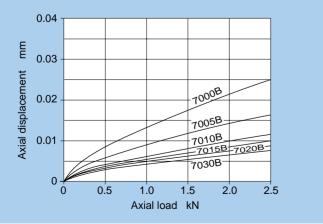



Fig. 17.2.5 Series 70 B axial load and axial displacement

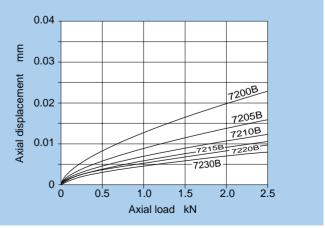
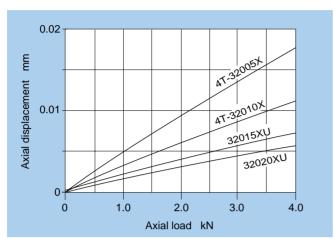




Fig. 17.2.8 Series 72 B axial load and axial displacement



#### 17.3 Tapered roller bearing axial load and axial displacement



Flg. 17.3.1 Series 320 axial load and axial displacement

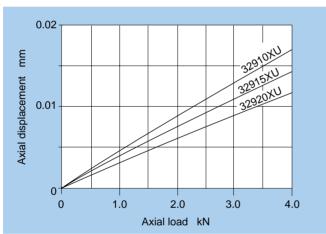
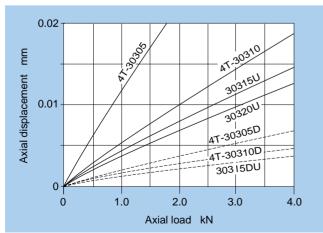




Fig. 17.3.2 Series 329 axial load and axial displacement



Flg. 17.3.3 Series 303/303 D axial load and axial displacement

Note: Values when bearing and housing are rigid bodies.

Axial displacement may become large depending on shape of shaft/housing and fitting conditions.

#### 17.4 Allowable axial load for ball bearings



Fig. 17.4.1 Allowable axial load for deep groove ball bearings

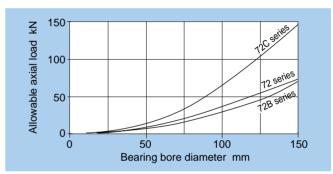



Fig. 17.4.2 Allowable axial load for angular contact ball bearings (72, 72B, 72C series)

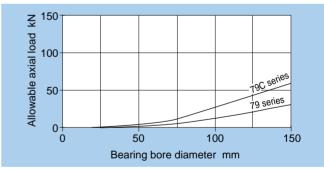



Fig. 17.4.3 Allowable axial load for angular contact ball bearings (79, 79C series)

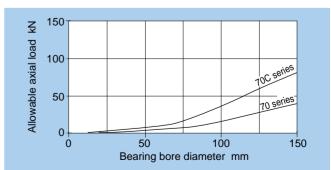



Fig. 17.4.4 Allowable axial load for angular contact ball bearings (70, 70C series)

Note: When an axial load acts upon deep groove or angular contact ball bearings, allowable axial load is the load whereby the contact ellipse exceeds the shoulder of the raceway.



#### 17.5 Fitting surface pressure

**Table 17.5.1** lists equations for calculating the pressure and maximum stress between fitting surfaces.

**Table 17.5.2** can be used to determine the approximate average groove diameter for bearing inner and outer rings.

The effective interference, in other words the actual interference  $\Delta_{\text{deff}}$  after fitting, is smaller than the apparent

interference  $\Delta d$  derived from the measured valued for the bearing bore diameter and shaft. This difference is due to the roughness or variations of the finished surfaces to be fitted, and therefore it is necessary to assume the following reductions in effective interference:

For ground shafts: 1.0  $\sim 2.5 \,\mu$  m For lathed shafts : 5.0  $\sim 7.0 \,\mu$  m

Table 17.5.1 Fitting surface pressure and maximum stress

| Fit conditions                 |                                       | Equation                                                                                                          | Codes (units: N{ kgf }; mm)                                                                                                                          |
|--------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | Solid steel shaft/<br>inner ring fit  | $P = \frac{E}{2} \frac{\Delta_{deff}}{d} \left[ 1 - \left( \frac{d}{D_{i}} \right)^{2} \right]$                   | d : Shaft diameter, inner ring bore diameter  d : Hollow shaft inner diameter  D : Inner ring average groove                                         |
| Fitting<br>surface<br>pressure | Hollow steel shaft/<br>inner ring fit | $P = \frac{E}{2} \frac{\Delta_{deff}}{\Delta_{d}} \frac{[1 - (d/D)^{2}][1 - (d_{0}/d)^{2}]}{[1 - (d_{0}/D)^{2}]}$ | diameter  \[ \Delta_{\text{deff}} : Effective interference \]  E : Elasticity factor  = 208,000 MPa { 21,200 kgf / mm² }                             |
| MPa<br>{kgf/mm²}               | Steel housing/<br>outer ring fit      | $P = \frac{E}{2} \frac{\Delta_{Deff}}{D} \frac{[1 - (D_0 / D)^2][1 - (D / D_1)^2]}{[1 - (D_0 / D_1)^2]}$          | D: Housing inner diameter, bearing outer diameter  Do: Outer ring average groove diameter  Dh: Housing outer diameter  Δρeff: Effective interference |
| Maximum<br>stress              | Shaft / inner ring fit                | $t \max = P \frac{1 + (d/D)^2}{1 - (d/D)^2}$                                                                      | Inner ring bore diameter face maximum tangential stress                                                                                              |
| MPa<br>{ kgf / mm² }           | Housing/<br>outer ring fit            | $t \max = P \frac{2}{1 - (D_0 / D)^2}$                                                                            | Outer ring inner diameter face maximum tangential stress                                                                                             |

Table 17.5.2 Average groove diameter (approximate expression)

| Bearing type                |           | Average groove diameter |                        |  |  |  |
|-----------------------------|-----------|-------------------------|------------------------|--|--|--|
|                             |           | Inner ring ( $D_{i}$ )  | Outer ring ( $D_0$ )   |  |  |  |
| Deep groove ball bearings   | All types | $1.05  \frac{4d+D}{5}$  | $0.95  \frac{d+4D}{5}$ |  |  |  |
| Cylindrical roller bearings | All types | $1.05  \frac{3d+D}{4}$  | $0.98  \frac{d+3D}{4}$ |  |  |  |
| Spherical roller bearings   | All types | $\frac{2d+D}{3}$        | $0.97  \frac{d+4D}{5}$ |  |  |  |

d. Inner ring bore diameter mm D: Outer ring outer diameter mm 
■ Average groove diameter values shown for double-flange type.

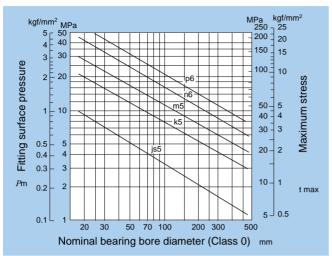



Fig. 17.5.1 Average fit interference as it relates to surface pressure  $P_{\rm m}$  and max. stress t max

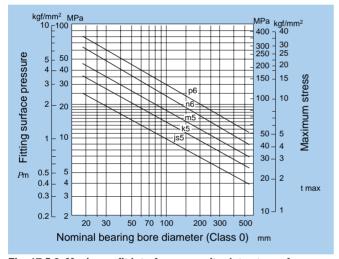



Fig. 17.5.2 Maximum fit interference as it relates to surface pressure  $P_{\text{m}}$  and max. stress the max

1 For recommended fitting, see page A-50.

#### 17.6 Necessary press fit and pullout force

Equations (17.1) and (17.2) below can be used to calculate the necessary pullout force for press fit for inner rings and shafts or outer rings and housings.

For shaft and inner rings:

$$K_d = \mu \cdot P \cdot d \cdot B \dots (17.1)$$

For housing and outer rings:

$$K_{\text{D}} = \mu \cdot P \cdot D \cdot B \dots (17.2)$$

Where,

 $K_d$ : Inner ring press fit or pullout force N { kgf }

*K*<sub>D</sub>: Outer ring press fit or pullout force N { kgf }

P: Fitting surface pressure MPa { kgf/mm² } (Refer to **Table 17.5.1**)

d: Shaft diameter, inner ring bore diameter mm

D: Housing inner diameter, outer ring outer diameter mm

B: Inner or outer ring width

μ : Sliding friction coefficient (Refer to **Table 17.6.1**)

Table 17.6.1 Press fit and pullout sliding friction coefficient

| Туре                                                | μ             |
|-----------------------------------------------------|---------------|
| Inner (outer) ring press fit onto cylindrical shaft | t (bore) 0.12 |
| Inner (outer) ring pullout from cylindrical shaft   | (bore) 0.18   |
| Inner ring press fit onto tapered shaft or sleeve   | 0.17          |
| Inner ring pullout from tapered shaft               | 0.14          |
| Sleeve press fit onto shaft/bearing                 | 0.30          |
| Sleeve pullout from shaft/bearing                   | 0.33          |

# **Ball and Roller Bearings**



# **INDEX OF BEARING TABLES**

| Deep Groove Ball Bearings                                                      | . B-5   |
|--------------------------------------------------------------------------------|---------|
| Deep groove ball bearings 67,68,69,160,60,62,63,64                             | . B-8   |
| Expansion compensating bearings EC-60,EC-62,EC-63                              | . B-26  |
| AC bearings AC-60, AC-A2, AC-63                                                | . B-28  |
|                                                                                |         |
|                                                                                |         |
| Miniature and Extra Small Ball Bearings                                        | . B-31  |
| Metric series 67,68,69,60,62,63,BC                                             | . B-34  |
| Inch series R,RA                                                               | . B-38  |
| With ring grooves, snap rings SC                                               | . B-40  |
|                                                                                |         |
|                                                                                |         |
| Angular Contact Ball Bearings                                                  | . B-43  |
| Single and duplex angular contact ball bearings 79,70,72,72B,73,73B            | . B-46  |
| High speed single and duplex angular contact ball bearings 78C,79C,70C,72C,73C | . B-58  |
| Ultra-high speed angular contact ball bearings BNT0,BNT2,HSB9C,HSB0C           | . B-66  |
| Ceramic ball angular contact ball bearings 5S-BNT,5S-HSB                       | . B-70  |
| Four-point contact ball bearings QJ2,QJ3                                       | . B-72  |
| Double row angular contact ball bearings 52,53                                 | . B-74  |
|                                                                                |         |
|                                                                                |         |
| Self-Aligning Ball Bearings                                                    | . B-79  |
| 12(K), 22(K), 13(K), 23(K)                                                     | . B-80  |
| Adapters for self-aligning ball bearings                                       | . B-86  |
|                                                                                |         |
|                                                                                |         |
| Cylindrical Roller Bearings                                                    | . B-91  |
| NU,NJ,NUP,N,NF10,2,22,3,23,4                                                   |         |
| L type loose rib HJ2,22,3,23,4                                                 |         |
| Double row cylindrical roller bearings NN49(K),NNU49(K),NN30(K),NNU30(K)       |         |
| Four-row cylindrical roller bearings 4R                                        | . B-122 |
|                                                                                |         |

| Towns I Balles Basedana                                                 |       |
|-------------------------------------------------------------------------|-------|
| Tapered Roller Bearings                                                 | B-133 |
| Metric series 329X,320X,330,331,302,322,322C,332,303,303D,313X,323,323C | B-142 |
| Inch series                                                             | B-160 |
| Double row tapered roller bearings (back-to-back arrangement)           |       |
| 4130,4230,4131,4231,4302,4322,4303,4303D,4323                           | B-198 |
| Double row tapered roller bearings (face-to-face arrangement) 3230,3231 | B-212 |
| Four-row tapered roller bearings CR0                                    | B-216 |
|                                                                         |       |
|                                                                         |       |
| Spherical Roller Bearings                                               | B-233 |
| 239(K),230(K),240(K30),231(K),241(K30),222(K),232(K),213(K),223(K)      | B-236 |
| Adapters for spherical roller bearings                                  | B-256 |
| Withdrawal sleeves for spherical roller bearings                        | B-261 |
|                                                                         |       |
|                                                                         |       |
| Thrust Bearings                                                         | B-269 |
| Single direction thrust ball bearings 511,512,513,514                   | B-274 |
| Double row angular contact thrust ball bearings 5629(M),5620(M)         | B-278 |
| High speed duplex angular contact thrust ball bearings HTA9DB,HTA0DB    | B-282 |
| Spherical roller thrust bearings 292,293,294                            | B-286 |
|                                                                         |       |











Open type

Shielded type

Sealed type (non-contact)

**Expansion Compensating Bearing** 

## 1. Design features and special characteristics

Deep groove ball bearings are very widely used. A deep groove is formed on each inner and outer ring of the bearing enabling them to sustain radial and axial loads in either direction as well as well as the complex loads which result from the combination of these forces. Deep groove ball bearings are suitable for high speed applications.

In addition to unsealed bearings, deep groove ball bearings include ball bearings with greased sealed inside (sealed or shielded) and bearings with a snap ring that simplify structure around the bearing and design.

**Table 1** shows the construction and special characteristics of various sealed deep groove ball bearings.

Table 1 Sealed ball bearings: construction and characteristics

|                        | Type code no         | Shielded type                                                                         |                                                                                             | Sealed type                                                                                   |                                                                                    |
|------------------------|----------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|                        | Type, code no.       | Non-contact type ZZ                                                                   | Non-contact type LLB                                                                        | Contact type LLU                                                                              | Low torque type LLH                                                                |
|                        | Construction         | Metal shield plate is affixed to outside ring; inner ring incorporates a V-groove and | Outer ring incorporates synthetic rubber molded to a steel plate; seal edge is aligned with | Outer ring incorporates synthetic rubber molded to a steel plate; seal edge contacts V-groove | Basic construction the same as LU type, but specially designed lip on edge of seal |
|                        |                      | labyrinth clearance.                                                                  | V-groove along inner ring surface with labyrinth clearance.                                 | along inner ring surface.                                                                     | prevents penetration by foreign matter; low torque construction.                   |
| Perfo                  | Torque               | Low                                                                                   | Low                                                                                         | Rather high                                                                                   | Medium                                                                             |
| rman                   | Dust proofing        | Very good                                                                             | Better than ZZ-type                                                                         | Excellent                                                                                     | Much better than LLB-type                                                          |
| 00 e                   | Water proofing       | Poor                                                                                  | Poor                                                                                        | Very good                                                                                     | Very good                                                                          |
| Performance comparison | High speed capacity  | Same as open type                                                                     | Same as open type                                                                           | Limited by contact seals                                                                      | Much better than LLU-type                                                          |
| ison                   | Allowable temp.range | Depends on lubricant                                                                  | -25 ~ 120                                                                                   | -25 ~ 110                                                                                     | -25 ~ 120                                                                          |

<sup>•</sup> Please consult NTN Engineering about applications which exceed the allowable temperature range of products listed on this table.
Note: This chart lists double shielded and double sealed bearings, but single shielded (Z) and single sealed (LB, LU, LH) are also available.
Grease lubrication should be used with single shielded and single sealed bearings.

## 2. Standard cage types

As shown in **Table 2**, pressed cages are generally used in deep groove ball bearings. Machined cages are however used for large bearings and high-speed bearings.

Table 2 Standard cage for deep groove ball bearings

| Bearing series | Pressed cages | Machined cages  |
|----------------|---------------|-----------------|
| 67             | 6700 ~ 6706   |                 |
| 68             | 6800 ~ 6834   | 6836 ~ 68 / 600 |
| 69             | 6900 ~ 6934   | 6936 ~ 69 / 500 |
| 160            | 16001 ~ 16052 | 16056 ~ 16072   |
| 60             | 6000 ~ 6052   | 6056 ~ 6084     |
| 62             | 6200 ~ 6244   |                 |
| 63             | 6300 ~ 6344   |                 |
| 64             | 6403 ~ 6416   |                 |

## 3. Other bearing types

## 3. 1 Bearings with snap rings

Some bearings accommodate a snap ring which is attached along the outer diameter of the outer ring. By using snap rings, positioning in the axial direction is possible and housing installation is simplified. In addition to open type, shielded and sealed types are also manufactured. Consult NTN Engineering.

# 3. 2 Expansion compensating bearings (creep prevention bearings)

The boundary dimensions of expansion compensating deep groove ball bearings are the same as for standard bearings, but formed high polymer material with a high expansion rate is provided in the grooves on the outer circumference of the outer ring (see **Diagram 1**).

Due to the extremely small difference of thermal expansion attained between the fitted surfaces of the high polymer equipped outer ring and the light alloy bearing housing, a good interference fit can be achieved with stable performance across a wide temperature range. Another

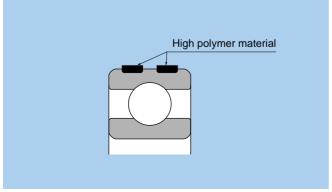



Diagram 1. Expansion compensating bearings

advantage is a large reduction in the occurrence of outer ring creeping.

## (1) Allowable load

Maximum allowable load  $C_P$  (refer to the table of boundary dimensions) has been determined in accordance with outer ring strength; therefore, it is necessary to select a bearing with a maximum allowable load greater than the largest anticipated bearing load.

### (2) Housing and bearing fit

**Table 3** shows the recommended fits for bearings with light metal alloy housings.

In cases where the bearing is going to be interference fit with the housing, it is very important not to damage the high polymer material. Therefore it is essential that the lip of the housing diameter be given a 10°–15° chamfer as shown in **Diagram 2**.

Furthermore, as shown in **Diagram 2**, it is also advisable to apply the interference fit using a press in order not force the bearing into the housing in a misaligned position. (**Diagram 2**)

### (3) Radial internal clearance

Regulations for radial internal clearance are the same as those for standard deep groove ball bearings. For standard fit and application conditions, a C3 clearance is used with

Table 3 Recommended fits for outer ring and housing bore

| Conditions                                                                                                            |                                            | Suitable                                                     | Housing bore    |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------|-----------------|
| Load type, etc.                                                                                                       | Housing material                           | bearing                                                      | tolerance class |
| Rotating outer ring load<br>Rotating inner ring load;<br>light load<br>Direction indeterminate load;<br>ordinary load | Al alloy<br>Mg alloy<br>Other light alloys | Deep groove<br>ball bearing<br>Cylindrical<br>roller bearing | H6              |
| Rotating outer ring load;<br>heavy load<br>Direction indeterminate load;<br>shock load                                | Al alloy<br>Mg alloy<br>Other light alloys | Thick-<br>walled type<br>deep groove<br>ball bearing         | N6              |

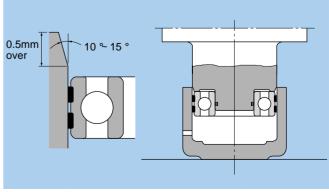



Diagram 2. Fitting method and housing inner diameter chamfer

this bearing.

For more detailed information concerning this bearing and the availability of roller bearings contact NTN Engineering.

### (4) Allowable temperature range

-20 ~ 120°C

## 3.3 Long-life bearings (TMB/TAB bearings)

Boundary dimensions of long-life bearings are the same as those of standard deep groove ball bearings, but the bearings have undergone special heat treatment that considerably extends wear life.

These bearings are especially effective in countering reduced wear life due to the effects of infiltration by dust and other foreign matter.

Features are as follows:

- Rated load is the same as standard bearings, but shaft characteristics factor is a<sub>2</sub> = 2.2 for TMB bearings and a<sub>2</sub> = 3.6 for TAB.
- TMB 62 series bearings can be used in place of standard 63 series bearings enabling lighter weight, more compact designs
- Greater resistance to reduced wear life due to infiltration by dust and other foreign matter

Dimensions for these bearings are not provided in the dimensions table. For details, please contact NTN Engineering.

### 3.4 AC bearings (creep prevention bearings)

AC bearings have the same boundary dimensions as standard bearings with the addition of two O-rings imbedded

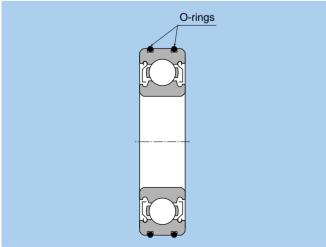



Diagram 3. AC bearing

in the outside circumference of the outer ring. (Diagram 3)

This bearing has a steel housing, can withstand rotating outer ring loads, and is suitable for applications where a "tight fit" is not possible but the fear of creeping exists. With its capacity for axial load displacement, an AC bearing can also be installed as a floating side bearing to accommodate shaft fluctuations. Before installing the bearing into the housing, high viscosity oil (base oil viscosity, 100 mm²/s or more) or grease should be applied to the space between the two Orings. This lubricant forms a thin oil layer inside the bearing which prevents contact between the outer ring and housing, lowers the coefficient of friction, and is still able to prevent creeping by utilizing the friction force of the O-rings.Outer ring spin is prevented by friction force of the O-ring and housing.

For dimensional specifications, handling procedures, and other detailed information concerning AC bearings, contact NTN Engineering.

## (1) Allowable load

Because allowable load  $\mathcal{C}_{\mathbb{P}}$  that takes outer ring strength into account (see dimensions table) is established, selection must be made so that maximum load on the bearing does not exceed  $\mathcal{C}_{\mathbb{P}}$ .

### (2) Fit with housing

Table 4 gives recommended fit with steel housing.

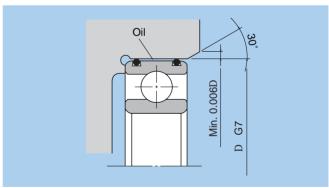
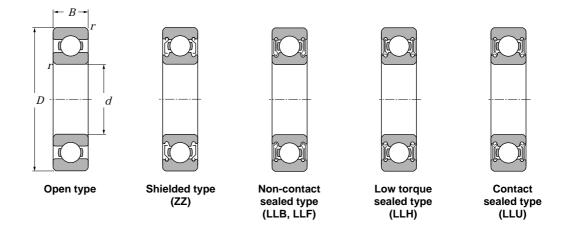



Diagram 4. Housing

Table 4 dimensions and shape

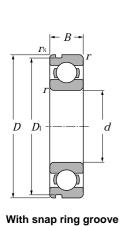

| Housing bore tolerance                 | G7                                      |
|----------------------------------------|-----------------------------------------|
| Housing bore entrance chamfer          | Max. 30°C                               |
| Housing bore chamfer grinding undercut | Min. 0.006 <i>D</i>                     |
| Housing bore finish roughness          | 2.5 µ m Ra                              |
| Housing bore roundness                 | 1/2 bearing housing dimension tolerance |

## (3) Allowable temperature range

-25 ~ 120°C

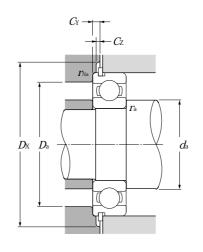








d 10 ~ 20mm


| Boundary dimensions |          |          |                      | ons | Basic load ratings dynamic static dynamic static |               |             | _           | Factor Limiting speeds |                  |                  |                  |                  | Bearing numbers |          |                |                  |                   |
|---------------------|----------|----------|----------------------|-----|--------------------------------------------------|---------------|-------------|-------------|------------------------|------------------|------------------|------------------|------------------|-----------------|----------|----------------|------------------|-------------------|
|                     |          | 100 100  |                      |     | kľ                                               |               | •           |             |                        | araaa            |                  | in <sup>-1</sup> |                  |                 |          | non-           | low              | aantaat           |
|                     |          | mm       |                      | rns |                                                  |               |             | gf          |                        | grease open type | oil<br>open type |                  |                  | open            | shielded | contact sealed | torque<br>sealed | contact<br>sealed |
| d                   | D        | В        | $r_{\rm s  min}^{1}$ | min | $C_{\rm r}$                                      | $C_{ m or}$   | $C_{\rm r}$ | $C_{ m or}$ | $f_{0}$                | ZZ LLB           | Z LB             | LLH              | LLU              | type            | type     | type           | type             | type              |
|                     | 15       | 3        | 0.1                  |     | 0.855                                            | 0.435         | 87          | 44          | 15.7                   | 10 000           | 12 000           |                  |                  | 6700            |          |                |                  |                   |
|                     | 19       | 5        | 0.3                  |     | 1.83                                             | 0.925         | 187         | 94          | 14.8                   | 32 000           | 38 000           |                  | 24 000           | 6800            | ZZ       | LLB            |                  | LLU               |
| 10                  | 22       | 6        | 0.3                  | 0.3 | 2.7                                              | 1.27          | 275         | 129         | 14.0                   | 30 000           | 36 000           |                  | 21 000           | 6900            | ZZ       | LLB            |                  | LLU               |
|                     | 26       | 8        | 0.3                  |     | 4.55                                             | 1.96          | 465         | 200         | 12.4                   | 29 000           | 34 000           | 25 000           | 21 000           | 6000            | ZZ       | LLB            | LLH              | LLU               |
|                     | 30       | 9        | 0.6                  | 0.5 | 5.10                                             | 2.39          | 520         | 244         | 13.2                   | 25 000           | 30 000           | 21 000           | 18 000           | 6200            | ZZ       | LLB            | LLH              | LLU               |
|                     | 35       | 11       | 0.6                  | 0.5 | 8.20                                             | 3.50          | 835         | 355         | 11.4                   | 23 000           | 27 000           | 20 000           | 16 000           | 6300            | ZZ       | LLB            | LLH              | LLU               |
|                     | 18       | 4        | 0.2                  |     | 0.930                                            | 0.530         | 95          | 54          | 16.2                   | 8 300            | 9 500            |                  |                  | 6701            |          | LLF            |                  |                   |
|                     | 21       | 5        | 0.3                  |     | 1.92                                             | 1.04          | 195         | 106         | 15.3                   | 29 000           | 35 000           |                  | 20 000           | 6801            | ZZ       | LLB            |                  | LLU               |
| 12                  | 24       | 6        | 0.3                  | 0.3 | 2.89                                             | 1.46          | 295         | 149         | 14.5                   | 27 000           | 32 000           |                  | 19 000           | 6901            | ZZ       | LLB            |                  | LLU               |
| 12                  | 28<br>28 | 7<br>8   | 0.3                  |     | 5.10<br>5.10                                     | 2.39          | 520<br>520  | 244<br>244  | 13.2<br>13.2           | 26 000<br>26 000 | 30 000<br>30 000 | 21 000           | 18 000           | 16001<br>6001   | ZZ       | LLB            | 110              | LLU               |
|                     | 32       | 10       | 0.6                  | 0.5 | 6.10                                             | 2.39<br>2.75  | 620         | 280         | 12.7                   | 22 000           | 26 000           | 20 000           | 16 000           | 6201            | ZZ       | LLB            | LLH              | LLU               |
|                     | 37       | 12       | 1                    | 0.5 | 9.70                                             | 4.20          | 990         | 425         | 11.1                   | 20 000           | 24 000           | 19 000           | 15 000           | 6301            | ZZ       | LLB            | LLH              | LLU               |
|                     |          |          |                      |     |                                                  |               |             |             |                        |                  |                  |                  |                  |                 |          |                |                  |                   |
|                     | 21       | 4        | 0.2                  |     | 0.940                                            | 0.585         | 96          | 59          | 16.5                   | 6 600            | 7 600            |                  | 47.000           | 6702            | 77       | LLF            |                  |                   |
|                     | 24<br>28 | 5<br>7   | 0.3                  | 0.3 | 2.08<br>3.65                                     | 1.26<br>2.00  | 212<br>375  | 128<br>204  | 15.8<br>14.8           | 26 000<br>24 000 | 31 000<br>28 000 |                  | 17 000<br>16 000 | 6802<br>6902    |          | LLB<br>LLB     |                  | LLU               |
| 15                  | 32       | 8        | 0.3                  | 0.3 | 5.60                                             | 2.83          | 570         | 289         | 13.9                   | 22 000           | 26 000           |                  | 10 000           | 16002           | 22       | LLD            |                  | LLU               |
|                     | 32       | 9        | 0.3                  | 0.3 | 5.60                                             | 2.83          | 570         | 289         | 13.9                   | 22 000           | 26 000           | 18 000           | 15 000           | 6002            | ZZ       | LLB            | LLH              | LLU               |
|                     | 35       | 11       | 0.6                  | 0.5 | 7.75                                             | 3.60          | 790         | 365         | 12.7                   | 19 000           | 23 000           | 18 000           | 15 000           | 6202            | ZZ       | LLB            | LLH              | LLU               |
|                     | 42       | 13       | 1                    | 0.5 | 11.4                                             | 5.45          | 1 170       | 555         | 12.3                   | 17 000           | 21 000           | 15 000           | 12 000           | 6302            | ZZ       | LLB            | LLH              | LLU               |
|                     | 23       | 4        | 0.2                  |     | 1.00                                             | 0.660         | 102         | 67          | 16.3                   | 5 000            | 6 700            |                  |                  | 6703            |          | LLF            |                  |                   |
|                     | 26       | 5        | 0.3                  |     | 2.23                                             | 1.46          | 227         | 149         | 16.1                   | 24 000           | 28 000           |                  | 15 000           | 6803            | ZZ       | LLB            |                  | LLU               |
|                     | 30       | 7        | 0.3                  | 0.3 | 4.65                                             | 2.58          | 475         | 263         | 14.7                   | 22 000           | 26 000           |                  | 14 000           | 6903            | ZZ       | LLB            |                  | LLU               |
| 17                  | 35       | 8        | 0.3                  | 0.0 | 6.80                                             | 3.35          | 695         | 345         | 13.6                   | 20 000           | 24 000           | 40.000           | 4.4.000          | 16003           |          |                |                  |                   |
|                     | 35<br>40 | 10<br>12 | 0.3                  | 0.3 | 6.80<br>9.60                                     | 3.35<br>4.60  | 695<br>980  | 345<br>465  | 13.6<br>12.8           | 20 000<br>18 000 | 24 000           | 16 000<br>15 000 | 14 000           | 6003<br>6203    | ZZ<br>ZZ | LLB            | LLH              | LLU               |
|                     | 47       | 14       | 1                    | 0.5 | 13.5                                             |               | 1 380       | 665         | 12.0                   | 16 000           | 21 000<br>19 000 | 14 000           | 12 000<br>11 000 | 6303            | ZZ       | LLB            | LLH              | LLU               |
|                     | 62       | 17       | 1.1                  | 0.0 | 22.7                                             |               | 2 320       |             | 11.1                   | 14 000           | 16 000           | 14 000           | 11 000           | 6403            |          |                |                  | LLO               |
|                     | 27       | 4        | 0.2                  |     | 1.04                                             | 0.720         | 106         | 74          | 16.1                   | E 000            | E 700            |                  |                  | 6704            |          | LLF            |                  |                   |
|                     | 27<br>32 | 7        | 0.2                  | 0.3 | 1.04<br>4.00                                     | 0.730<br>2.47 | 106<br>410  | 252         | 16.1<br>15.5           | 5 000<br>21 000  | 5 700<br>25 000  |                  | 13 000           | 6804            | ZZ       | LLF            |                  | LLU               |
|                     | 37       | 9        | 0.3                  | 0.3 | 6.40                                             | 3.70          | 650         | 375         | 14.7                   | 19 000           | 23 000           |                  | 12 000           | 6904            | ZZ       | LLB            |                  | LLU               |
| 20                  | 42       | 8        | 0.3                  |     | 7.90                                             | 4.50          | 810         | 455         | 14.5                   | 18 000           | 21 000           |                  | 300              | 16004           |          |                |                  |                   |
|                     | 42       | 12       | 0.6                  | 0.5 | 9.40                                             | 5.05          | 955         | 515         | 13.9                   | 18 000           | 21 000           | 13 000           | 11 000           | 6004            | ZZ       | LLB            | LLH              | LLU               |
|                     | 47       | 14       | 1                    | 0.5 | 12.8                                             |               | 1 310       | 680         | 13.2                   | 16 000           | 18 000           | 12 000           | 10 000           | 6204            | ZZ       | LLB            | LLH              | LLU               |
|                     | 52       | 15       | 1.1                  | 0.5 | 15.9                                             | 7.90          | 1 620       | 805         | 12.4                   | 14 000           | 17 000           | 12 000           | 10 000           | 6304            | ZZ       | LLB            | LLH              | LLU               |

<sup>1 )</sup> Smallest allowable dimension for chamfer dimension  $\it r.$ 



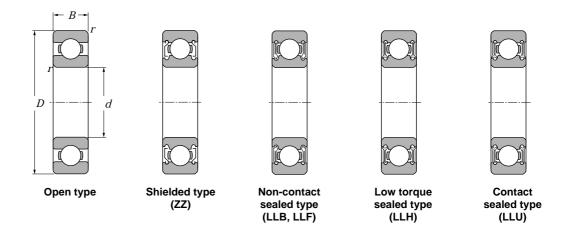






**Dynamic equivalent radial load**  $P_r = XF_r + YF_a$ 

| $\frac{f_0 \cdot F_a}{C_{\text{or}}}$ | e    | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | e |      | $\frac{r_a}{r_r} > e$ |
|---------------------------------------|------|-----------------------------------------|---|------|-----------------------|
| Cor                                   |      | X                                       | Y | X    | Y                     |
| 0.172                                 | 0.19 |                                         |   |      | 2.30                  |
| 0.345                                 | 0.22 |                                         |   |      | 1.99                  |
| 0.689                                 | 0.26 |                                         |   |      | 1.71                  |
| 1.03                                  | 0.28 |                                         |   |      | 1.55                  |
| 1.38                                  | 0.30 | 1                                       | 0 | 0.56 | 1.45                  |
| 2.07                                  | 0.34 |                                         |   |      | 1.31                  |
| 3.45                                  | 0.38 |                                         |   |      | 1.15                  |
| 5.17                                  | 0.42 |                                         |   |      | 1.04                  |
| 6.89                                  | 0.44 |                                         |   |      | 1.00                  |

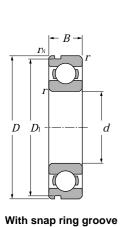

Static equivalent radial load  $P_{\text{Or}} = 0.6F_{\text{r}} + 0.5F_{\text{a}}$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ 

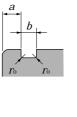
|          | aring<br>nbers                    | S              | nap ring<br>dimen |                 | е                                       | Snap<br>dimen     |          |          |                      | Abutm                            | ent and f                | illet di       | mensio         | าร              |                  | Mass <sup>4</sup> ) |
|----------|-----------------------------------|----------------|-------------------|-----------------|-----------------------------------------|-------------------|----------|----------|----------------------|----------------------------------|--------------------------|----------------|----------------|-----------------|------------------|---------------------|
|          | o <sup>2)</sup> snap <sup>2</sup> | `              | m                 |                 |                                         |                   | m        |          |                      |                                  |                          | mm             |                |                 |                  | kg                  |
| ring     | ring                              | $D_{ m l}$ max | a<br>max          | <i>b</i><br>min | r₀<br>max                               | <i>D</i> ₂<br>max | f<br>max | min      | $d_{a}$ max $^{3}$ ) | $D_{\!\scriptscriptstyle a}$ max | D <sub>X</sub> (approx.) | C <sub>Y</sub> | C <sub>Z</sub> | r <sub>as</sub> | <i>I</i> Nas max | (approx.)           |
| J        |                                   |                |                   |                 |                                         |                   |          |          |                      |                                  | (11 /                    |                |                |                 |                  | (11 /               |
|          |                                   |                |                   |                 |                                         |                   |          | 10.8     |                      | 14.2                             |                          |                |                | 0.1             |                  | 0.0015              |
|          |                                   |                |                   |                 |                                         |                   |          | 12       | 12.5                 | 17                               |                          |                |                | 0.3             |                  | 0.005               |
| <b>N</b> | <b>NR</b>                         | 20.8           | 1.05              | 0.8             | 0.2                                     | 24.8              | 0.7      | 12       | 13                   | 20                               | 25.5                     | 1.5            | 0.7            | 0.3             | 0.3              | 0.009               |
| N        | NR                                | 28.17          | 2.06              | 1.35            | 0.4                                     | 34.7              | 1.12     | 12<br>14 | 13.5<br>16           | 24<br>26                         | 35.5                     | 2.9            | 1.2            | 0.3<br>0.6      | 0.5              | 0.019<br>0.032      |
| N        | NR                                | 33.17          | 2.06              | 1.35            | 0.4                                     | 39.7              | 1.12     | 14       | 17                   | 31                               | 40.5                     | 2.9            | 1.2            | 0.6             | 0.5              | 0.052               |
| - ' '    | IVIX                              | 00.17          | 2.00              | 1.00            | 0.4                                     | 00.1              | 1.12     | 17       | ''                   | 01                               | 40.0                     | 2.0            | 1.2            | 0.0             | 0.0              | 0.000               |
|          |                                   |                |                   |                 |                                         |                   |          | 13.6     | 13.8                 | 16.4                             |                          |                |                | 0.2             |                  | 0.002               |
|          |                                   |                |                   |                 |                                         |                   |          | 14       | 14.5                 | 19                               |                          |                |                | 0.3             |                  | 0.006               |
| N        | NR                                | 22.8           | 1.05              | 8.0             | 0.2                                     | 26.8              | 0.7      | 14       | 15                   | 22                               | 27.5                     | 1.5            | 0.7            | 0.3             | 0.3              | 0.011               |
| 5        | ) 5)                              |                |                   |                 |                                         |                   |          | 14<br>14 | 16                   | 26                               |                          |                |                | 0.3             |                  | 0.019               |
| N        | NR                                | 30.15          | 2.06              | 1.35            | 0.4                                     | 36.7              | 1.12     | 16       | 16<br>17             | 26<br>28                         | 37.5                     | 2.9            | 1.2            | 0.3<br>0.6      | 0.5              | 0.021<br>0.037      |
| N        | NR                                | 34.77          | 2.06              | 1.35            | 0.4                                     | 41.3              | 1.12     | 17       | 18.5                 | 32                               | 42                       | 2.9            | 1.2            | 1               | 0.5              | 0.06                |
|          |                                   | •              |                   |                 | • • • • • • • • • • • • • • • • • • • • |                   |          | • • •    |                      |                                  |                          |                |                | •               | 0.0              |                     |
|          |                                   |                |                   |                 |                                         |                   |          | 16.6     | 16.8                 | 19.4                             |                          |                |                | 0.2             |                  | 0.0025              |
|          |                                   |                | 4.0               |                 |                                         |                   |          | 17       | 17.5                 | 22                               | 0.4.5                    | 4.0            |                | 0.3             |                  | 0.007               |
| N        | NR                                | 26.7           | 1.3               | 0.95            | 0.25                                    | 30.8              | 0.85     | 17<br>17 | 17.5                 | 26                               | 31.5                     | 1.9            | 0.9            | 0.3             | 0.3              | 0.016               |
| N        | NR                                | 30.15          | 2.06              | 1.35            | 0.4                                     | 36.7              | 1.12     | 17       | 19                   | 30<br>30                         | 37.5                     | 2.9            | 1.2            | 0.3<br>0.3      | 0.3              | 0.025<br>0.03       |
| N        | NR                                | 33.17          | 2.06              | 1.35            | 0.4                                     | 39.7              | 1.12     | 19       | 20                   | 31                               | 40.5                     | 2.9            | 1.2            | 0.6             | 0.5              | 0.03                |
| N        | NR                                | 39.75          | 2.06              | 1.35            | 0.4                                     | 46.3              | 1.12     | 20       | 23                   | 37                               | 47                       | 2.9            | 1.2            | 1               | 0.5              | 0.082               |
|          |                                   |                |                   |                 |                                         |                   |          |          |                      |                                  |                          |                |                |                 |                  |                     |
|          |                                   |                |                   |                 |                                         |                   |          | 18.6     | 18.8                 | 21.4                             |                          |                |                | 0.2             |                  | 0.0025              |
| N.       | NR                                | 28.7           | 1.3               | 0.95            | 0.05                                    | 32.8              | 0.05     | 19       | 19.5<br>20           | 24<br>28                         | 33.5                     | 4.0            | 0.9            | 0.3<br>0.3      | 0.3              | 0.008               |
| N        | INK                               | 20.7           | 1.3               | 0.95            | 0.25                                    | 32.0              | 0.85     | 19<br>19 | 20                   | 33                               | 33.3                     | 1.9            | 0.9            | 0.3             | 0.3              | 0.018<br>0.032      |
| N        | NR                                | 33.17          | 2.06              | 1.35            | 0.4                                     | 39.7              | 1.12     | 19       | 21                   | 33                               | 40.5                     | 2.9            | 1.2            | 0.3             | 0.3              | 0.032               |
| N        | NR                                | 38.1           | 2.06              | 1.35            | 0.4                                     | 44.6              | 1.12     | 21       | 23                   | 36                               | 45.5                     | 2.9            | 1.2            | 0.6             | 0.5              | 0.066               |
| N        | NR                                | 44.6           | 2.46              | 1.35            | 0.4                                     | 52.7              | 1.12     | 22       | 25                   | 42                               | 53.5                     | 3.3            | 1.2            | 1               | 0.5              | 0.115               |
|          |                                   |                |                   |                 |                                         |                   |          | 23.5     |                      | 55.5                             |                          |                |                | 1               |                  | 0.27                |
|          |                                   |                |                   |                 |                                         |                   |          | 21.6     | 22.3                 | 25.4                             |                          |                |                | 0.2             |                  | 0.0045              |
| N        | NR                                | 30.7           | 1.3               | 0.95            | 0.25                                    | 34.8              | 0.85     | 22       | 22.5                 | 30                               | 35.5                     | 1.9            | 0.9            | 0.2             | 0.3              | 0.0043              |
| N        | NR                                | 35.7           | 1.7               | 0.95            | 0.25                                    | 39.8              | 0.85     | 22       | 24                   | 35                               | 40.5                     | 2.3            | 0.9            | 0.3             | 0.3              | 0.036               |
|          |                                   |                |                   |                 |                                         |                   |          | 22       | = -                  | 40                               |                          |                |                | 0.3             |                  | 0.051               |
| N        | NR                                | 39.75          | 2.06              | 1.35            | 0.4                                     | 46.3              | 1.12     | 24       | 26                   | 38                               | 47                       | 2.9            | 1.2            | 0.6             | 0.5              | 0.069               |
| N        | NR                                | 44.6           | 2.46              | 1.35            | 0.4                                     | 52.7              | 1.12     | 25       | 28                   | 42                               | 53.5                     | 3.3            | 1.2            | 1               | 0.5              | 0.106               |
| N        | NR                                | 49.73          | 2.46              | 1.35            | 0.4                                     | 57.9              | 1.12     | 26.5     | 28.5                 | 45.5                             | 58.5                     | 3.3            | 1.2            | 1               | 0.5              | 0.144               |

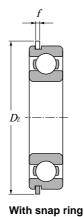
<sup>2 )</sup> Sealed and shielded bearings are also available. 3 ) This dimension applies to sealed and shielded bearings. 4 ) Does not include bearings with snap rings. 5 ) See page B-40.

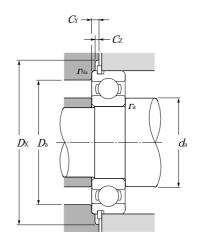








d 20 ~ 35mm


| Boundary dimensions |          |          |                      | ns           | Basic load ratings dynamic static dynamic static |              |                | Factor Limiting speeds |              |                  |                  |                  | Bearing numbers |              |         |                |                  |                   |
|---------------------|----------|----------|----------------------|--------------|--------------------------------------------------|--------------|----------------|------------------------|--------------|------------------|------------------|------------------|-----------------|--------------|---------|----------------|------------------|-------------------|
|                     |          |          |                      |              | ·                                                | (N           | ·              |                        |              | arooo            | m<br>oil         | in <sup>-1</sup> |                 |              |         | non-           | low              | aantaat           |
|                     |          | mm       |                      | <i>I</i> 'NS |                                                  |              |                | gf                     |              |                  | open type        |                  |                 | open s       | hielded | contact sealed | torque<br>sealed | contact<br>sealed |
| d                   | D        | В        | $r_{\rm s  min}^{1}$ | min          | $C_{\rm r}$                                      | $C_{ m or}$  | $C_{\rm r}$    | $C_{ m or}$            | $f_{0}$      | ZZ LLB           | Z LB             | LLH              | LLU             | type         | type    | type           | type             | type              |
| 20                  | 72       | 19       | 1.1                  |              | 28.5                                             | 13.9         | 2 900          | 1 420                  | 11.4         | 12 000           | 14 000           |                  |                 | 6404         |         |                |                  |                   |
|                     | 44       | 12       | 0.6                  | 0.5          | 9.40                                             | 5.05         | 955            | 515                    | 13.9         | 17 000           | 20 000           | 13 000           | 10 000          | 60/22ZZ      | LLB     | LLH            | LLU              |                   |
| 22                  | 50       | 14       | 1                    | 0.5          | 12.9                                             | 6.80         | 1 320          | 690                    | 13.5         | 14 000           | 17 000           | 12 000           | 9 700           | 62/22        | ZZ      | LLB            | LLH              | LLU               |
|                     | 56       | 16       | 1.1                  | 0.5          | 18.4                                             | 9.25         | 1 880          | 945                    | 12.4         | 13 000           | 15 000           | 11 000           | 9 200           | 63/22        | ZZ      | LLB            | LLH              | LLU               |
|                     | 32       | 4        | 0.2                  |              | 1.10                                             | 0.840        | 112            | 86                     | 15.8         | 4 000            | 4 600            |                  |                 | 6705         |         | LLF            |                  |                   |
|                     | 37       | 7        | 0.3                  | 0.3          | 4.30                                             | 2.95         | 435            | 300                    | 16.1         | 18 000           | 21 000           |                  | 10 000          | 6805         | ZZ      | LLB            |                  | LLU               |
|                     | 42       | 9        | 0.3                  | 0.3          | 7.05                                             | 4.55         | 715            | 460                    | 15.4         | 16 000           | 19 000           |                  | 9 800           | 6905         | ZZ      | LLB            |                  | LLU               |
| 25                  | 47       | 8        | 0.3                  |              | 8.35                                             | 5.10         | 855            | 520                    | 15.1         | 15 000           | 18 000           |                  |                 | 16005        |         |                |                  |                   |
|                     | 47       | 12       | 0.6                  | 0.5          | 10.1                                             | 5.85         | 1 030          | 595                    | 14.5         | 15 000           | 18 000           | 11 000           | 9 400           | 6005         | ZZ      | LLB            | LLH              | LLU               |
|                     | 52       | 15       | 1                    | 0.5          | 14.0                                             | 7.85         | 1 430          | 800                    | 13.9         | 13 000           | 15 000           | 11 000           | 8 900           | 6205         | ZZ      | LLB            | LLH              | LLU               |
|                     | 62<br>80 | 17<br>21 | 1.1<br>1.5           | 0.5          | 21.2<br>34.5                                     | 10.9<br>17.5 | 2 160<br>3 550 | 1 110                  | 12.6<br>11.6 | 12 000<br>10 000 | 14 000<br>12 000 | 9 700            | 8 100           | 6305<br>6405 | ZZ      | LLB            | LLH              | LLU               |
|                     | 00       | ۷۱       | 1.5                  |              | 34.3                                             | 17.5         | 3 330          | 1 700                  | 11.0         | 10 000           | 12 000           |                  |                 | 0403         |         |                |                  |                   |
|                     | 52       | 12       | 0.6                  | 0.5          | 12.5                                             | 7.40         | 1 270          | 755                    | 14.5         | 14 000           | 16 000           | 10 000           | 8 400           | 60/28        | ZZ      | LLB            | LLH              | LLU               |
| 28                  | 58       | 16       | 1                    | 0.5          | 17.9                                             | 9.75         | 1 830          | 995                    | 13.4         | 12 000           | 14 000           | 9 700            | 8 100           | 62/28        | ZZ      | LLB            | LLH              | LLU               |
|                     | 68       | 18       | 1.1                  | 0.5          | 26.7                                             | 14.0         | 2 730          | 1 430                  | 12.4         | 11 000           | 13 000           | 8 900            | 7 400           | 63/28        | ZZ      | LLB            | LLH              | LLU               |
|                     | 37       | 4        | 0.2                  |              | 1.14                                             | 0.950        | 117            | 97                     | 15.7         | 3 300            | 3 800            |                  |                 | 6706         |         | LLF            |                  |                   |
|                     | 42       | 7        | 0.3                  | 0.3          | 4.70                                             | 3.65         | 480            | 370                    | 16.5         | 15 000           | 18 000           |                  | 8.800           | 6806         | ZZ      | LLB            |                  | LLU               |
|                     | 47       | 9        | 0.3                  | 0.3          | 7.25                                             | 5.00         | 740            | 510                    | 15.8         | 14 000           | 17 000           |                  | 8 400           | 6906         | ZZ      | LLB            |                  | LLU               |
| 30                  | 55       | 9        | 0.3                  |              | 11.2                                             | 7.35         | 1 150          | 750                    | 15.2         | 13 000           | 15 000           |                  |                 | 16006        |         |                |                  |                   |
|                     | 55       | 13       | 1                    | 0.5          | 13.2                                             | 8.3          | 1 350          | 845                    | 14.8         | 13 000           | 15 000           | 9 200            | 7 700           | 6006         | ZZ      | LLB            | LLH              | LLU               |
|                     | 62       | 16       | 1                    | 0.5          | 19.5                                             | 11.3         | 1 980          |                        | 13.8         | 11 000           | 13 000           | 8 800            | 7 300           | 6206         | ZZ      | LLB            | LLH              | LLU               |
|                     | 72<br>90 | 19<br>23 | 1.1<br>1.5           | 0.5          | 26.7<br>43.5                                     | 15.0<br>23.9 | 2 720<br>4 400 | 1 530                  | 13.3<br>12.3 | 10 000<br>8 800  | 12 000<br>10 000 | 7 900            | 6 600           | 6306<br>6406 | ZZ      | LLB            | LLH              | LLU               |
|                     | 30       | 20       | 1.5                  |              | 70.0                                             | 20.0         | 7 700          | 2 440                  | 12.0         | 0 000            | 10 000           |                  |                 | 0400         |         |                |                  |                   |
|                     | 58       | 13       | 1                    | 0.5          | 11.8                                             | 8.05         | 1 200          | 820                    | 15.4         | 12 000           | 15 000           | 8 700            | 7 200           | 60/32        | ZZ      | LLB            | LLH              | LLU               |
| 32                  | 65       | 17       | 1                    | 0.5          | 20.7                                             | 11.6         | 2 110          |                        | 13.6         | 11 000           | 12 000           | 8 400            | 7 100           | 62/32        | ZZ      | LLB            | LLH              | LLU               |
|                     | 75       | 20       | 1.1                  | 0.5          | 29.8                                             | 16.9         | 3 050          | 1 730                  | 13.1         | 9 500            | 11 000           | 7 700            | 6 500           | 63/32        | ZZ      | LLB            | LLH              | LLU               |
|                     | 47       | 7        | 0.3                  | 0.3          | 4.90                                             | 4.05         | 500            | 410                    | 16.4         | 13 000           | 16 000           |                  | 7 600           | 6807         | ZZ      | LLB            |                  | LLU               |
|                     | 55       | 10       | 0.6                  | 0.5          | 9.55                                             | 6.85         | 975            | 695                    | 15.8         | 12 000           | 15 000           |                  | 7 100           | 6907         | ZZ      | LLB            |                  | LLU               |
|                     | 62       | 9        | 0.3                  |              | 11.7                                             | 8.20         | 1 190          | 835                    | 15.6         | 12 000           | 14 000           |                  |                 | 16007        |         |                |                  |                   |
| 35                  | 62       | 14       | 1                    | 0.5          | 16.0                                             | 10.3         | 1 630          |                        | 14.8         | 12 000           | 14 000           | 8 200            | 6 800           | 6007         | ZZ      | LLB            | LLH              | LLU               |
|                     | 72       | 17       | 1.1                  | 0.5          | 25.7                                             | 15.3         | 2 620          |                        | 13.8         | 9 800            | 11 000           | 7 600            | 6 300           | 6207         | ZZ      | LLB            | LLH              | LLU               |
|                     | 80       | 21       | 1.5                  | 0.5          | 33.5                                             | 19.1         | 3 400          |                        | 13.1         | 8 800            | 10 000           | 7 300            | 6 000           | 6307         | ZZ      | LLB            | LLH              | LLU               |
|                     | 100      | 25       | 1.5                  |              | 55.0                                             | 31.0         | 5 600          | 3 150                  | 12.3         | 7 800            | 9 100            |                  |                 | 6407         |         |                |                  |                   |


<sup>1 )</sup> Smallest allowable dimension for chamfer dimension r.











Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

| $Pr - \Lambda I$                      | rr + <i>II</i>       | 'a                           |   |      |                              |
|---------------------------------------|----------------------|------------------------------|---|------|------------------------------|
| $\frac{f_0 \cdot F_a}{C_{\text{or}}}$ | e                    | $\frac{F_{\rm a}}{F_{ m r}}$ | e | Ī    | $\frac{r_a}{r_r} > e$        |
| Coi                                   |                      | X                            | Y | X    | Y                            |
| 0.172<br>0.345<br>0.689<br>1.03       |                      |                              |   |      | 2.30<br>1.99<br>1.71<br>1.55 |
| 1.38<br>2.07                          | 0.30<br>0.34         | 1                            | 0 | 0.56 |                              |
| 3.45<br>5.17<br>6.89                  | 0.38<br>0.42<br>0.44 |                              |   |      | 1.15<br>1.04<br>1.00         |

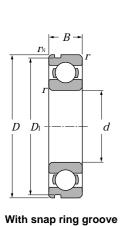
Static equivalent radial load  $P_{\text{Or}} = 0.6F_{\text{r}} + 0.5F_{\text{a}}$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ 

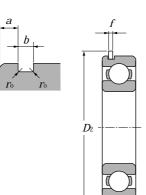
| Bea<br>num | _        |                |              |            |                |              | Snap ring Abutment and fillet dimensions imensions |            |                    |             |           |                 |            |             |              | Mass <sup>4</sup> ) |
|------------|----------|----------------|--------------|------------|----------------|--------------|----------------------------------------------------|------------|--------------------|-------------|-----------|-----------------|------------|-------------|--------------|---------------------|
|            | ) snap²  | )              | mi           |            |                |              | m                                                  |            |                    |             |           | mm              |            |             |              | kg                  |
| ring       | ring     | $D_1$          | а            | b          | $r_{\text{o}}$ | $D_2$        | f                                                  |            | $d_{a}$            | $D_{\rm a}$ | $D_{X}$   | $C_{\rm Y}$     | <i>C</i> z | <i>T</i> as | <i>T</i> Nas |                     |
| groove     |          | max            | max          | min        | max            | max          | max                                                | min        | max <sup>3</sup> ) | max         | (approx.) | max             | min        | max         | max          | (approx.)           |
|            |          |                |              |            |                |              |                                                    | 26.5       |                    | 65.5        |           |                 |            | 1           |              | 0.4                 |
| N          | NR       | 41.75          | 2.06         | 1.35       | 0.4            | 48.3         | 1.12                                               | 26         | 26.5               | 40          | 49        | 2.9             | 1.2        | 0.6         | 0.5          | 0.074               |
| N          | NR       | 47.6           | 2.46         | 1.35       | 0.4            | 55.7         | 1.12                                               | 27         | 29.5               | 45          | 56.5      | 3.3             | 1.2        | 1           | 0.5          | 0.117               |
| N          | NR       | 53.6           | 2.46         | 1.35       | 0.4            | 61.7         | 1.12                                               | 28.5       | 31                 | 49.5        | 62.5      | 3.3             | 1.2        | 1           | 0.5          | 0.176               |
|            |          |                |              |            |                |              |                                                    | 26.6       | 27.3               | 30.4        |           |                 |            | 0.2         |              | 0.005               |
| N          | NR       | 35.7           | 1.3          | 0.95       | 0.25           | 39.8         | 0.85                                               | 27         | 28                 | 35          | 40.5      | 1.9             | 0.9        | 0.3         | 0.3          | 0.022               |
| N          | NR       | 40.7           | 1.7          | 0.95       | 0.25           | 44.8         | 0.85                                               | 27<br>27   | 29                 | 40<br>45.0  | 45.5      | 2.3             | 0.9        | 0.3<br>0.3  | 0.3          | 0.042<br>0.06       |
| N          | NR       | 44.6           | 2.06         | 1.35       | 0.4            | 52.7         | 1.12                                               | 29         | 30.5               | 43.0        | 53.5      | 2.9             | 1.2        | 0.5         | 0.5          | 0.08                |
| N          | NR       | 49.73          | 2.46         | 1.35       | 0.4            | 57.9         | 1.12                                               | 30         | 32                 | 47          | 58.5      | 3.3             | 1.2        | 1           | 0.5          | 0.128               |
| N          | NR       | 59.61          | 3.28         | 1.9        | 0.6            | 67.7         | 1.7                                                | 31.5       | 35                 | 55.5        | 68.5      | 4.6             | 1.7        | 1           | 0.5          | 0.232               |
|            |          |                |              |            |                |              |                                                    | 33         |                    | 72          |           |                 |            | 1.5         |              | 0.53                |
| N          | NR       | 49.73          | 2.06         | 1.35       | 0.4            | 57.9         | 1.12                                               | 32         | 34                 | 48          | 58.5      | 2.9             | 1.2        | 0.6         | 0.5          | 0.098               |
| N          | NR       | 55.6           | 2.46         | 1.35       | 0.4            | 63.7         | 1.12                                               | 33         | 35.5               | 53          | 64.5      | 3.3             | 1.2        | 1           | 0.5          | 0.171               |
| N          | NR       | 64.82          | 3.28         | 1.9        | 0.6            | 74.6         | 1.7                                                | 34.5       | 38.5               | 61.5        | 76        | 4.6             | 1.7        | 1           | 0.5          | 0.284               |
|            |          |                |              |            |                |              |                                                    | 31.6       | 32.3               | 35.4        |           |                 |            | 0.2         |              | 0.006               |
| N          | NR       | 40.7           | 1.3          | 0.95       | 0.25           | 44.8         | 0.85                                               | 32         | 33                 | 40          | 45.5      | 1.9             | 0.9        | 0.3         | 0.3          | 0.026               |
| N          | NR       | 45.7           | 1.7          | 0.95       | 0.25           | 49.8         | 0.85                                               | 32         | 34                 | 45          | 50.5      | 2.3             | 0.9        | 0.3         | 0.3          | 0.048               |
| N          | NR       | 52.6           | 2.08         | 1.35       | 0.4            | 60.7         | 1.12                                               | 32<br>35   | 37                 | 53<br>50    | 61.5      | 2.9             | 1.2        | 0.3<br>1    | 0.5          | 0.091<br>0.116      |
| N          | NR       | 59.61          | 3.28         | 1.9        | 0.4            | 67.7         | 1.12                                               | 35         | 39                 | 50<br>57    | 68.5      | 2.9<br>4.6      | 1.7        | 1           | 0.5          | 0.116               |
| N          | NR       | 68.81          | 3.28         | 1.9        | 0.6            | 78.6         | 1.7                                                | 36.5       | 43                 | 65.5        | 80        | 4.6             | 1.7        | 1           | 0.5          | 0.36                |
|            |          |                |              |            |                |              |                                                    | 38         |                    | 82          |           |                 |            | 1.5         |              | 0.735               |
| N          | NR       | 55.6           | 2.08         | 1.35       | 0.4            | 63.7         | 1.12                                               | 37         | 39                 | 53          | 64.5      | 2.9             | 1.2        | 1           | 0.5          | 0.129               |
| N          | NR       | 62.6           | 3.28         | 1.9        | 0.6            | 70.7         | 1.7                                                | 37         | 40                 | 60          | 71.5      | 4.6             | 1.7        | 1           | 0.5          | 0.226               |
| N          | NR       | 71.83          | 3.28         | 1.9        | 0.6            | 81.6         | 1.7                                                | 38.5       | 43.5               | 68.5        | 83        | 4.6             | 1.7        | 1           | 0.5          | 0.382               |
| N          | NR       | 45.7           | 1.3          | 0.95       | 0.25           | 49.8         | 0.85                                               | 37         | 38                 | 45          | 50.5      | 1.9             | 0.9        | 0.3         | 0.3          | 0.029               |
| N          | NR       | 53.7           | 1.7          | 0.95       | 0.25           | 57.8         | 0.85                                               | 39         | 40                 | 51          | 58.5      | 2.3             | 0.9        | 0.6         | 0.5          | 0.074               |
|            |          |                |              |            |                |              |                                                    | 37         |                    | 60          |           |                 |            | 0.3         |              | 0.11                |
| N          | NR       | 59.61          | 2.08         | 1.9        | 0.6            | 67.7         | 1.7                                                | 40         | 42<br>45           | 57          | 68.5      | 3.4             | 1.7        | 1<br>1      | 0.5          | 0.155               |
| N<br>N     | NR<br>NR | 68.81<br>76.81 | 3.28<br>3.28 | 1.9<br>1.9 | 0.6<br>0.6     | 78.6<br>86.6 | 1.7<br>1.7                                         | 41.5<br>43 | 45<br>47           | 65.5<br>72  | 80<br>88  | 4.6<br>4.6      | 1.7<br>1.7 | 1.5         | 0.5<br>0.5   | 0.288<br>0.457      |
| IN         | 1417     | 70.01          | 0.20         | 1.0        | 0.0            | 00.0         | 1.7                                                | 43         | 71                 | 92          | 00        | <del>⊤</del> .∪ | 1.7        | 1.5         | 0.0          | 0.457               |
|            |          |                |              |            |                |              |                                                    | -          |                    |             |           |                 |            |             |              |                     |

<sup>2 )</sup> Sealed and shielded bearings are also available. 3 ) This dimension applies to sealed and shielded bearings. 4 ) Does not include bearings with snap rings.

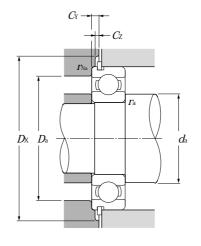








d 40 ~ 60mm

| Boundary dimensions |            |          |                    |                 | Е            | Basic lo     | ad rating      | gs          | Factor Limiting speeds |                  |                   |                |                |                | Bearing numbers  |                |                |                |  |
|---------------------|------------|----------|--------------------|-----------------|--------------|--------------|----------------|-------------|------------------------|------------------|-------------------|----------------|----------------|----------------|------------------|----------------|----------------|----------------|--|
|                     |            |          |                    |                 | dynami       | c static     | dynami         | c static    | min <sup>-1</sup> non- |                  |                   |                |                |                |                  |                | low            |                |  |
|                     |            | mm       |                    |                 | k            | :N           | k              | gf          |                        | grease           | oil               | ''             |                |                |                  | contact        | torque         | contact        |  |
| d                   | D          | В        | $r_{ m s min}^{1}$ | <i>I</i> NS min | $C_{r}$      | $C_{ m or}$  | $C_{\rm r}$    | $C_{ m or}$ | $f_{0}$                | open type ZZ LLB | open type<br>Z LB | LLH            | LLU            | open s<br>type | shielded<br>type | sealed<br>type | sealed<br>type | sealed<br>type |  |
|                     | _          | _        |                    |                 |              |              | -              |             |                        |                  |                   |                |                | 7) -           | 7,5              | 77.            | -71-5          | 910            |  |
|                     | 52         | 7        | 0.3                | 0.3             | 5.10         | 4.40         | 520            | 445         | 16.3                   | 12 000           | 14 000            |                | 6 700          | 6808           | ZZ               | LLB            |                | LLU            |  |
|                     | 62         | 12       | 0.6                | 0.5             | 12.2         | 8.90         | 1 240          | 910         | 15.8                   | 11 000           | 13 000            |                | 6 300          | 6908           | ZZ               | LLB            |                | LLU            |  |
| 40                  | 68         | 9        | 0.3                |                 | 12.6         | 9.65         | 1 290          | 985         | 16.0                   | 10 000           | 12 000            | 7.000          | 0.400          | 16008          |                  |                |                |                |  |
| 40                  | 68<br>80   | 15<br>18 | 1<br>1.1           | 0.5<br>0.5      | 16.8<br>29.1 | 11.5<br>17.8 | 1 710<br>2 970 |             | 15.2<br>14.0           | 10 000<br>8 700  | 12 000<br>10 000  | 7 300<br>6 700 | 6 100<br>5 600 | 6008<br>6208   | ZZ<br>ZZ         | LLB            | LLH            | LLU            |  |
|                     | 90         | 23       | 1.5                | 0.5             | 40.5         | 24.0         | 4 150          |             | 13.2                   | 7 800            | 9 200             | 6 400          | 5 300          | 6308           | ZZ               | LLB            | LLH            | LLU            |  |
|                     | 110        | 27       | 2                  | 0.0             | 63.5         | 36.5         | 6 500          |             | 12.3                   | 7 000            | 8 200             | 0 100          | 0 000          | 6408           |                  |                |                |                |  |
|                     |            |          |                    |                 |              |              |                |             |                        |                  |                   |                |                |                |                  |                |                |                |  |
|                     | 58         | 7        | 0.3                | 0.3             | 5.35         | 4.95         | 550            | 500         | 16.1                   | 11 000           | 12 000            |                | 5 900          | 6809           | ZZ               | LLB            |                | LLU            |  |
|                     | 68<br>75   | 12<br>10 | 0.6<br>0.6         | 0.5             | 13.1         | 10.4         |                | 1 060       | 16.1                   | 9 800            | 12 000            |                | 5 600          | 6909<br>16009  | ZZ               | LLB            |                | LLU            |  |
| 45                  | 75<br>75   | 16       | 1                  | 0.5             | 12.9<br>21.0 | 10.5<br>15.1 | 1 320<br>2 140 | 1 070       | 16.2<br>15.3           | 9 200<br>9 200   | 11 000<br>11 000  | 6 500          | 5 400          | 6009           | ZZ               | LLB            | LLH            | LLU            |  |
| -10                 | 85         | 19       | 1.1                | 0.5             | 32.5         | 20.4         | 3 350          |             | 14.1                   | 7 800            | 9 200             | 6 200          | 5 200          | 6209           | ZZ               | LLB            | LLH            | LLU            |  |
|                     | 100        | 25       | 1.5                | 0.5             | 53.0         | 32.0         | 5 400          |             | 13.1                   | 7 000            | 8 200             | 5 600          | 4 700          | 6309           | ZZ               | LLB            | LLH            | LLU            |  |
|                     | 120        | 29       | 2                  |                 | 77.0         | 45.0         | 7 850          | 4 600       | 12.1                   | 6 300            | 7 400             |                |                | 6409           |                  |                |                |                |  |
|                     | 65         | 7        | 0.3                | 0.3             | 6.60         | 6.10         | 670            | 620         | 16.1                   | 9 600            | 11 000            |                | 5 300          | 6810           | ZZ               | LLB            |                | LLU            |  |
|                     | 72         | 12       | 0.6                | 0.5             | 13.4         | 11.2         | 1 370          |             | 16.3                   | 8 900            | 11 000            |                | 5 100          | 6910           | ZZ               | LLB            |                | LLU            |  |
|                     | 80         | 10       | 0.6                |                 | 13.2         | 11.3         | 1 350          | 1 150       | 16.4                   | 8 400            | 9 800             |                |                | 16010          |                  |                |                |                |  |
| 50                  | 80         | 16       | 1                  | 0.5             | 21.8         | 16.6         | 2 230          |             | 15.5                   | 8 400            | 9 800             | 6 000          | 5 000          | 6010           | ZZ               | LLB            | LLH            | LLU            |  |
|                     | 90         | 20       | 1.1                | 0.5             | 35.0         | 23.2         | 3 600          |             | 14.4                   | 7 100            | 8 300             | 5 700          | 4 700          | 6210           | ZZ               | LLB            | LLH            | LLU            |  |
|                     | 110<br>130 | 27<br>31 | 2<br>2.1           | 0.5             | 62.0<br>83.0 | 38.5<br>49.5 | 6 300<br>8 450 |             | 13.2<br>12.5           | 6 400<br>5 700   | 7 500<br>6 700    | 5 000          | 4 200          | 6310<br>6410   | ZZ               | LLB            | LLH            | LLU            |  |
|                     | 130        | 01       | ۷.۱                |                 | 00.0         | 70.0         | 0 400          | 3 030       | 12.0                   | 3 7 00           | 0 7 0 0           |                |                | 0410           |                  |                |                |                |  |
|                     | 72         | 9        | 0.3                | 0.3             | 8.80         | 8.10         | 900            | 825         | 16.2                   | 8 700            | 10 000            |                | 4 800          | 6811           | ZZ               | LLB            |                | LLU            |  |
|                     | 80         | 13       | 1                  | 0.5             | 16.0         | 13.3         | 1 630          |             | 16.2                   | 8 200            | 9 600             |                | 4 600          | 6911           | ZZ               | LLB            |                | LLU            |  |
| 55                  | 90<br>90   | 11<br>18 | 0.6<br>1.1         | 0.5             | 18.6<br>28.3 | 15.3<br>21.2 | 1 900<br>2 880 |             | 16.2<br>15.3           | 7 700<br>7 700   | 9 000<br>9 000    |                | 4 500          | 16011<br>6011  | ZZ               | LLB            |                | LLU            |  |
| 33                  | 100        | 21       | 1.5                | 0.5             | 20.5<br>43.5 | 29.2         | 4 450          |             | 14.3                   | 6 400            | 7 600             |                | 4 300          | 6211           | ZZ               | LLB            |                | LLU            |  |
|                     | 120        | 29       | 2                  | 0.5             | 71.5         | 45.0         | 7 300          |             | 13.2                   | 5 800            | 6 800             |                | 3 900          | 6311           | ZZ               | LLB            |                | LLU            |  |
|                     | 140        | 33       | 2.1                |                 | 89.0         | 54.0         | 9 050          | 5 500       | 12.7                   | 5 200            | 6 100             |                |                | 6411           |                  |                |                |                |  |
|                     | 78         | 10       | 0.3                | 0.3             | 11.5         | 10.6         | 1 170          | 1 080       | 16.3                   | 8 000            | 9 400             |                | 4 400          | 6812           | ZZ               | LLB            |                | LLU            |  |
|                     | 85         | 13       | 1                  | 0.5             | 16.4         | 14.3         | 1 670          |             | 16.4                   | 7 600            | 8 900             |                | 4 300          | 6912           |                  | LLB            |                | LLU            |  |
|                     | 95         | 11       | 0.6                | -               | 20.0         | 17.5         | 2 040          |             | 16.3                   | 7 000            | 8 300             |                |                | 16012          |                  |                |                |                |  |
| 60                  | 95         | 18       | 1.1                | 0.5             | 29.5         | 23.2         | 3 000          |             | 15.6                   | 7 000            | 8 300             |                | 4 100          | 6012           |                  | LLB            |                | LLU            |  |
|                     | 110        | 22       | 1.5                |                 | 52.5         | 36.0         | 5 350          |             | 14.3                   | 6 000            | 7 000             |                | 3 800          | 6212           |                  | LLB            |                | LLU            |  |
|                     | 130<br>150 | 31<br>35 | 2.1                |                 | 82.0<br>102  | 52.0         | 8 350          |             | 13.2                   | 5 400            | 6 300<br>5 700    |                | 3 600          | 6312<br>6412   | ZZ               | LLB            |                | LLU            |  |
|                     | 150        | 33       | 2.1                |                 | 102          | 64.5         | 10 400         | 0 000       | 12.6                   | 4 800            | 5 / 00            |                |                | 0412           |                  |                |                |                |  |


<sup>1 )</sup> Smallest allowable dimension for chamfer dimension  $\emph{r}.$ 





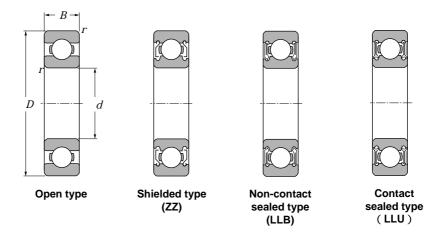


With snap ring



Dynamic equivalent radial load  $P_T = XF_T + YF_B$ 

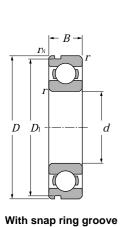
| $\Gamma \Gamma - \Lambda I$           | T + 11 | a                                       |   |      |                                   |
|---------------------------------------|--------|-----------------------------------------|---|------|-----------------------------------|
| $\frac{f_0 \cdot F_a}{C_{\text{or}}}$ | e      | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ |   | Ī    | $\frac{r_{\rm a}}{r_{\rm r}} > e$ |
| Coi                                   |        | X                                       | Y | X    | Y                                 |
| 0.172                                 | 0.19   |                                         |   |      | 2.30                              |
| 0.345                                 | 0.22   |                                         |   |      | 1.99                              |
| 0.689                                 | 0.26   |                                         |   |      | 1.71                              |
| 1.03                                  | 0.28   |                                         |   |      | 1.55                              |
| 1.38                                  | 0.30   | 1                                       | 0 | 0.56 | 1.45                              |
| 2.07                                  | 0.34   |                                         |   |      | 1.31                              |
| 3.45                                  | 0.38   |                                         |   |      | 1.15                              |
| 5.17                                  | 0.42   |                                         |   |      | 1.04                              |
| 6.89                                  | 0.44   |                                         |   |      | 1.00                              |

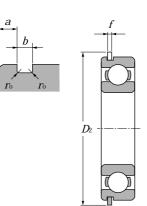

Static equivalent radial load  $P_{\text{Or}} = 0.6F_{\text{r}} + 0.5F_{\text{a}}$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ 

| Bear<br>num | _                           | S             | nap ring<br>dimen |            | е          |               | ring<br>nsions |                 |                               | Abutn       | nent and f | fillet di   | mensior          | าร          |              | Mass <sup>4</sup> ) |
|-------------|-----------------------------|---------------|-------------------|------------|------------|---------------|----------------|-----------------|-------------------------------|-------------|------------|-------------|------------------|-------------|--------------|---------------------|
|             |                             | )             | m                 |            |            |               | nm             |                 |                               |             |            | mm          |                  |             |              | kg                  |
| snap-       | ) snap <sup>2</sup><br>ring | $D_1$         | а                 | b          | $\Gamma_0$ | $D_2$         | f              | (               | $d_{\scriptscriptstyle \! a}$ | $D_{\rm a}$ | $D_{X}$    | $C_{\rm Y}$ | $C_{\mathbb{Z}}$ | $r_{ m as}$ | <i>I</i> Nas |                     |
| groove      | J                           | max           | max               | min        | max        | max           | max            | min             | max <sup>3</sup> )            | max         | (approx.)  | max         | min              | max         | max          | (approx.)           |
|             |                             |               |                   |            |            |               |                |                 |                               |             |            |             |                  |             |              |                     |
| N           | NR                          | 50.7          | 1.3               | 0.95       | 0.25       | 54.8          | 0.85           | 42              | 43                            | 50          | 55.5       | 1.9         | 0.9              | 0.3         | 0.3          | 0.033               |
| N           | NR                          | 60.7          | 1.7               | 0.95       | 0.25       | 64.8          | 0.85           | 44              | 45                            | 58          | 65.5       | 2.3         | 0.9              | 0.6         | 0.5          | 0.11                |
| N           | NR                          | 64.82         | 2.49              | 1.9        | 0.6        | 74.6          | 1.7            | 42<br>45        | 47                            | 66<br>63    | 76         | 3.8         | 1.7              | 0.3<br>1    | 0.5          | 0.125<br>0.19       |
| N           | NR                          | 76.81         | 3.28              | 1.9        | 0.6        | 86.6          | 1.7            | 46.5            | 51                            | 73.5        | 88         | 3.6<br>4.6  | 1.7              | 1           | 0.5          | 0.19                |
| N           | NR                          | 86.79         | 3.28              | 2.7        | 0.6        | 96.5          | 2.46           | 48              | 54                            | 82          | 98         | 5.4         | 2.5              | 1.5         | 0.5          | 0.63                |
|             |                             | 00.70         | 0.20              | 2.1        | 0.0        | 00.0          | 2.10           | 49              | 01                            | 101         | 00         | 0.1         | 2.0              | 2.0         | 0.0          | 1.23                |
|             |                             |               |                   |            |            |               |                |                 |                               |             |            |             |                  |             |              |                     |
| N           | NR                          | 56.7          | 1.3               | 0.95       | 0.25       | 60.8          | 0.85           | 47              | 48                            | 56          | 61.5       | 1.9         | 0.9              | 0.3         | 0.3          | 0.04                |
| N           | NR                          | 66.7          | 1.7               | 0.95       | 0.25       | 70.8          | 0.85           | 49              | 51                            | 64          | 72         | 2.3         | 0.9              | 0.6         | 0.5          | 0.128               |
|             |                             |               |                   |            |            |               |                | 49              |                               | 71          |            |             |                  | 0.6         |              | 0.171               |
| N           | NR                          | 71.83         | 2.49              | 1.9        | 0.6        | 81.6          | 1.7            | 50              | 52.5                          | 70<br>70 5  | 83         | 3.8         | 1.7              | 1           | 0.5          | 0.237               |
| N<br>N      | NR<br>NR                    | 81.81<br>96.8 | 3.28<br>3.28      | 1.9<br>2.7 | 0.6<br>0.6 | 91.6<br>106.5 | 1.7<br>2.46    | 51.5<br>53      | 55.5<br>61.5                  | 78.5<br>92  | 93<br>108  | 4.6<br>5.4  | 1.7<br>2.5       | 1<br>1.5    | 0.5<br>0.5   | 0.398               |
| IN          | INIX                        | 90.0          | 3.20              | 2.1        | 0.6        | 100.5         | 2.40           | 53<br>54        | 61.5                          | 111         | 100        | 5.4         | 2.5              | 2           | 0.5          | 0.814<br>1.53       |
|             |                             |               |                   |            |            |               |                | J <del> 1</del> |                               | 111         |            |             |                  |             |              | 1.00                |
| N           | NR                          | 63.7          | 1.3               | 0.95       | 0.25       | 67.8          | 0.85           | 52              | 54                            | 63          | 68.5       | 1.9         | 0.9              | 0.3         | 0.3          | 0.052               |
| N           | NR                          | 70.7          | 1.7               | 0.95       | 0.25       | 74.8          | 0.85           | 54              | 55.5                          | 68          | 76         | 2.3         | 0.9              | 0.6         | 0.5          | 0.132               |
|             |                             |               |                   |            |            |               |                | 54              |                               | 76          |            |             |                  | 0.6         |              | 0.18                |
| N           | NR                          | 76.81         | 2.49              | 1.9        | 0.6        | 86.6          | 1.7            | 55              | 57.5                          | 75          | 88         | 3.8         | 1.7              | 1           | 0.5          | 0.261               |
| N           | NR                          | 86.79         | 3.28              | 2.7        | 0.6        | 96.5          | 2.46           | 56.5            | 60                            | 83.5        | 98         | 5.4         | 2.5              | 1           | 0.5          | 0.454               |
| N           | NR                          | 106.81        | 3.28              | 2.7        | 0.6        | 116.6         | 2.46           | 59<br>61        | 68.5                          | 101<br>119  | 118        | 5.4         | 2.5              | 2           | 0.5          | 1.07<br>1.88        |
|             |                             |               |                   |            |            |               |                | 01              |                               | 119         |            |             |                  |             |              | 1.00                |
| N           | NR                          | 70.7          | 1.7               | 0.95       | 0.25       | 74.8          | 0.85           | 57              | 59                            | 70          | 76         | 2.3         | 0.9              | 0.3         | 0.3          | 0.083               |
| N           | NR                          | 77.9          | 2.1               | 1.3        | 0.4        | 84.4          | 1.12           | 60              | 61.5                          | 75          | 86         | 2.9         | 1.2              | 1           | 0.5          | 0.18                |
|             |                             |               |                   |            |            |               |                | 59              |                               | 86          |            |             |                  | 0.6         |              | 0.258               |
| N           | NR                          | 86.79         | 2.87              | 2.7        | 0.6        | 96.5          | 2.46           | 61.5            | 64                            | 83.5        | 98         | 5           | 2.5              | 1           | 0.5          | 0.388               |
| N           | NR                          | 96.8          | 3.28              | 2.7        | 0.6        | 106.5         | 2.46           | 63              | 67                            | 92          | 108        | 5.4         | 2.5              | 1.5         | 0.5          | 0.601               |
| N           | NR                          | 115.21        | 4.06              | 3.1        | 0.6        | 129.7         | 2.82           | 64<br>66        | 74                            | 111<br>129  | 131.5      | 6.5         | 2.9              | 2<br>2      | 0.5          | 1.37<br>2.29        |
|             |                             |               |                   |            |            |               |                | 00              |                               | 129         |            |             |                  | 2           |              | 2.29                |
| N           | NR                          | 76.2          | 1.7               | 1.3        | 0.4        | 82.7          | 1.12           | 62              | 64.5                          | 76          | 84         | 2.5         | 1.2              | 0.3         | 0.3          | 0.106               |
| N           | NR                          | 82.9          | 2.1               | 1.3        | 0.4        | 89.4          | 1.12           | 65              | 66.5                          | 80          | 91         | 2.9         | 1.2              | 1           | 0.5          | 0.193               |
|             |                             |               |                   |            |            |               |                | 64              |                               | 91          |            |             |                  | 0.6         |              | 0.283               |
| N           | NR                          | 91.82         | 2.87              | 2.7        | 0.6        | 101.6         | 2.46           | 66.5            | 69                            | 88.5        | 103        | 5           | 2.5              | 1           | 0.5          | 0.414               |
| N           | NR                          | 106.81        | 3.28              | 2.7        | 0.6        | 116.6         | 2.46           | 68              | 75                            | 102         | 118        | 5.4         | 2.5              | 1.5         | 0.5          | 0.783               |
| N           | NR                          | 125.22        | 4.06              | 3.1        | 0.6        | 139.7         | 2.82           | 71              | 80.5                          | 119         | 141.5      | 6.5         | 2.9              | 2           | 0.5          | 1.73                |
|             |                             |               |                   |            |            |               |                | 71              |                               | 139         |            |             |                  | 2           |              | 2.77                |

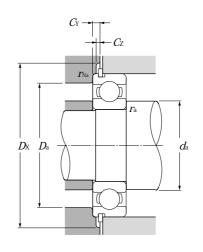
<sup>2 )</sup> Sealed and shielded bearings are also available. 3 ) This dimension applies to sealed and shielded bearings. 4 ) Does not include bearings with snap rings.






d 65 ~ 85mm


| Вс | oundary                                       | / dime                                 | nsions                                      | 5                               | dynamic                                            |                                                      | ad ratings<br>dynamic                                         | static                                                       | Factor                                               | Lim                                                         | niting spe                                                  | eds                                       |                                                       | Bearing                     | numbe                    | rs                       |
|----|-----------------------------------------------|----------------------------------------|---------------------------------------------|---------------------------------|----------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------|-----------------------------|--------------------------|--------------------------|
| ,  |                                               | mm                                     | 4.3                                         | <i>I</i> 'NS                    | ŀ                                                  | κN                                                   | k                                                             | gf                                                           | 0                                                    | grease<br>open type                                         |                                                             |                                           | open                                                  | non-<br>contact<br>shielded | sealed                   | contact<br>sealed        |
| d  | D                                             | В                                      | $\Gamma_{\text{s min}}^{1}$                 | ) min                           | $C_{ m r}$                                         | $C_{ m or}$                                          | $C_{ m r}$                                                    | $C_{ m or}$                                                  | $f_{0}$                                              | ZZ LLB                                                      | Z LB                                                        | LLU                                       | type                                                  | type                        | type                     | type                     |
| 65 | 85<br>90<br>100<br>100<br>120<br>140<br>160   | 10<br>13<br>11<br>18<br>23<br>33<br>37 | 0.6<br>1<br>0.6<br>1.1<br>1.5<br>2.1<br>2.1 | 0.5<br>0.5<br>0.5<br>0.5<br>0.5 | 11.6<br>17.4<br>20.5<br>30.5<br>57.5<br>92.5       | 11.0<br>16.1<br>18.7<br>25.2<br>40.0<br>60.0<br>72.5 | 1 180<br>1 770<br>2 090<br>3 100<br>5 850<br>9 450<br>11 300  | 1 120<br>1 640<br>1 910<br>2 570<br>4 100<br>6 100<br>7 400  | 16.2<br>16.6<br>16.5<br>15.8<br>14.4<br>13.2<br>12.7 | 7 400<br>7 000<br>6 500<br>6 500<br>5 500<br>4 900<br>4 400 | 8 700<br>8 200<br>7 700<br>7 700<br>6 500<br>5 800<br>5 200 | 4 100<br>4 000<br>3 900<br>3 600<br>3 300 | 6813<br>6913<br>16013<br>6013<br>6213<br>6313<br>6413 | ZZ<br>ZZ<br>ZZ<br>ZZ<br>ZZ  | LLB<br>LLB<br>LLB<br>LLB | LLU<br>LLU<br>LLU<br>LLU |
| 70 | 90<br>100<br>110<br>110<br>125<br>150<br>180  | 10<br>16<br>13<br>20<br>24<br>35<br>42 | 0.6<br>1<br>0.6<br>1.1<br>1.5<br>2.1<br>3   | 0.5<br>0.5<br>0.5<br>0.5<br>0.5 | 12.1<br>23.7<br>24.4<br>38.0<br>62.0<br>104<br>128 | 11.9<br>21.2<br>22.6<br>31.0<br>44.0<br>68.0<br>89.5 | 1 230<br>2 420<br>2 480<br>3 900<br>6 350<br>10 600<br>13 100 | 1 220<br>2 160<br>2 300<br>3 150<br>4 500<br>6 950<br>9 100  | 16.1<br>16.3<br>16.5<br>15.6<br>14.5<br>13.2<br>12.7 | 6 900<br>6 500<br>6 100<br>6 100<br>5 100<br>4 600<br>4 100 | 8 100<br>7 700<br>7 100<br>7 100<br>6 000<br>5 400<br>4 800 | 3 800<br>3 700<br>3 600<br>3 400<br>3 100 | 6814<br>6914<br>16014<br>6014<br>6214<br>6314<br>6414 | ZZ<br>ZZ<br>ZZ<br>ZZ<br>ZZ  | LLB<br>LLB<br>LLB<br>LLB | LLU<br>LLU<br>LLU<br>LLU |
| 75 | 95<br>105<br>115<br>115<br>130<br>160<br>190  | 10<br>16<br>13<br>20<br>25<br>37<br>45 | 0.6<br>1<br>0.6<br>1.1<br>1.5<br>2.1<br>3   | 0.5<br>0.5<br>0.5<br>0.5<br>0.5 | 12.5<br>24.4<br>25.0<br>39.5<br>66.0<br>113<br>138 | 12.9<br>22.6<br>24.0<br>33.5<br>49.5<br>77.0<br>99.0 | 1 280<br>2 480<br>2 540<br>4 050<br>6 750<br>11 600<br>14 000 | 1 310<br>2 300<br>2 450<br>3 400<br>5 050<br>7 850<br>10 100 | 16.0<br>16.5<br>16.6<br>15.8<br>14.7<br>13.2<br>12.7 | 6 400<br>6 100<br>5 700<br>5 700<br>4 800<br>4 300<br>3 800 | 7 600<br>7 200<br>6 700<br>6 700<br>5 600<br>5 000<br>4 500 | 3 600<br>3 500<br>3 300<br>3 200<br>2 900 | 6815<br>6915<br>16015<br>6015<br>6215<br>6315<br>6415 | ZZ<br>ZZ<br>ZZ<br>ZZ<br>ZZ  | LLB<br>LLB<br>LLB<br>LLB | LLU<br>LLU<br>LLU<br>LLU |
| 80 | 100<br>110<br>125<br>125<br>140<br>170<br>200 | 10<br>16<br>14<br>22<br>26<br>39<br>48 | 0.6<br>1<br>0.6<br>1.1<br>2<br>2.1<br>3     | 0.5<br>0.5<br>0.5<br>0.5<br>0.5 | 12.7<br>24.9<br>25.4<br>47.5<br>72.5<br>123        | 13.3<br>24.0<br>25.1<br>40.0<br>53.0<br>86.5<br>125  | 1 290<br>2 540<br>2 590<br>4 850<br>7 400<br>12 500<br>16 700 | 1 360<br>2 450<br>2 560<br>4 050<br>5 400<br>8 850<br>12 800 | 16.0<br>16.6<br>16.4<br>15.6<br>14.6<br>13.3<br>12.3 | 6 000<br>5 700<br>5 300<br>5 300<br>4 500<br>4 000<br>3 600 | 7 100<br>6 700<br>6 200<br>6 200<br>5 300<br>4 700<br>4 200 | 3 400<br>3 200<br>3 100<br>3 000<br>2 700 | 6816<br>6916<br>16016<br>6016<br>6216<br>6316<br>6416 | ZZ<br>ZZ<br>ZZ<br>ZZ<br>ZZ  | LLB<br>LLB<br>LLB<br>LLB | LLU<br>LLU<br>LLU<br>LLU |
| 85 | 110<br>120<br>130<br>130<br>150<br>180        | 13<br>18<br>14<br>22<br>28<br>41       | 1<br>1.1<br>0.6<br>1.1<br>2<br>3            | 0.5<br>0.5<br>0.5<br>0.5<br>0.5 | 18.7<br>32.0<br>25.9<br>49.5<br>83.5<br>133        | 19.0<br>29.6<br>26.2<br>43.0<br>64.0<br>97.0         | 1 910<br>3 250<br>2 640<br>5 050<br>8 500<br>13 500           | 1 940<br>3 000<br>2 670<br>4 400<br>6 500<br>9 850           | 16.2<br>16.4<br>16.4<br>15.8<br>14.7<br>13.3         | 5 700<br>5 400<br>5 000<br>5 000<br>4 200<br>3 800          | 6 700<br>6 300<br>5 900<br>5 900<br>5 000<br>4 500          | 3 100<br>3 000<br>2 900<br>2 800<br>2 600 | 6817<br>6917<br>16017<br>6017<br>6217<br>6317         | ZZ<br>ZZ<br>ZZ<br>ZZ<br>ZZ  | LLB<br>LLB<br>LLB<br>LLB | LLU<br>LLU<br>LLU<br>LLU |

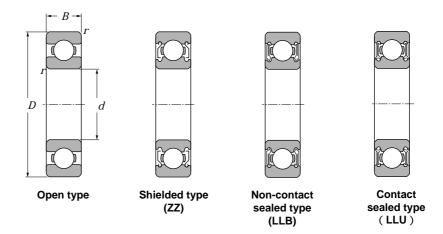
<sup>1 )</sup> Smallest allowable dimension for chamfer dimension  $\emph{r}.$ 





With snap ring

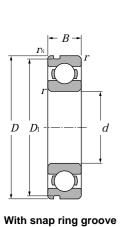


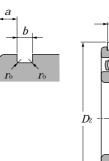

Dynamic equivalent radial load

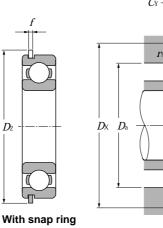
| Pr - AI                               | r + <i>II</i>        | 'a                           |   |      |                       |
|---------------------------------------|----------------------|------------------------------|---|------|-----------------------|
| $\frac{f_0 \cdot F_a}{C_{\text{or}}}$ | e                    | $\frac{F_{\rm a}}{F_{ m r}}$ | e |      | $\frac{r_a}{r_r} > e$ |
| Cor                                   |                      | X                            | Y | X    | Y                     |
| 0.172<br>0.345<br>0.689               |                      |                              |   |      | 2.30<br>1.99<br>1.71  |
| 1.03<br>1.38<br>2.07                  | 0.28<br>0.30<br>0.34 | 1                            | 0 | 0.56 | 1.55<br>1.45<br>1.31  |
| 3.45<br>5.17<br>6.89                  | 0.38<br>0.42<br>0.44 |                              |   |      | 1.15<br>1.04<br>1.00  |

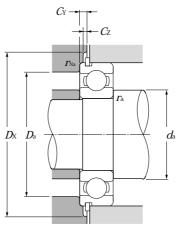
Static equivalent radial load  $P_{\text{Or}} = 0.6F_{\text{r}} + 0.5F_{\text{a}}$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ 

| Bear<br>numl        |      | s              | nap rinç<br>dimen |                 | /e                |                   | ring<br>nsions |          |                  | Abutn   | nent and f | illet di       | mensior | ns              |                     | Mass <sup>4</sup> ) |
|---------------------|------|----------------|-------------------|-----------------|-------------------|-------------------|----------------|----------|------------------|---------|------------|----------------|---------|-----------------|---------------------|---------------------|
| 2.3                 |      | 2.)            | mı                | m               |                   | m                 | ım             |          |                  |         |            | mm             |         |                 |                     | kg                  |
| snap <sup>2</sup> ) |      | $D_1$          |                   | b               | ,,                | $D_2$             | f              |          | $d_{a}$          | $D_{a}$ | $D_{X}$    | C <sub>Y</sub> | Cz      | .,              | n.                  | , i                 |
| ring<br>groove      | ring | <i>D</i> I max | <i>a</i><br>max   | <i>υ</i><br>min | $r_{	ext{o}}$ max | <i>D</i> ₂<br>max | max            | min      | max <sup>3</sup> |         | (approx.)  | max            | min     | r <sub>as</sub> | <i>I</i> Nas<br>max | (approx.)           |
| 9                   |      |                |                   |                 |                   |                   |                |          |                  |         | (-11 - /   |                |         |                 |                     | (-11 - )            |
| N                   | NR   | 82.9           | 1.7               | 1.3             | 0.4               | 89.4              | 1.12           | 69       | 70               | 81      | 91         | 2.5            | 1.2     | 0.6             | 0.5                 | 0.128               |
| N                   | NR   | 87.9           | 2.1               | 1.3             | 0.4               | 94.4              | 1.12           | 70       | 71.5             | 85      | 96         | 2.9            | 1.2     | 1               | 0.5                 | 0.206               |
|                     | 1411 | 07.0           | 2.1               | 1.0             | 0.4               | 54.4              | 1.12           | 69       | 71.0             | 96      | 50         | 2.0            | 1.2     | 0.6             | 0.0                 | 0.307               |
| N                   | NR   | 96.8           | 2.87              | 2.7             | 0.6               | 106.5             | 2.46           | 71.5     | 74               | 93.5    | 108        | 5              | 2.5     | 1               | 0.5                 | 0.421               |
| N                   | NR   | 115.21         | 4.06              | 3.1             | 0.6               | 129.7             | 2.82           | 73       | 80.5             |         | 131.5      | 6.5            | 2.9     | 1.5             | 0.5                 | 0.99                |
| N                   | NR   |                | 4.9               | 3.1             | 0.6               |                   |                | 76       | 86               | –       |            | 7.3            | 2.9     | 2               | 0.5                 |                     |
| IN                  | INIX | 135.23         | 4.9               | 3.1             | 0.6               | 149.7             | 2.82           | 76<br>76 | 00               | 129     | 152        | 1.3            | 2.9     |                 | 0.5                 | 2.08                |
|                     |      |                |                   |                 |                   |                   |                | 76       |                  | 149     |            |                |         | 2               |                     | 3.3                 |
| N                   | NR   | 87.9           | 1.7               | 1.3             | 0.4               | 94.4              | 1.12           | 74       | 75.5             | 86      | 96         | 2.5            | 1.2     | 0.6             | 0.5                 | 0.137               |
| N                   | NR   | 97.9           | 2.5               | 1.3             | 0.4               | 104.4             | 1.12           | 75       | 77.5             | 95      | 106        | 3.3            | 1.2     | 1               | 0.5                 | 0.334               |
|                     |      |                |                   |                 |                   |                   |                | 74       |                  | 106     |            |                |         | 0.6             |                     | 0.441               |
| N                   | NR   | 106.81         | 2.87              | 2.7             | 0.6               | 116.6             | 2.46           | 76.5     | 80.5             | 103.5   | 118        | 5              | 2.5     | 1               | 0.5                 | 0.604               |
| N                   | NR   | 120.22         | 4.06              | 3.1             | 0.6               | 134.7             | 2.82           | 78       | 85               | 117     | 136.5      | 6.5            | 2.9     | 1.5             | 0.5                 | 1.07                |
| N                   |      | 145.24         | 4.9               | 3.1             | 0.6               | 159.7             | 2.82           | 81       | 92.5             |         | 162        | 7.3            | 2.9     | 2               | 0.5                 | 2.52                |
| 14                  | IVIX | 145.24         | 4.5               | 5.1             | 0.0               | 133.1             | 2.02           | 83       | 32.3             | 167     | 102        | 7.5            | 2.3     | 2.5             | 0.5                 | 4.83                |
|                     |      |                |                   |                 |                   |                   |                | 03       |                  | 107     |            |                |         | 2.0             |                     | 4.03                |
| N                   | NR   | 92.9           | 1.7               | 1.3             | 0.4               | 99.4              | 1.12           | 79       | 80               | 91      | 101        | 2.5            | 1.2     | 0.6             | 0.5                 | 0.145               |
| N                   | NR   | 102.6          | 2.5               | 1.3             | 0.4               | 110.7             | 1.12           | 80       | 82.5             | 100     | 112        | 3.3            | 1.2     | 1               | 0.5                 | 0.353               |
|                     |      |                |                   |                 |                   |                   |                | 79       |                  | 111     |            |                |         | 0.6             |                     | 0.464               |
| N                   | NR   | 111.81         | 2.87              | 2.7             | 0.6               | 121.6             | 2.46           | 81.5     | 85.5             | 108.5   | 123        | 5              | 2.5     | 1               | 0.5                 | 0.649               |
| N                   | NR   | 125.22         | 4.06              | 3.1             | 0.6               | 139.7             | 2.82           | 83       | 90.5             | 122     | 141.5      | 6.5            | 2.9     | 1.5             | 0.5                 | 1.18                |
| N                   | NR   | 155.22         | 4.9               | 3.1             | 0.6               | 169.7             | 2.82           | 86       | 99               | 149     | 172        | 7.3            | 2.9     | 2               | 0.5                 | 3.02                |
|                     |      |                |                   | 0               | 0.0               |                   |                | 88       |                  | 177     |            |                |         | 2.5             | 0.0                 | 5.72                |
|                     |      |                |                   |                 |                   |                   |                |          |                  |         |            |                |         |                 |                     | 02                  |
| N                   | NR   | 97.9           | 1.7               | 1.3             | 0.4               | 104.4             | 1.12           | 84       | 85               | 96      | 106        | 2.5            | 1.2     | 0.6             | 0.5                 | 0.154               |
| N                   | NR   | 107.6          | 2.5               | 1.3             | 0.4               | 115.7             | 1.12           | 85       | 88               | 105     | 117        | 3.3            | 1.2     | 1               | 0.5                 | 0.373               |
|                     |      |                |                   |                 |                   |                   |                | 84       |                  | 121     |            |                |         | 0.6             |                     | 0.597               |
| N                   | NR   | 120.22         | 2.87              | 3.1             | 0.6               | 134.7             | 2.82           | 86.5     | 91.5             |         | 136.5      | 5.3            | 2.9     | 1               | 0.5                 | 0.854               |
| N                   | NR   | 135.23         | 4.9               | 3.1             | 0.6               | 149.7             | 2.82           | 89       |                  | 131     | 152        | 7.3            | 2.9     | 2               | 0.5                 | 1.4                 |
| N                   |      | 163.65         | 5.69              | 3.5             | 0.6               | 182.9             | 3.1            | 91       | 105              | 159     | 185        | 8.4            | 3.1     | 2               | 0.5                 | 3.59                |
|                     |      | . 00.00        | 0.00              | 0.0             | 0.0               | .02.0             | 0.1            | 93       |                  | 187     | .00        | J. 1           | 0.1     | 2.5             | 0.0                 | 6.76                |
|                     |      |                |                   |                 |                   |                   |                | 00       |                  | 101     |            |                |         | 2.0             |                     | 0.70                |
| N                   | NR   | 107.6          | 2.1               | 1.3             | 0.4               | 115.7             | 1.12           | 90       | 91               | 105     | 117        | 2.9            | 1.2     | 1               | 0.5                 | 0.27                |
| N                   | NR   | 117.6          | 3.3               | 1.3             | 0.4               | 125.7             | 1.12           | 91.5     | 94               | 113.5   | 127        | 4.1            | 1.2     | 1               | 0.5                 | 0.536               |
|                     |      |                |                   |                 |                   |                   |                | 89       |                  | 126     |            |                |         | 0.6             |                     | 0.626               |
| N                   | NR   | 125.22         | 2.87              | 3.1             | 0.6               | 139.7             | 2.82           | 91.5     | 97               | 123.5   | 141.5      | 5.3            | 2.9     | 1               | 0.5                 | 0.89                |
| N                   | NR   | 145.24         | 4.9               | 3.1             | 0.6               | 159.7             | 2.82           | 94       | 103              | 141     | 162        | 7.3            | 2.9     | 2               | 0.5                 | 1.79                |
| N                   | NR   | 173.66         | 5.69              | 3.5             | 0.6               | 192.9             | 3.1            | 98       | 112              | 167     | 195        | 8.4            | 3.1     | 2.5             | 0.5                 | 4.23                |
|                     |      |                |                   |                 |                   |                   |                |          |                  |         |            |                |         |                 | 0                   | 0                   |
|                     |      |                |                   |                 |                   |                   |                |          |                  |         |            |                |         |                 |                     |                     |





d 90 ~ 120mm


| В   | oundary                                | / dime                           | ensions                          | 6                               | dynamic                                    |                                             | ad ratings<br>dynamic                                | static                                               | Factor                                       | Lim                                                | niting spe                                         | eds                                       |                                               | Bearing                             | numbe                            | rs                              |
|-----|----------------------------------------|----------------------------------|----------------------------------|---------------------------------|--------------------------------------------|---------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|-----------------------------------------------|-------------------------------------|----------------------------------|---------------------------------|
| d   | D                                      | mm                               | <i>I</i> 's min <sup>1</sup> )   | <i>I</i> 'NS min                | •                                          | «N Cor                                      |                                                      | $\mathcal{C}_{	ext{or}}$                             | $f_{\circ}$                                  | grease<br>open type<br>ZZ LLB                      | min <sup>-1</sup><br>oil<br>open type<br>Z LB      | LLU                                       | open<br>type                                  | non-<br>contact<br>shielded<br>type | low-<br>torque<br>sealed<br>type | contact<br>sealed<br>type       |
| 90  | 115<br>125<br>140<br>140<br>160<br>190 | 13<br>18<br>16<br>24<br>30<br>43 | 1<br>1.1<br>1<br>1.5<br>2<br>3   | 0.5<br>0.5<br>0.5<br>0.5<br>0.5 | 19.0<br>33.0<br>33.5<br>58.0<br>96.0       | 19.7<br>31.5<br>33.5<br>49.5<br>71.5        | 1 940<br>3 350<br>3 400<br>5 950<br>9 800<br>14 500  | 2 010<br>3 200<br>3 400<br>5 050<br>7 300<br>10 900  | 16.1<br>16.5<br>16.5<br>15.6<br>14.5<br>13.3 | 5 400<br>5 100<br>4 700<br>4 700<br>4 000<br>3 600 | 6 300<br>6 000<br>5 600<br>5 600<br>4 700<br>4 200 | 3 000<br>2 900<br>2 800<br>2 600<br>2 400 | 6818<br>6918<br>16018<br>6018<br>6218<br>6318 | ZZ<br>ZZ<br>ZZ<br>ZZ<br>ZZ          | LLB<br>LLB<br>LLB<br>LLB         | LLU<br>LLU<br>LLU<br>LLU<br>LLU |
| 95  | 120<br>130<br>145<br>145<br>170<br>200 | 13<br>18<br>16<br>24<br>32<br>45 | 1<br>1.1<br>1<br>1.5<br>2.1<br>3 | 0.5<br>0.5<br>0.5<br>0.5<br>0.5 | 19.3<br>33.5<br>34.5<br>60.5<br>109<br>153 | 20.5<br>33.5<br>35.0<br>54.0<br>82.0<br>119 | 1 970<br>3 450<br>3 500<br>6 150<br>11 100<br>15 600 | 2 090<br>3 400<br>3 550<br>5 500<br>8 350<br>12 100  | 16.1<br>16.6<br>16.5<br>15.8<br>14.4<br>13.3 | 5 000<br>4 800<br>4 500<br>4 500<br>3 700<br>3 300 | 5 900<br>5 700<br>5 300<br>5 300<br>4 400<br>3 900 | 2 800<br>2 800<br>2 600<br>2 500<br>2 300 | 6819<br>6919<br>16019<br>6019<br>6219<br>6319 | ZZ<br>ZZ<br>ZZ<br>ZZ<br>ZZ          | LLB<br>LLB<br>LLB                | LLU<br>LLU<br>LLU<br>LLU        |
| 100 | 125<br>140<br>150<br>150<br>180<br>215 | 13<br>20<br>16<br>24<br>34<br>47 | 1<br>1.1<br>1<br>1.5<br>2.1<br>3 | 0.5<br>0.5<br>0.5<br>0.5        | 19.6<br>41.0<br>35.0<br>60.0<br>122<br>173 | 21.2<br>39.5<br>36.5<br>54.0<br>93.0<br>141 | 2 000<br>4 200<br>3 600<br>6 150<br>12 500<br>17 600 | 2 160<br>4 050<br>3 750<br>5 500<br>9 450<br>14 400  | 16.0<br>16.4<br>16.4<br>15.9<br>14.4<br>13.2 | 4 800<br>4 500<br>4 200<br>4 200<br>3 500<br>3 200 | 5 600<br>5 300<br>5 000<br>5 000<br>4 200<br>3 700 | 2 700<br>2 600<br>2 600<br>2 300<br>2 200 | 6820<br>6920<br>16020<br>6020<br>6220<br>6320 | ZZ<br>ZZ<br>ZZ<br>ZZ<br>ZZ          | LLB<br>LLB<br>LLB                | LLU<br>LLU<br>LLU<br>LLU        |
| 105 | 130<br>145<br>160<br>160<br>190<br>225 | 13<br>20<br>18<br>26<br>36<br>49 | 1<br>1.1<br>1<br>2<br>2.1<br>3   | 0.5<br>0.5<br>0.5<br>0.5        | 19.8<br>42.5<br>52.0<br>72.5<br>133<br>184 | 22.0<br>42.0<br>50.5<br>65.5<br>105<br>153  | 2 020<br>4 300<br>5 300<br>7 400<br>13 600<br>18 700 | 2 240<br>4 300<br>5 150<br>6 700<br>10 700<br>15 700 | 15.9<br>16.5<br>16.3<br>15.8<br>14.4<br>13.2 | 4 600<br>4 300<br>4 000<br>4 000<br>3 400<br>3 000 | 5 400<br>5 100<br>4 700<br>4 700<br>4 000<br>3 600 | 2 500<br>2 400<br>2 300<br>2 100          | 6821<br>6921<br>16021<br>6021<br>6221<br>6321 | ZZ<br>ZZ<br>ZZ<br>ZZ                | LLB<br>LLB                       | LLU<br>LLU<br>LLU<br>LLU        |
| 110 | 140<br>150<br>170<br>170<br>200<br>240 | 16<br>20<br>19<br>28<br>38<br>50 | 1<br>1.1<br>1<br>2<br>2.1<br>3   | 0.5<br>0.5<br>0.5<br>0.5        | 24.9<br>43.5<br>57.5<br>82.0<br>144<br>205 | 28.2<br>44.5<br>56.5<br>73.0<br>117<br>179  | 2 540<br>4 450<br>5 850<br>8 350<br>14 700<br>20 900 | 2 880<br>4 550<br>5 800<br>7 450<br>11 900<br>18 300 | 16.0<br>16.6<br>16.3<br>15.6<br>14.3<br>13.1 | 4 300<br>4 100<br>3 800<br>3 800<br>3 200<br>2 900 | 5 100<br>4 800<br>4 500<br>4 500<br>3 800<br>3 400 | 2 400<br>2 300<br>2 200<br>1 900          | 6822<br>6922<br>16022<br>6022<br>6222<br>6322 | ZZ<br>ZZ<br>ZZ<br>ZZ                | LLB<br>LLB                       | LLU<br>LLU<br>LLU<br>LLU        |
| 120 | 150<br>165<br>180<br>180               | 16<br>22<br>19<br>28             | 1<br>1.1<br>1<br>2               | 0.5<br>0.5<br>0.5               | 28.9<br>53.0<br>63.0<br>85.0               | 33.0<br>54.0<br>63.5<br>79.5                | 2 950<br>5 400<br>6 450<br>8 650                     | 3 350<br>5 500<br>6 450<br>8 100                     | 16.0<br>16.5<br>16.4<br>15.9                 | 4 000<br>3 800<br>3 500<br>3 500                   | 4 700<br>4 400<br>4 100<br>4 100                   | 2 100                                     | 6824<br>6924<br>16024<br>6024                 | ZZ                                  | LLB                              | LLU                             |

<sup>1 )</sup> Smallest allowable dimension for chamfer dimension  $\it r.$ 

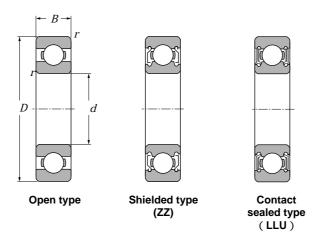








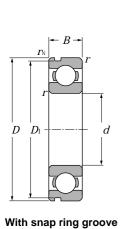
 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ fo∙Fa e $C_{\rm or}$ 2.30 1.99 1.71 0.172 0.19 0.345 0.22 0.689 0.26 1.03 1.38 2.07 1.71 1.55 0.56 1.45 1.31 0.28 0.30 0.34 0 1 3.45 5.17 6.89 1.15 1.04 1.00 0.38 0.42 0.44

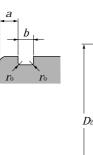

Dynamic equivalent radial load

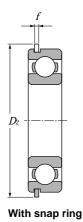
Static equivalent radial load  $P_{\rm or} = 0.6F_{\rm r} + 0.5F_{\rm a}$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ 

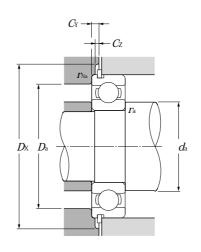
| Bear<br>numb                          | _        | Si               | nap ring<br>dimen |                 | e          | Snap           | _           |              |                                               | Abutn              | nent and f               | illet dir          | nensior        | ıs              |                  | Mass <sup>4)</sup> |
|---------------------------------------|----------|------------------|-------------------|-----------------|------------|----------------|-------------|--------------|-----------------------------------------------|--------------------|--------------------------|--------------------|----------------|-----------------|------------------|--------------------|
|                                       |          | 2)               | mı                |                 |            | m              |             |              |                                               |                    |                          | mm                 |                |                 |                  | kg                 |
| snap <sup>2</sup> )<br>ring<br>groove | ring     | $D_{ m l}$ max   | a<br>max          | <i>b</i><br>min | r₀<br>max  | $D_2$ max      | f<br>max    | min          | $d_{\!\scriptscriptstyle a} \over { m max}^3$ | D <sub>a</sub> max | D <sub>X</sub> (approx.) | C <sub>Y</sub> max | $C_{ m Z}$ min | r <sub>as</sub> | <i>I</i> Nas max | (approx.)          |
| N                                     | NR       | 112.6            | 2.1               | 1.3             | 0.4        | 120.7          | 1.12        | 95           | 96                                            | 110                | 122                      | 2.9                | 1.2            | 1               | 0.5              | 0.285              |
| N                                     | NR       | 122.6            | 3.3               | 1.3             | 0.4        | 130.7          | 1.12        | 96.5<br>95   | 99                                            | 118.5<br>135       | 132                      | 4.1                | 1.2            | 1<br>1          | 0.5              | 0.554<br>0.848     |
| N                                     |          | 135.23           | 3.71              | 3.1             | 0.6        | 149.7          | 2.82        | 98           | 102                                           | 132                | 152                      | 6.1                | 2.9            | 1.5             | 0.5              | 1.02               |
| N<br>N                                | NR<br>NR | 155.22<br>183.64 | 4.9<br>5.69       | 3.1<br>3.5      | 0.6<br>0.6 | 169.7<br>202.9 | 2.82<br>3.1 | 99<br>103    | 109<br>118                                    | 151<br>177         | 172<br>205               | 7.3<br>8.4         | 2.9<br>3.1     | 2<br>2.5        | 0.5<br>0.5       | 2.15<br>4.91       |
|                                       | 1411     | 100.04           | 0.00              | 0.0             | 0.0        | 202.0          | 0.1         | 100          | 110                                           | 177                | 200                      | 0.4                | 0.1            | 2.0             | 0.0              | 7.01               |
| N                                     |          | 117.6            | 2.1               | 1.3             | 0.4        | 125.7          | 1.12        | 100          | 101                                           | 115                | 127                      | 2.9                | 1.2            | 1               | 0.5              | 0.3                |
| N                                     | NR       | 127.6            | 3.3               | 1.3             | 0.4        | 135.7          | 1.12        | 101.5<br>100 | 104                                           | 123.5<br>140       | 137                      | 4.1                | 1.2            | 1<br>1          | 0.5              | 0.579<br>0.885     |
| N                                     | NR       | 140.23           | 3.71              | 3.1             | 0.6        | 154.7          | 2.82        | 103          | 109                                           | 137                | 157                      | 6.1                | 2.9            | 1.5             | 0.5              | 1.08               |
| N                                     |          | 163.65           | 5.69              | 3.5             | 0.6        | 182.9          | 3.1         | 106          | 116                                           | 159                | 185                      | 8.4                | 3.1            | 2               | 0.5              | 2.62               |
| N                                     | NR       | 193.65           | 5.69              | 3.5             | 0.6        | 212.9          | 3.1         | 108          | 125                                           | 187                | 215                      | 8.4                | 3.1            | 2.5             | 0.5              | 5.67               |
| N                                     | NR       | 122.6            | 2.1               | 1.3             | 0.4        | 130.7          | 1.12        | 105          | 106                                           | 120                | 132                      | 2.9                | 1.2            | 1               | 0.5              | 0.313              |
| N                                     | NR       | 137.6            | 3.3               | 1.9             | 0.6        | 145.7          | 1.7         | 106.5        | 110                                           | 133.5              | 147                      | 4.7                | 1.7            | 1               | 0.5              | 0.785              |
| N                                     | NR       | 145.24           | 3.71              | 3.1             | 0.6        | 159.7          | 2.82        | 105<br>108   | 110                                           | 145<br>142         | 162                      | 6.1                | 2.9            | 1<br>1.5        | 0.5              | 0.91<br>1.15       |
| N                                     |          | 173.66           | 5.69              | 3.5             | 0.6        | 192.9          | 3.1         | 111          | 122                                           | 169                | 195                      | 8.4                | 3.1            | 2               | 0.5              | 3.14               |
| N                                     | NR       | 208.6            | 5.69              | 3.5             | 1          | 227.8          | 3.1         | 113          | 133                                           | 202                | 230                      | 8.4                | 3.1            | 2.5             | 0.5              | 7                  |
| N                                     | NR       | 127.6            | 2.1               | 1.3             | 0.4        | 135.7          | 1.12        | 110          |                                               | 125                | 137                      | 2.9                | 1.2            | 1               | 0.5              | 0.33               |
| N                                     | NR       | 142.6            | 3.3               | 1.9             | 0.6        | 150.7          | 1.7         | 111.5        | 115                                           | 138.5              | 152                      | 4.7                | 1.7            | 1               | 0.5              | 0.816              |
| N                                     | NR       | 155.22           | 3.71              | 3.1             | 0.6        | 169.7          | 2.82        | 110<br>114   | 119                                           | 155<br>151         | 172                      | 6.1                | 2.9            | 1<br>2          | 0.5              | 1.2<br>1.59        |
| N                                     |          | 183.64           | 5.69              | 3.5             | 0.6        | 202.9          | 3.1         | 116          | 125                                           | 179                | 205                      | 8.4                | 3.1            | 2               | 0.5              | 3.7                |
| N                                     | NR       | 217.0            | 6.5               | 4.5             | 1          | 237            | 3.5         | 118          | 134                                           | 212                | 239                      | 9.6                | 3.5            | 2.5             | 0.5              | 8.05               |
| N                                     | NR       | 137.6            | 2.5               | 1.9             | 0.6        | 145.7          | 1.7         | 115          |                                               | 135                | 147                      | 3.9                | 1.7            | 1               | 0.5              | 0.515              |
| N                                     | NR       | 147.6            | 3.3               | 1.9             | 0.6        | 155.7          | 1.7         | 116.5        | 120                                           |                    | 157                      | 4.7                | 1.7            | 1               | 0.5              | 0.849              |
| N                                     | NR       | 163.65           | 3.71              | 3.5             | 0.6        | 182.9          | 3.1         | 115<br>119   | 126                                           | 165<br>161         | 185                      | 6.4                | 3.1            | 1<br>2          | 0.5              | 1.46<br>1.96       |
| N                                     |          | 193.65           | 5.69              | 3.5             | 0.6        | 212.9          | 3.1<br>3.1  | 121          | 132                                           | 189                | 215                      | 8.4                | 3.1<br>3.1     | 2               | 0.5              | 4.36               |
| N                                     |          | 232.0            | 6.5               | 4.5             | 1          | 252            | 3.5         | 123          | 149                                           | 227                | 254                      | 9.6                | 3.5            | 2.5             | 0.5              | 9.54               |
| N                                     | NR       | 147.6            | 2.5               | 1.9             | 0.6        | 155.7          | 1.7         | 125          |                                               | 145                | 157                      | 3.9                | 1.7            | 1               | 0.5              | 0.555              |
| N                                     |          | 161.8            | 3.7               | 1.9             | 0.6        | 171.5          | 1.7         | 126.5        |                                               | 158.5              |                          | 5.1                | 1.7            | 1               | 0.5              | 1.15               |
|                                       |          |                  |                   | _               |            |                |             | 125          |                                               | 175                |                          |                    |                | 1               |                  | 1.56               |
| N                                     | NR       | 173.66           | 3.71              | 3.5             | 0.6        | 192.9          | 3.1         | 129          | 136                                           | 171                | 195                      | 6.4                | 3.1            | 2               | 0.5              | 2.07               |

<sup>2 )</sup> Sealed and shielded bearings are also available. 3 ) This dimension applies to sealed and shielded bearings. 4 ) Does not include bearings with snap rings.





d 120 ~ 170mm

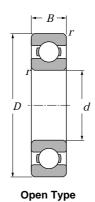

|   | E  | Bounda                                 | ry dir                           | nensio                           | ns                | dynamic                                   |                                           | d ratings                                              | static                                                 | Factor                                       | Lim                                                | iting spee                                         | eds   | Bea                                           | ring num         | bers                      |
|---|----|----------------------------------------|----------------------------------|----------------------------------|-------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------|-----------------------------------------------|------------------|---------------------------|
|   | d  | D                                      | mm                               | $r_{ m smin}^{1)}$               | <i>I</i> 'NS min  |                                           | N $\mathcal{C}_{	ext{or}}$                | •                                                      | $c_{ m or}$                                            | $f_{0}$                                      | grease<br>open type<br>ZZ                          | min <sup>-1</sup><br>oil<br>open type<br>Z         | LLU   | open<br>type                                  | shielded<br>type | contact<br>sealed<br>type |
|   | u  | D                                      | D                                | 1 S IIIII                        | 111111            | Cr                                        | Cor                                       | Cr                                                     | Cor                                                    | 10                                           |                                                    |                                                    | LLO   | турс                                          | турс             | турс                      |
| 1 | 20 | 215<br>260                             | 40<br>55                         | 2.1<br>3                         |                   | 155<br>207                                | 131<br>185                                | 15 900<br>21 100                                       | 13 400<br>18 800                                       | 14.4<br>13.5                                 | 2 900<br>2 600                                     | 3 400<br>3 100                                     | 2 000 | 6224<br>6324                                  | ZZ               | LLU                       |
| 1 | 30 | 165<br>180<br>200<br>200<br>230<br>280 | 18<br>24<br>22<br>33<br>40<br>58 | 1.1<br>1.5<br>1.1<br>2<br>3<br>4 | 0.5<br>0.5<br>0.5 | 37.0<br>65.0<br>80.0<br>106<br>167<br>229 | 41.0<br>67.5<br>79.5<br>101<br>146<br>214 | 3 750<br>6 650<br>8 150<br>10 800<br>17 000<br>23 400  | 4 200<br>6 850<br>8 100<br>10 300<br>14 900<br>21 800  | 16.1<br>16.5<br>16.2<br>15.8<br>14.5<br>13.6 | 3 700<br>3 500<br>3 200<br>3 200<br>2 700<br>2 400 | 4 300<br>4 100<br>3 800<br>3 800<br>3 100<br>2 800 | 1 900 | 6826<br>6926<br>16026<br>6026<br>6226<br>6326 | ZZ               | LLU                       |
| 1 | 40 | 175<br>190<br>210<br>210<br>250<br>300 | 18<br>24<br>22<br>33<br>42<br>62 | 1.1<br>1.5<br>1.1<br>2<br>3<br>4 | 0.5<br>0.5        | 38.5<br>66.5<br>82.0<br>110<br>166<br>253 | 44.5<br>71.5<br>85.0<br>109<br>150<br>246 | 3 900<br>6 800<br>8 350<br>11 200<br>17 000<br>25 800  | 4 550<br>7 300<br>8 650<br>11 100<br>15 300<br>25 100  | 16.0<br>16.6<br>16.4<br>15.9<br>14.8<br>13.6 | 3 400<br>3 200<br>3 000<br>3 000<br>2 500<br>2 200 | 4 000<br>3 800<br>3 500<br>3 500<br>2 900<br>2 600 | 1 800 | 6828<br>6928<br>16028<br>6028<br>6228<br>6328 | ZZ               | LLU                       |
| 1 | 50 | 190<br>210<br>225<br>225<br>270<br>320 | 20<br>28<br>24<br>35<br>45<br>65 | 1.1<br>2<br>1.1<br>2.1<br>3<br>4 | 0.5               | 47.5<br>85.0<br>96.5<br>126<br>176<br>274 | 55.0<br>90.5<br>101<br>126<br>168<br>284  | 4 850<br>8 650<br>9 850<br>12 800<br>18 000<br>28 000  | 5 600<br>9 200<br>10 300<br>12 800<br>17 100<br>28 900 | 16.1<br>16.5<br>16.4<br>15.9<br>15.1<br>13.9 | 3 100<br>3 000<br>2 800<br>2 800<br>2 300<br>2 100 | 3 700<br>3 500<br>3 200<br>3 200<br>2 700<br>2 400 | 1 700 | 6830<br>6930<br>16030<br>6030<br>6230<br>6330 | ZZ               | LLU                       |
| 1 | 60 | 200<br>220<br>240<br>240<br>290<br>340 | 20<br>28<br>25<br>38<br>48<br>68 | 1.1<br>2<br>1.5<br>2.1<br>3<br>4 | 0.5               | 48.5<br>87.0<br>99.0<br>143<br>185<br>278 | 57.0<br>96.0<br>108<br>144<br>186<br>286  | 4 950<br>8 850<br>10 100<br>14 500<br>18 900<br>28 300 | 5 800<br>9 800<br>11 000<br>14 700<br>19 000<br>29 200 | 16.1<br>16.6<br>16.5<br>15.9<br>15.4<br>13.9 | 2 900<br>2 800<br>2 600<br>2 600<br>2 100<br>1 900 | 3 400<br>3 300<br>3 000<br>3 000<br>2 500<br>2 300 | 1 600 | 6832<br>6932<br>16032<br>6032<br>6232<br>6332 | ZZ               | LLU                       |
| 1 | 70 | 215<br>230<br>260<br>260<br>310<br>360 | 22<br>28<br>28<br>42<br>52<br>72 | 1.1<br>2<br>1.5<br>2.1<br>4      |                   | 60.0<br>86.0<br>119<br>168<br>212<br>325  | 70.5<br>95.5<br>128<br>172<br>223<br>355  | 6 100<br>8 750<br>12 100<br>17 200<br>21 700<br>33 500 | 7 200<br>9 750<br>13 100<br>17 600<br>22 800<br>36 000 | 16.1<br>16.5<br>16.4<br>15.8<br>15.3<br>13.6 | 2 700<br>2 600<br>2 400<br>2 400<br>2 000<br>1 800 | 3 200<br>3 100<br>2 800<br>2 800<br>2 400<br>2 100 |       | 6834<br>6934<br>16034<br>6034<br>6234<br>6334 |                  |                           |

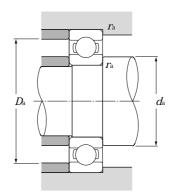
<sup>1 )</sup> Smallest allowable dimension for chamfer dimension  $\emph{r}.$ 











Dynamic equivalent radial load

Static equivalent radial load  $P_{\text{or}} = 0.6F_{\text{r}} + 0.5F_{\text{a}}$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ 

| Bearii<br>numbe       |      | Si              | nap ring<br>dimen |            | е              | Snap<br>dimen  |            |                                            |                  | Abutn                                      | nent and f | illet dir   | mensior    | ıs                             |            | Mass <sup>4</sup> )                          |
|-----------------------|------|-----------------|-------------------|------------|----------------|----------------|------------|--------------------------------------------|------------------|--------------------------------------------|------------|-------------|------------|--------------------------------|------------|----------------------------------------------|
| snap <sup>2</sup> ) s |      | 2)              | mr                |            |                | mı             |            |                                            |                  |                                            | ı          | mm          |            |                                |            | kg                                           |
| ring                  | ring | $D_1$           | а                 | b          | $r_{\text{o}}$ | $D_2$          | f          |                                            | $d_{a}$          | $D_{\rm a}$                                | $D_{X}$    | $C_{\rm Y}$ | <i>C</i> z | $m{r}_{ m as}$                 | rNas       |                                              |
| groove                |      | max             | max               | min        | max            | max            | max        | min                                        | max <sup>3</sup> | ) max                                      | (approx.)  | max         | min        | max                            | max        | (approx.)                                    |
| N                     | NR   | 217.0           | 6.5               | 4.5        | 1              | 227.8          | 3.1        | 131<br>133                                 | 143              | 204<br>247                                 | 230        | 9.2         | 3.1        | 2<br>2.5                       | 0.5        | 5.15<br>12.4                                 |
|                       |      | 161.8<br>176.8  | 3.3<br>3.7        | 1.9<br>1.9 | 0.6<br>0.6     | 171.5<br>186.5 | 1.7<br>1.7 | 136.5<br>138<br>136.5                      |                  | 158.5<br>172<br>193.5                      | 173<br>188 | 4.7<br>5.1  | 1.7<br>1.7 | 1<br>1.5<br>1                  | 0.5<br>0.5 | 0.8<br>1.52<br>2.31                          |
|                       |      | 193.65<br>222.0 | 5.69<br>6.5       | 3.5<br>4.5 | 0.6<br>1       | 212.9<br>242   | 3.1<br>3.5 | 139<br>143<br>146                          | 148              | 191<br>217<br>264                          | 215<br>244 | 8.4<br>9.6  | 3.1<br>3.5 | 2<br>2.5<br>3                  | 0.5<br>0.5 | 3.16<br>5.82<br>15.3                         |
|                       |      | 171.8<br>186.8  | 3.3<br>3.7        | 1.9<br>1.9 | 0.6<br>0.6     | 181.5<br>196.5 | 1.7<br>1.7 | 146.5<br>148<br>146.5<br>149               |                  | 168.5<br>182<br>203.5<br>201               | 183<br>198 | 4.7<br>5.1  | 1.7<br>1.7 | 1<br>1.5<br>1<br>2             | 0.5<br>0.5 | 0.85<br>1.62<br>2.45<br>3.35                 |
| N                     | NR   | 242.0           | 6.,5              | 4.5        | 1              | 262            | 3.5        | 153<br>156                                 |                  | 237<br>284                                 | 264        | 9.6         | 3.5        | 2.5<br>3                       | 0.5        | 7.57<br>18.5                                 |
| N                     | NR   | 186.8           | 3.3               | 1.9        | 0.6            | 196.5          | 1.7        | 156.5<br>159<br>156.5<br>161<br>163<br>166 |                  | 183.5<br>201<br>218.5<br>214<br>257<br>304 | 198        | 4.7         | 1.7        | 1<br>2<br>1<br>2<br>2.5<br>3   | 0.5        | 1.16<br>2.47<br>3.07<br>4.08<br>9.41         |
| N                     | NR   | 196.8           | 3.3               | 1.9        | 0.6            | 206.5          | 1.7        | 166.5<br>169<br>168<br>171<br>173<br>176   | 183              | 193.5<br>211<br>232<br>229<br>277<br>324   | 208        | 4.7         | 1.7        | 1<br>2<br>1.5<br>2<br>2.5<br>3 | 0.5        | 1.23<br>2.61<br>3.64<br>5.05<br>11.7         |
|                       |      |                 |                   |            |                |                |            | 176.5<br>179<br>178<br>181<br>186<br>186   |                  | 208.5<br>221<br>252<br>249<br>294<br>344   |            |             |            | 1<br>2<br>1.5<br>2<br>3<br>3   |            | 1.63<br>2.74<br>4.93<br>6.76<br>14.5<br>30.7 |







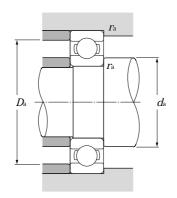
## d 180 ~ 260mm

|     | Boundary dimensions |    |                           | dynamic    | Basic load  | d ratings<br>dynamic | static      | Factor     | Limitin     | g speeds          | Bearing<br>numbers |
|-----|---------------------|----|---------------------------|------------|-------------|----------------------|-------------|------------|-------------|-------------------|--------------------|
|     | mı                  | m  |                           | •          | kN          | kg                   |             |            | m           | nin <sup>-1</sup> | namber 6           |
| 7   |                     |    | 4.)                       |            |             |                      |             | C          | grease      | oil               | open               |
| d   | D                   | В  | $\Gamma_{\rm s  min}^{1}$ | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$           | $C_{ m or}$ | $f_{ m o}$ | lubrication | lubrication       | type               |
|     | 225                 | 22 | 1.1                       | 60.5       | 73.0        | 6 200                | 7 450       | 16.1       | 2 600       | 3 000             | 6836               |
|     | 250                 | 33 | 2                         | 110        | 119         | 11 200               | 12 200      | 16.5       | 2 400       | 2 900             | 6936               |
| 400 | 280                 | 31 | 2                         | 117        | 134         | 11 900               | 13 600      | 16.5       | 2 300       | 2 700             | 16036              |
| 180 | 280                 | 46 | 2.1                       | 189        | 199         | 19 300               | 20 300      | 15.6       | 2 300       | 2 700             | 6036               |
|     | 320                 | 52 | 4                         | 227        | 241         | 23 200               | 24 600      | 15.1       | 1 900       | 2 200             | 6236               |
|     | 380                 | 75 | 4                         | 355        | 405         | 36 000               | 41 500      | 13.9       | 1 700       | 2 000             | 6336               |
|     | 240                 | 24 | 1.5                       | 73.0       | 88.0        | 7 450                | 9 000       | 16.1       | 2 400       | 2 900             | 6838               |
|     | 260                 | 33 | 2                         | 113        | 127         | 11 500               | 13 000      | 16.6       | 2 300       | 2 700             | 6938               |
| 400 | 290                 | 31 | 2                         | 134        | 156         | 13 700               | 15 900      | 16.6       | 2 100       | 2 500             | 16038              |
| 190 | 290                 | 46 | 2.1                       | 197        | 215         | 20 100               | 21 900      | 15.8       | 2 100       | 2 500             | 6038               |
|     | 340                 | 55 | 4                         | 255        | 281         | 26 000               | 28 700      | 15.0       | 1 800       | 2 100             | 6238               |
|     | 400                 | 78 | 5                         | 355        | 415         | 36 000               | 42 500      | 14.1       | 1 600       | 1 900             | 6338               |
|     | 250                 | 24 | 1.5                       | 74.0       | 91.5        | 7 550                | 9 300       | 16.1       | 2 300       | 2 700             | 6840               |
|     | 280                 | 38 | 2.1                       | 157        | 168         | 16 000               | 17 100      | 16.2       | 2 200       | 2 600             | 6940               |
| 200 | 310                 | 34 | 2                         | 142        | 160         | 14 400               | 16 300      | 16.6       | 2 000       | 2 400             | 16040              |
| 200 | 310                 | 51 | 2.1                       | 218        | 243         | 22 200               | 24 800      | 15.6       | 2 000       | 2 400             | 6040               |
|     | 360                 | 58 | 4                         | 269        | 310         | 27 400               | 31 500      | 15.2       | 1 700       | 2 000             | 6240               |
|     | 420                 | 80 | 5                         | 410        | 500         | 42 000               | 51 000      | 13.8       | 1 500       | 1 800             | 6340               |
|     | 270                 | 24 | 1.5                       | 76.5       | 98.0        | 7 800                | 10 000      | 16.0       | 2 100       | 2 400             | 6844               |
|     | 300                 | 38 | 2.1                       | 160        | 180         | 16 400               | 18 400      | 16.4       | 2 000       | 2 300             | 6944               |
| 220 | 340                 | 37 | 2.1                       | 181        | 216         | 18 500               | 22 000      | 16.5       | 1 800       | 2 200             | 16044              |
| 220 | 340                 | 56 | 3                         | 241        | 289         | 24 600               | 29 400      | 15.8       | 1 800       | 2 200             | 6044               |
|     | 400                 | 65 | 4                         | 297        | 365         | 30 500               | 37 000      | 15.3       | 1 500       | 1 800             | 6244               |
|     | 460                 | 88 | 5                         | 410        | 520         | 42 000               | 53 000      | 14.3       | 1 400       | 1 600             | 6344               |
|     | 300                 | 28 | 2                         | 85.0       | 112         | 8 650                | 11 400      | 15.9       | 1 900       | 2 200             | 6848               |
| 240 | 320                 | 38 | 2.1                       | 170        | 203         | 17 300               | 20 700      | 16.5       | 1 800       | 2 100             | 6948               |
| 240 | 360                 | 37 | 2.1                       | 178        | 217         | 18 200               | 22 100      | 16.5       | 1 700       | 2 000             | 16048              |
|     | 360                 | 56 | 3                         | 249        | 310         | 25 400               | 32 000      | 16.0       | 1 700       | 2 000             | 6048               |
|     | 320                 | 28 | 2                         | 87.0       | 120         | 8 900                | 12 200      | 15.8       | 1 700       | 2 000             | 6852               |
| 260 | 360                 | 46 | 2.1                       | 222        | 280         | 22 600               | 28 500      | 16.3       | 1 600       | 1 900             | 6952               |
| 200 | 400                 | 44 | 3                         | 227        | 299         | 23 200               | 30 500      | 16.5       | 1 500       | 1 800             | 16052              |
|     | 400                 | 65 | 4                         | 291        | 375         | 29 700               | 38 500      | 15.8       | 1 500       | 1 800             | 6052               |
|     |                     |    |                           |            |             |                      |             |            |             |                   |                    |

<sup>1 )</sup> Smallest allowable dimension for chamfer dimension  $\emph{r}.$ 

## Dynamic equivalent radial load


 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 


| 11 - 21                                                                 | 11 ' 11 | -                             |   |               |                                                                      |
|-------------------------------------------------------------------------|---------|-------------------------------|---|---------------|----------------------------------------------------------------------|
| $\frac{f_0 \cdot F_a}{C_{\text{or}}}$                                   | e       | $\frac{F_{\rm a}}{F_{\rm r}}$ | e | $\frac{F}{F}$ | $\frac{7_{\rm a}}{7_{\rm r}} > e$                                    |
| Cor                                                                     |         | X                             | Y | X             | Y                                                                    |
| 0.172<br>0.345<br>0.689<br>1.03<br>1.38<br>2.07<br>3.45<br>5.17<br>6.89 | 0.22    | 1                             | 0 | 0.56          | 2.30<br>1.99<br>1.71<br>1.55<br>1.45<br>1.31<br>1.15<br>1.04<br>1.00 |

Static equivalent radial load  $P_{\text{Or}} = 0.6F_{\text{r}} + 0.5F_{\text{a}}$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ 

|         | tment and<br>dimensions         |             | <b>Mass</b><br>kg |
|---------|---------------------------------|-------------|-------------------|
|         |                                 |             | Ng                |
| $d_{a}$ | $D_{\!\scriptscriptstyle  m a}$ | $r_{ m as}$ |                   |
| min     | max                             | max         | (approx.)         |
|         |                                 |             |                   |
| 186.5   | 218.5                           | 1           | 2.03              |
| 189     | 241                             | 2           | 4.76              |
| 189     | 271                             | 2           | 6.49              |
| 191     | 269                             | 2           | 8.8               |
| 196     | 304                             | 3           | 15.1              |
| 196     | 364                             | 3           | 35.6              |
| 198     | 232                             | 1.5         | 2.62              |
| 199     | 251                             | 2           | 4.98              |
| 199     | 281                             | 2           | 6.77              |
| 201     | 279                             | 2           | 9.18              |
| 206     | 324                             | 3           | 18.2              |
| 210     | 380                             | 4           | 41                |
| 208     | 242                             | 1.5         | 2.73              |
| 211     | 269                             | 2           | 7.1               |
| 209     | 301                             | 2           | 8.68              |
| 211     | 299                             | 2           | 11.9              |
| 216     | 344                             | 3           | 21.6              |
| 220     | 400                             | 4           | 46.3              |
| 228     | 262                             | 1.5         | 3                 |
| 231     | 289                             | 2           | 7.69              |
| 231     | 329                             | 2           | 11.3              |
| 233     | 327                             | 2.5         | 15.7              |
| 236     | 384                             | 3           | 30.2              |
| 240     | 440                             | 4           | 60.8              |
| 210     | 110                             | '           | 00.0              |
| 249     | 291                             | 2           | 4.6               |
| 251     | 309                             | 2           | 8.28              |
| 251     | 349                             | 2           | 12.1              |
| 253     | 347                             | 2.5         | 16.8              |
| 269     | 311                             | 2           | 5                 |
| 271     | 349                             | 2           | 13.9              |
| 273     | 387                             | 2.5         | 18.5              |
| 276     | 384                             | 3           | 25                |





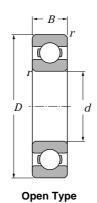


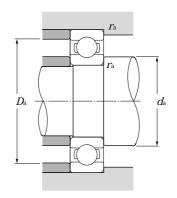
## d 280 ~ 440mm

|      | Boundary dimensions |    |                     |             | Basic loa   |             |             | Factor      | Limitin               | g speeds           | Bearing      |
|------|---------------------|----|---------------------|-------------|-------------|-------------|-------------|-------------|-----------------------|--------------------|--------------|
|      |                     |    |                     | dynamic     | static      | dynamic     | static      |             | m                     | nin <sup>-1</sup>  | numbers      |
|      | mr                  | n  |                     |             | kN          | kg          | <b>j</b> f  |             |                       |                    |              |
| d    | D                   | В  | $r_{\rm s min}^{1}$ | $C_{\rm r}$ | $C_{ m or}$ | $C_{\rm r}$ | $C_{ m or}$ | $f_{\circ}$ | grease<br>lubrication | oil<br>lubrication | open<br>type |
|      |                     |    |                     |             |             |             |             |             |                       |                    |              |
|      | 350                 | 33 | 2                   | 137         | 177         | 13 900      | 18 100      | 16.1        | 1 600                 | 1 900              | 6856         |
| 280  | 380                 | 46 | 2.1                 | 227         | 299         | 23 200      | 30 500      | 16.5        | 1 500                 | 1 800              | 6956         |
| 200  | 420                 | 44 | 3                   | 232         | 315         | 23 700      | 32 500      | 16.5        | 1 400                 | 1 600              | 16056        |
|      | 420                 | 65 | 4                   | 325         | 420         | 33 000      | 43 000      | 15.5        | 1 400                 | 1 600              | 6056         |
|      | 380                 | 38 | 2.1                 | 162         | 210         | 16 500      | 21 500      | 16.1        | 1 500                 | 1 700              | 6860         |
| 200  | 420                 | 56 | 3                   | 276         | 375         | 28 200      | 38 500      | 16.2        | 1 400                 | 1 600              | 6960         |
| 300  | 460                 | 50 | 4                   | 292         | 410         | 29 800      | 42 000      | 16.3        | 1 300                 | 1 500              | 16060        |
|      | 460                 | 74 | 4                   | 355         | 480         | 36 000      | 49 000      | 15.6        | 1 300                 | 1 500              | 6060         |
|      | 400                 | 38 | 2.1                 | 168         | 228         | 17 200      | 23 200      | 16.1        | 1 400                 | 1 600              | 6864         |
| 220  | 440                 | 56 | 3                   | 285         | 405         | 29 000      | 41 000      | 16.4        | 1 300                 | 1 500              | 6964         |
| 320  | 480                 | 50 | 4                   | 300         | 440         | 30 500      | 45 000      | 16.4        | 1 200                 | 1 400              | 16064        |
|      | 480                 | 74 | 4                   | 370         | 530         | 38 000      | 54 000      | 15.7        | 1 200                 | 1 400              | 6064         |
|      | 420                 | 38 | 2.1                 | 170         | 236         | 17 400      | 24 000      | 16.0        | 1 300                 | 1 500              | 6868         |
| 0.40 | 460                 | 56 | 3                   | 293         | 430         | 29 800      | 44 000      | 16.5        | 1 200                 | 1 400              | 6968         |
| 340  | 520                 | 57 | 4                   | 340         | 515         | 35 000      | 52 500      | 16.3        | 1 100                 | 1 300              | 16068        |
|      | 520                 | 82 | 5                   | 420         | 610         | 42 500      | 62 500      | 15.6        | 1 100                 | 1 300              | 6068         |
|      | 440                 | 38 | 2.1                 | 187         | 258         | 19 100      | 26 300      | 16.0        | 1 200                 | 1 400              | 6872         |
| 200  | 480                 | 56 | 3                   | 300         | 455         | 30 500      | 46 500      | 16.5        | 1 100                 | 1 300              | 6972         |
| 360  | 540                 | 57 | 4                   | 350         | 550         | 36 000      | 56 000      | 16.4        | 1 100                 | 1 200              | 16072        |
|      | 540                 | 82 | 5                   | 440         | 670         | 44 500      | 68 000      | 15.7        | 1 100                 | 1 200              | 6072         |
|      | 480                 | 46 | 2.1                 | 231         | 340         | 23 600      | 34 500      | 16.1        | 1 100                 | 1 300              | 6876         |
| 380  | 520                 | 65 | 4                   | 325         | 510         | 33 000      | 52 000      | 16.6        | 1 100                 | 1 200              | 6976         |
|      | 560                 | 82 | 5                   | 455         | 725         | 46 500      | 74 000      | 15.9        | 990                   | 1 200              | 6076         |
|      | 500                 | 46 | 2.1                 | 226         | 340         | 23 100      | 34 500      | 16.0        | 1 100                 | 1 200              | 6880         |
| 400  | 540                 | 65 | 4                   | 335         | 535         | 34 000      | 54 500      | 16.5        | 990                   | 1 200              | 6980         |
|      | 600                 | 90 | 5                   | 510         | 825         | 52 000      | 84 000      | 15.7        | 930                   | 1 100              | 6080         |
|      | 520                 | 46 | 2.1                 | 260         | 405         | 26 500      | 41 500      | 16.1        | 1 000                 | 1 200              | 6884         |
| 420  | 560                 | 65 | 4                   | 340         | 560         | 35 000      | 57 000      | 16.4        | 940                   | 1 100              | 6984         |
|      | 620                 | 90 | 5                   | 530         | 895         | 54 000      | 91 000      | 15.8        | 880                   | 1 000              | 6084         |
| 440  | 540                 | 46 | 2.1                 | 264         | 420         | 26 900      | 43 000      | 16.0        | 950                   | 1 100              | 6888         |
| 440  | 600                 | 74 | 4                   | 365         | 615         | 37 500      | 63 000      | 16.4        | 890                   | 1 000              | 6988         |

<sup>1 )</sup> Smallest allowable dimension for chamfer dimension  $\emph{r}.$ 

## Dynamic equivalent radial load


 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 


| 11 - 711                              | 11 ' 11                      | a                                       |   |                                   |                              |  |
|---------------------------------------|------------------------------|-----------------------------------------|---|-----------------------------------|------------------------------|--|
| $\frac{f_0 \cdot F_a}{C_{\text{or}}}$ | e                            | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | e | $\frac{F_{\rm a}}{F_{\rm r}} > e$ |                              |  |
| Coi                                   |                              | X                                       | Y | X                                 | Y                            |  |
| 0.172<br>0.345<br>0.689<br>1.03       |                              |                                         |   |                                   | 2.30<br>1.99<br>1.71<br>1.55 |  |
| 1.03<br>1.38<br>2.07<br>3.45          | 0.28<br>0.30<br>0.34<br>0.38 | 1                                       | 0 | 0.56                              | 1.45<br>1.31                 |  |
| 5.45<br>5.17<br>6.89                  | 0.38<br>0.42<br>0.44         |                                         |   |                                   | 1.15<br>1.04<br>1.00         |  |

Static equivalent radial load  $P_{\text{Or}} = 0.6F_{\text{r}} + 0.5F_{\text{a}}$  When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ 

| Ab      | utment and                      | d fillet          | Mass      |
|---------|---------------------------------|-------------------|-----------|
|         | dimension                       | l.a.              |           |
|         | mm                              |                   | kg        |
| $d_{a}$ | $D_{\!\scriptscriptstyle  m a}$ | $arGamma_{ m as}$ |           |
| min     | max                             | max               | (approx.) |
|         |                                 |                   |           |
| 289     | 341                             | 2                 | 7.4       |
| 291     | 369                             | 2                 | 14.8      |
| 293     | 407                             | 2.5               | 23        |
| 296     | 404                             | 3                 | 31        |
| 311     | 369                             | 2                 | 10.5      |
| 313     | 407                             | 2.5               | 23.5      |
| 316     | 444                             | 3                 | 32.5      |
| 316     | 444                             | 3                 | 43.8      |
| 331     | 389                             | 2                 | 10.9      |
| 333     | 427                             | 2.5               | 24.8      |
| 336     | 464                             | 3                 | 34.2      |
| 336     | 464                             | 3                 | 46.1      |
| 351     | 409                             | 2                 | 11.5      |
| 353     | 447                             | 2.5               | 26.2      |
| 356     | 504                             | 3                 | 47.1      |
| 360     | 500                             | 4                 | 61.8      |
| 371     | 429                             | 2                 | 12.3      |
| 373     | 467                             | 2.5               | 27.5      |
| 376     | 524                             | 3                 | 49.3      |
| 380     | 520                             | 4                 | 64.7      |
| 391     | 469                             | 2                 | 19.7      |
| 396     | 504                             | 3                 | 39.8      |
| 400     | 540                             | 4                 | 67.5      |
| 411     | 489                             | 2                 | 20.6      |
| 416     | 524                             | 3                 | 41.6      |
| 420     | 580                             | 4                 | 87.6      |
| 431     | 509                             | 2                 | 21.6      |
| 436     | 544                             | 3                 | 43.4      |
| 440     | 600                             | 4                 | 91.1      |
| 451     | 529                             | 2                 | 22.5      |
| 456     | 584                             | 3                 | 60        |





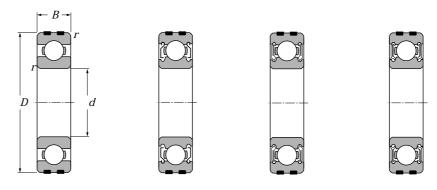


## d 460 ~ 600mm

| Е   | Soundary o | dimensio |                    | Basic load ratings<br>dynamic static dynamic |             |                                   | static      | Factor     |                       | g speeds           | Bearing<br>numbers |
|-----|------------|----------|--------------------|----------------------------------------------|-------------|-----------------------------------|-------------|------------|-----------------------|--------------------|--------------------|
|     | m          | m        |                    | kN                                           |             | kgf                               |             |            | rr                    | nin <sup>-1</sup>  |                    |
| d   | D          | В        | $r_{ m s min}^{1}$ | $C_{ m r}$                                   | $C_{ m or}$ | $C_{\!\scriptscriptstyle \Gamma}$ | $C_{ m or}$ | $f_{ m o}$ | grease<br>lubrication | oil<br>lubrication | open<br>type       |
|     |            |          |                    |                                              |             |                                   |             |            |                       |                    |                    |
| 460 | 580        | 56       | 3                  | 315                                          | 515         | 32 000                            | 52 500      | 16.2       | 900                   | 1 100              | 6892               |
| 400 | 620        | 74       | 4                  | 375                                          | 645         | 38 500                            | 66 000      | 16.4       | 850                   | 1 000              | 6992               |
| 480 | 600        | 56       | 3                  | 320                                          | 540         | 32 500                            | 55 000      | 16.1       | 860                   | 1 000              | 6896               |
| 400 | 650        | 78       | 5                  | 430                                          | 770         | 44 000                            | 78 500      | 16.5       | 810                   | 950                | 6996               |
| 500 | 620        | 56       | 3                  | 325                                          | 560         | 33 500                            | 57 000      | 16.1       | 820                   | 970                | 68/500             |
| 300 | 670        | 78       | 5                  | 445                                          | 805         | 45 500                            | 82 500      | 16.5       | 770                   | 910                | 69/500             |
| 530 | 650        | 56       | 3                  | 330                                          | 580         | 34 000                            | 59 500      | 16.0       | 770                   | 900                | 68/530             |
| 560 | 680        | 56       | 3                  | 335                                          | 600         | 34 000                            | 61 500      | 16.0       | 710                   | 840                | 68/560             |
| 600 | 730        | 60       | 3                  | 375                                          | 705         | 38 500                            | 72 000      | 16.0       | 660                   | 780                | 68/600             |

## Dynamic equivalent radial load

 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 


| 11 - 211                                                        | 11 11                                                | а                             |   |                                   |                      |  |
|-----------------------------------------------------------------|------------------------------------------------------|-------------------------------|---|-----------------------------------|----------------------|--|
| $\frac{f_0 \cdot F_a}{C_{\text{or}}}$                           | e                                                    | $\frac{F_{\rm a}}{F_{\rm r}}$ | e | $\frac{F_{\rm a}}{F_{\rm r}} > e$ |                      |  |
|                                                                 |                                                      | X                             | Y | X                                 | Y                    |  |
| 0.172<br>0.345<br>0.689<br>1.03<br>1.38<br>2.07<br>3.45<br>5.17 | 0.22<br>0.26<br>0.28<br>0.30<br>0.34<br>0.38<br>0.42 | 1                             | 0 | 0.56                              | 1.31<br>1.15<br>1.04 |  |
| 3.45                                                            | 0.38                                                 |                               |   |                                   | 1.15                 |  |

Static equivalent radial load  $P_{\text{Or}} = 0.6 F_{\text{r}} + 0.5 F_{\text{a}}$  When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ 

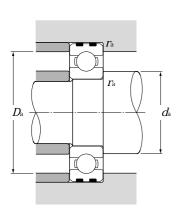
| Abı     | utment and dimension            |             | Mass      |
|---------|---------------------------------|-------------|-----------|
|         | mm                              |             | kg        |
| $d_{a}$ | $D_{\!\scriptscriptstyle  m a}$ | $r_{ m as}$ |           |
| min     | max                             | max         | (approx.) |
|         |                                 |             |           |
| 473     | 567                             | 2.5         | 34.8      |
| 476     | 604                             | 3           | 62.2      |
|         |                                 |             |           |
| 493     | 587                             | 2.5         | 36.2      |
| 500     | 630                             | 4           | 73.0      |
|         |                                 |             |           |
| 513     | 607                             | 2.5         | 37.5      |
| 520     | 650                             | 4           | 75.5      |
|         |                                 |             |           |
| 543     | 637                             | 2.5         | 39.5      |
|         |                                 |             |           |
| 573     | 667                             | 2.5         | 41.5      |
|         |                                 | 0           |           |
| 613     | 717                             | 2.5         | 51.7      |
| 0.0     | , , ,                           | 2.0         | 01.7      |







|             | Open type | Shielded type<br>(ZZ) | Non-contact sealed type | Contact sealed type |
|-------------|-----------|-----------------------|-------------------------|---------------------|
| d 10 ~ 50mm |           | (==)                  | (LLB)                   | (LLU)               |
|             |           |                       |                         |                     |


| $\boldsymbol{a}$ | <i>a</i> 10 ~ 50mm |       | ım                  |             |                 |             |             |         |             | (LI     | -в)       |                         | (LLU)  |                 |                      |        |         |
|------------------|--------------------|-------|---------------------|-------------|-----------------|-------------|-------------|---------|-------------|---------|-----------|-------------------------|--------|-----------------|----------------------|--------|---------|
| В                | oundary            | dimer | sions               | В           | Basic loa       | ad rating   | gs          | Allov   | vable       | Factor  | Limiting  | g speeds                |        | Bea             | ring n               | umbers | 3       |
|                  |                    |       |                     | dynami      | c static        | dynamic     | static      | lc      | ad          |         |           |                         |        |                 | _                    |        |         |
|                  | ,                  | nm    |                     |             | κN              | , i         | kgf         | kN      | kaf         |         | grease    | in <sup>-1</sup><br>oil |        |                 |                      | non-1) | contact |
|                  | '                  | 11111 |                     | r           | AIN.            |             | Ngi         | KIN     | kgf         |         | open type |                         |        | open sh         | nielded <sup>1</sup> |        |         |
| d                | D                  | B     | $r_{ m s  min}^2$ ) | $C_{\rm r}$ | $C_{\text{or}}$ | $C_{\rm r}$ | $C_{ m or}$ | $C_{p}$ | $C_{\rm p}$ | $f_{0}$ | ZZ,LLB    | Z,LB                    | LU,LLU | type            | type                 | type   | type    |
|                  |                    |       |                     |             |                 |             |             |         |             |         |           |                         |        |                 |                      |        |         |
|                  | 26                 | 8     | 0.3                 | 4.55        | 1.96            | 465         | 200         | 1.65    | 168         | 12.4    | 29 000    | 34 000                  | 21 000 | EC-6000         | ZZ                   | LLB    | LLU     |
| 10               | 30                 | 9     | 0.6                 | 5.10        | 2.39            | 520         | 244         | 2.39    | 244         | 13.2    | 25 000    | 30 000                  | 18 000 | EC-6200         | ZZ                   | LLB    | LLU     |
|                  | 35                 | 11    | 0.6                 | 8.20        | 3.50            | 835         | 355         | 3.45    | 355         | 11.4    | 23 000    | 27 000                  | 16 000 | EC-6300         | ZZ                   | LLB    | LLU     |
|                  |                    |       |                     |             |                 |             |             |         |             |         |           |                         |        |                 |                      |        |         |
|                  | 28                 | 8     | 0.3                 | 5.10        | 2.39            | 520         | 244         | 1.78    | 181         | 13.2    | 26 000    | 30 000                  | 18 000 | EC-6001         | ZZ                   | LLB    | LLU     |
| 12               | 32                 | 10    | 0.6                 | 6.10        | 2.75            | 620         | 280         | 2.29    | 233         | 12.7    | 22 000    | 26 000                  | 16 000 | EC-6201         | ZZ                   | LLB    | LLU     |
|                  | 37                 | 12    | 1                   | 9.70        | 4.20            | 990         | 425         | 3.65    | 375         | 11.1    | 20 000    | 24 000                  | 15 000 | EC-6301         | ZZ                   | LLB    | LLU     |
|                  |                    |       |                     |             |                 |             |             |         |             |         |           |                         |        |                 |                      |        |         |
|                  | 32                 | 9     | 0.3                 | 5.60        | 2.83            | 570         | 289         | 2.83    | 289         | 13.9    | 22 000    | 26 000                  | 15 000 | EC-6002         | ZZ                   | LLB    | LLU     |
| 15               | 35                 | 11    | 0.6                 | 7.75        | 3.60            | 790         | 365         | 2.78    | 284         | 12.7    | 19 000    | 23 000                  | 15 000 | EC-6202         | ZZ                   | LLB    | LLU     |
|                  | 42                 | 13    | 1                   | 11.4        | 5.45            | 1 170       | 555         | 4.40    | 450         | 12.3    | 17 000    | 21 000                  | 12 000 | EC-6302         | ZZ                   | LLB    | LLU     |
|                  |                    |       |                     |             |                 |             |             |         |             |         |           |                         |        |                 |                      |        |         |
|                  | 35                 | 10    | 0.3                 | 6.80        | 3.35            | 695         | 345         | 2.88    | 294         | 13.6    | 20 000    | 24 000                  | 14 000 | EC-6003         | ZZ                   | LLB    | LLU     |
| 17               | 40                 | 12    | 0.6                 | 9.60        | 4.60            | 980         | 465         | 3.45    | 350         | 12.8    | 18 000    | 21 000                  | 12 000 | EC-6203         | ZZ                   | LLB    | LLU     |
|                  | 47                 | 14    | 1                   | 13.5        | 6.55            | 1 380       | 665         | 6.55    | 665         | 12.2    | 16 000    | 19 000                  | 11 000 | EC-6303         | ZZ                   | LLB    | LLU     |
|                  |                    |       |                     |             |                 |             |             |         |             |         |           |                         |        |                 |                      |        |         |
|                  | 42                 | 12    | 0.6                 | 9.40        | 5.05            | 955         | 515         | 5.05    | 515         | 13.9    | 18 000    | 21 000                  | 11 000 | EC-6004         | ZZ                   | LLB    | LLU     |
| 20               | 47                 | 14    | 1                   | 12.8        | 6.65            | 1 310       | 680         | 5.05    | 515         | 13.2    | 16 000    | 18 000                  | 10 000 | EC-6204         | ZZ                   | LLB    | LLU     |
|                  | 52                 | 15    | 1.1                 | 15.9        | 7.90            | 1 620       | 805         | 7.90    | 805         | 12.4    | 14 000    | 17 000                  | 10 000 | EC-6304         | ZZ                   | LLB    | LLU     |
|                  |                    |       |                     |             |                 |             |             |         |             |         |           |                         |        |                 |                      |        |         |
|                  | 47                 | 12    | 0.6                 | 10.1        | 5.85            | 1 030       | 595         | 5.85    | 595         | 14.5    | 15 000    | 18 000                  | 9 400  | EC-6005         | ZZ                   | LLB    | LLU     |
| 25               | 52                 | 15    | 1                   | 14.0        | 7.85            | 1 430       | 800         | 6.55    | 665         | 13.9    | 13 000    | 15 000                  | 8 900  | EC-6205         | ZZ                   | LLB    | LLU     |
|                  | 62                 | 17    | 1.1                 | 21.2        | 10.9            | 2 160       | 1 110       | 10.9    | 1 110       | 12.6    | 12 000    | 14 000                  | 8 100  | EC-6305         | ZZ                   | LLB    | LLU     |
|                  |                    |       |                     |             |                 |             |             |         |             |         |           |                         |        |                 |                      |        |         |
|                  | 55                 | 13    | 1                   | 13.2        | 8.30            | 1 350       | 845         | 8.30    | 845         | 14.8    | 13 000    | 15 000                  | 7 700  | EC-6006         | ZZ                   | LLB    | LLU     |
| 30               |                    | 16    | 1                   | 19.5        | 11.3            | 1 980       | 1 150       | 9.85    | 1 000       | 13.8    | 11 000    | 13 000                  | 7 300  | EC-6206         | ZZ                   | LLB    | LLU     |
|                  | 72                 | 19    | 1.1                 | 26.7        | 15.0            | 2 720       | 1 530       | 15.0    | 1 530       | 13.3    | 10 000    | 12 000                  | 6 600  | EC-6306         | ZZ                   | LLB    | LLU     |
|                  | 00                 | 4.4   | 4                   | 40.0        | 10.0            | 4.000       | 4.050       | 40.0    | 4.050       | 440     | 40.000    | 44.000                  | 0.000  | FC C007         | 77                   |        |         |
| 2.5              | 62                 | 14    | 1                   | 16.0        | 10.3            | 1 630       | 1 050       | 10.3    | 1 050       | 14.8    | 12 000    | 14 000                  | 6 800  | EC-6007         | ZZ                   | LLB    | LLU     |
| 35               |                    | 17    | 1.1                 | 25.7        | 15.3            | 2 620       | 1 560       | 14.5    | 1 480       | 13.8    | 9 800     | 11 000                  | 6 300  | EC-6207         | ZZ                   | LLB    | LLU     |
|                  | 80                 | 21    | 1.5                 | 33.5        | 19.1            | 3 400       | 1 950       | 18.5    | 1 890       | 13.1    | 8 800     | 10 000                  | 6 000  | EC-6307         | ZZ                   | LLB    | LLU     |
|                  | 68                 | 15    | 1                   | 16.8        | 11.5            | 1 710       | 1 170       | 11 5    | 1 170       | 15.2    | 10 000    | 12 000                  | 6 100  | EC-6008         | ZZ                   | LLB    | LLU     |
| 40               |                    | 18    | 1.1                 | 29.1        | 17.8            | 2 970       |             | 17.5    | 1 780       | 14.0    | 8 700     | 10 000                  | 5 600  | EC-6208         | ZZ                   | LLB    | LLU     |
| 70               | 90                 | 23    | 1.5                 | 40.5        | 24.0            | 4 150       | 2 450       | 23.4    | 2 380       | 13.2    | 7 800     | 9 200                   | 5 300  | EC-6308         | ZZ                   | LLB    | LLU     |
|                  | 90                 | 23    | 1.5                 | 40.5        | 24.0            | 4 130       | 2 430       | 25.4    | 2 300       | 13.2    | 7 000     | 9 200                   | 3 300  | LC-0300         |                      | LLD    | LLU     |
|                  | 75                 | 16    | 1                   | 21.0        | 15.1            | 2 140       | 1 540       | 15.1    | 1 540       | 15.3    | 9 200     | 11 000                  | 5 400  | EC-6009         | ZZ                   | LLB    | LLU     |
| 45               |                    | 19    | 1.1                 | 32.5        | 20.4            | 3 350       | 2 080       | 20.3    | 2 070       | 14.1    | 7 800     | 9 200                   | 5 200  | EC-6209         | ZZ                   | LLB    | LLU     |
| 7                | 100                | 25    | 1.5                 | 53.0        | 32.0            | 5 400       | 3 250       |         | 2 790       | 13.1    | 7 000     | 8 200                   | 4 700  | EC-6309         | ZZ                   | LLB    | LLU     |
|                  | 100                |       | 1.0                 | 00.0        | 02.0            | 0 100       | 0 200       |         | 2 700       | 10.1    | 7 000     | 0 200                   | 1700   |                 |                      |        |         |
|                  | 80                 | 16    | 1                   | 21.8        | 16.6            | 2 230       | 1 690       | 16.6    | 1 690       | 15.5    | 8 400     | 9 800                   | 5 000  | EC-6010         | ZZ                   | LLB    | LLU     |
| 50               |                    | 20    | 1.1                 | 35.0        | 23.2            | 3 600       |             | 17.7    | 1 810       | 14.4    | 7 100     | 8 300                   | 4 700  | EC-6210         | ZZ                   | LLB    | LLU     |
| 50               | 110                | 27    | 2                   | 62.0        | 38.5            | 6 300       | 3 900       | 33.0    | 3 350       |         | 6 400     | 7 500                   | 4 200  | EC-6310         | ZZ                   | LLB    | LLU     |
|                  |                    |       |                     |             |                 |             |             |         |             |         |           |                         |        | llowable dimens |                      |        |         |

<sup>1</sup> ) This bearing number is for double sealed and double shielded type bearings, but single sealed and single shielded type are also available. 2 ) Smallest allowable dimension for chamfer dimension r.

# **Expansion Compensating Bearings**







| Α                                | Abutment and fillet dimensions |                                  |                 |                        |  |  |  |  |  |  |  |  |  |
|----------------------------------|--------------------------------|----------------------------------|-----------------|------------------------|--|--|--|--|--|--|--|--|--|
|                                  |                                |                                  |                 | kg                     |  |  |  |  |  |  |  |  |  |
| $d_{\!\scriptscriptstyle a}$ min | max <sup>3</sup> )             | $D_{\!\scriptscriptstyle a}$ max | r <sub>as</sub> | open type<br>(approx.) |  |  |  |  |  |  |  |  |  |
| 12                               | 13.5                           | 24                               | 0.3             | 0.019                  |  |  |  |  |  |  |  |  |  |
| 14                               | 16                             | 26                               | 0.6             | 0.031                  |  |  |  |  |  |  |  |  |  |
| 14                               | 17                             | 31                               | 0.6             | 0.051                  |  |  |  |  |  |  |  |  |  |
| 14                               | 16                             | 26                               | 0.3             | 0.021                  |  |  |  |  |  |  |  |  |  |
| 16                               | 17.5                           | 28                               | 0.6             | 0.036                  |  |  |  |  |  |  |  |  |  |
| 17                               | 18.5                           | 32                               | 1               | 0.058                  |  |  |  |  |  |  |  |  |  |
| 17                               | 19                             | 30                               | 0.3             | 0.029                  |  |  |  |  |  |  |  |  |  |
| 19                               | 20.5                           | 31                               | 0.6             | 0.043                  |  |  |  |  |  |  |  |  |  |
| 20                               | 23                             | 37                               | 1               | 0.079                  |  |  |  |  |  |  |  |  |  |
| 19                               | 21                             | 33                               | 0.3             | 0.037                  |  |  |  |  |  |  |  |  |  |
| 21                               | 23                             | 36                               | 0.6             | 0.062                  |  |  |  |  |  |  |  |  |  |
| 22                               | 25                             | 42                               | 1               | 0.11                   |  |  |  |  |  |  |  |  |  |
| 24                               | 26                             | 38                               | 0.6             | 0.066                  |  |  |  |  |  |  |  |  |  |
| 25                               | 28                             | 42                               | 1               | 0.101                  |  |  |  |  |  |  |  |  |  |
| 26.5                             | 28.5                           | 45.5                             | 1               | 0.139                  |  |  |  |  |  |  |  |  |  |
| 29                               | 30.5                           | 43                               | 0.6             | 0.075                  |  |  |  |  |  |  |  |  |  |
| 30                               | 32                             | 47                               | 1               | 0.122                  |  |  |  |  |  |  |  |  |  |
| 31.5                             | 35                             | 55.5                             | 1               | 0.223                  |  |  |  |  |  |  |  |  |  |
| 35                               | 37                             | 50                               | 1               | 0.11                   |  |  |  |  |  |  |  |  |  |
| 35                               | 39                             | 57                               | 1               | 0.191                  |  |  |  |  |  |  |  |  |  |
| 36.5                             | 43                             | 65.5                             | 1               | 0.334                  |  |  |  |  |  |  |  |  |  |
| 40                               | 42                             | 57                               | 1               | 0.148                  |  |  |  |  |  |  |  |  |  |
| 41.5                             | 45                             | 65.5                             | 1               | 0.277                  |  |  |  |  |  |  |  |  |  |
| 43                               | 47                             | 72                               | 1.5             | 0.44                   |  |  |  |  |  |  |  |  |  |
| 45                               | 47                             | 63                               | 1               | 0.183                  |  |  |  |  |  |  |  |  |  |
| 46.5                             | 51                             | 73.5                             | 1               | 0.352                  |  |  |  |  |  |  |  |  |  |
| 48                               | 54                             | 82                               | 1.5             | 0.609                  |  |  |  |  |  |  |  |  |  |
| 50                               | 52.5                           | 70                               | 1               | 0.233                  |  |  |  |  |  |  |  |  |  |
| 51.5                             | 55.5                           | 78.5                             | 1               | 0.391                  |  |  |  |  |  |  |  |  |  |
| 53                               | 61.5                           | 92                               | 1.5             | 0.80                   |  |  |  |  |  |  |  |  |  |
| 55                               | 57.5                           | 75                               | 1               | 0.246                  |  |  |  |  |  |  |  |  |  |
| 56.5                             | 60                             | 83.5                             | 1               | 0.444                  |  |  |  |  |  |  |  |  |  |

Dynamic equivalent radial load

 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 

| $\frac{f_0 \cdot F_a}{C_{\text{or}}}$                                   | e | $\frac{F_{\rm a}}{F_{\rm r}}$ | e | $\frac{F}{F}$ |                                                                      |
|-------------------------------------------------------------------------|---|-------------------------------|---|---------------|----------------------------------------------------------------------|
| Cor                                                                     |   | X                             | Y | X             | Y                                                                    |
| 0.172<br>0.345<br>0.689<br>1.03<br>1.38<br>2.07<br>3.45<br>5.17<br>6.89 |   | 1                             | 0 | 0.56          | 2.30<br>1.99<br>1.71<br>1.55<br>1.45<br>1.31<br>1.15<br>1.04<br>1.00 |

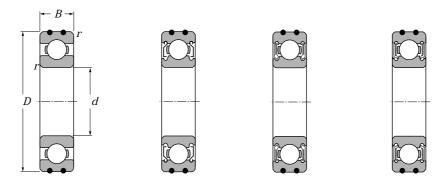
Static equivalent radial load  $P_{\rm Or} = 0.6F_{\rm r} + 0.5F_{\rm a}$  When  $P_{\rm or} < F_{\rm r}$  use  $P_{\rm or} = F_{\rm r}$ 

1.03

101

59

68.5

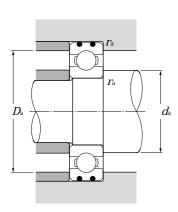

<sup>3 )</sup> This dimension applies to sealed and shielded bearings.

d 10 ~ 45mm

Contact

sealed type

(LLU)



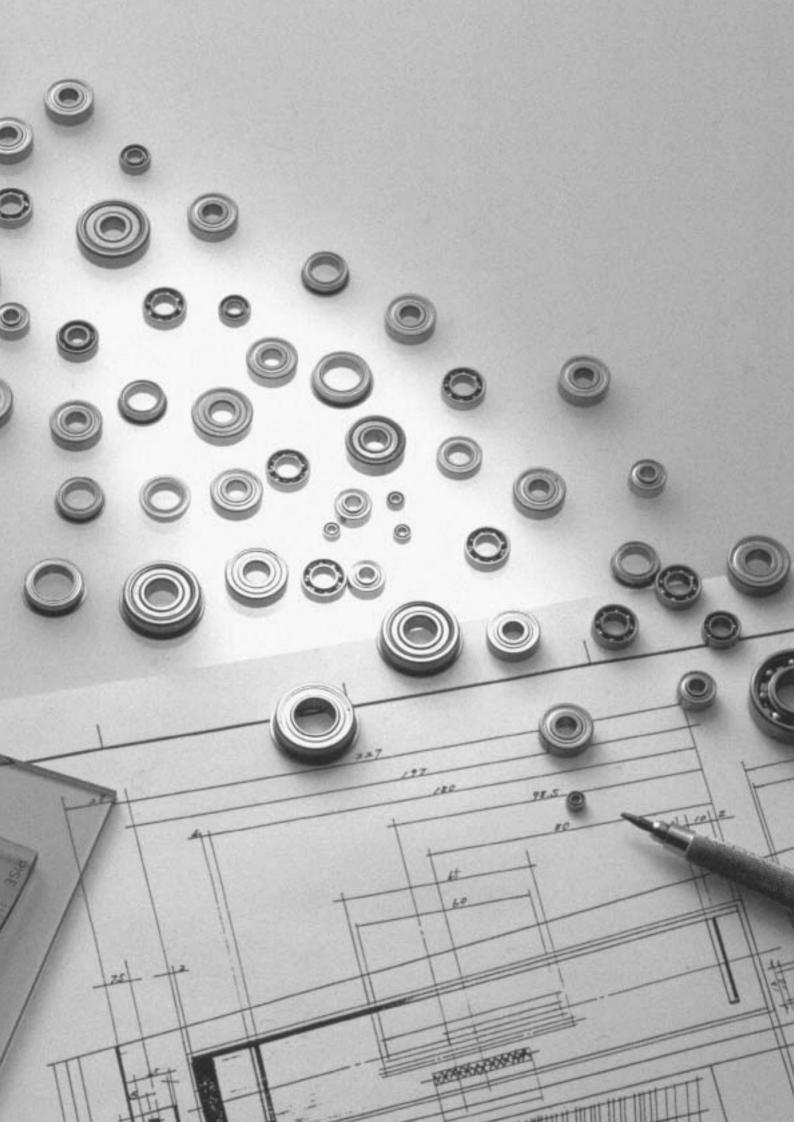

Open type Shielded type Non-contact (ZZ) sealed type (LLB)

| u i | <i>u</i> 10 ~ 4511111 |       |                   |         |             |           | (223)       |         |                               |         | (220)   |           |        |          |           |        |        |
|-----|-----------------------|-------|-------------------|---------|-------------|-----------|-------------|---------|-------------------------------|---------|---------|-----------|--------|----------|-----------|--------|--------|
| Bou | ndary                 | dimen | sions             | В       | asic loa    | ad rating | gs          |         |                               | Factor  | Limitin | g speeds  |        | Bea      | ring n    | umbers | •      |
|     |                       |       |                   | dynami  | c static    | dynamic   | static      | lo      | load<br>min <sup>-1</sup>     |         |         |           |        |          |           | non 1) |        |
|     | m                     | m     |                   | kN kgf  |             | caf       | kN          | kgf     | grease oil                    |         |         |           |        | non-1)   | contact   |        |        |
|     |                       |       |                   |         |             | •         | ·9·         | 10.4    | Kg.                           |         |         | open type |        | open sh  | ielded1   |        | sealed |
| d   | D                     | B     | $r_{ m smin}^2$ ) | $C_{r}$ | $C_{ m or}$ | $C_{r}$   | $C_{ m or}$ | $C_{p}$ | $C_{\scriptscriptstyle  m P}$ | $f_{0}$ | ZZ,LĹB  | Z,LB      | LU,LLU | type     | type      | type   | type   |
|     |                       |       |                   |         |             |           |             |         |                               |         |         |           |        |          |           |        |        |
|     | 26                    | 8     | 0.3               | 4.55    | 1.96        | 465       | 200         | 1.53    | 156                           | 12.4    | 29 000  | 34 000    | 21 000 | AC-6000  | ZZ        | LLB    | LLU    |
| 10  | 30                    | 9     | 0.6               | 5.10    | 2.39        | 520       | 244         | 2.39    | 244                           | 13.2    | 25 000  | 30 000    | 18 000 | AC-6200  | ZZ        | LLB    | LLU    |
|     | 35                    | 11    | 0.6               | 8.20    | 3.50        | 835       | 355         | 2.98    | 305                           | 11.4    | 23 000  | 27 000    | 16 000 | AC-6300  | ZZ        | LLB    | LLU    |
|     |                       |       |                   |         |             |           |             |         |                               |         |         |           |        |          |           |        |        |
|     | 28                    | 8     | 0.3               | 5.10    | 2.39        | 520       | 244         | 1.73    | 177                           | 13.2    | 26 000  | 30 000    | 18 000 | AC-6001  | ZZ        | LLB    | LLU    |
| 12  | 32                    | 10    | 0.6               | 6.10    | 2.75        | 620       | 280         | 2.75    | 280                           | 12.7    | 22 000  | 26 000    | 16 000 | AC-6201  | ZZ        | LLB    | LLU    |
| •-  | 37                    | 12    | 1                 | 9.70    | 4.20        | 990       | 425         | 3.00    | 310                           | 11.1    | 20 000  | 24 000    | 15 000 | AC-6301  | ZZ        | LLB    | LLU    |
|     | ٠.                    |       | •                 | 00      | 0           |           |             | 0.00    |                               |         |         |           |        |          |           |        |        |
|     | 32                    | 9     | 0.3               | 5.60    | 2.83        | 570       | 289         | 2.43    | 247                           | 13.9    | 22 000  | 26 000    | 15 000 | AC-6002  | ZZ        | LLB    | LLU    |
| 15  | 35                    | 11    | 0.6               | 7.75    | 3.60        | 790       | 365         | 2.71    | 277                           | 12.7    | 19 000  | 23 000    | 15 000 | AC-6202  | ZZ        | LLB    | LLU    |
|     | 42                    | 13    | 1                 | 11.4    | 5.45        |           | 555         | 3.90    | 400                           | 12.3    | 17 000  | 21 000    | 12 000 | AC-6302  | ZZ        | LLB    | LLU    |
|     |                       | . •   | •                 |         | 5. 10       | 0         |             | 0.00    |                               | 0       | 000     | 000       | 555    |          |           |        |        |
|     | 35                    | 10    | 0.3               | 6.80    | 3.35        | 695       | 345         | 2.44    | 249                           | 13.6    | 20 000  | 24 000    | 14 000 | AC-6003  | ZZ        | LLB    | LLU    |
| 17  | 40                    | 12    | 0.6               | 9.60    | 4.60        | 980       | 465         | 3.50    | 355                           | 12.8    | 18 000  | 21 000    | 12 000 | AC-6203  | ZZ        | LLB    | LLU    |
|     | 47                    | 14    | 1                 | 13.5    | 6.55        | 1 380     | 665         | 5.10    | 520                           | 12.2    | 16 000  | 19 000    | 11 000 | AC-6303  | ZZ        | LLB    | LLU    |
|     | .,                    |       | •                 | 10.0    | 0.00        |           |             | 0.10    |                               |         | 10 000  | 10 000    | 11 000 | 710 0000 |           |        |        |
|     | 42                    | 12    | 0.6               | 9.40    | 5.05        | 955       | 515         | 3.80    | 385                           | 13.9    | 18 000  | 21 000    | 11 000 | AC-6004  | ZZ        | LLB    | LLU    |
| 20  | 47                    | 14    | 1                 | 12.8    |             | 1 310     | 680         | 4.20    | 430                           | 13.2    | 16 000  | 18 000    | 10 000 | AC-6204  | ZZ        | LLB    | LLU    |
| _0  | 52                    | 15    | 1.1               | 15.9    |             | 1 620     | 805         | 5.40    | 550                           | 12.4    | 14 000  | 17 000    | 10 000 | AC-6304  | ZZ        | LLB    | LLU    |
|     | - 02                  | 10    |                   | 10.0    | 7.00        | 1 020     |             | 0.10    | 000                           | 12.1    | 11000   | 17 000    | 10 000 | 710 0004 |           |        |        |
|     | 47                    | 12    | 0.6               | 10.1    | 5.85        | 1 030     | 595         | 4.50    | 460                           | 14.5    | 15 000  | 18 000    | 9 400  | AC-6005  | ZZ        | LLB    | LLU    |
| 25  | 52                    | 15    | 1                 | 14.0    |             | 1 430     | 800         | 5.80    | 590                           | 13.9    | 13 000  | 15 000    | 8 900  | AC-6205  | ZZ        | LLB    | LLU    |
| 20  | 62                    | 17    | 1.1               | 21.2    | 10.9        | 2 160     | 1 110       | 7.30    | 745                           | 12.6    | 12 000  | 14 000    | 8 100  | AC-6305  | ZZ        | LLB    | LLU    |
|     | - 02                  | ''    |                   |         | 10.0        | 2 100     | 1 110       | 7.00    | 7 10                          | 12.0    | 12 000  | 11000     | 0 100  | 710 0000 |           |        |        |
|     | 55                    | 13    | 1                 | 13.2    | 8.30        | 1 350     | 845         | 6.85    | 695                           | 14.8    | 13 000  | 15 000    | 7 700  | AC-6006  | ZZ        | LLB    | LLU    |
| 30  | 62                    | 16    | 1                 | 19.5    | 11.3        | 1 980     | 1 150       | 7.55    | 770                           | 13.8    | 11 000  | 13 000    | 7 300  | AC-6206  | ZZ        | LLB    | LLU    |
| 30  | 72                    | 19    | 1.1               | 26.7    | 15.0        | 2 720     | 1 530       | 11.0    | 1 120                         | 13.3    | 10 000  | 12 000    | 6 600  | AC-6306  | ZZ        | LLB    | LLU    |
|     | '-                    | 10    |                   | 20.7    | 10.0        | 2 7 2 0   | 1 000       | 11.0    | 1 120                         | 10.0    | 10 000  | 12 000    |        | 710 0000 |           |        |        |
|     | 62                    | 14    | 1                 | 16.0    | 10.3        | 1 630     | 1 050       | 8.95    | 910                           | 14.8    | 12 000  | 14 000    | 6 800  | AC-6007  | ZZ        | LLB    | LLU    |
| 35  | 72                    | 17    | 1.1               | 25.7    | 15.3        | 2 620     | 1 560       | 9.65    | 985                           | 13.8    | 9 800   | 11 000    | 6 300  | AC-6207  | ZZ        | LLB    | LLU    |
| 33  | 80                    | 21    | 1.5               | 33.5    | 19.1        | 3 400     | 1 950       | 13.4    | 1 360                         | 13.1    | 8 800   | 10 000    | 6 000  | AC-6307  | ZZ        | LLB    | LLU    |
|     | - 00                  | ۷ ا   | 1.0               | 00.0    | 10.1        | 0 400     | 1 300       | 10.4    | 1 000                         | 10.1    | 0 000   | 10 000    | 0 000  | AO 0001  |           |        | LLU    |
|     | 80                    | 18    | 1.1               | 29.1    | 17.8        | 2 970     | 1 820       | 11.6    | 1 190                         | 14.0    | 8 700   | 10 000    | 5 600  | AC-6208  | <b>Z7</b> | LLB    | LLU    |
| 40  | 90                    | 23    | 1.5               | 40.5    | 24.0        | 4 150     | 2 450       |         |                               |         | 7 800   | 9 200     |        | AC-6308  |           | LLB    | LLU    |
|     | 30                    |       | 1.0               | 40.0    | 27.0        | + 100     | 2 400       | 10.0    | 1 000                         | 10.2    | 7 000   | 3 200     | 0 000  | AO 0000  |           |        | LLU    |
| . – | 85                    | 19    | 1.1               | 32.5    | 20.4        | 3 350     | 2 080       | 14 7    | 1 500                         | 14 1    | 7 800   | 9 200     | 5 200  | AC-6209  | 77        | LLB    | LLU    |
| 45  | 100                   | 25    | 1.5               | 53.0    | 32.0        | 5 400     | 3 250       |         |                               |         | 7 000   | 8 200     | 4 700  | AC-6309  |           | LLB    | LLU    |
|     | 100                   | 20    | 1.5               | 55.0    | JZ.U        | J 700     | 0 200       | 21.0    | 2 200                         | 10.1    | 7 000   | 0 200     | 7 700  | AO-0303  | LL        | LLD    | LLU    |
|     |                       |       |                   |         |             |           |             |         |                               |         |         |           |        |          |           |        |        |
|     |                       |       |                   |         |             |           |             |         |                               |         |         |           |        |          |           |        |        |
|     |                       |       |                   |         |             |           |             |         |                               |         |         |           |        |          |           |        |        |
|     |                       |       |                   |         |             |           |             |         |                               |         |         |           |        |          |           |        |        |
|     |                       |       |                   |         |             |           |             |         |                               |         |         |           |        |          |           |        |        |
|     |                       |       |                   |         |             |           |             |         |                               |         |         |           |        |          |           |        |        |

<sup>1</sup> ) This bearing number is for double sealed and double shielded type bearings, but single sealed and single shielded type are also available. 2 ) Smallest allowable dimension for chamfer dimension r.






| ,                             | Abutment<br>dimen | sions                        | t           | <b>Mass</b><br>kg |
|-------------------------------|-------------------|------------------------------|-------------|-------------------|
| $d_{\scriptscriptstyle \! a}$ |                   | $D_{\!\scriptscriptstyle a}$ | <i>r</i> as | open type         |
| min                           | max <sup>3)</sup> | max                          | max         | (approx.)         |
| 40                            | 40.5              | 0.4                          |             | 0.040             |
| 12                            | 13.5              | 24                           | 0.3         | 0.019             |
| 14                            | 16                | 26                           | 0.6         | 0.031             |
| 14                            | 17                | 31                           | 0.6         | 0.051             |
| 14                            | 16                | 26                           | 0.3         | 0.021             |
| 16                            | 17.5              | 28                           | 0.6         | 0.036             |
| 17                            | 18.5              | 32                           | 1           | 0.058             |
| 47                            | 40                | 20                           | 0.0         | 0.000             |
| 17<br>19                      | 19                | 30                           | 0.3         | 0.029             |
| 20                            | 20.5<br>23        | 31<br>37                     | 0.6<br>1    | 0.043<br>0.079    |
|                               | 23                | 31                           | ı           | 0.079             |
| 19                            | 21                | 33                           | 0.3         | 0.037             |
| 21                            | 23                | 36                           | 0.6         | 0.062             |
| 22                            | 25                | 42                           | 1           | 0.11              |
| 24                            | 26                | 38                           | 0.6         | 0.066             |
| 25                            | 28                | 42                           | 1           | 0.101             |
| 26.5                          | 28.5              | 45.5                         | 1           | 0.139             |
|                               |                   | 40                           |             |                   |
| 29                            | 30.5              | 43                           | 0.6         | 0.075             |
| 30                            | 32                | 47<br>55 5                   | 1           | 0.122             |
| 31.5                          | 35                | 55.5                         | 1           | 0.223             |
| 35                            | 37                | 50                           | 1           | 0.11              |
| 35                            | 39                | 57                           | 1           | 0.191             |
| 36.5                          | 43                | 65.5                         | 1           | 0.334             |
| 40                            | 42                | 57                           | 1           | 0.148             |
| 41.5                          | 42<br>45          | 65.5                         | 1           | 0.148             |
| 43                            | 43<br>47          | 72                           | 1.5         | 0.277             |
|                               | "                 |                              | 1.0         | U. 1 <sup>-</sup> |
| 46.5                          | 51                | 73.5                         | 1           | 0.352             |
| 48                            | 54                | 82                           | 1.5         | 0.609             |
| 51.5                          | 55.5              | 78.5                         | 1           | 0.391             |
| 51.5                          | 61.5              | 78.5<br>92                   | 1.5         | 0.80              |
| 55                            | 01.0              | 92                           | 1.0         | 0.00              |

## Dynamic equivalent radial load

 $P_{\Gamma} = XF_{\Gamma} + YF_{a}$ 

| $\frac{f_0 \cdot F_a}{C_{\text{or}}}$                                   | e | $\frac{F_{\rm a}}{F_{\rm r}}$ | e | $\frac{F}{F}$ |                                                                      |
|-------------------------------------------------------------------------|---|-------------------------------|---|---------------|----------------------------------------------------------------------|
| Cor                                                                     |   | X                             | Y | X             | Y                                                                    |
| 0.172<br>0.345<br>0.689<br>1.03<br>1.38<br>2.07<br>3.45<br>5.17<br>6.89 |   | 1                             | 0 | 0.56          | 2.30<br>1.99<br>1.71<br>1.55<br>1.45<br>1.31<br>1.15<br>1.04<br>1.00 |

Static equivalent radial load  $P_{\text{Or}} = 0.6F_{\text{r}} + 0.5F_{\text{a}}$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ 





Open type

Shielded type

Shielded type with snap ring

## 1. Design features and special characteristics

The dimensional range of miniature and extra small ball bearings is given in **Table 1**. Boundary dimensions for both metric and inch systems are in accordance with the internationally specified ISO and ANSI/ABMA standards. The most widely used sealed and shielded type ball bearings have a 1–2 mm wider width dimension than open type bearings.

The main variations of these bearings are shown in **Table 2**. Bearings with snap rings, which simplify the bearing housing construction and design, have also been serialized and are listed in dimension tables. Among the most generally used sealed and shielded bearings are standard ZZ and ZZA type which incorporate non-contact steel shield plates. **Diagram 1** also shows non-contact type rubber sealed LLB and resin sealed SSA type bearings, and the contact-type rubber sealed LLU bearing.

Table 1 Dimensional range

| Bearing                   | Dimensional range                                            |  |  |  |  |  |  |
|---------------------------|--------------------------------------------------------------|--|--|--|--|--|--|
| Miniature ball bearings   | Nominal outer diameter $D < 9$ mm                            |  |  |  |  |  |  |
| Extra small ball bearings | Nominal bore diameter d<10mm<br>Nominal outer diameter D 9mm |  |  |  |  |  |  |

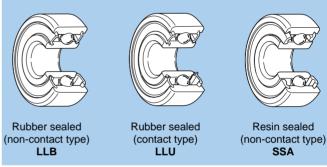



Diagram 1.

Table 2 Main types and construction

| Type          |              | Standard type code          |             | Flange-attached type code |                                       |             |  |  |  |  |
|---------------|--------------|-----------------------------|-------------|---------------------------|---------------------------------------|-------------|--|--|--|--|
| Туре          | Construction | Metric series               | Inch series | Construction              | Metric series                         | Inch series |  |  |  |  |
| Open type     |              | 6<br>BC                     | R           |                           | FL6<br>FLBC                           | FLR         |  |  |  |  |
| Shielded type |              | 6××ZZ<br>W6××ZZ<br>WBC×××ZZ | RAxxZZ      |                           | FL6 xxxZZ<br>FLW6 xxxZZ<br>FLWBC xxZZ | FLRA x x ZZ |  |  |  |  |

Note: 1. Representative type codes are shown. For further details, please refer to dimension tables.

<sup>2.</sup> May change to ZA or SA for shielded type bearings, according to the bearing number.

## 2. Standard cage types

Pressed cage are standard for these bearings. However, molded resin cage are used for some bearings depending on the application.

## 3. Dimensional and rotational accuracy

The accuracy of miniature and extra small ball bearings complies with JIS standards. Accuracy standards are listed in the Bearings Tolerances clause on page A-35. Flange accuracies are listed in **Table 3**.

Table 3 Tolerance and tolerance values for outer ring flange

Units  $\mu \, m$ 

| Accurac      | cy class | Outer diameter dimensional tolerance $\Delta D_{18}$ or $\Delta D_{28}$ Upper Lower | Outer ring<br>surface runout<br>for rear surface<br>Sb1<br>Max. | Back face<br>axial runout<br>Seat<br>Max. | Width dimension tolerance  Δ <sub>C1S</sub> or Δ <sub>C2S</sub> Upper Lower | Width unevenness  Vois or Vos Max.     |
|--------------|----------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------|
|              | Class 0  |                                                                                     |                                                                 |                                           |                                                                             | Identical to same bearing's inner ring |
|              | Class 6  |                                                                                     |                                                                 |                                           |                                                                             | V <sub>B</sub> s                       |
| ISO standard | Class 5  | *                                                                                   | 8                                                               | 11                                        | Identical to same bearing's inner                                           | 5                                      |
| 130 Standard | Class 4  | (see table below)                                                                   | 4                                                               | 7                                         | ring $V_{BS}$                                                               | 2.5                                    |
|              | Class 2  |                                                                                     | 1.5                                                             | 3 <b>●</b><br>4                           |                                                                             | 1.5                                    |

<sup>1</sup> Nominal outer diameter, 18 mm or less.

^

Units µm

| Flange i<br>outer di<br>Di oi<br>mr | ameter<br>· D <sub>2</sub> | Outer diameter dimensional tolerance $\Delta_{D18}$ or $\Delta_{D28}$ |       |  |  |  |  |  |
|-------------------------------------|----------------------------|-----------------------------------------------------------------------|-------|--|--|--|--|--|
| over                                | incl.                      | Upper                                                                 | Lower |  |  |  |  |  |
|                                     | 10                         | + 220                                                                 | - 36  |  |  |  |  |  |
| 10                                  | 18                         | + 270                                                                 | - 43  |  |  |  |  |  |
| 18                                  | 30                         | + 330                                                                 | - 52  |  |  |  |  |  |
| 30                                  | 50                         | + 390                                                                 | - 62  |  |  |  |  |  |

## 4. Radial internal clearance

Radial internal clearance values should be applied as listed in the table regarding the Bearing Internal Clearance and Preload clause on page A-58.

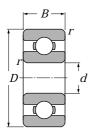
However, for miniature and extra small bearings, the radial clearance values for high precision bearings given in **Table 4** 

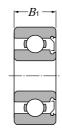
are applied in many cases.

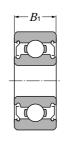
For more specific selection information, please refer to the NTN Miniature and Extra Small Ball Bearings Catalog, or contact NTN Engineering.

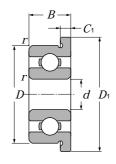
Table 4 Radial internal clearance for high precision bearings

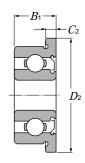
Units µr


| MIL Standard |      | Tig  | jht  |      | Standard |      |      |      |      |      | Loose |      | Extra Loose |      |
|--------------|------|------|------|------|----------|------|------|------|------|------|-------|------|-------------|------|
| Code         | C25  | s    | CNS  |      | CNM      |      | CNL  |      | C3S  |      | СЗМ   |      | C3L         |      |
| Internal     | Min. | Мах. | Min. | Max. | Min.     | Max. | Min. | Max. | Min. | Max. | Min.  | Max. | Min.        | Max. |
| clearance    | 0    | 5    | 3    | 8    | 5        | 10   | 8    | 13   | 10   | 15   | 13    | 20   | 20          | 28   |


Note: 1. These standards are specified in accordance with MIL B-23063. However, NTN codes are shown.


<sup>2.</sup> Clearance values do not include compensation for measuring load.





## **Metric series**









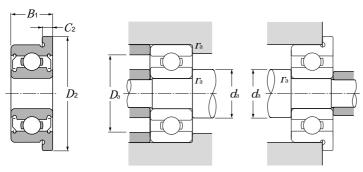


Open type

With single shield (Z)

With double shield (ZZ)

Open type with flange (FL)


With flanged outer ring and single shield (FL...Z)

## d 1.5 ~ 5mm

|   |    |    |     |       | Bounda | ry dimen | sions |       |                      |              |             | ad ratings  |                 | Factor  | Limiting           | speeds            |
|---|----|----|-----|-------|--------|----------|-------|-------|----------------------|--------------|-------------|-------------|-----------------|---------|--------------------|-------------------|
|   |    |    |     |       |        |          |       |       |                      | dynamic      |             | dynamic     | static          |         |                    |                   |
|   |    |    |     |       |        | mm       |       |       |                      |              | N           | kgf         |                 |         | n                  | nin <sup>-1</sup> |
|   | d  | D  | В   | $B_1$ | $D_1$  | $D_2$    | $C_1$ | $C_2$ | $r_{\rm s  min}^{1}$ | $C_{\Gamma}$ | $C_{ m or}$ | $C_{\rm r}$ | $C_{\text{or}}$ | $f_{0}$ | grease             | oil               |
|   |    |    |     |       |        |          |       |       |                      |              |             |             |                 |         |                    |                   |
|   |    | 4  | 1.2 | 2     | 5      | 5        | 0.4   | 0.6   | 0.15                 | 102          | 29.0        | 10.0        | 3.00            | 13.6    | 88 000             | 100 000           |
| 1 | .5 | 5  | 2   | 2.6   | 6.5    | 6.5      | 0.6   | 8.0   | 0.15                 | 171          | 51.0        | 17.0        | 5.00            | 13.3    | 79 000             | 93 000            |
|   |    | 6  | 2.5 | 3     | 7.5    | 7.5      | 0.6   | 0.8   | 0.15                 | 274          | 86.0        | 28.0        | 9.00            | 12.3    | 71 000             | 84 000            |
|   |    |    | 4.0 | 0     |        |          |       |       | 0.05                 | 404          | 07.0        | 44.0        | 4.00            | 440     | 00.000             | 00.000            |
|   |    | 4  | 1.2 | 2     | 0.4    | C 4      | 0.5   | 0.0   | 0.05                 | 104          | 37.0        | 11.0        | 4.00            | 14.8    | 83 000             | 98 000            |
|   |    | 5  | 1.5 | 2.3   | 6.1    | 6.1      | 0.5   | 0.6   | 0.08                 | 171<br>171   | 51.0        | 17.0        | 5.00            | 13.3    | 74 000             | 87 000            |
|   | 2  | 5  | 2   | 2.5   | 7.5    | 7.5      | 0.0   | 0.0   | 0.1                  | 171          | 51.0        | 17.0        | 5.00            | 13.3    | 74 000             | 87 000            |
| 4 | _  | 6  | 2.3 | 3     | 7.5    | 7.5      | 0.6   | 0.8   | 0.15                 | 279          | 89.0        | 28.0        | 9.00            | 12.8    | 67 000             | 79 000            |
|   |    | 6  | 2.5 |       | 7.2    |          | 0.6   |       | 0.15                 | 279          | 89.0        | 28.0        | 9.00            | 12.8    | 67 000             | 79 000            |
|   |    | 7  | 2.5 | 0.5   | 0.5    | 0.5      | 0.7   | 0.0   | 0.15                 | 390          | 120         | 40.0        | 12.0            | 11.9    | 59 000             | 70 000            |
|   |    | 7  | 2.8 | 3.5   | 8.5    | 8.5      | 0.7   | 0.9   | 0.15                 | 380          | 125         | 39.0        | 13.0            | 12.4    | 62 000             | 73 000            |
|   |    | 5  | 1.5 | 2.3   |        |          |       |       | 0.08                 | 153          | 59.0        | 16.0        | 6.00            | 15.0    | 70 000             | 82 000            |
|   |    | 6  | 1.8 | 2.6   | 7.1    | 7.1      | 0.5   | 8.0   | 0.08                 | 209          | 73.0        | 21.0        | 7.50            | 14.2    | 65 000             | 76 000            |
| _ | F  | 7  | 3   | 3     |        | 8.2      |       | 0.6   | 0.15                 | 284          | 96.0        | 29.0        | 10.0            | 13.8    | 59 000             | 70 000            |
|   | .5 | 7  | 2.5 | 3.5   | 8.5    | 8.5      | 0.7   | 0.9   | 0.15                 | 284          | 96.0        | 29.0        | 10.0            | 13.8    | 59 000             | 70 000            |
|   |    | 8  | 2.5 | 2.8   | 9.2    |          | 0.6   |       | 0.15                 | 430          | 152         | 44.0        | 16.0            | 13.2    | 56 000             | 66 000            |
|   |    | 8  | 2.8 | 4     | 9.5    | 9.5      | 0.7   | 0.9   | 0.15                 | 550          | 174         | 56.0        | 18.0            | 11.5    | 56 000             | 66 000            |
|   |    | 6  | 2   | 2.5   | 7.2    | 7.2      | 0.6   | 0.6   | 0.08                 | 242          | 94.0        | 25.0        | 9.50            | 14.7    | 60 000             | 71 000            |
|   |    | 7  | 2   | 3     | 8.1    | 8.1      | 0.5   | 0.8   | 0.1                  | 390          | 130         | 40.0        | 13.0            | 13.0    | 58 000             | 68 000            |
|   |    | 8  | 2.5 | -     | 9.2    | • • •    | 0.6   |       | 0.15                 | 560          | 180         | 57.0        | 18.0            | 11.9    | 54 000             | 63 000            |
|   | 3  | 8  | 3   | 4     | 9.5    | 9.5      | 0.7   | 0.9   | 0.15                 | 560          | 180         | 57.0        | 18.0            | 11.9    | 54 000             | 63 000            |
|   |    | 9  | 2.5 | 4     | 10.2   | 10.6     | 0.6   | 0.8   | 0.15                 | 635          | 219         | 65.0        | 22.0            | 12.4    | 50 000             | 59 000            |
|   |    | 9  | 3   | 5     | 10.5   | 10.5     | 0.7   | 1     | 0.15                 | 635          | 219         | 65.0        | 22.0            | 12.4    | 50 000             | 59 000            |
|   |    | 10 | 4   | 4     | 11.5   | 11.5     | 1     | 1     | 0.15                 | 640          | 224         | 65.0        | 23.0            | 12.7    | 50 000             | 58 000            |
|   |    | 7  | 2   | 2.5   | 8.2    | 8.2      | 0.6   | 0.6   | 0.08                 | 222          | 88.0        | 23.0        | 9.00            | 15.3    | 54 000             | 63 000            |
|   |    | 8  | 2   | 3     | 9.2    | 9.2      | 0.6   | 0.6   | 0.08                 | 395          | 140         | 40.0        | 14.0            | 13.9    | 52 000             | 61 000            |
|   |    | 9  | 2.5 | 4     | 10.3   | 10.3     | 0.6   | 1     | 0.15                 | 640          | 224         | 65.0        | 23.0            | 12.7    | 49 000             | 57 000            |
|   |    | 10 | 3   | 4     | 11.2   | 11.6     | 0.6   | 0.8   | 0.15                 | 650          | 235         | 66.0        | 24.0            | 13.3    | 46 000             | 55 000            |
| • | 4  | 11 | 4   | 4     | 12.5   | 12.5     | 1     | 1     | 0.15                 | 715          | 276         | 73.0        | 28.0            | 13.7    | 45 000             | 52 000            |
|   |    | 12 | 4   | 4     | 13.5   | 13.5     | 1     | 1     | 0.2                  | 970          | 360         | 99.0        | 36.0            | 12.8    | 43 000             | 51 000            |
|   |    | 13 | 5   | 5     | 15     | 15       | 1     | 1     | 0.2                  | 1 310        | 490         | 134         | 50.0            | 12.4    | 42 000             | 49 000            |
|   |    | 16 | 5   | 5     |        |          |       |       | 0.3                  | 1 760        | 680         | 179         | 69.0            | 12.4    | 37 000             | 44 000            |
|   |    | 8  | 2   | 2.5   | 9.2    | 9.2      | 0.6   | 0.6   | 0.08                 | 217          | 91.0        | 22.0        | 9.50            | 15.8    | 49 000             | 57 000            |
|   | 5  | 9  | 2.5 | 3     | 10.2   | 10.2     | 0.6   | 0.6   | 0.15                 | 500          | 211         | 51.0        | 21.0            | 14.6    | 46 000             | 55 000            |
|   | 9  | 10 | 3   | 4     | 11.2   | 11.6     | 0.6   | 0.8   | 0.15                 | 715          | 276         | 73.0        | 28.0            | 13.7    | 45 000             | 52 000            |
|   |    | 10 | J   | 7     | 11.4   | 11.0     | 0.0   | 0.0   | 0.10                 | , 10         | 210         | 70.0        | 20.0            | 10.7    | <del>-10</del> 000 | 02 000            |

<sup>1 )</sup> Smallest allowable dimension for chamfer dimension r.





With flanged outer ring and double shield (FL...ZZ)

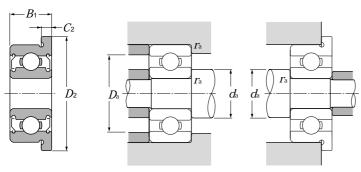

Dynamic equivalent radial load  $P_{\rm T} = XF_{\rm T} + YF_{\rm a}$ 

| $\frac{f_0 \cdot F_a}{C_{\text{or}}}$ | e    | $\frac{F_{\rm a}}{F_{ m r}}$ | $\frac{F_{\rm a}}{F_{\rm r}} > e$ |      |      |  |  |
|---------------------------------------|------|------------------------------|-----------------------------------|------|------|--|--|
| Cor                                   |      | X                            | Y                                 | X    | Y    |  |  |
| 0.172                                 | 0.19 |                              |                                   |      | 2.30 |  |  |
| 0.345                                 | 0.22 |                              |                                   |      | 1.99 |  |  |
| 0.689                                 | 0.26 |                              |                                   |      | 1.71 |  |  |
| 1.03                                  | 0.28 |                              |                                   |      | 1.55 |  |  |
| 1.38                                  | 0.30 | 1                            | 0                                 | 0.56 | 1.45 |  |  |
| 2.07                                  | 0.34 |                              |                                   |      | 1.31 |  |  |
| 3.45                                  | 0.38 |                              |                                   |      | 1.15 |  |  |
| 5.17                                  | 0.42 |                              |                                   |      | 1.04 |  |  |
| 6.89                                  | 0.44 |                              |                                   |      | 1.00 |  |  |

Static equivalent radial load  $P_{\text{Or}} = 0.6F_{\text{r}} + 0.5F_{\text{a}}$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ 

|         |                                        | Bearin      | g numbers     |                     | Abutme            | ent and f  | Mass (approx.)     |                                 |                   |            |               |
|---------|----------------------------------------|-------------|---------------|---------------------|-------------------|------------|--------------------|---------------------------------|-------------------|------------|---------------|
| open    | with single                            | with double | unsealed type | with flanged OR and | with flanged OR a | and o      | <br><del>I</del> a | $D_{\!\scriptscriptstyle  m a}$ | $arGamma_{ m as}$ | ,          | unsealed type |
| 5,500   | shield                                 | shield      | with flange   | single shield       | double shield     | min        | max <sup>2</sup> ) | max                             | max               | open       | with flange   |
|         | 0014                                   | 00.0        |               | onigio ornoid       |                   |            | max                | max                             | max               | 0,000      | man nango     |
|         |                                        |             |               |                     |                   |            |                    |                                 |                   |            |               |
| 68/1.5  | W68/1.5SA                              | SSA         | FL68/1.5      | FLW68/1.5SA         | SSA               | 2.3        | 2.4                | 3.2                             | 0.05              | 0.07       | 0.09          |
| 69/1.5A | W69/1.5ASA                             | SSA         | FL69/1.5A     | FLW69/1.5ASA        |                   | 2.7        | 2.9                | 3.8                             | 0.15              | 0.18       | 0.24          |
| 60/1.5  | W60/1.5ZA                              | ZZA         | FL60/1.5      | FLW60/1.5ZA         | ZZA               | 2.7        | 3.0                | 4.8                             | 0.15              | 0.35       | 0.42          |
| 672     |                                        |             |               |                     |                   | 2.5        | 2.6                | 3.5                             | 0.05              | 0.06       |               |
| 682     | W682SA                                 | SSA         | FL682         | FLW682SA            | SSA               | 2.8        | 2.9                | 4.2                             | 0.08              | 0.13       | 0.17          |
| BC2-5   | WBC2-5SA                               | SSA         | 1 2002        | LWOOZOA             | JOA               | 2.8        | 2.9                | 4.2                             | 0.10              | 0.16       | 0.17          |
| 692     | W692SA                                 | SSA         | FL692         | FLW692SA            | SSA               | 3.2        | 3.3                | 4.8                             | 0.15              | 0.10       | 0.38          |
| BC2-6   | WUJZJA                                 | JJA         | FLBC2-6       | FLWUJZJA            | 33A               | 3.2        | 3.3                | 4.8                             | 0.15              | 0.31       | 0.38          |
| BC2-7A  |                                        |             | FLBC2-0       |                     |                   | 3.2        |                    |                                 |                   |            | 0.36          |
|         | 14/00074                               | 774         | EL 000        | ELM/0007.4          | 774               |            | 3.6                | 5.8                             | 0.15              | 0.44       | 0.04          |
| 602     | W602ZA                                 | ZZA         | FL602         | FLW602ZA            | ZZA               | 3.2        | 3.7                | 5.8                             | 0.15              | 0.54       | 0.64          |
| 67/2.5  | W67/2.5ZA                              | ZZA         |               |                     |                   | 3.1        | 3.3                | 4.4                             | 0.08              | 0.11       |               |
| 68/2.5  | W68/2.5ZA                              | ZZA         | FL68/2.5      | FLW68/2.5ZA         | ZZA               | 3.1        | 3.6                | 4.8                             | 0.08              | 0.22       | 0.26          |
|         | WBC2.5-7ZA                             | ZZA         |               | FLWBC2.5-7Z         | A ZZA             | 3.7        | 4.0                | 5.8                             | 0.15              | $0.6^{3)}$ | $0.67^{3)}$   |
| 69/2.5  | W69/2.5SA                              | SSA         | FL69/2.5      | FLW69/2.5SA         | SSA               | 3.7        | 4.0                | 5.8                             | 0.15              | 0.43       | 0.53          |
| BC2.5-8 | WBC2.5-8ZA                             | ZZA         | FLBC2.5-8     |                     |                   | 3.7        | 4.3                | 6.8                             | 0.15              | 0.57       | 0.65          |
| 60/2.5  | W60/2.5ZA                              | ZZA         | FL60/2.5      | FLW60/2.5ZA         | ZZA               | 3.7        | 4.1                | 6.8                             | 0.15              | 0.72       | 0.83          |
| 070     | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 204         | FI 070        | F1 14/4 070 0 4     | 204               | 0.0        | 4.4                | <b>5</b> 4                      | 0.00              | 0.0        | 0.00          |
| 673     | WA673SA                                | SSA         | FL673         | FLWA673SA           | SSA               | 3.6        | 4.1                | 5.4                             | 0.08              | 0.2        | 0.26          |
| 683     | W683ZA                                 | ZZA         | FL683         | FLW683ZA            | ZZA               | 3.9        | 4.1                | 5.8                             | 0.1               | 0.33       | 0.38          |
| BC3-8   |                                        |             | FLBC3-8       |                     |                   | 4.2        | 4.4                | 6.8                             | 0.15              | 0.52       | 0.6           |
| 693     | W693Z                                  | ZZ          | FL693         | FLW693Z             | ZZ                | 4.2        | 4.4                | 6.8                             | 0.15              | 0.61       | 0.72          |
| BC3-9   | WBC3-9ZA                               | ZZA         | FLBC3-9       | FLAWBC3-9ZA         |                   | 4.2        | 5.0                | 7.8                             | 0.15              | 0.71       | 0.79          |
| 603     | W603Z                                  | ZZ          | FL603         | FLW603Z             | ZZ                | 4.2        | 5.0                | 7.8                             | 0.15              | 0.92       | 1             |
| 623     | 623Z                                   | ZZ          | FL623         | FL623Z              | ZZ                | 4.2        | 5.2                | 8.8                             | 0.15              | 1.6        | 1.8           |
| 674A    | WA674ASA                               | SSA         | FL674A        | FLWA674ASA          | SSA               | 4.6        | 5.0                | 6.4                             | 0.08              | 0.28       | 0.35          |
| BC4-8   | WBC4-8Z                                | ZZ          | FLBC4-8       | FLWBC4-8Z           | ZZ                | 4.8        | 5.0                | 6.8                             | 0.08              | 0.38       | 0.46          |
| 684AX50 |                                        | ZZ          | FL684AX50     | FLW684AX50Z         |                   | 5.0        | 5.2                | 7.8                             | 0.1               | 0.67       | 0.76          |
| BC4-10  | WBC4-10Z                               | ZZ          | FLBC4-10      | FLAWBC4-10Z         |                   | 5.2        | 6.0                | 8.8                             | 0.15              | 1          | 1.1           |
| 694     | 694Z                                   | ZZ          | FL694         | FL694Z              | ZZ                | 5.2        | 6.4                | 9.8                             | 0.15              | 1.8        | 2             |
| 604     | 604Z                                   | ZZ          | FL604         | FL604Z              | ZZ                | 5.6        | 6.6                | 10.4                            | 0.2               | 2.1        | 2.3           |
| 624     | 624Z                                   | ZZ          | FL624         | FL624Z              | ZZ                | 5.6        | 6.2                | 11.4                            | 0.2               | 3.2        | 3.5           |
| 634     | 634Z                                   | ZZ          |               |                     |                   | 6          | 7.6                | 14                              | 0.3               | 5.1        |               |
| 075     | \\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |             | FI 075        | FLIMACETE           |                   | <b>5</b> 0 | 0.0                | <b>7</b> .                      | 0.00              | 0.00       | 0.1           |
| 675     | WA675Z                                 | ZZ          | FL675         | FLWA675Z            | ZZ                | 5.6        | 6.0                | 7.4                             | 0.08              | 0.32       | 0.4           |
| BC5-9   | WBC5-9Z                                | ZZ          | FLBC5-9       | FLWBC5-9Z           | ZZ                | 5.2        | 6.1                | 7.8                             | 0.15              | 0.55       | 0.63          |
| BC5-10  | WBC5-10Z                               | ZZ          | FLBC5-10      | FLAWBC5-10Z         | ZZ                | 6.2        | 6.4                | 8.8                             | 0.15              | 0.88       | 0.97          |
|         |                                        |             |               |                     |                   |            |                    |                                 |                   |            |               |

<sup>2 )</sup> This dimension applies to sealed and shielded bearings. 3 ) Values for double shielded bearings shown.




d 5 ~ 9mm

|   |    |     |       | Bounda | ry dimen | sions                 |       |                     | dynami      |             | ad ratings<br>dynamic | static      | Factor  | Limiting | speeds            |
|---|----|-----|-------|--------|----------|-----------------------|-------|---------------------|-------------|-------------|-----------------------|-------------|---------|----------|-------------------|
|   |    |     |       |        | mm       |                       |       |                     |             | N           | •                     | gf          |         | m        | nin <sup>-1</sup> |
| d | D  | B   | $B_1$ | $D_1$  | $D_2$    | <i>C</i> <sub>1</sub> | $C_2$ | $r_{ m s  min}^{1}$ | $C_{\rm r}$ | $C_{ m or}$ | $C_{r}$               | $C_{ m or}$ | $f_{0}$ | grease   | oil               |
|   |    |     |       |        |          |                       |       |                     |             |             |                       |             |         |          |                   |
|   | 11 | 4   | 4     |        | 12.6     |                       | 0.8   | 0.15                | 715         | 282         | 73.0                  | 29.0        | 14.0    | 43 000   | 51 000            |
|   | 11 | 3   | 5     | 12.5   | 12.5     | 0.8                   | 1     | 0.15                | 715         | 282         | 73.0                  | 29.0        | 14.0    | 43 000   | 51 000            |
|   | 13 | 4   | 4     | 15     | 15.2     | 1                     | 1     | 0.2                 | 1 080       | 430         | 110                   | 44.0        | 13.4    | 40 000   | 47 000            |
| 5 | 13 | 5   | 5     |        | 15       |                       | 1     | 0.2                 | 1 080       | 430         | 110                   | 44.0        | 13.4    | 40 000   | 47 000            |
|   | 14 | 5   | 5     | 16     | 16       | 1                     | 1     | 0.2                 | 1 330       | 505         | 135                   | 52.0        | 12.8    | 39 000   | 46 000            |
|   | 16 | 5   | 5     | 18     | 18       | 1                     | 1     | 0.3                 | 1 760       | 680         | 179                   | 69.0        | 12.4    | 37 000   | 44 000            |
|   | 19 | 6   | 6     |        |          |                       |       | 0.3                 | 2 340       | 885         | 238                   | 90.0        | 12.1    | 34 000   | 40 000            |
|   | 10 | 2.5 | 3     | 11.2   | 11.2     | 0.6                   | 0.6   | 0.1                 | 465         | 196         | 47.0                  | 20.0        | 15.2    | 43 000   | 51 000            |
|   | 12 | 3   | 4     | 13.2   | 13.6     | 0.6                   | 0.8   | 0.15                | 830         | 365         | 85.0                  | 37.0        | 14.5    | 40 000   | 47 000            |
|   | 13 | 3.5 | 5     | 15     | 15       | 1.0                   | 1.1   | 0.15                | 1 080       | 440         | 110                   | 45.0        | 13.7    | 39 000   | 46 000            |
| 6 | 15 | 5   | 5     | 17     | 17       | 1.2                   | 1.2   | 0.2                 | 1 350       | 530         | 137                   | 54.0        | 13.3    | 37 000   | 44 000            |
|   | 16 | 6   | 6     |        |          |                       |       | 0.2                 | 1 770       | 695         | 181                   | 71.0        | 12.7    | 36 000   | 42 000            |
|   | 17 | 6   | 6     | 19     | 19       | 1.2                   | 1.2   | 0.3                 | 2 190       | 865         | 224                   | 88.0        | 12.3    | 35 000   | 42 000            |
|   | 19 | 6   | 6     | 22     | 22       | 1.5                   | 1.5   | 0.3                 | 2 340       | 885         | 238                   | 90.0        | 12.1    | 34 000   | 40 000            |
|   | 11 | 2.5 | 3     | 12.2   | 12.2     | 0.6                   | 0.6   | 0.1                 | 555         | 269         | 56.0                  | 27.0        | 15.6    | 40 000   | 47 000            |
|   | 13 | 3   | 4     | 14.2   | 14.6     | 0.6                   | 0.8   | 0.15                | 825         | 375         | 84.0                  | 38.0        | 14.9    | 38 000   | 45 000            |
| 7 | 14 | 3.5 | 5     | 16     | 16       | 1                     | 1.1   | 0.15                | 1 170       | 505         | 120                   | 51.0        | 14.0    | 37 000   | 44 000            |
| 7 | 17 | 5   | 5     | 19     | 19       | 1.2                   | 1.2   | 0.3                 | 1 610       | 715         | 164                   | 73.0        | 14.0    | 35 000   | 41 000            |
|   | 19 | 6   | 6     |        |          |                       |       | 0.3                 | 2 240       | 910         | 228                   | 93.0        | 12.9    | 34 000   | 40 000            |
|   | 22 | 7   | 7     |        |          |                       |       | 0.3                 | 3 350       | 1 400       | 340                   | 142         | 12.5    | 32 000   | 37 000            |
|   | 12 | 2.5 | 3.5   | 13.2   | 13.6     | 0.6                   | 0.8   | 0.1                 | 515         | 252         | 52.0                  | 26.0        | 15.9    | 38 000   | 45 000            |
|   | 14 | 3.5 | 4     | 15.6   | 15.6     | 8.0                   | 8.0   | 0.15                | 820         | 385         | 84.0                  | 39.0        | 15.2    | 36 000   | 43 000            |
| 8 | 16 | 4   | 5     | 18     | 18       | 1                     | 1.1   | 0.2                 | 1 610       | 715         | 164                   | 73.0        | 14.0    | 35 000   | 41 000            |
|   | 19 | 6   | 6     | 22     | 22       | 1.5                   | 1.5   | 0.3                 | 1 990       | 865         | 202                   | 88.0        | 13.8    | 33 000   | 39 000            |
|   | 22 | 7   | 7     | 25     | 25       | 1.5                   | 1.5   | 0.3                 | 3 350       | 1 400       | 340                   | 142         | 12.5    | 32 000   | 37 000            |
|   | 24 | 8   | 8     |        |          |                       |       | 0.3                 | 4 000       | 1 590       | 410                   | 162         | 11.7    | 31 000   | 36 000            |
|   | 14 | 3   | 4.5   |        |          |                       |       | 0.1                 | 920         | 465         | 94.0                  | 48.0        | 15.5    | 36 000   | 42 000            |
|   | 17 | 4   | 5     | 19     | 19       | 1                     | 1.1   | 0.2                 | 1 720       | 820         | 176                   | 83.0        | 14.4    | 33 000   | 39 000            |
| 9 | 20 | 6   | 6     |        |          |                       |       | 0.3                 | 2 480       | 1 090       | 253                   | 111         | 13.5    | 32 000   | 38 000            |
|   | 24 | 7   | 7     |        |          |                       |       | 0.3                 | 3 400       | 1 450       | 345                   | 148         | 12.9    | 31 000   | 36 000            |
|   | 26 | 8   | 8     |        |          |                       |       | 0.6                 | 4 550       | 1 960       | 465                   | 200         | 12.4    | 30 000   | 35 000            |
|   |    |     |       |        |          |                       |       |                     |             |             |                       |             |         |          |                   |

<sup>1 )</sup> Smallest allowable dimension for chamfer dimension  $\emph{r}.$ 

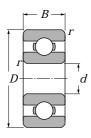


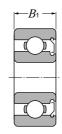


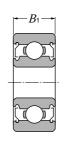
With flanged outer ring and double shield (FL...ZZ)

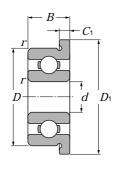
Dynamic equivalent radial load  $\underline{P_{\mathrm{r}}} = XF_{\mathrm{r}} + YF_{\mathrm{a}}$ 

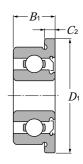
| $\frac{f_0 \cdot F_a}{C_{\text{or}}}$ | e    | $\frac{F_{\rm a}}{F_{\rm r}}$ | e | $\frac{F}{F}$ | $\frac{\overline{r_a}}{\overline{r_r}} > e$ |
|---------------------------------------|------|-------------------------------|---|---------------|---------------------------------------------|
| Cor                                   |      | X                             | Y | X             | Y                                           |
| 0.172                                 | 0.19 |                               |   |               | 2.30                                        |
| 0.345                                 | 0.22 |                               |   |               | 1.99                                        |
| 0.689                                 | 0.26 |                               |   |               | 1.71                                        |
| 1.03                                  | 0.28 |                               |   |               | 1.55                                        |
| 1.38                                  | 0.30 | 1                             | 0 | 0.56          | 1.45                                        |
| 2.07                                  | 0.34 |                               |   |               | 1.31                                        |
| 3.45                                  | 0.38 |                               |   |               | 1.15                                        |
| 5.17                                  | 0.42 |                               |   |               | 1.04                                        |
| 6.89                                  | 0.44 |                               |   |               | 1.00                                        |


Static equivalent radial load  $P_{\text{Or}} = 0.6F_{\text{r}} + 0.5F_{\text{a}}$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ 


|            |                  | Bearing     | g numbers     |                      |                   | Abutm    | ent and f              | illet din  | nensions    |            | Mass (approx.) |  |
|------------|------------------|-------------|---------------|----------------------|-------------------|----------|------------------------|------------|-------------|------------|----------------|--|
| open       | with single      | with double | unsealed type | with flanged OR and  | with flanged OR a | and      | $d_{a}$                | $D_{a}$    | $r_{ m as}$ |            | unsealed type  |  |
| ., .       | shield           | shield      | with flange   | single shield        | double shield     |          | max <sup>2</sup> )     | max        | max         | open       | with flange    |  |
|            |                  |             |               |                      |                   |          |                        |            |             |            |                |  |
| -          | WBC5-11Z         | ZZ          |               | FLWBC5-11Z           | ZZ                | 6.2      | 6.8                    | 9.8        | 0.2         | 1.8        | 2              |  |
| 685        | W685Z            | ZZ          | FL685         | FLW685Z              | ZZ                | 6.2      | 6.8                    | 9.8        | 0.15        | 1.1        | 1.3            |  |
| 695        | 695Z             | ZZ          | FL695         | FL695Z               | ZZ                | 6.6      | 6.9                    | 11.4       | 0.2         | 2.4        | 2.7            |  |
| 605        | WBC5-13Z<br>605Z | ZZ<br>ZZ    | FL605         | FLWBC5-13Z<br>FL605Z | ZZ<br>ZZ          | 6.6      | 6.9<br>7.4             | 11.4       | 0.2<br>0.2  | $3.4^{3}$  | $3.7^{3}$      |  |
| 605<br>625 | 605Z<br>625Z     | ZZ          | FL605         | FL605Z<br>FL625Z     | ZZ                | 6.6<br>7 | 7. <del>4</del><br>7.6 | 12.4<br>14 | 0.2         | 3.5<br>4.8 | 3.9<br>5.2     |  |
| 635        | 635Z             | ZZ          | FL023         | FL023Z               | 22                | 7        | 7.6<br>9.5             | 17         | 0.3         | 4.0<br>8   | 5.2            |  |
| 033        | 0332             | ZZ          |               |                      |                   | -        | 9.5                    | 17         | 0.3         | 0          |                |  |
| 676A       | WA676AZ          | ZZ          | FL676A        | FLWA676AZ            | ZZ                | 6.6      | 6.7                    | 9.2        | 0.1         | 0.65       | 0.74           |  |
| BC6-12     | WBC6-12Z         | ZZ          | FLBC6-12      | FLAWBC6-122          |                   | 7.2      | 7.9                    | 10.8       | 0.15        | 1.3        | 1.4            |  |
| 686        | W686Z            | ZZ          | FL686         | FLW686Z              | ZZ                | 7.0      | 7.2                    | 11.8       | 0.15        | 1.9        | 2.2            |  |
| 696        | 696Z             | ZZ          | FL696         | FL696Z               | ZZ                | 7.6      | 7.8                    | 13.4       | 0.2         | 3.8        | 4.3            |  |
|            | BC6-16AZ         | ZZ          | =1.000        |                      |                   | 7.6      | 8.0                    | 14.4       | 0.2         | 5.2        |                |  |
| 606        | 606Z             | ZZ          | FL606         | FL606Z               | ZZ                | 8        | 8.6                    | 15         | 0.3         | 6          | 6.5            |  |
| 626        | 626Z             | ZZ          | FL626         | FL626Z               | ZZ                | 8        | 9.5                    | 17         | 0.3         | 8.1        | 9.2            |  |
| 677        | WA677Z           | ZZ          | FL677         | FLWA677Z             | ZZ                | 7.8      | 8.1                    | 10.2       | 0.1         | 0.67       | 0.77           |  |
| BC7-13     | WBC7-13Z         | ZZ          | FLBC7-13      | FLAWBC7-132          |                   | 8.2      | 8.9                    | 11.8       | 0.15        | 1.4        | 1.5            |  |
| 687A       | W687AZ           | ZZ          | FL687A        | FLW687AZ             | ZZ                | 8.2      | 8.7                    | 12.8       | 0.15        | 2.1        | 2.4            |  |
| 697        | 697Z             | ZZ          | FL697         | FL697Z               | ZZ                | 9        | 10.0                   | 15         | 0.3         | 5.2        | 5.7            |  |
| 607        | 607Z             | ZZ          |               |                      |                   | 9        | 10.4                   | 17         | 0.3         | 8          |                |  |
| 627        | 627Z             | ZZ          |               |                      |                   | 9        | 12.2                   | 20         | 0.3         | 13         |                |  |
| 678A       | W678AZ           | ZZ          | FL678A        | FLAW678AZ            | ZZ                | 8.8      | 9.1                    | 11.2       | 0.1         | 0.75       | 0.86           |  |
| BC8-14     | WBC8-14Z         | ZZ          | FLBC8-14      | FLWBC8-14Z           | ZZ                | 9.2      | 9.5                    | 12.8       | 0.15        | 1.8        | 1.9            |  |
| 688A       | W688AZ           | ZZ          | FL688A        | FLW688AZ             | ZZ                | 9.6      | 10.0                   | 14.4       | 0.2         | 3.1        | 3.5            |  |
| 698        | 698Z             | ZZ          | FL698         | FL698Z               | ZZ                | 10       | 10.6                   | 17         | 0.3         | 7.3        | 8.4            |  |
| 608        | 608Z             | ZZ          | FL608         | FL608Z               | ZZ                | 10       | 12.2                   | 20         | 0.3         | 12         | 13             |  |
| 628        | 628Z             | ZZ          |               |                      |                   | 10       | 12.1                   | 22         | 0.3         | 17         |                |  |
| 679        | W679Z            | ZZ          |               |                      |                   | 9.8      | 10.4                   | 13.2       | 0.1         | 1.4        |                |  |
| 689        | W689Z            | ZZ          | FL689         | FLW689Z              | ZZ                | 10.6     | 10.7                   | 15.4       | 0.2         | 3.2        | 3.6            |  |
| 699        | 699Z             | ZZ          | -             | -                    | -                 | 11       | 11.6                   | 18         | 0.3         | 8.2        | -              |  |
| 609        | 609Z             | ZZ          | -             | -                    | -                 | 11       | 13.1                   | 22         | 0.3         | 14         |                |  |
| 629X50     | 629X50Z          | ZZ          | -             | -                    | -                 | 13       | 13.9                   | 22         | 0.3         | 20         |                |  |
|            |                  |             |               |                      |                   |          |                        |            |             |            |                |  |


<sup>2 )</sup> This dimension applies to sealed and shielded bearings. 3 ) Values for double shielded bearings shown.





## Inch series









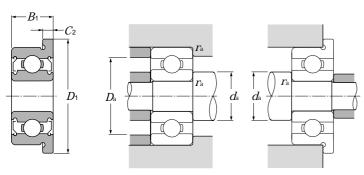


Open type

With single shield With double shield (Z)

(ZZ)

Open type with flange (FL)


With flanged outer ring and single shield (FL...Z)

d 1.984 ~

|       | Boundary dimensions                     |                                          |                                           |                                |                              |                              |                                    | Basic load ratings dynamic static dynamic static |                                  |                             | Factor                     | Limiting speeds                      |                                                |                                                |
|-------|-----------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------|------------------------------|------------------------------|------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------|----------------------------|--------------------------------------|------------------------------------------------|------------------------------------------------|
|       | mm                                      |                                          |                                           |                                |                              |                              |                                    | N kgf                                            |                                  |                             |                            | min <sup>-1</sup>                    |                                                |                                                |
| d     | D                                       | В                                        | $B_1$                                     | $D_1$                          | $C_1$                        | $C_2$                        | $\Gamma_{\text{s min}}^{1}$        | $C_{r}$                                          | $C_{ m or}$                      | $C_{\rm r}$                 | $C_{ m or}$                | $f_{0}$                              | grease                                         | oil                                            |
| 1.984 | 6.35                                    | 2.38                                     | 3.571                                     | 7.52                           | 0.58                         | 0.79                         | 0.08                               | 279                                              | 89.0                             | 28                          | 9                          | 12.8                                 | 67 000                                         | 79 000                                         |
| 2.380 | 4.762<br>7.938                          | 1.588<br>2.779                           | 2.38<br>3.571                             | 5.94<br>9.12                   | 0.46<br>0.58                 | 0.79<br>0.79                 | 0.08<br>0.13                       | 124<br>430                                       | 42.0<br>152                      | 13<br>44                    | 4.5<br>16                  | 14.8<br>13.2                         | 73 000<br>56 000                               | 85 000<br>66 000                               |
| 3.175 | 6.35<br>7.938<br>9.525<br>9.525<br>12.7 | 2.38<br>2.779<br>2.779<br>3.967<br>4.366 | 2.779<br>3.571<br>3.571<br>3.967<br>4.366 | 7.52<br>9.12<br>10.72<br>11.18 | 0.58<br>0.58<br>0.53<br>0.76 | 0.79<br>0.79<br>0.79<br>0.76 | 0.08<br>0.08<br>0.13<br>0.3<br>0.3 | 284<br>560<br>640<br>640<br>1 150                | 96.0<br>180<br>224<br>224<br>395 | 29<br>57<br>65<br>65<br>117 | 10<br>18<br>23<br>23<br>40 | 13.7<br>11.9<br>12.7<br>12.7<br>11.7 | 59 000<br>54 000<br>49 000<br>49 000<br>43 000 | 70 000<br>63 000<br>58 000<br>58 000<br>51 000 |
| 3.967 | 7.938                                   | 2.779                                    | 3.175                                     | 9.12                           | 0.58                         | 0.91                         | 0.08                               | 335                                              | 133                              | 34                          | 14                         | 14.8                                 | 51 000                                         | 60 000                                         |
| 4.762 | 7.938<br>9.525<br>12.7<br>12.7          | 2.779<br>3.175<br>3.967<br>4.978         | 3.175<br>3.175<br>4.978                   | 9.12<br>10.72<br>14.35         | 0.58<br>0.58<br>1.07         | 0.91<br>0.79<br>1.07         | 0.08<br>0.08<br>0.3<br>0.3         | 395<br>710<br>1 310<br>1 310                     | 143<br>268<br>490<br>490         | 40<br>72<br>134<br>134      | 15<br>27<br>50<br>50       | 14.2<br>13.3<br>12.4<br>12.4         | 49 000<br>46 000<br>41 000<br>41 000           | 58 000<br>55 000<br>48 000<br>48 000           |
| 6.350 | 9.525<br>12.7<br>15.875<br>19.05        | 3.175<br>3.175<br>4.978                  | 3.175<br>4.762<br>4.978<br>7.142          | 10.72<br>13.89<br>17.53        | 0.58<br>0.58<br>1.07         | 0.91<br>1.14<br>1.07         | 0.08<br>0.13<br>0.3<br>0.41        | 210<br>830<br>1 480<br>2 340                     | 94.0<br>370<br>615<br>885        | 21<br>84<br>151<br>238      | 9.5<br>38<br>63<br>90      | 16.4<br>14.7<br>13.6<br>12.1         | 43 000<br>39 000<br>36 000<br>34 000           | 51 000<br>46 000<br>43 000<br>40 000           |
| 9.525 | 22.225                                  |                                          | 7.142                                     | 24.61                          |                              | 1.57                         | 0.41                               | 3 300                                            | 1 400                            | 340                         | 142                        | 12.7                                 | 31 000                                         | 37 000                                         |

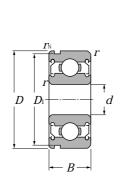
<sup>1 )</sup> Smallest allowable dimension for chamfer dimension  $\it r.$ 

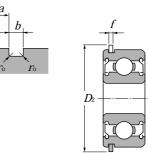




With flanged outer ring and double shield (FL...ZZ)

Dynamic equivalent radial load  $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 


| $\frac{f_0 \cdot I}{C_0}$ | _        | e    | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | e | $\frac{F}{F}$ | $\frac{7a}{7r} > e$ |
|---------------------------|----------|------|-----------------------------------------|---|---------------|---------------------|
| Co                        | r        |      | X                                       | Y | X             | Y                   |
| 0.17                      | '2       | 0.19 |                                         |   |               | 2.30                |
| 0.34                      | 5        | 0.22 |                                         |   |               | 1.99                |
| 0.68                      | 39       | 0.26 |                                         |   |               | 1.71                |
| 1.03                      | 3        | 0.28 |                                         |   |               | 1.55                |
| 1.38                      | 3        | 0.30 | 1                                       | 0 | 0.56          | 1.45                |
| 2.07                      | <u> </u> | 0.34 |                                         |   |               | 1.31                |
| 3.45                      | ;        | 0.38 |                                         |   |               | 1.15                |
| 5.17                      | <u>'</u> | 0.42 |                                         |   |               | 1.04                |
| 6.89                      | )        | 0.44 |                                         |   |               | 1.00                |


Static equivalent radial load  $P_{\text{Or}} = 0.6F_{\text{r}} + 0.5F_{\text{a}}$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ 

|       |             | Bearin      | g numbers     |                     |                    | Abutr | ment and fi        |         | ensions   | Mass              | (approx.)        |
|-------|-------------|-------------|---------------|---------------------|--------------------|-------|--------------------|---------|-----------|-------------------|------------------|
| open  | with single | with double | unsealed type | with flanged OR and | with flanged OR an | d     | $d_{a}$            | $D_{a}$ | arGammaas |                   | unsealed type    |
|       | shield      | shield      | with flange   | single shield       | double shield      | min   | max <sup>2</sup> ) | max     | max       | open              | with flange      |
|       |             |             |               |                     |                    |       |                    |         |           |                   |                  |
| R1-4  | RA1-4ZA     | ZZA         | FLR1-4        | FLRA1-4ZA           | ZZA                | 2.8   | 3.3                | 5.5     | 0.08      | 0.35              | 0.41             |
| R133  | RA133ZA     | ZZA         | FLR133        | FLRA133ZA           | ZZA                | 2.9   | 3.1                | 4       | 0.08      | 0.12              | 0.16             |
| R1-5  | RA1-5ZA     | ZZA         | FLR1-5        | FLRA1-5ZA           | ZZA                | 3.2   | 4.3                | 7.1     | 0.1       | 0.69              | 0.76             |
| R144  | RA144ZA     | ZZA         | FLR144        | FLRA144ZA           | ZZA                | 3.9   | 4.0                | 5.5     | 0.08      | 0.27              | 0.33             |
| R2-5  | RA2-5Z      | ZZ          | FLR2-5        | FLRA2-5Z            | ZZ                 | 4     | 4.4                | 7       | 0.08      | 0.61              | 0.68             |
| R2-6  | RA2-6ZA     | ZZA         | FLR2-6        | FLRA2-6ZA           | ZZA                | 4     | 5.2                | 8.7     | 0.1       | 0.88              | 0.96             |
| R2    | RA2ZA       | ZZA         | FLR2          | FLRA2ZA             | ZZA                | 4.8   | 5.2                | 7.8     | 0.3       | 1.3               | 1.5              |
| RA2   | RA2Z        | ZZ          |               |                     |                    | 4.8   | 5.4                | 11      | 0.3       | 2.5               |                  |
| R155  | RA155ZA     | ZZA         | FLR155        | FLRA155ZA           | ZZA                | 4.8   | 5.3                | 7       | 0.08      | 0.54              | 0.61             |
| R156  | RA156Z      | ZZ          | FLR156        | FLRA156Z            | ZZ                 | 5.5   | 5.6                | 7       | 0.08      | 0.44              | 0.51             |
| R166  | R166Z       | ZZ          | FLR166        | FLRA166Z            | ZZ                 | 5.6   | 5.9                | 8.7     | 0.08      | 8.0               | 0.89             |
| R3    |             |             |               |                     |                    | 6.4   | 7.2                | 11      | 0.3       | 2.2               |                  |
| RA3   | RA3Z        | ZZ          | FLRA3         | FLRA3Z              | ZZ                 | 6.0   | 6.4                | 11      | 0.3       | 2.4               | 2.7              |
| R168A | R168AZ      | AZZ         |               | FLRA168AZ           | ZZ                 | 7.1   | 7.3                | 8.7     | 0.08      | 0.6               | 0.69             |
| R188  | RA188ZA     | ZZA         | FLR188        | FLRA188ZA           | ZZA                | 7.2   | 8.2                | 11.8    | 0.1       | 1.6               | 1.7              |
| R4    | R4Z         | ZZ          | FLR4          | FLR4Z               | ZZ                 | 8     | 8.6                | 14.2    | 0.3       | 4.4               | 4.8              |
|       | RA4Z        | ZZ          |               |                     |                    | 8.4   | 9.5                | 17      | 0.4       | 11 <sup>2</sup> ) |                  |
|       | R6Z         | ZZ          |               | FLR6Z               | ZZ                 | 11.5  | 11.9               | 20.2    | 0.4       | 14 <sup>3)</sup>  | 15 <sup>3)</sup> |

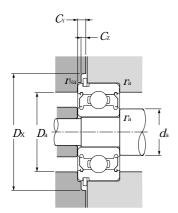


# With Snap Ring Grooves, Snap Rings





Snap ring groove Shielded type (ZZ)


Snap ring Shielded type (ZZ)

d 5 ~ 12mm

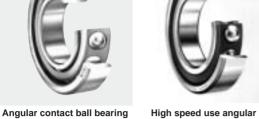
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 5 | ~ 1   | 2 m  | ım                     |             |             |                 |         |                 |         |          |        |                       |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|------|------------------------|-------------|-------------|-----------------|---------|-----------------|---------|----------|--------|-----------------------|----------------|
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | Bound | dary | dimensi                | ons         |             |                 |         |                 |         | Limiting | speeds | Bearing nu            | ımbers         |
| d         D         B         r <sub>Smin</sub> 1 0         min         Cr         Cor         Cr         Cor         fo         grease         oil         with snap ring groove shielded type         with snap ring groove shielded type         with snap ring groove shielded type           13         4         0.2         0.1         1 080         430         110         44         13.4         40 000         47 000         SC559ZZN         ZZNR           14         5         0.2         0.2         1 330         505         135         52         12.8         39 000         46 000         SC571ZZN         ZZNR           12         4         0.15         0.1         640         365         65         37         14.5         40 000         47 000         * F-SC6A06ZZ1N         ZZ1NF           13         5         0.15         0.1         1 080         440         110         45         13.7         39 000         46 000         SC6A04ZZN         ZZNR           15         5         0.2         0.2         1 350         530         137         54         13.3         37 000         44 000         SC6A17ZZN         ZZNR           19         6         0.3         0.3 |     |       |      | . m                    |             |             |                 |         |                 |         | mi       | n-1    |                       |                |
| d         D         B         rs·min <sup>1</sup> min         Cr         Cor         Cr         Cor         L         grease         oil         shielded type         shielded type           13         4         0.2         0.1         1         0.0         430         110         44         13.4         40 000         47 000         SC559ZZN         ZZNR           14         5         0.2         0.2         1         330         505         135         52         12.8         39 000         46 000         SC571ZZN         ZZNR           12         4         0.15         0.1         640         365         65         37         14.5         40 000         47 000         * F-SC6A06ZZ1N         ZZ1NF           13         5         0.15         0.1         1080         440         110         45         13.7         39 000         46 000         SC6A04ZZN         ZZNR           15         5         0.2         0.2         1 350         530         137         54         13.3         37 000         44 000         SC6A17ZZN         ZZNR           16         5         0.2         0.1         1 260         585         128                                               |     |       | П    | 1111                   | <i>I</i> Na | ľ           | V               | Κį      | JI              |         | m        | n ·    | with snap ring groove | with snap ring |
| 14       5       0.2       0.2       1 330       505       135       52       12.8       39 000       46 000       SC571ZZN       ZZNR         12       4       0.15       0.1       640       365       65       37       14.5       40 000       47 000       * F-SC6A06ZZ1N       ZZ1NF         13       5       0.15       0.1       1 080       440       110       45       13.7       39 000       46 000       SC6A04ZZN       ZZNR         15       5       0.2       0.2       1 350       530       137       54       13.3       37 000       44 000       SC6A17ZZN       ZZNR         19       6       0.3       0.3       2 340       885       238       90       12.1       34 000       40 000       SC669ZZN       ZZNR         3       16       5       0.2       0.1       1 260       585       128       60       14.6       35 000       41 000       SC890ZZN       ZZNR         22       7       0.3       0.4       3 350       1 400       340       142       12.5       32 000       37 000       SC850ZZN       ZZNR         0       26       8                                                                                                                                              | d   | D     | В    | $r_{\rm s  min}^{1}$ ) |             | $C_{\rm r}$ | $C_{\text{or}}$ | $C_{r}$ | $C_{\text{or}}$ | $f_{0}$ | grease   | oil    | , ,                   | shielded type  |
| 14       5       0.2       0.2       1 330       505       135       52       12.8       39 000       46 000       SC571ZZN       ZZNR         12       4       0.15       0.1       640       365       65       37       14.5       40 000       47 000       * F-SC6A06ZZ1N       ZZ1NF         13       5       0.15       0.1       1 080       440       110       45       13.7       39 000       46 000       SC6A04ZZN       ZZNR         15       5       0.2       0.2       1 350       530       137       54       13.3       37 000       44 000       SC6A17ZZN       ZZNR         19       6       0.3       0.3       2 340       885       238       90       12.1       34 000       40 000       SC669ZZN       ZZNR         3       16       5       0.2       0.1       1 260       585       128       60       14.6       35 000       41 000       SC890ZZN       ZZNR         22       7       0.3       0.4       3 350       1 400       340       142       12.5       32 000       37 000       SC850ZZN       ZZNR         0       26       8                                                                                                                                              |     | 13    | 4    | 0.2                    | 0.1         | 1 080       | 430             | 110     | 44              | 13 4    | 40 000   | 47 000 | SC55977N              | <i>77</i> NR   |
| 13 5 0.15 0.1 1 080 440 110 45 13.7 39 000 46 000 SC6A04ZZN ZZNR 15 5 0.2 0.2 1 350 530 137 54 13.3 37 000 44 000 SC6A17ZZN ZZNR 19 6 0.3 0.3 2 340 885 238 90 12.1 34 000 40 000 SC669ZZN ZZNR  16 5 0.2 0.1 1 260 585 128 60 14.6 35 000 41 000 SC890ZZN ZZNR 22 7 0.3 0.4 3 350 1 400 340 142 12.5 32 000 37 000 SC850ZZN ZZNR  16 8 0.3 0.3 4 550 1 960 465 200 12.4 29 000 34 000 SC0039ZZN ZZNR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5   |       |      |                        |             |             |                 |         |                 |         |          |        |                       |                |
| 15 5 0.2 0.2 1 350 530 137 54 13.3 37 000 44 000 SC6A17ZZN ZZNR 19 6 0.3 0.3 2 340 885 238 90 12.1 34 000 40 000 SC669ZZN ZZNR  16 5 0.2 0.1 1 260 585 128 60 14.6 35 000 41 000 SC890ZZN ZZNR 22 7 0.3 0.4 3 350 1 400 340 142 12.5 32 000 37 000 SC850ZZN ZZNR  16 8 0.3 0.3 4 550 1 960 465 200 12.4 29 000 34 000 SC0039ZZN ZZNR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |       | 4    | 0.15                   | 0.1         |             |                 |         | 37              |         | 40 000   |        | * F-SC6A06ZZ1N        | ZZ1NR          |
| 19 6 0.3 0.3 2 340 885 238 90 12.1 34 000 40 000 SC669ZZN ZZNR  16 5 0.2 0.1 1 260 585 128 60 14.6 35 000 41 000 SC890ZZN ZZNR  22 7 0.3 0.4 3 350 1 400 340 142 12.5 32 000 37 000 SC850ZZN ZZNR  0 26 8 0.3 0.3 4 550 1 960 465 200 12.4 29 000 34 000 SC0039ZZN ZZNR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c   |       |      |                        |             |             |                 |         | 45              |         |          |        | SC6A04ZZN             |                |
| 3 16 5 0.2 0.1 1 260 585 128 60 14.6 35 000 41 000 SC890ZZN ZZNR 22 7 0.3 0.4 3 350 1 400 340 142 12.5 32 000 37 000 SC850ZZN ZZNR 26 8 0.3 0.3 4 550 1 960 465 200 12.4 29 000 34 000 SC0039ZZN ZZNR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6   |       |      |                        |             |             |                 |         | 54              |         |          |        |                       |                |
| 22 7 0.3 0.4 3 350 1 400 340 142 12.5 32 000 37 000 SC850ZZN ZZNR  0 26 8 0.3 0.3 4 550 1 960 465 200 12.4 29 000 34 000 SC0039ZZN ZZNR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | 19    | 6    | 0.3                    | 0.3         | 2 340       | 885             | 238     | 90              | 12.1    | 34 000   | 40 000 | SC669ZZN              | ZZNR           |
| 0       26       8       0.3       0.3       4 550       1 960       465       200       12.4       29 000       34 000       SC0039ZZN       ZZNR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8   |       |      |                        |             |             |                 |         |                 |         |          |        |                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 22    | 7    | 0.3                    | 0.4         | 3 350       | 1 400           | 340     | 142             | 12.5    | 32 000   | 37 000 | SC850ZZN              | ZZNR           |
| 2 28 8 0.3 0.3 5 100 2 390 520 204 13.2 26 000 30 000 SC0142ZZN ZZNR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10  | 26    | 8    | 0.3                    | 0.3         | 4 550       | 1 960           | 465     | 200             | 12.4    | 29 000   | 34 000 | SC0039ZZN             | ZZNR           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12  | 28    | 8    | 0.3                    | 0.3         | 5 100       | 2 390           | 520     | 204             | 13.2    | 26 000   | 30 000 | SC0142ZZN             | ZZNR           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |      |                        |             |             |                 |         |                 |         |          |        |                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |      |                        |             |             |                 |         |                 |         |          |        |                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |      |                        |             |             |                 |         |                 |         |          |        |                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |      |                        |             |             |                 |         |                 |         |          |        |                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |      |                        |             |             |                 |         |                 |         |          |        |                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |      |                        |             |             |                 |         |                 |         |          |        |                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |      |                        |             |             |                 |         |                 |         |          |        |                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |      |                        |             |             |                 |         |                 |         |          |        |                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |      |                        |             |             |                 |         |                 |         |          |        |                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |      |                        |             |             |                 |         |                 |         |          |        |                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |      |                        |             |             |                 |         |                 |         |          |        |                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |      |                        |             |             |                 |         |                 |         |          |        |                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |      |                        |             |             |                 |         |                 |         |          |        |                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |      |                        |             |             |                 |         |                 |         |          |        |                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |      |                        |             |             |                 |         |                 |         |          |        |                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |      |                        |             |             |                 |         |                 |         |          |        |                       |                |

<sup>1 )</sup> Smallest allowable dimension for chamfer dimension r. Note: "  $\star$  " mark indicates stainless steel is used.





**Dynamic equivalent radial load**  $P_1 = XF_1 + YF_2$ 


| $Pr - \Lambda I$                      | rr + <i>II</i> | a                                                                                                |   |      |      |
|---------------------------------------|----------------|--------------------------------------------------------------------------------------------------|---|------|------|
| $\frac{f_0 \cdot F_a}{C_{\text{or}}}$ | e              | $e \mid \frac{F_{\mathrm{a}}}{F_{\mathrm{r}}} \mid e \mid \frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ |   |      |      |
| Cor                                   |                | X                                                                                                | Y | X    | Y    |
| 0.172                                 | 0.19           |                                                                                                  |   |      | 2.30 |
| 0.345                                 | 0.22           |                                                                                                  |   |      | 1.99 |
| 0.689                                 | 0.26           |                                                                                                  |   |      | 1.71 |
| 1.03                                  | 0.28           |                                                                                                  |   |      | 1.55 |
| 1.38                                  | 0.30           | 1                                                                                                | 0 | 0.56 | 1.45 |
| 2.07                                  | 0.34           |                                                                                                  |   |      | 1.31 |
| 3.45                                  | 0.38           |                                                                                                  |   |      | 1.15 |
| 5.17                                  | 0.42           |                                                                                                  |   |      | 1.04 |
| 6.89                                  | 0.44           |                                                                                                  |   |      | 1.00 |

Static equivalent radial load  $P_{\text{Or}} = 0.6F_{\text{r}} + 0.5F_{\text{a}}$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ 

| Snap                            | <b>ring groo</b><br>m        | <b>ve dimer</b><br>m         | nsions                     | Snap ring d                  |                              |                          | Abutment and fillet dimensions mm   |                                     |                              |                          |                          |                            |                          | <b>Mass</b><br>kg                |
|---------------------------------|------------------------------|------------------------------|----------------------------|------------------------------|------------------------------|--------------------------|-------------------------------------|-------------------------------------|------------------------------|--------------------------|--------------------------|----------------------------|--------------------------|----------------------------------|
| $D_{ m l}$ max                  | a<br>max                     | <i>b</i><br>min              | r₀<br>max                  | $D_2$ max                    | f<br>max                     | min                      | $d_{\!\scriptscriptstyle  m a}$ max | $D_{\!\scriptscriptstyle  m a}$ max | D <sub>X</sub> (approx.)     | C <sub>Y</sub>           | <i>C</i> z<br>min        | Γas<br>max                 | <i>I</i> Nas max         | with snap ring (approx.)         |
| 12.15<br>13.03                  | 0.88<br>1.28                 | 0.55<br>0.65                 | 0.2<br>0.06                | 15.2<br>16.13                | 0.55<br>0.54                 | 6.6<br>6.6               | 6.9<br>7.4                          | 11.4<br>12.4                        | 15.9<br>16.9                 | 1.2<br>1.6               | 0.6<br>0.6               | 0.2<br>0.2                 | 0.1<br>0.2               | 0.002<br>0.004                   |
| 11.15<br>12.15<br>14.03<br>17.9 | 0.78<br>1.08<br>1.03<br>0.93 | 0.60<br>0.55<br>0.65<br>0.80 | 0.02<br>0.2<br>0.06<br>0.2 | 14.2<br>15.2<br>17.2<br>22.0 | 0.55<br>0.55<br>0.60<br>0.70 | 7.2<br>7.0<br>7.6<br>8.0 | 7.9<br>7.2<br>7.8<br>9.5            | 10.8<br>11.8<br>13.4<br>17.0        | 14.9<br>15.9<br>17.9<br>22.8 | 1.1<br>1.4<br>1.4<br>1.4 | 0.6<br>0.6<br>0.7<br>0.7 | 0.15<br>0.15<br>0.2<br>0.3 | 0.1<br>0.1<br>0.2<br>0.3 | 0.001<br>0.002<br>0.004<br>0.008 |
| 14.95<br>20.8                   | 0.53<br>2.35                 | 0.65<br>0.80                 | 0.05<br>0.2                | 18.2<br>24.8                 | 0.54<br>0.70                 | 9.6<br>10.0              | 10.0<br>12.7                        | 14.4<br>20                          | 18.9<br>25.5                 | 0.9<br>2.8               | 0.6<br>0.7               | 0.2<br>0.3                 | 0.1<br>0.4               | 0.003<br>0.013                   |
| 24.5                            | 2.20                         | 0.90                         | 0.3                        | 28.8                         | 0.85                         | 12                       | 13.5                                | 24                                  | 29.5                         | 2.8                      | 0.9                      | 0.3                        | 0.3                      | 0.02                             |
| 26 44                           | 2 20                         | 0.90                         | 0.3                        | 32 7                         | 0.85                         | 14                       | 16                                  | 26                                  | 33 4                         | 28                       | 0.9                      | 0.3                        | 0.3                      | 0.022                            |













Ultra high speed use angular contact ball bearing

Four-point contact ball Double row angular contact bearing ball bearing

#### 1. Design features and special characteristics

contact ball bearing

#### 1.1 Angular contact ball bearing

Angular contact ball bearings are non-separable bearings which have a certain contact angle in the radial direction relative to the straight line that runs through the point where each ball makes contact with the inner and outer rings (see Diagram 1). Table 1 gives contact angle and contact angle symbol.

In addition to radial loads, single direction axial loads can also be accommodated by angular contact ball bearings.

Furthermore, since an axial load is generated from a radial force, these bearings are generally used in pairs facing each other. Standard type, high speed use type and ultra high speed varieties of angular contact ball bearings are available through NTN, and there are also many duplex varieties. A bearing accuracy of JIS Class 5 or higher is applied to duplex type angular contact ball bearings, and in many cases they are given a preload, in compliance with standard preload levels, before being used in an application. Table 2 shows information concerning angular contact ball bearings, and Table 3 shows similar information for duplex angular contact ball bearings.

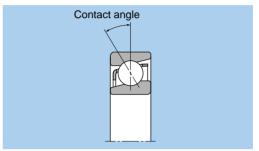



Diagram 1.

Table 1 Contact angle and contact angle codes

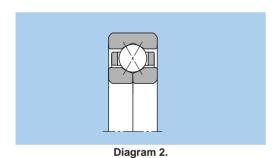
| Contact angle | 15° | 30° | 40° |
|---------------|-----|-----|-----|
| Code          | С   | A•  | В   |

1 Contact angle symbol A is omitted.

Table 2 Angular contact ball bearing types and characteristics

| Type                 | Docian             | Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Туре                 | Design             | Cital acteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Standard<br>type     |                    | <ul> <li>Available in bearing series 79, 70, 72, 72B, 73, and 73B.</li> <li>Contact angles: 30°and 40° (with B) available.</li> <li>Standard bearing cage type differs depending on bearing no. (Refer to Table 4)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| High speed<br>use    |                    | <ul> <li>Available in bearing series 78C, 79C, 70C, 72C, and 73C.</li> <li>Contact angles: 15°</li> <li>All bearing accuracies JIS Class 5 or higher.</li> <li>Standard bearing cage type differs depending on bearing no. (Refer to <b>Table 4</b>)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ultra high speed use | BNT type  HSB type | <ul> <li>Available in bearing series HSB9C, HSB0C, BNT0, and BNT2; all boundary dimensions agree with JIS series dimensions.</li> <li>Contact angles: 15°; HSB type HSB9 and HSB0: 15° and 30°.</li> <li>All bearing accuracies JIS Class 5 or higher.</li> <li>BNT type internal design can be altered; suitable for higher speed applications than high speed use bearings.</li> <li>HSB series bearings have smaller diameter of balls than high speed use type bearings, so benefit by less torque for high precision, high speed applications.</li> <li>The inner ring bore diameter and outer ring inner diameter of the HSB series have a ground undercut on one side enabling easy oil flow.</li> <li>For even higher speed applications, there is a bearing in this series equipped with ceramic ball bearings.</li> <li>For standard cage types refer to Table 4; molded resin cages are also available for some varieties.</li> </ul> |

Table 3 Duplex angular contact ball bearings types and characteristics


| Duplex                         | type | Characteristics                                                                                                                                                                                                                                                                                                 |
|--------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Back-to-back<br>duplex<br>(DB) |      | <ul> <li>Can accommodate radial loads and axial loads in either direction.</li> <li>Has a large distance ℓ between the acting load center of the bearing, and therefore a large momentary force load capacity.</li> <li>Allowable misalignment angle is small.</li> </ul>                                       |
| Face-to face<br>duplex<br>(DF) |      | <ul> <li>Can accommodate radial loads and axial loads in either direction.</li> <li>Has a smaller distance ℓ between the acting load center of the bearing, and therefore a smaller momentary force load capacity.</li> <li>Has a larger allowable misalignment angle than back-to-back duplex type.</li> </ul> |
| Tandem duplex (DT)             |      | <ul> <li>Can accommodate radial loads and single direction axial loads.</li> <li>Axial loads are received by both bearings as a set, and therefore heavy axial loads can be accommodated.</li> </ul>                                                                                                            |

Note: 1. Duplex bearings are manufactured in a set to specified clearance and preload values, therefore they must be assembled together with identically numbered bearings and not mixed with other arrangements.

2. Triplex arrangements of angular contact bearings are also available. Consult NTN Engineering for details.

#### 1.2 Four-point angular contact ball bearings

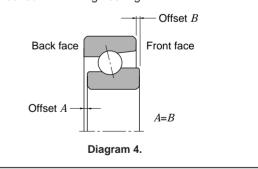
Four-point angular contact ball bearings have a contact angle of 30° and inner rings which are separated in half. As shown in **Diagram 2**, when the inner and outer rings receive a radial load the ball bearings contact the inner and outer rings at four points. This construction enables a single bearing to accommodate axial loads from either direction, and when generally under a simple axial load or heavy axial load, the bearing functions in reliance on two contact points like ordinary bearings.



#### 1.3 Double row angular contact ball bearings

The structure of double row angular contact ball bearings is designed by arranging two single row angular contact bearings back-to-back in duplex (DB) to form one united bearing with a contact angle of 25°.

These bearings are capable of accommodating radial


loads, axial loads in either direction, and have a high capacity for momentary loads as well.

As shown in **Diagram 3**, sealed and shielded type double row angular contact ball bearings are also available. Standard loads vary from those of open type bearings.

#### Flush ground

"Flush ground" is the name given to the finishing method shown in **Diagram 4** where the offset of the front and back faces of the bearing are ground to the same value. By doing this, a stated clearance or preload value can be achieved by using bearings with identical codes for these values, in other words by combining either DB or DF series bearings. DT series bearings can also be used in various arrangements to achieve uniform load distribution.

All BNT type bearings are flush ground, but other angular contact ball bearing series are not. If it is necessary to flush grind any of these other bearings, please consult NTN Engineering.



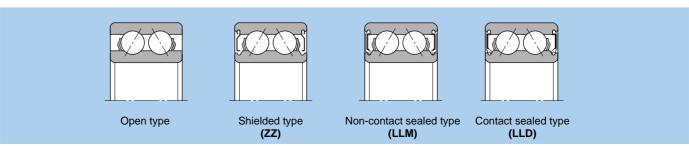
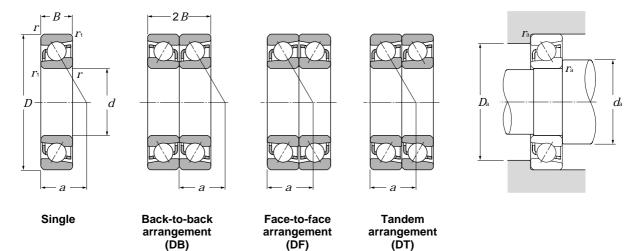



Diagram 3.

#### 2. Standard cage types

**Table 4** lists the standard cage types for angular contact ball bearings. For high speed use angular contact ball bearings, molded resin cages and machined cages are widely used.

Table 4 Standard cages for angular contact ball bearings


| Туре                    | Bearing series                     | Molded resin cage                                                | Pressed cage                                                 | Machined cage                                                                                      |
|-------------------------|------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Standard                | 79<br>70<br>72<br>73<br>72B<br>73B | 7904 ~ 7913<br>7000 ~ 7024                                       | 7200 ~ 7222<br>7300 ~ 7322<br>7200B ~ 7222B<br>7300B ~ 7322B | 7914 ~ 7960<br>7026 ~ 7040<br>7224 ~ 7240<br>7324 ~ 7340<br>7224B ~ 7240B<br>7324B ~ 7340B         |
| High<br>speed<br>use    | 78C<br>79C<br>70C<br>72C<br>73C    | 7904C ~ 7913C<br>7000C ~ 7024C<br>7200C ~ 7220C<br>7303C ~ 7312C |                                                              | 7805C ~ 7834C<br>7914C ~ 7934C<br>7026C ~ 7040C<br>7221C ~ 7240C<br>7300C ~ 7302C<br>7313C ~ 7340C |
| Ultra high<br>speed use | BNT0<br>BNT2<br>HSB9C<br>HSB0C     | HSB010C ~ HSB032C                                                |                                                              | BNT000 ~ BNT009<br>BNT200 ~ BNT209<br>HSB910C ~ HSB934C<br>HSB034C                                 |
| 4-point contact         | QJ2<br>QJ3                         |                                                                  |                                                              | QJ208 ~ QJ224<br>QJ306 ~ QJ324                                                                     |
| Double row              | 52<br>53                           |                                                                  | 5200\$ ~ 5217\$<br>5302\$ ~ 5314\$                           |                                                                                                    |

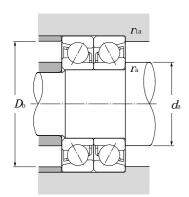
Note: 1. Standard cages for 5S-BNT and 5S-HSB type bearings are the same as cages for BNT and HSB type bearings.

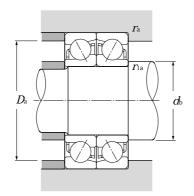
2. Due to the material characteristics of molded resin cages, use at application temperatures in excess of 120°C is not possible.








d 10 ~ 30mm


|     | В  | ounda | ry dim     | ensions             | ;                |             | Basic loa   | ad ratings  |             | Limiting speeds1) |                   | Bearing <sup>2</sup> ) | Load     | Mass      |
|-----|----|-------|------------|---------------------|------------------|-------------|-------------|-------------|-------------|-------------------|-------------------|------------------------|----------|-----------|
|     |    |       |            |                     |                  | dynamic     |             | dynamic     |             |                   |                   | numbers                | centerkg | kg        |
|     |    |       | mm         |                     |                  |             | κN          |             | gf          | n                 | nin <sup>-1</sup> |                        | mm       | single    |
| d   | D  | В     | 2 <i>B</i> | $r_{\rm s min}^{3}$ | $I \ln \min^{3}$ | $C_{\rm r}$ | $C_{ m or}$ | $C_{\rm r}$ | $C_{ m or}$ | grease            | oil               |                        | а        | (approx.) |
|     | 26 | 8     | 16         | 0.3                 | 0.15             | 4.65        | 2.07        | 470         | 212         | 29 000            | 39 000            | 7000                   | 9        | 0.023     |
|     | 30 | 9     | 18         | 0.6                 | 0.3              | 5.45        | 2.74        | 555         | 279         | 28 000            | 37 000            | 7200                   | 10.5     | 0.029     |
| 10  | 30 | 9     | 18         | 0.6                 | 0.3              | 5.00        | 2.52        | 510         | 257         | 24 000            | 32 000            | 7200B                  | 13       | 0.029     |
| . • | 35 | 11    | 22         | 0.6                 | 0.3              | 10.1        | 4.95        | 1 030       | 500         | 26 000            | 34 000            | 7300                   | 12       | 0.04      |
|     | 35 | 11    | 22         | 0.6                 | 0.3              | 9.50        | 4.60        | 970         | 470         | 22 000            | 29 000            | 7300B                  | 15       | 0.041     |
|     | 28 | 8     | 16         | 0.3                 | 0.15             | 5.05        | 2.46        | 515         | 251         | 26 000            | 35 000            | 7001                   | 10       | 0.025     |
|     | 32 | 10    | 20         | 0.6                 | 0.3              | 7.60        | 3.95        | 775         | 405         | 25 000            | 33 000            | 7201                   | 11.5     | 0.035     |
| 12  | 32 | 10    | 20         | 0.6                 | 0.3              | 7.00        | 3.65        | 775         | 405         | 21 000            | 28 000            | 7201B                  | 14       | 0.036     |
|     | 37 | 12    | 24         | 1                   | 0.6              | 11.2        | 5.25        | 1 140       | 535         | 23 000            | 30 000            | 7301                   | 13       | 0.044     |
|     | 37 | 12    | 24         | 1                   | 0.6              | 10.5        | 4.95        | 1 080       | 505         | 19 000            | 26 000            | 7301B                  | 16.5     | 0.045     |
|     | 32 | 9     | 18         | 0.3                 | 0.15             | 5.80        | 3.15        | 590         | 320         | 23 000            | 31 000            | 7002                   | 11.5     | 0.035     |
|     | 35 | 11    | 22         | 0.6                 | 0.3              | 9.05        | 4.70        | 925         | 480         | 22 000            | 29 000            | 7202                   | 12.5     | 0.046     |
| 15  | 35 | 11    | 22         | 0.6                 | 0.3              | 8.35        | 4.35        | 855         | 445         | 18 000            | 25 000            | 7202B                  | 16       | 0.046     |
|     | 42 | 13    | 26         | 1                   | 0.6              | 13.5        | 7.20        | 1 370       | 735         | 19 000            | 26 000            | 7302                   | 15       | 0.055     |
|     | 42 | 13    | 26         | 1                   | 0.6              | 12.5        | 6.65        | 1 270       | 680         | 17 000            | 22 000            | 7302B                  | 19       | 0.057     |
|     | 35 | 10    | 20         | 0.3                 | 0.15             | 7.15        | 3.85        | 730         | 390         | 21 000            | 28 000            | 7003                   | 12.5     | 0.046     |
|     | 40 | 12    | 24         | 0.6                 | 0.3              | 12.0        | 6.60        | 1 220       | 675         | 19 000            | 26 000            | 7203                   | 14.5     | 0.064     |
| 17  | 40 | 12    | 24         | 0.6                 | 0.3              | 11.0        | 6.10        | 1 120       | 625         | 17 000            | 22 000            | 7203B                  | 18       | 0.066     |
|     | 47 | 14    | 28         | 1                   | 0.6              | 15.9        | 8.65        | 1 630       | 880         | 18 000            | 24 000            | 7303                   | 16       | 0.107     |
|     | 47 | 14    | 28         | 1                   | 0.6              | 14.8        | 8.00        | 1 510       | 820         | 15 000            | 20 000            | 7303B                  | 20.5     | 0.109     |
|     | 42 | 12    | 24         | 0.6                 | 0.3              | 9.70        | 5.60        | 990         | 570         | 19 000            | 25 000            | 7004                   | 15       | 0.08      |
|     | 47 | 14    | 28         | 1                   | 0.6              | 14.5        | 8.40        | 1 480       | 855         | 17 000            | 23 000            | 7204                   | 17       | 0.1       |
| 20  | 47 | 14    | 28         | 1                   | 0.6              | 13.3        | 7.70        | 1 360       | 785         | 15 000            | 20 000            | 7204B                  | 21.5     | 0.102     |
|     | 52 | 15    | 30         | 1.1                 | 0.6              | 18.7        | 10.4        | 1 910       | 1 060       | 16 000            | 21 000            | 7304                   | 18       | 0.138     |
|     | 52 | 15    | 30         | 1.1                 | 0.6              | 17.3        | 9.65        | 1 770       | 985         | 13 000            | 18 000            | 7304B                  | 22.5     | 0.141     |
|     | 42 | 9     | 18         | 0.3                 | 0.15             | 7.15        | 4.95        | 730         | 505         | 17 000            | 22 000            | 7905                   | 14       | 0.05      |
|     | 47 | 12    | 24         | 0.6                 | 0.3              | 10.7        | 6.85        | 1 100       | 700         | 16 000            | 21 000            | 7005                   | 16.5     | 0.093     |
| 25  | 52 | 15    | 30         | 1                   | 0.6              | 16.2        | 10.3        | 1 650       | 1 050       | 14 000            | 19 000            | 7205                   | 19       | 0.125     |
| 25  | 52 | 15    | 30         | 1                   | 0.6              | 14.8        | 9.40        | 1 510       | 960         | 12 000            | 16 000            | 7205B                  | 24       | 0.129     |
|     | 62 | 17    | 34         | 1.1                 | 0.6              | 26.4        | 15.8        | 2 690       | 1 610       | 13 000            | 17 000            | 7305                   | 21       | 0.23      |
|     | 62 | 17    | 34         | 1.1                 | 0.6              | 24.4        | 14.6        | 2 490       | 1 490       | 11 000            | 15 000            | 7305B                  | 27       | 0.234     |
| 20  | 47 | 9     | 18         | 0.3                 | 0.15             | 7.55        | 5.75        | 770         | 585         | 14 000            | 19 000            | 7906                   | 15.5     | 0.058     |
| 30  | 55 | 13    | 26         | 1                   | 0.6              | 13.9        | 9.45        | 1 410       | 965         | 13 000            | 18 000            | 7006                   | 19       | 0.135     |

 <sup>1 )</sup> This value achieved with machined cages; when pressed cages are used, 80% of this value is acceptable.
 2 ) Bearing numbers appended with the code "B" have a contact angle of 40°; bearings with this code have a contact angle of 30°.
 3 ) Smallest allowable dimension for chamfer dimension r.

B-46







#### Dynamic equivalent radial load

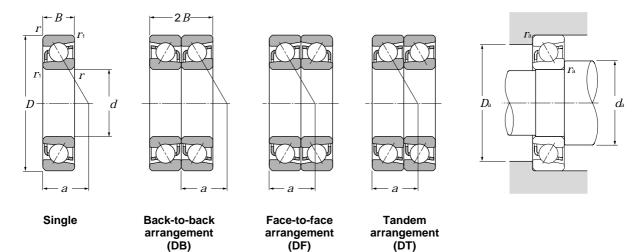
 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 

| Con-  |      |                          | Singl | e, DT           | •    | DB, DF        |                 |               |      |  |
|-------|------|--------------------------|-------|-----------------|------|---------------|-----------------|---------------|------|--|
| tact  | e    | $F_{\rm a}/F_{ m r}$ $e$ |       | $e F_a/F_r > e$ |      | $F_{\rm a}/I$ | $F_{\rm r}$ $e$ | $F_a/F_r > e$ |      |  |
| angle |      | X                        | Y     | X               | Y    | X             | Y               | X             | Y    |  |
| 30°   | 0.80 | 1                        | 0     | 0.39            | 0.76 | 1             | 0.78            | 0.63          | 1.24 |  |
| 40°   | 1.14 | 1                        | 0     | 0.35            | 0.57 | 1             | 0.55            | 0.57          | 0.93 |  |

### Static equivalent radial load $P_{\text{or}}$ = $X_0 F_{\text{r}}$ + $Y_0 F_{\text{a}}$

| Con-<br>tact | Singl          | e, DT | DB, DF         |                |  |  |  |
|--------------|----------------|-------|----------------|----------------|--|--|--|
| angle        | X <sub>0</sub> | Yo    | X <sub>0</sub> | Y <sub>o</sub> |  |  |  |
| 30°          | 0.5            | 0.33  | 1              | 0.66           |  |  |  |
| 40°          | 0.5            | 0.26  | 1              | 0.52           |  |  |  |

For single and DT arrangement, When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ 


|   |              | Basic loa    | ad ratings     |                | Limiting s       | speeds1)         | eds <sup>1)</sup> Bearing numbers <sup>2)</sup> Abutment and fillet dimensions |          |          | nsions       |              |              |                               |              |                  |
|---|--------------|--------------|----------------|----------------|------------------|------------------|--------------------------------------------------------------------------------|----------|----------|--------------|--------------|--------------|-------------------------------|--------------|------------------|
|   | dynamic      | static       | dynamic        | static         | (dupl            |                  |                                                                                |          |          |              |              |              |                               |              |                  |
|   | (dup         |              |                | uplex)         | mir              | 1 <sup>-1</sup>  |                                                                                |          |          | ,            | ,            | mı           |                               |              |                  |
|   |              | N            |                | kgf            |                  | <u>-</u> !!      | <b>D</b> D                                                                     | DF       | ьт       | $d_{a}$      | $d_{b}$      | $D_{\rm a}$  | $D_{\scriptscriptstyle  m D}$ | $rac{r}{as}$ | $m{arGamma}$ las |
|   | $C_{ m r}$   | $C_{ m or}$  | $C_{ m r}$     | $C_{ m or}$    | grease           | oil              | DB                                                                             | DF       | DT       | min          | min          | max          | max                           | max          | max              |
|   |              |              |                |                |                  |                  |                                                                                |          |          |              |              |              |                               |              |                  |
|   | 7.50         | 4.15         | 765            | 425            | 23 000           | 31 000           | DB                                                                             | DF       | DT       | 12.5         | 12.5         | 23.5         | 24.8                          | 0.3          | 0.15             |
|   | 8.80         | 5.45         | 900            | 560            | 22 000           | 30 000           | DB                                                                             | DF       | DT       | 14.5         | 12.5         | 25.5         | 27.5                          | 0.6          | 0.3              |
|   | 8.10         | 5.05         | 825            | 515            | 19 000           | 26 000           | DB                                                                             | DF       | DT       | 14.5         | 12.5         | 25.5         | 27.5                          | 0.6          | 0.3              |
|   | 16.5         | 9.85         | 1 680          | 1 000          | 20 000           | 27 000           | DB                                                                             | DF       | DT       | 14.5         | 12.5         | 30.5         | 32.5                          | 0.6          | 0.3              |
|   | 15.4         | 9.20         | 1 570          | 940            | 18 000           | 24 000           | DB                                                                             | DF       | DT       | 14.5         | 12.5         | 30.5         | 32.5                          | 0.6          | 0.3              |
|   | 8.20         | 4.90         | 840            | 500            | 21 000           | 28 000           | DB                                                                             | DF       | DT       | 14.5         | 14.5         | 25.5         | 26.8                          | 0.3          | 0.15             |
|   | 12.3         | 7.95         | 1 260          | 810            | 20 000           | 26 000           | DB                                                                             | DF       | DT       | 16.5         | 14.5         | 27.5         | 29.5                          | 0.6          | 0.3              |
|   | 11.4         | 7.35         | 1 160          | 750            | 17 000           | 23 000           | DB                                                                             | DF       | DT       | 16.5         | 14.5         | 27.5         | 29.5                          | 0.6          | 0.3              |
|   | 18.2         | 10.5         | 1 850          | 1 070          | 18 000           | 24 000           | DB                                                                             | DF       | DT       | 17.5         | 16.5         | 31.5         | 32.5                          | 1            | 0.6              |
|   | 17.1         | 9.90         | 1 750          | 1 010          | 16 000           | 21 000           | DB                                                                             | DF       | DT       | 17.5         | 16.5         | 31.5         | 32.5                          | 1            | 0.6              |
| ľ | 9.40         | 6.30         | 960            | 640            | 18 000           | 24 000           | DB                                                                             | DF       | DT       | 17.5         | 17.5         | 29.5         | 30.8                          | 0.3          | 0.15             |
|   | 14.7         | 9.40         | 1 500          | 960            | 17 000           | 23 000           | DB                                                                             | DF       | DT       | 19.5         | 17.5         | 30.5         | 32.5                          | 0.6          | 0.3              |
|   | 13.6         | 8.70         | 1 390          | 885            | 15 000           | 20 000           | DB                                                                             | DF       | DT       | 19.5         | 17.5         | 30.5         | 32.5                          | 0.6          | 0.3              |
|   | 21.9         | 14.4         | 2 230          | 1 470          | 15 000           | 21 000           | DB                                                                             | DF       | DT       | 20.5         | 19.5         | 36.5         | 37.5                          | 1            | 0.6              |
|   | 20.3         | 13.3         | 2 070          | 1 360          | 13 000           | 18 000           | DB                                                                             | DF       | DT       | 20.5         | 19.5         | 36.5         | 37.5                          | 1            | 0.6              |
|   |              |              |                |                |                  |                  |                                                                                |          |          |              |              |              |                               |              |                  |
|   | 11.6         | 7.65         | 1 190          | 780            | 17 000           | 22 000           | DB                                                                             | DF       | DT       | 19.5         | 19.5         | 32.5         | 33.8                          | 0.3          | 0.15             |
|   | 19.4         | 13.2         | 1 980          | 1 350          | 15 000           | 21 000           | DB                                                                             | DF       | DT       | 21.5         | 19.5         | 35.5         | 37.5                          | 0.6          | 0.3              |
|   | 17.9         | 12.2         | 1 830          | 1 250          | 13 000           | 18 000           | DB                                                                             | DF       | DT       | 21.5         | 19.5         | 35.5         | 37.5                          | 0.6          | 0.3              |
|   | 25.9         | 17.3         | 2 640          | 1 760          | 14 000           | 19 000           | DB                                                                             | DF       | DT       | 22.5         | 21.5         | 41.5         | 42.5                          | 1            | 0.6              |
|   | 24.0         | 16.0         | 2 450          | 1 640          | 12 000           | 16 000           | DB                                                                             | DF       | DT       | 22.5         | 21.5         | 41.5         | 42.5                          | 1            | 0.6              |
| 1 | 45.0         | 44.0         | 4.040          | 1 1 1 1 0      | 45.000           | 20,000           | DD                                                                             | DE       | DT       | 24.5         | 24.5         | 27.5         | 20.5                          | 0.0          | 0.0              |
|   | 15.8<br>23.6 | 11.2<br>16.8 | 1 610<br>2 400 | 1 140          | 15 000           | 20 000           | DB                                                                             | DF<br>DF | DT       | 24.5<br>25.5 | 24.5<br>24.5 | 37.5         | 39.5<br>42.5                  | 0.6          | 0.3<br>0.6       |
|   | 23.6<br>21.6 | 15.4         | 2 200          | 1 710<br>1 570 | 14 000<br>12 000 | 18 000<br>16 000 | DB<br>DB                                                                       | DF       | DT<br>DT | 25.5<br>25.5 | 24.5<br>24.5 | 41.5<br>41.5 | 42.5<br>42.5                  | 1<br>1       | 0.6              |
|   | 30.5         | 20.8         | 3 100          | 2 130          | 12 000           | 16 000           | DB                                                                             | DF       | DT       | 25.5<br>27   | 24.5<br>24.5 | 41.5<br>45   | 42.5<br>47.5                  | 1            | 0.6              |
|   | 28.2         | 20.6<br>19.3 | 2 870          | 1 970          | 11 000           | 14 000           | DB                                                                             | DF       | DT       | 27           | 24.5<br>24.5 | 45<br>45     | 47.5<br>47.5                  | 1            | 0.6              |
|   | 20.2         | 19.5         | 2 07 0         | 1 970          | 11 000           | 14 000           | DB                                                                             | DF       | וט       | 21           | 24.5         | 40           | 47.5                          | ı            | 0.0              |
|   | 11.6         | 9.95         | 1 180          | 1 010          | 13 000           | 18 000           | DB                                                                             | DF       | DT       | 27.5         | 27.5         | 39.5         | 40.8                          | 0.3          | 0.15             |
|   | 17.5         | 13.7         | 1 780          | 1 400          | 12 000           | 17 000           | DB                                                                             | DF       | DT       | 29.5         | 29.5         | 42.5         | 44.5                          | 0.6          | 0.3              |
|   | 26.3         | 20.6         | 2 690          | 2 100          | 11 000           | 15 000           | DB                                                                             | DF       | DT       | 30.5         | 29.5         | 46.5         | 47.5                          | 1            | 0.6              |
|   | 24.0         | 18.8         | 2 450          | 1 920          | 10 000           | 13 000           | DB                                                                             | DF       | DT       | 30.5         | 29.5         | 46.5         | 47.5                          | 1            | 0.6              |
|   | 43.0         | 31.5         | 4 400          | 3 250          | 10 000           | 14 000           | DB                                                                             | DF       | DT       | 32           | 29.5         | 55           | 57.5                          | 1            | 0.6              |
|   | 39.5         | 29.3         | 4 050          | 2 980          | 9 100            | 12 000           | DB                                                                             | DF       | DT       | 32           | 29.5         | 55           | 57.5                          | 1            | 0.6              |
|   | 12.3         | 11.5         | 1 250          | 1 170          | 12 000           | 15 000           | DB                                                                             | DF       | DT       | 32.5         | 32.5         | 44.5         | 45.8                          | 0.3          | 0.15             |
|   | 22.5         | 18.9         | 2 300          | 1 930          | 11 000           | 14 000           | DB                                                                             | DF       | DT       | 35.5         | 35.5         | 49.5         | 50.5                          | 1            | 0.13             |
|   |              |              | _ 000          |                |                  |                  |                                                                                |          |          |              | 00.0         |              | 55.5                          | •            |                  |

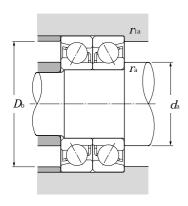
Note: For bearing series 79 and 70, inner rings are constructed with groove abutments on both sides. Therefore, the inner ring chamfer dimension n is identical to dimension r. Furthermore, the radius  $r_{1a}$  of the shaft corner roundness is likewise identical to  $r_a$ .

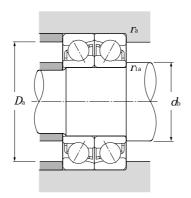









d 30 ~ 55mm


|        | Boundary dimensions |          |            | •                        |                     | Basic loa    | asic load ratings Limiting speeds <sup>1)</sup> Bearing <sup>2)</sup> Load |             |             | Mass                       |                   |               |          |           |
|--------|---------------------|----------|------------|--------------------------|---------------------|--------------|----------------------------------------------------------------------------|-------------|-------------|----------------------------|-------------------|---------------|----------|-----------|
|        |                     |          |            |                          |                     | dynami       |                                                                            | dynamic     |             |                            |                   | numbers       | centerkg | kg        |
|        |                     |          | mm         |                          |                     |              | kN                                                                         |             | gf          | n                          | nin <sup>-1</sup> |               | mm       | single    |
| d      | D                   | В        | 2 <i>B</i> | $r_{ m s  min}^{ m 3}$ ) | $n_{\rm lsmin}^{3}$ | $C_{\rm r}$  | $C_{ m or}$                                                                | $C_{\rm r}$ | $C_{ m or}$ | grease                     | oil               |               | а        | (approx.) |
|        |                     |          |            |                          |                     |              |                                                                            |             |             |                            |                   |               |          |           |
|        | 62                  | 16       | 32         | 1                        | 0.6                 | 22.5         | 14.8                                                                       | 2 300       | 1 510       | 12 000                     | 16 000            | 7206          | 21.5     | 0.193     |
| 30     | 62                  | 16       | 32         | 1                        | 0.6                 | 20.5         | 13.5                                                                       | 2 090       | 1 380       | 11 000                     | 14 000            | 7206B         | 27.5     | 0.197     |
| 30     | 72                  | 19       | 38         | 1.1                      | 0.6                 | 33.5         | 22.3                                                                       | 3 450       | 2 280       | 11 000                     | 15 000            | 7306          | 24.5     | 0.345     |
|        | 72                  | 19       | 38         | 1.1                      | 0.6                 | 31.0         | 20.5                                                                       | 3 150       | 2 090       | 9 600                      | 13 000            | 7306B         | 31.5     | 0.352     |
|        | 55                  | 10       | 20         | 0.6                      | 0.3                 | 12.0         | 8.85                                                                       | 1 220       | 905         | 13 000                     | 17 000            | 7907          | 18       | 0.088     |
|        | 62                  | 14       | 28         | 1                        | 0.6                 | 17.5         | 12.6                                                                       | 1 790       | 1 280       | 12 000                     | 16 000            | 7007          | 21       | 0.088     |
|        | 72                  | 17       | 34         | 1.1                      | 0.6                 | 29.7         | 20.1                                                                       | 3 050       | 2 050       | 11 000                     | 14 000            | 7007          | 24       | 0.18      |
| 35     | 72                  | 17       | 34         | 1.1                      | 0.6                 | 29.7<br>27.1 | 18.4                                                                       | 2 760       | 1 870       | 9 300                      | 12 000            | 7207<br>7207B | 31       | 0.287     |
|        |                     | 21       | 34<br>42   | 1.1                      |                     | 40.0         | 26.3                                                                       |             |             | 9 800                      |                   | 7207B<br>7307 | 27       |           |
|        | 80                  |          |            |                          | 1                   |              |                                                                            | 4 050       | 2 680       |                            | 13 000            | 7307<br>7307B |          | 0.462     |
|        | 80                  | 21       | 42         | 1.5                      | 1                   | 36.5         | 24.2                                                                       | 3 750       | 2 470       | 8 400                      | 11 000            | 73076         | 34.5     | 0.469     |
|        | 62                  | 12       | 24         | 0.6                      | 0.3                 | 12.7         | 10.2                                                                       | 1 290       | 1 040       | 11 000                     | 15 000            | 7908          | 20.5     | 0.13      |
|        | 68                  | 15       | 30         | 1                        | 0.6                 | 18.8         | 14.6                                                                       | 1 910       | 1 490       | 10 000                     | 14 000            | 7008          | 23       | 0.222     |
| 40     | 80                  | 18       | 36         | 1.1                      | 0.6                 | 35.5         | 25.1                                                                       | 3 600       | 2 560       | 9 600                      | 13 000            | 7208          | 26.5     | 0.355     |
| 40     | 80                  | 18       | 36         | 1.1                      | 0.6                 | 32.0         | 23.0                                                                       | 3 250       | 2 340       | 8 300                      | 11 000            | 7208B         | 34       | 0.375     |
|        | 90                  | 23       | 46         | 1.5                      | 1                   | 49.0         | 33.0                                                                       | 5 000       | 3 350       | 8 600                      | 12 000            | 7308          | 30.5     | 0.625     |
|        | 90                  | 23       | 46         | 1.5                      | 1                   | 45.0         | 30.5                                                                       | 4 550       | 3 100       | 7 400                      | 9 900             | 7308B         | 39       | 0.636     |
|        | 68                  | 12       | 24         | 0.6                      | 0.3                 | 15.7         | 12.9                                                                       | 1 600       | 1 310       | 10 000                     | 14 000            | 7909          | 22.5     | 0.15      |
|        | 75                  | 16       | 32         | 1                        | 0.6                 | 22.3         | 17.7                                                                       | 2 270       | 1 800       | 9 500                      | 13 000            | 7009          | 25.5     | 0.13      |
|        | 85                  | 19       | 38         | 1.1                      | 0.6                 | 39.5         | 28.7                                                                       | 4 050       | 2 930       | 8 700                      | 12 000            | 7009          | 28.5     | 0.202     |
| 45     | 85                  | 19       | 38         | 1.1                      | 0.6                 | 36.0         | 26.7<br>26.2                                                               | 3 650       | 2 680       | 7 400                      | 9 900             | 7209<br>7209B | 37       | 0.404     |
|        | 100                 | 25       | 50         | 1.5                      | 1                   | 63.5         | 44.0                                                                       | 6 450       | 4 500       | 7 <del>4</del> 00<br>7 800 | 10 000            | 7209B<br>7309 | 33.5     | 0.41      |
|        |                     |          |            | 1.5<br>1.5               |                     |              |                                                                            |             |             | 6 600                      |                   |               |          |           |
|        | 100                 | 25       | 50         | 1.5                      | 1                   | 58.5         | 40.0                                                                       | 5 950       | 4 100       | 6 600                      | 8 900             | 7309B         | 43.0     | 0.854     |
|        | 72                  | 12       | 24         | 0.6                      | 0.3                 | 16.6         | 14.5                                                                       | 1 690       | 1 470       | 9 200                      | 12 000            | 7910          | 23.5     | 0.157     |
|        | 80                  | 16       | 32         | 1                        | 0.6                 | 23.7         | 20.1                                                                       | 2 410       | 2 050       | 8 600                      | 11 000            | 7010          | 27       | 0.306     |
| ΕO     | 90                  | 20       | 40         | 1.1                      | 0.6                 | 41.5         | 31.5                                                                       | 4 200       | 3 200       | 7 900                      | 10 000            | 7210          | 30       | 0.457     |
| 50     | 90                  | 20       | 40         | 1.1                      | 0.6                 | 37.5         | 28.6                                                                       | 3 800       | 2 920       | 6 700                      | 9 000             | 7210B         | 39.5     | 0.466     |
|        | 110                 | 27       | 54         | 2                        | 1                   | 74.5         | 52.5                                                                       | 7 600       | 5 350       | 7 100                      | 9 400             | 7310          | 36.5     | 1.09      |
|        | 110                 | 27       | 54         | 2                        | 1                   | 68.0         | 48.0                                                                       | 6 950       | 4 950       | 6 000                      | 8 100             | 7310B         | 47       | 1.11      |
|        | 80                  | 13       | 26         | 1                        | 0.6                 | 17.3         | 16.1                                                                       | 1 770       | 1 640       | 8 400                      | 11 000            | 7911          | 26       | 0.214     |
|        | 90                  | 18       | 36         | 1.1                      | 0.6                 | 31.0         | 26.3                                                                       | 3 150       | 2 680       | 7 900                      | 11 000            | 7911          | 30       | 0.214     |
|        | 100                 | 21       | 36<br>42   | 1.1                      | 1                   | 51.0<br>51.0 | 26.3<br>39.5                                                               | 5 200       | 4 050       | 7 900<br>7 100             | 9 500             | 7011<br>7211  | 33       | 0.447     |
| 55     |                     |          |            |                          |                     |              |                                                                            |             |             |                            |                   |               |          |           |
|        | 100                 | 21       | 42<br>50   | 1.5                      | 1<br>1              | 46.5         | 36.0                                                                       | 4 700       | 3 700       | 6 100                      | 8 200             | 7211B         | 43       | 0.612     |
|        | 120<br>120          | 29<br>29 | 58<br>58   | 2<br>2                   |                     | 86.0         | 61.5<br>56.5                                                               | 8 750       | 6 300       | 6 400<br>5 500             | 8 600             | 7311<br>7311B | 40<br>52 | 1.39      |
| 1 ) TI |                     | _        |            |                          | 1                   | 79.0         |                                                                            | 8 050       | 5 800       | 5 500                      | 7 300             | 13118         | 52       | 1.42      |

<sup>1)</sup> This value achieved with machined cages; when pressed cages are used, 80% of this value is acceptable.
2) Bearing numbers appended with the code "B" have a contact angle of 40°; bearings with this code have a contact angle of 30°.
3) Smallest allowable dimension for chamfer dimension *r* or *n*.

B-48







#### Dynamic equivalent radial load

 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 

| Con-   |      | Single, DT DB |                 |               |                 |               |                 | , DF    |                 |
|--------|------|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------|-----------------|
| tact e |      | $F_{\rm a}/I$ | $F_{\rm r}$ $e$ | $F_{\rm a}/I$ | $F_{\rm r} > e$ | $F_{\rm a}/I$ | $F_{\rm r}$ $e$ | $F_a/I$ | $F_{\rm r} > e$ |
| angle  |      | X             | Y               | X             | Y               | X             | Y               | X       | Y               |
| 30°    | 0.80 | 1             | 0               | 0.39          | 0.76            | 1             | 0.78            | 0.63    | 1.24            |
| 40°    | 1.14 | 1             | 0               | 0.35          | 0.57            | 1             | 0.55            | 0.57    | 0.93            |

### Static equivalent radial load $P_{\text{or}}$ = $X_0 F_{\text{r}}$ + $Y_0 F_{\text{a}}$

| Con-<br>tact | Singl          | e, DT          | DB,            | DF   |
|--------------|----------------|----------------|----------------|------|
| angle        | X <sub>o</sub> | Y <sub>o</sub> | X <sub>0</sub> | Yo   |
| 30°          | 0.5            | 0.33           | 1              | 0.66 |
| 40°          | 0.5            | 0.26           | 1              | 0.52 |

For single and DT arrangement, When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ 

|   |             | Basic lo    | ad ratings  |             | Limiting s | speeds1)        | Bearin | g numb | oers <sup>2)</sup> | Abutment and fillet dimensions |                                     |         |                               |                |      |
|---|-------------|-------------|-------------|-------------|------------|-----------------|--------|--------|--------------------|--------------------------------|-------------------------------------|---------|-------------------------------|----------------|------|
|   | dynamic     | static      | dynamic     | static      | (dupl      |                 |        |        |                    |                                |                                     |         |                               |                |      |
|   | •           | olex)       |             | uplex)      | mir        | 1 <sup>-1</sup> |        |        |                    |                                |                                     |         | m                             |                |      |
|   |             | kN G        |             | kgf         |            |                 |        |        |                    | $d_{a}$                        | $d_{\scriptscriptstyle \mathrm{b}}$ | $D_{a}$ | $D_{\scriptscriptstyle  m D}$ | $m{r}_{ m as}$ | rlas |
|   | $C_{\rm r}$ | $C_{ m or}$ | $C_{\rm r}$ | $C_{ m or}$ | grease     | oil             | DB     | DF     | DT                 | min                            | min                                 | max     | max                           | max            | max  |
|   |             |             |             |             |            |                 |        |        |                    |                                |                                     |         |                               |                |      |
|   | 36.5        | 29.6        | 3 750       | 3 000       | 9 800      | 13 000          | DB     | DF     | DT                 | 35.5                           | 34.5                                | 56.5    | 57.5                          | 1              | 0.6  |
|   | 33.5        | 27.1        | 3 400       | 2 760       | 8 600      | 11 000          | DB     | DF     | DT                 | 35.5                           | 34.5                                | 56.5    | 57.5                          | 1              | 0.6  |
|   | 54.5        | 44.5        | 5 550       | 4 550       | 8 900      | 12 000          | DB     | DF     | DT                 | 37                             | 34.5                                | 65      | 67.5                          | 1              | 0.6  |
|   | 50.0        | 41.0        | 5 100       | 4 200       | 7 700      | 10 000          | DB     | DF     | DT                 | 37                             | 34.5                                | 65      | 67.5                          | 1              | 0.6  |
| - |             |             |             |             |            |                 |        |        |                    |                                |                                     |         |                               |                |      |
|   | 19.5        | 17.7        | 1 990       | 1 810       | 10 000     | 13 000          | DB     | DF     | DT                 | 39.5                           | 39.5                                | 50.5    | 52.5                          | 0.6            | 0.3  |
|   | 28.5        | 25.1        | 2 900       | 2 560       | 9 400      | 13 000          | DB     | DF     | DT                 | 40.5                           | 40.5                                | 56.5    | 57.5                          | 1              | 0.6  |
|   | 48.5        | 40.0        | 4 900       | 4 100       | 8 600      | 11 000          | DB     | DF     | DT                 | 42                             | 39.5                                | 65      | 67.5                          | 1              | 0.6  |
|   | 44.0        | 36.5        | 4 500       | 3 750       | 7 500      | 10 000          | DB     | DF     | DT                 | 42                             | 39.5                                | 65      | 67.5                          | 1              | 0.6  |
|   | 65.0        | 52.5        | 6 600       | 5 350       | 7 800      | 10 000          | DB     | DF     | DT                 | 43.5                           | 40.5                                | 71.5    | 74.5                          | 1.5            | 1    |
|   | 59.5        | 48.5        | 6 100       | 4 950       | 6 800      | 9 000           | DB     | DF     | DT                 | 43.5                           | 40.5                                | 71.5    | 74.5                          | 1.5            | 1    |
| - |             |             |             |             |            |                 |        |        |                    |                                |                                     |         |                               |                |      |
|   | 20.6        | 20.4        | 2 100       | 2 080       | 9 000      | 12 000          | DB     | DF     | DT                 | 44.5                           | 44.5                                | 57.5    | 59.5                          | 0.6            | 0.3  |
|   | 30.5        | 29.2        | 3 100       | 2 970       | 8 300      | 11 000          | DB     | DF     | DT                 | 45.5                           | 45.5                                | 62.5    | 63.5                          | 1              | 0.6  |
|   | 57.5        | 50.5        | 5 850       | 5 150       | 7 700      | 10 000          | DB     | DF     | DT                 | 47                             | 44.5                                | 73.0    | 75.5                          | 1              | 0.6  |
|   | 52.0        | 46.0        | 5 300       | 4 700       | 6 700      | 8 900           | DB     | DF     | DT                 | 47                             | 44.5                                | 73      | 75.5                          | 1              | 0.6  |
|   | 79.5        | 66.0        | 8 100       | 6 700       | 6 900      | 9 200           | DB     | DF     | DT                 | 48.5                           | 45.5                                | 81.5    | 84.5                          | 1.5            | 1    |
|   | 73.0        | 60.5        | 7 400       | 6 200       | 6 000      | 8 000           | DB     | DF     | DT                 | 48.5                           | 45.5                                | 81.5    | 84.5                          | 1.5            | 1    |
|   |             |             |             |             |            |                 |        |        |                    |                                |                                     |         |                               |                |      |
|   | 25.5        | 25.7        | 2 600       | 2 620       | 8 100      | 11 000          | DB     | DF     | DT                 | 49.5                           | 49.5                                | 63.5    | 65.5                          | 0.6            | 0.3  |
|   | 36.0        | 35.5        | 3 700       | 3 600       | 7 500      | 10 000          | DB     | DF     | DT                 | 50.5                           | 50.5                                | 69.5    | 70.5                          | 1              | 0.6  |
|   | 64.5        | 57.5        | 6 550       | 5 850       | 6 900      | 9 200           | DB     | DF     | DT                 | 52                             | 49.5                                | 78      | 80.5                          | 1              | 0.6  |
|   | 58.5        | 52.5        | 5 950       | 5 350       | 6 000      | 8 000           | DB     | DF     | DT                 | 52                             | 49.5                                | 78      | 80.5                          | 1              | 0.6  |
|   | 103         | 88.0        | 10 500      | 8 950       | 6 200      | 8 200           | DB     | DF     | DT                 | 53.5                           | 50.5                                | 91.5    | 94.5                          | 1.5            | 1    |
|   | 95.0        | 80.5        | 9 650       | 8 250       | 5 400      | 7 200           | DB     | DF     | DT                 | 53.5                           | 50.5                                | 91.5    | 94.5                          | 1.5            | 1    |
| _ |             |             |             |             |            |                 |        |        |                    |                                |                                     |         |                               |                |      |
|   | 27.0        | 28.9        | 2 750       | 2 950       | 7 300      | 9 800           | DB     | DF     | DT                 | 54.5                           | 54.5                                | 67.5    | 69.5                          | 0.6            | 0.3  |
|   | 38.5        | 40.0        | 3 900       | 4 100       | 6 800      | 9 100           | DB     | DF     | DT                 | 55.5                           | 55.5                                | 74.5    | 75.5                          | 1              | 0.6  |
|   | 67.0        | 63.0        | 6 850       | 6 400       | 6 300      | 8 300           | DB     | DF     | DT                 | 57                             | 54.5                                | 83      | 85.5                          | 1              | 0.6  |
|   | 60.5        | 57.0        | 6 200       | 5 850       | 5 500      | 7 300           | DB     | DF     | DT                 | 57                             | 54.5                                | 83      | 85.5                          | 1              | 0.6  |
|   | 121         | 105         | 12 300      | 10 700      | 5 600      | 7 500           | DB     | DF     | DT                 | 60                             | 55.5                                | 100     | 104.5                         | 2              | 1    |
|   | 111         | 96.0        | 11 300      | 9 850       | 4 900      | 6 500           | DB     | DF     | DT                 | 60                             | 55.5                                | 100     | 104.5                         | 2              | 1    |
| _ |             | 00.0        |             |             | . 556      | 0 000           |        |        |                    | - 00                           | 00.0                                |         |                               | _              |      |
|   | 28.1        | 32.0        | 2 870       | 3 300       | 6 700      | 8 900           | DB     | DF     | DT                 | 60.5                           | 60.5                                | 74.5    | 75.5                          | 1              | 0.6  |
|   | 50.5        | 52.5        | 5 150       | 5 350       | 6 300      | 8 400           | DB     | DF     | DT                 | 62                             | 62                                  | 83      | 85.5                          | 1              | 0.6  |
|   | 83.0        | 79.0        | 8 450       | 8 050       | 5 700      | 7 600           | DB     | DF     | DT                 | 63.5                           | 60.5                                | 91.5    | 94.5                          | 1.5            | 1    |
|   | 75.0        | 72.0        | 7 650       | 7 350       | 5 000      | 6 600           | DB     | DF     | DT                 | 63.5                           | 60.5                                | 91.5    | 94.5                          | 1.5            | 1    |
|   | 139         | 123         | 14 200      | 12 600      | 5 100      | 6 800           | DB     | DF     | DT                 | 65                             | 60.5                                | 110     | 114.5                         | 2              | 1    |
|   | 128         | 113         | 13 000      | 11 600      | 4 500      | 5 900           | DB     | DF     | DT                 | 65                             | 60.5                                | 110     | 114.5                         | 2              | 1    |
|   | 120         | 110         | 10 000      | 11 000      | 7 000      | 0 000           |        | Di     | <i>D</i> I         | 00                             | 00.5                                | 110     | 1 1 <del>7</del> .5           | _              |      |

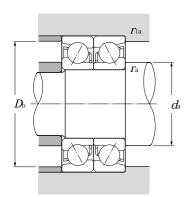
Note: For bearing series 79 and 70, inner rings are constructed with groove abutments on both sides. Therefore, the inner ring chamfer dimension n is identical to dimension r. Furthermore, the radius  $n_a$  of the shaft corner roundness is likewise identical to  $r_a$ .

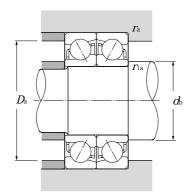









d 60 ~ 85mm


|     | Boundary dimensions |    |            |                       |                       |         |                | ad ratings  |                             | Limiting     | speeds1)          | Bearing <sup>2</sup> )<br>numbers | Load centerkg | Mass                |
|-----|---------------------|----|------------|-----------------------|-----------------------|---------|----------------|-------------|-----------------------------|--------------|-------------------|-----------------------------------|---------------|---------------------|
|     |                     |    | mm         |                       |                       | dynami  | c static<br>kN | dynamic     |                             |              | nin <sup>-1</sup> | Hambers                           | Ŭ             | kg                  |
| d   | D                   | В  | 2 <i>B</i> | r <sub>c min</sub> 3) | n <sub>s min</sub> 3) | $C_{r}$ | $C_{ m or}$    | $C_{\rm r}$ | $g$ f $\mathcal{C}_{ m or}$ | grease       | oil               |                                   | mm<br>a       | single<br>(approx.) |
| u   | D                   | Ъ  | 20         | 1 S IIIIII            | I is iiiiii           | Ci      | Cor            | Cr          | Cor                         | grease       | Oil               |                                   | а             | (арргох.)           |
|     | 85                  | 13 | 26         | 1                     | 0.6                   | 18.1    | 17.4           | 1 840       | 1 780                       | 7 800        | 10 000            | 7912                              | 27.5          | 0.23                |
|     | 95                  | 18 | 36         | 1.1                   | 0.6                   | 32.0    | 28.1           | 3 250       | 2 860                       | 7 200        | 9 600             | 7012                              | 31.5          | 0.478               |
|     | 110                 | 22 | 44         | 1.5                   | 1                     | 61.5    | 49.0           | 6 300       | 5 000                       | 6 600        | 8 800             | 7212                              | 36            | 0.765               |
| 60  | 110                 | 22 | 44         | 1.5                   | 1                     | 56.0    | 44.5           | 5 700       | 4 550                       | 5 700        | 7 600             | 7212B                             | 47.5          | 0.78                |
|     | 130                 | 31 | 62         | 2.1                   | 1.1                   | 98.0    | 71.5           | 10 000      | 7 300                       | 5 900        | 7 900             | 7312                              | 43            | 1.74                |
|     | 130                 | 31 | 62         | 2.1                   | 1.1                   | 90.0    | 66.0           | 9 200       | 6 700                       | 5 100        | 6 800             | 7312B                             | 56            | 1.77                |
|     |                     |    |            |                       |                       |         |                |             |                             |              |                   |                                   |               |                     |
|     | 90                  | 13 | 26         | 1                     | 0.6                   | 18.3    | 18.0           | 1 860       | 1 840                       | 7 200        | 9 600             | 7913                              | 29            | 0.245               |
|     | 100                 | 18 | 36         | 1.1                   | 0.6                   | 33.5    | 31.5           | 3 450       | 3 200                       | 6 700        | 9 000             | 7013                              | 33            | 0.509               |
| 65  | 120                 | 23 | 46         | 1.5                   | 1                     | 70.5    | 58.0           | 7 150       | 5 900                       | 6 100        | 8 100             | 7213                              | 38            | 0.962               |
| UJ  | 120                 | 23 | 46         | 1.5                   | 1                     | 63.5    | 52.5           | 6 500       | 5 350                       | 5 200        | 7 000             | 7213B                             | 50.5          | 0.981               |
|     | 140                 | 33 | 66         | 2.1                   | 1.1                   | 111     | 82.0           | 11 300      | 8 350                       | 5 500        | 7 300             | 7313                              | 46            | 2.11                |
|     | 140                 | 33 | 66         | 2.1                   | 1.1                   | 102     | 75.0           | 10 400      | 7 700                       | 4 700        | 6 300             | 7313B                             | 59.5          | 2.15                |
|     | 100                 | 16 | 32         | 1                     | 0.6                   | 26.2    | 26.2           | 2 670       | 2 670                       | 6 700        | 9 000             | 7914                              | 32.5          | 0.397               |
|     | 110                 | 20 | 40         | 1.1                   | 0.6                   | 42.5    | 39.5           | 4 350       | 4 000                       | 6 200        | 8 300             | 7914                              | 36            | 0.705               |
|     | 125                 | 24 | 48         | 1.5                   | 1                     | 76.5    | 63.5           | 7 800       | 6 500                       | 5 700        | 7 600             | 7014                              | 40            | 1.09                |
| 70  | 125                 | 24 | 48         | 1.5                   | 1                     | 69.0    | 58.0           | 7 050       | 5 900                       | 4 900        | 6 500             | 7214<br>7214B                     | 53            | 1.11                |
|     | 150                 | 35 | 70         | 2.1                   | 1.1                   | 125     | 93.5           | 12 700      | 9 550                       | 5 100        | 6 800             | 72146                             | 49.5          | 2.56                |
|     | 150                 | 35 | 70         | 2.1                   | 1.1                   | 114     | 95.5<br>86     | 11 700      | 8 800                       | 4 400        | 5 800             | 7314B                             | 63.5          | 2.61                |
|     | 150                 |    | 70         | ۷.۱                   | 1.1                   | 117     |                | 11700       | 0 000                       | <del> </del> | 3 000             | 75146                             | 00.0          | 2.01                |
|     | 105                 | 16 | 32         | 1                     | 0.6                   | 26.50   | 27.1           | 2 710       | 2 760                       | 6 300        | 8 400             | 7915                              | 34            | 0.42                |
|     | 115                 | 20 | 40         | 1.1                   | 0.6                   | 43.50   | 41.5           | 4 450       | 4 250                       | 5 800        | 7 800             | 7015                              | 37.5          | 0.745               |
| 75  | 130                 | 25 | 50         | 1.5                   | 1                     | 79.0    | 68.5           | 8 050       | 7 000                       | 5 300        | 7 100             | 7215                              | 42.5          | 1.17                |
| 75  | 130                 | 25 | 50         | 1.5                   | 1                     | 71.5    | 62.0           | 7 300       | 6 350                       | 4 500        | 6 000             | 7215B                             | 56            | 1.19                |
|     | 160                 | 37 | 74         | 2.1                   | 1.1                   | 136     | 106            | 13 800      | 10 800                      | 4 800        | 6 300             | 7315                              | 52.5          | 3.07                |
|     | 160                 | 37 | 74         | 2.1                   | 1.1                   | 125     | 97.5           | 12 700      | 9 900                       | 4 100        | 5 400             | 7315B                             | 68            | 3.13                |
|     | 110                 | 16 | 32         | 1                     | 0.6                   | 26.9    | 28.0           | 2 740       | 2 860                       | 5 900        | 7 800             | 7916                              | 35.5          | 0.444               |
|     | 125                 | 22 | 32<br>44   | 1.1                   | 0.6                   | 53.5    | 50.5           | 5 450       | 5 150                       | 5 500        | 7 300             | 7916                              | 40.5          | 0.444               |
|     | 140                 | 26 | 52         | 2                     | 1                     | 89.0    | 76.0           | 9 100       | 7 750                       | 5 000        | 6 600             | 7016<br>7216                      | 45            | 1.39                |
| 80  | 140                 | 26 | 52         | 2                     | 1                     | 80.5    | 69.5           | 8 200       | 7 050                       | 4 300        | 5 700             | 7216B                             | 59            | 1.42                |
|     | 170                 | 39 | 78         | 2.1                   | 1.1                   | 147     | 119            |             | 12 100                      | 4 500        | 5 900             | 7316                              | 55.5          | 3.65                |
|     | 170                 | 39 | 78         | 2.1                   | 1.1                   | 135     | 109            | 13 800      |                             | 3 800        | 5 100             | 7316B                             | 72            | 3.72                |
|     | 170                 | 00 | , 0        | ۷.۱                   | 1.1                   | 100     | 100            | 10 000      |                             | J 000        | 3 100             | 70100                             | 12            | 0.72                |
|     | 120                 | 18 | 36         | 1.1                   | 0.6                   | 36.0    | 38.0           | 3 700       | 3 850                       | 5 500        | 7 400             | 7917                              | 38.5          | 0.628               |
| 0.E | 130                 | 22 | 44         | 1.1                   | 0.6                   | 54.5    | 53.5           | 5 600       | 5 450                       | 5 100        | 6 900             | 7017                              | 42            | 1.04                |
| 85  | 150                 | 28 | 56         | 2                     | 1                     | 99.5    | 88.5           | 10 100      | 9 050                       | 4 700        | 6 200             | 7217                              | 48            | 1.78                |
|     | 150                 | 28 | 56         | 2                     | 1                     | 90.0    | 80.5           | 9 150       | 8 200                       | 4 000        | 5 300             | 7217B                             | 63.5          | 1.82                |

<sup>1)</sup> This value achieved with machined cages; when pressed cages are used, 80% of this value is acceptable.
2) Bearing numbers appended with the code "B" have a contact angle of 40°; bearings with this code have a contact angle of 30°.
3) Smallest allowable dimension for chamfer dimension *r* or *n*.

B-50







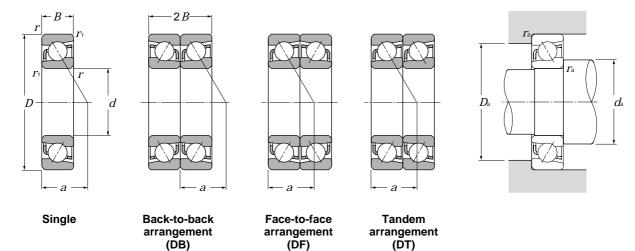
# Dynamic equivalent radial load $P_{\rm T}$ = $XF_{\rm T}$ + $YF_{\rm a}$

| Con-   |      | Single, DT DB |                 |               |                 |               |                 | , DF    |                 |
|--------|------|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------|-----------------|
| tact e |      | $F_{\rm a}/I$ | $F_{\rm r}$ $e$ | $F_{\rm a}/I$ | $F_{\rm r} > e$ | $F_{\rm a}/I$ | $F_{\rm r}$ $e$ | $F_a/I$ | $F_{\rm r} > e$ |
| angle  |      | X             | Y               | X             | Y               | X             | Y               | X       | Y               |
| 30°    | 0.80 | 1             | 0               | 0.39          | 0.76            | 1             | 0.78            | 0.63    | 1.24            |
| 40°    | 1.14 | 1             | 0               | 0.35          | 0.57            | 1             | 0.55            | 0.57    | 0.93            |

### Static equivalent radial load $P_{\text{or}}$ = $X_0 F_{\text{r}}$ + $Y_0 F_{\text{a}}$

| Con-<br>tact | Singl          | e, DT          | DB,            | DF             |
|--------------|----------------|----------------|----------------|----------------|
| angle        | X <sub>o</sub> | Y <sub>o</sub> | X <sub>0</sub> | Y <sub>o</sub> |
| 30°          | 0.5            | 0.33           | 1              | 0.66           |
| 40°          | 0.5            | 0.26           | 1              | 0.52           |

For single and DT arrangement, When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ 


|            | Basic load ratings dynamic static dynamic static |            |                   | Limiting s           |       | Bearin | g numb | ers <sup>2)</sup> | A       | butmen                              | t and fill | let dimer                              | sions     |                  |
|------------|--------------------------------------------------|------------|-------------------|----------------------|-------|--------|--------|-------------------|---------|-------------------------------------|------------|----------------------------------------|-----------|------------------|
| •          | static<br>uplex)                                 | •          | static<br>luplex) | (duple<br><b>min</b> |       |        |        |                   |         |                                     | m          | ım                                     |           |                  |
|            | kN                                               |            | kgf               |                      |       |        |        |                   | $d_{a}$ | $d_{\scriptscriptstyle \mathrm{b}}$ | $D_{a}$    | $D_{\scriptscriptstyle \! \mathrm{D}}$ | arGammaas | $m{arGamma}$ las |
| $C_{ m r}$ | $C_{ m or}$                                      | $C_{ m r}$ | $C_{ m or}$       | grease               | oil   | DB     | DF     | DT                | min     | min                                 | max        | max                                    | max       | max              |
|            |                                                  |            |                   |                      |       |        |        |                   |         |                                     |            |                                        |           |                  |
| 29.3       | 35.0                                             | 2 990      | 3 550             | 6 200                | 8 300 | DB     | DF     | DT                | 65.5    | 65.5                                | 79.5       | 80.5                                   | 1         | 0.6              |
| 52.0       | 56.0                                             | 5 300      | 5 700             | 5 800                | 7 700 | DB     | DF     | DT                | 67      | 67                                  | 88         | 90.5                                   | 1         | 0.6              |
| 100        | 98.0                                             | 10 200     | 10 000            | 5 300                | 7 000 | DB     | DF     | DT                | 68.5    | 65.5                                | 101.5      | 104.5                                  | 1.5       | 1                |
| 91.0       | 89.0                                             | 9 250      | 9 100             | 4 600                | 6 100 | DB     | DF     | DT                | 68.5    | 65.5                                | 101.5      | 104.5                                  | 1.5       | 1                |
| 159        | 143                                              | 16 200     | 14 600            | 4 700                | 6 300 | DB     | DF     | DT                | 72      | 67                                  | 118        | 123                                    | 2         | 1                |
| 146        | 132                                              | 14 900     | 13 400            | 4 100                | 5 500 | DB     | DF     | DT                | 72      | 67                                  | 118        | 123                                    | 2         | 1                |
| 29.7       | 36.0                                             | 3 050      | 3 700             | 5 700                | 7 600 | DB     | DF     | DT                | 70.5    | 70.5                                | 84.5       | 85.5                                   | 1         | 0.6              |
| 55.0       | 62.5                                             | 5 600      | 6 400             | 5 400                | 7 100 | DB     | DF     | DT                | 72      | 72                                  | 93         | 95.5                                   | 1         | 0.6              |
| 114        | 116                                              | 11 600     | 11 800            | 4 900                | 6 500 | DB     | DF     | DT                | 73.5    | 70.5                                | 111.5      | 114.5                                  | 1.5       | 1                |
| 103        | 105                                              | 10 500     | 10 700            | 4 200                | 5 600 | DB     | DF     | DT                | 73.5    | 70.5                                | 111.5      | 114.5                                  | 1.5       | 1                |
| 180        | 164                                              | 18 400     | 16 700            | 4 400                | 5 800 | DB     | DF     | DT                | 77      | 72                                  | 128        | 133                                    | 2         | 1                |
| 166        | 151                                              | 16 900     | 15 400            | 3 800                | 5 100 | DB     | DF     | DT                | 77      | 72                                  | 128        | 133                                    | 2         | 1                |
|            |                                                  |            |                   |                      |       |        |        |                   |         |                                     |            |                                        |           |                  |
| 42.5       | 52.5                                             | 4 350      | 5 350             | 5 300                | 7 100 | DB     | DF     | DT                | 75.5    | 75.5                                | 94.5       | 95.5                                   | 1         | 0.6              |
| 69.5       | 78.5                                             | 7 050      | 8 050             | 5 000                | 6 600 | DB     | DF     | DT                | 77      | 77                                  | 103        | 105.5                                  | 1         | 0.6              |
| 124        | 127                                              | 12 600     | 13 000            | 4 500                | 6 000 | DB     | DF     | DT                | 78.5    | 75.5                                | 116.5      | 119.5                                  | 1.5       | 1                |
| 112        | 116                                              | 11 500     | 11 800            | 3 900                | 5 200 | DB     | DF     | DT                | 78.5    | 75.5                                | 116.5      | 119.5                                  | 1.5       | 1                |
| 203        | 187                                              | 20 700     | 19 100            | 4 100                | 5 400 | DB     | DF     | DT                | 82      | 77                                  | 138        | 143                                    | 2         | 1                |
| 186        | 172                                              | 19 000     | 17 600            | 3 500                | 4 700 | DB     | DF     | DT                | 82      | 77                                  | 138        | 143                                    | 2         | 1                |
| 43.0       | 54.0                                             | 4 400      | 5 500             | 5 000                | 6 700 | DB     | DF     | DT                | 80.5    | 80.5                                | 99.5       | 100.5                                  | 1         | 0.6              |
| 71.0       | 83.5                                             | 7 250      | 8 500             | 4 600                | 6 200 | DB     | DF     | DT                | 82      | 82                                  | 108        | 110.5                                  | 1         | 0.6              |
| 128        | 137                                              | 13 100     | 14 000            | 4 200                | 5 600 | DB     | DF     | DT                | 83.5    | 80.5                                | 121.5      | 124.5                                  | 1.5       | 1                |
| 116        | 124                                              | 11 800     | 12 700            | 3 700                | 4 900 | DB     | DF     | DT                | 83.5    | 80.5                                | 121.5      | 124.5                                  | 1.5       | 1                |
| 221        | 212                                              | 22 500     | 21 600            | 3 800                | 5 000 | DB     | DF     | DT                | 87      | 82                                  | 148        | 153                                    | 2         | 1                |
| 202        | 195                                              | 20 600     | 19 800            | 3 300                | 4 400 | DB     | DF     | DT                | 87      | 82                                  | 148        | 153                                    | 2         | 1                |
| 43.5       | 56.0                                             | 4 450      | 5 700             | 4 700                | 6 200 | DB     | DF     | DT                | 85.5    | 85.5                                | 104.5      | 105.5                                  | 1         | 0.6              |
| 86.5       | 101                                              | 8 850      | 10 300            | 4 400                | 5 800 | DB     | DF     | DT                | 87      | 87                                  | 118        | 120.5                                  | 1         | 0.6              |
| 145        | 152                                              | 14 700     | 15 500            | 3 900                | 5 300 | DB     | DF     | DT                | 90      | 85.5                                | 130        | 134.5                                  | 2         | 1                |
| 131        | 139                                              | 13 300     | 14 100            | 3 400                | 4 600 | DB     | DF     | DT                | 90      | 85.5                                | 130        | 134.5                                  | 2         | 1                |
| 239        | 238                                              | 24 400     | 24 200            | 3 500                | 4 700 | DB     | DF     | DT                | 92      | 87                                  | 158        | 163                                    | 2         | 1                |
| 219        | 218                                              | 22 300     | 22 300            | 3 100                | 4 100 | DB     | DF     | DT                | 92      | 87                                  | 158        | 163                                    | 2         | 1                |
|            | 0                                                |            |                   |                      |       |        |        |                   | V-      | ٥.                                  |            |                                        | _         | ·                |
| 59.0       | 76.0                                             | 6 000      | 7 750             | 4 400                | 5 900 | DB     | DF     | DT                | 92      | 92                                  | 113        | 115.5                                  | 1         | 0.6              |
| 89.0       | 107                                              | 9 050      | 10 900            | 4 100                | 5 500 | DB     | DF     | DT                | 92      | 92                                  | 123        | 125.5                                  | 1         | 0.6              |
| 162        | 177                                              | 16 500     | 18 100            | 3 700                | 5 000 | DB     | DF     | DT                | 95      | 90.5                                | 140        | 144.5                                  | 2         | 1                |
| 146        | 161                                              | 14 900     | 16 400            | 3 200                | 4 300 | DB     | DF     | DT                | 95      | 90.5                                | 140        | 144.5                                  | 2         | 1                |

Note: For bearing series 79 and 70, inner rings are constructed with groove abutments on both sides. Therefore, the inner ring chamfer dimension n is identical to dimension r. Furthermore, the radius  $r_{1a}$  of the shaft corner roundness is likewise identical to  $r_{2a}$ .

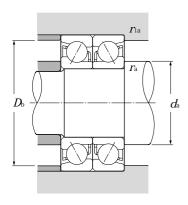


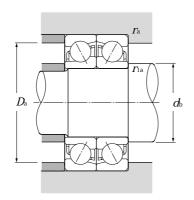






d 85 ~ 120mm


|     | Boundary dimensions |    |            | i                   | dynam               |             | ad ratings<br>dynamic |         | Limiting s  | peeds1) | Bearing <sup>2</sup> )<br>numbers | Load centerkg | <b>Mass</b><br>kg |           |
|-----|---------------------|----|------------|---------------------|---------------------|-------------|-----------------------|---------|-------------|---------|-----------------------------------|---------------|-------------------|-----------|
|     |                     |    | mm         |                     |                     |             | kN                    | ŀ       | cgf         | m       | in <sup>-1</sup>                  |               | mm                | single    |
| d   | D                   | В  | 2 <i>B</i> | $r_{ m s  min}^3$ ) | $n_{ m s  min}^3$ ) | $C_{\rm r}$ | $C_{ m or}$           | $C_{r}$ | $C_{ m or}$ | grease  | oil                               |               | а                 | (approx.) |
|     |                     |    |            |                     |                     |             |                       |         |             |         |                                   |               |                   |           |
| 85  | 180                 | 41 | 82         | 3                   | 1.1                 | 159         | 133                   |         | 13 500      | 4 200   | 5 600                             | 7317          | 59                | 4.34      |
|     | 180                 | 41 | 82         | 3                   | 1.1                 | 146         | 122                   | 14 800  | 12 400      | 3 600   | 4 800                             | 7317B         | 76                | 4.43      |
|     | 125                 | 18 | 36         | 1.1                 | 0.6                 | 36.0        | 38.0                  | 3 650   | 3 850       | 5 200   | 7 000                             | 7918          | 40                | 0.658     |
|     | 140                 | 24 | 48         | 1.5                 | 1                   | 65.0        | 63.5                  | 6 650   | 6 450       | 4 900   | 6 500                             | 7018          | 45                | 1.35      |
| 00  | 160                 | 30 | 60         | 2.0                 | 1                   | 118         | 103                   |         | 10 500      | 4 400   | 5 900                             | 7218          | 51                | 2.18      |
| 90  | 160                 | 30 | 60         | 2.0                 | 1                   | 107         | 94.0                  | 10 900  | 9 550       | 3 800   | 5 000                             | 7218B         | 67.5              | 2.22      |
|     | 190                 | 43 | 86         | 3.0                 | 1.1                 | 171         | 147                   | 17 400  | 15 000      | 4 000   | 5 300                             | 7318          | 62                | 5.06      |
|     | 190                 | 43 | 86         | 3.0                 | 1.1                 | 156         | 135                   | 15 900  | 13 800      | 3 400   | 4 500                             | 7318B         | 80.5              | 5.16      |
|     |                     |    |            |                     |                     |             |                       |         |             |         |                                   |               |                   |           |
|     | 130                 | 18 | 36         | 1.1                 | 0.6                 | 37.0        | 40.5                  | 3 800   | 4 150       | 5 000   | 6 600                             | 7919          | 41.5              | 0.688     |
|     | 145                 | 24 | 48         | 1.5                 | 1                   | 67.0        | 67.0                  | 6 800   | 6 800       | 4 600   | 6 100                             | 7019          | 46.5              | 1.41      |
| 95  | 170                 | 32 | 64         | 2.1                 | 1.1                 | 133         | 118                   | 13 600  | 12 000      | 4 100   | 5 500                             | 7219          | 54.5              | 2.67      |
|     | 170                 | 32 | 64         | 2.1                 | 1.1                 | 121         | 107                   |         | 11 000      | 3 500   | 4 700                             | 7219B         | 71.5              | 2.72      |
|     | 200                 | 45 | 90         | 3                   | 1.1                 | 183         | 162                   |         | 16 600      | 3 700   | 5 000                             | 7319          | 65                | 5.89      |
|     | 200                 | 45 | 90         | 3                   | 1.1                 | 167         | 149                   | 17 100  | 15 200      | 3 200   | 4 200                             | 7319B         | 84.5              | 6         |
|     | 140                 | 20 | 40         | 1.1                 | 0.6                 | 48.0        | 52.5                  | 4 900   | 5 350       | 4 700   | 6 200                             | 7920          | 44.5              | 0.934     |
|     | 150                 | 24 | 48         | 1.5                 | 1                   | 68.5        | 70.5                  | 6 950   | 7 200       | 4 400   | 5 800                             | 7020          | 48                | 1.47      |
| 400 | 180                 | 34 | 68         | 2.1                 | 1.1                 | 144         | 126                   | 14 700  | 12 800      | 3 900   | 5 200                             | 7220          | 57.5              | 3.2       |
| 100 | 180                 | 34 | 68         | 2.1                 | 1.1                 | 130         | 114                   |         | 11 700      | 3 400   | 4 500                             | 7220B         | 76                | 3.26      |
|     | 215                 | 47 | 94         | 3                   | 1.1                 | 207         | 193                   |         | 19 700      | 3 500   | 4 700                             | 7320          | 69                | 7.18      |
|     | 215                 | 47 | 94         | 3                   | 1.1                 | 190         | 178                   | 19 400  | 18 100      | 3 000   | 4 000                             | 7320B         | 89.5              | 7.32      |
|     | 4.45                | 00 | 40         | 4.4                 | 0.0                 | 40.5        | 545                   | 4.050   | F           | 4 400   | 5.000                             | 7004          | 40                | 0.070     |
|     | 145                 | 20 | 40         | 1.1                 | 0.6                 | 48.5        | 54.5                  | 4 950   | 5 550       | 4 400   | 5 900                             | 7921          | 46                | 0.972     |
|     | 160                 | 26 | 52         | 2                   | 1                   | 80.0        | 81.5                  | 8 150   | 8 350       | 4 100   | 5 500                             | 7021          | 51.5              | 1.86      |
| 105 | 190                 | 36 | 72         | 2.1                 | 1.1                 | 157         | 142                   |         | 14 400      | 3 700   | 5 000                             | 7221<br>7004D | 60.5              | 3.79      |
|     | 190                 | 36 | 72         | 2.1                 | 1.1                 | 142         | 129                   | 14 500  |             | 3 200   | 4 300                             | 7221B         | 80                | 3.87      |
|     | 225                 | 49 | 98         | 3                   | 1.1                 | 220         | 210                   | 22 400  | 21 500      | 3 400   | 4 500                             | 7321          | 72                | 8.2       |
|     | 225                 | 49 | 98         | 3                   | 1.1                 | 202         | 194                   | 20 600  | 19 700      | 2 900   | 3 800                             | 7321B         | 93.5              | 8.36      |
|     | 150                 | 20 | 40         | 1.1                 | 0.6                 | 49.5        | 56.0                  | 5 050   | 5 700       | 4 200   | 5 700                             | 7922          | 47.5              | 1.01      |
|     | 170                 | 28 | 56         | 2                   | 1                   | 92.0        | 93.0                  | 9 350   | 9 450       | 3 900   | 5 300                             | 7022          | 54.5              | 2.3       |
| 440 | 200                 | 38 | 76         | 2.1                 | 1.1                 | 170         | 158                   | 17 300  | 16 100      | 3 500   | 4 700                             | 7222          | 64                | 4.45      |
| 110 | 200                 | 38 | 76         | 2.1                 | 1.1                 | 154         | 144                   | 15 700  | 14 700      | 3 000   | 4 000                             | 7222B         | 84                | 4.54      |
|     | 240                 | 50 | 100        | 3                   | 1.1                 | 246         | 246                   | 25 100  | 25 100      | 3 200   | 4 300                             | 7322          | 76                | 9.6       |
|     | 240                 | 50 | 100        | 3                   | 1.1                 | 226         | 226                   | 23 000  |             | 2 700   | 3 700                             | 7322B         | 99                | 9.8       |
| 120 | 165                 | 22 | 44         | 1.1                 | 0.6                 | 61.0        | 69.5                  | 6 200   | 7 100       | 3 900   | 5 200                             | 7924          | 52                | 1.66      |
|     | 100                 | ~~ | 77         | 1.1                 | 0.0                 | 01.0        | 03.0                  | 0 200   | 7 100       | 3 300   | J 200                             | 1324          | 52                | 1.00      |


<sup>1)</sup> This value achieved with machined cages; when pressed cages are used, 80% of this value is acceptable.
2) Bearing numbers appended with the code "B" have a contact angle of 40°; bearings with this code have a contact angle of 30°.
3) Smallest allowable dimension for chamfer dimension *r* or *n*.

B-52

#### **Single and Duplex Angular Contact Ball Bearings**







#### Dynamic equivalent radial load

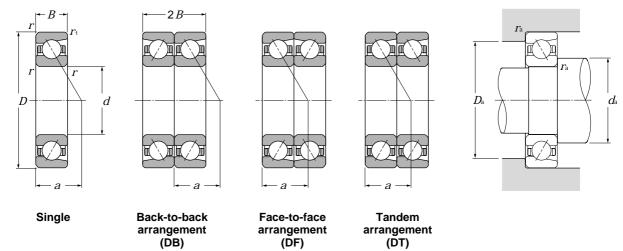
 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 

| Con-   |      |               | Singl           | e, DT         | •               |               | DB              | , DF    |                 |
|--------|------|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------|-----------------|
| tact e |      | $F_{\rm a}/I$ | $F_{\rm r}$ $e$ | $F_{\rm a}/I$ | $F_{\rm r} > e$ | $F_{\rm a}/I$ | $F_{\rm r}$ $e$ | $F_a/I$ | $F_{\rm r} > e$ |
| angle  |      | X             | Y               | X             | Y               | X             | Y               | X       | Y               |
| 30°    | 0.80 | 1             | 0               | 0.39          | 0.76            | 1             | 0.78            | 0.63    | 1.24            |
| 40°    | 1.14 | 1             | 0               | 0.35          | 0.57            | 1             | 0.55            | 0.57    | 0.93            |

### Static equivalent radial load $P_{\text{or}}$ = $X_0 F_{\text{r}}$ + $Y_0 F_{\text{a}}$

| Con-<br>tact | Singl          | e, DT          | DB,            | DF             |
|--------------|----------------|----------------|----------------|----------------|
| angle        | X <sub>o</sub> | Y <sub>o</sub> | X <sub>0</sub> | Y <sub>o</sub> |
| 30°          | 0.5            | 0.33           | 1              | 0.66           |
| 40°          | 0.5            | 0.26           | 1              | 0.52           |

For single and DT arrangement, When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ 


|            | Basic lo       | ad ratings |              | Limiting s | peeds1) | Bearin | ng numl | oers <sup>2)</sup> |                                     | Abutmer           | t and fil                           | let dimer                       | nsions          |                      |
|------------|----------------|------------|--------------|------------|---------|--------|---------|--------------------|-------------------------------------|-------------------|-------------------------------------|---------------------------------|-----------------|----------------------|
| dynamic    | static         | dynamic    |              | (duple     |         |        |         |                    |                                     |                   |                                     |                                 |                 |                      |
| •          | ıplex)         |            | luplex)      | min        | -1      |        |         |                    | J.                                  | ı                 |                                     | ım<br>D                         |                 |                      |
| $C_{ m r}$ | kN $C_{ m or}$ | $C_{ m r}$ | kgf $C_{or}$ | grease     | oil     | DB     | DF      | DT                 | $d_{\!\scriptscriptstyle  m a}$ min | <i>d</i> ₅<br>min | $D_{\!\scriptscriptstyle  m a}$ max | $D_{\!\scriptscriptstyle  m D}$ | r <sub>as</sub> | <i>I</i> ¹las<br>max |
| Oi         | Coi            | Oi         | Coi          | grouse     | Oii     | 22     | ٥.      | Ο.                 | 111111                              | 111111            | max                                 | max                             | IIIdx           | IIIdx                |
| 258        | 265            | 26 300     | 27 000       | 3 300      | 4 500   | DB     | DF      | DT                 | 99                                  | 92                | 166                                 | 173                             | 2.5             | 1                    |
| 236        | 244            | 24 100     | 24 900       | 2 900      | 3 900   | DB     | DF      | DT                 | 99                                  | 92                | 166                                 | 173                             | 2.5             | 1                    |
| 230        | 244            | 24 100     | 24 900       | 2 900      | 3 900   | DΒ     | DF      | וט                 | 99                                  | 92                | 100                                 | 173                             | 2.5             | ı                    |
| 58.0       | 75.5           | 5 900      | 7 700        | 4 200      | 5 500   | DB     | DF      | DT                 | 97                                  | 97                | 118                                 | 120.5                           | 1               | 0.6                  |
| 106        | 127            | 10 800     | 12 900       | 3 900      | 5 200   | DB     | DF      | DT                 | 98.5                                | 98.5              | 131.5                               | 134.5                           | 1.5             | 1                    |
| 191        | 206            | 19 500     | 21 000       | 3 500      | 4 700   | DB     | DF      | DT                 | 100                                 | 95.5              | 150                                 | 154.5                           | 2               | 1                    |
| 173        | 188            | 17 700     | 19 100       | 3 100      | 4 100   | DB     | DF      | DT                 | 100                                 | 95.5              | 150                                 | 154.5                           | 2               | 1                    |
| 277        | 294            | 28 300     | 30 000       | 3 200      | 4 200   | DB     | DF      | DT                 | 104                                 | 97                | 176                                 | 183                             | 2.5             | 1                    |
| 254        | 270            | 25 900     | 27 600       | 2 700      | 3 700   | DB     | DF      | DT                 | 104                                 | 97                | 176                                 | 183                             | 2.5             | 1                    |
|            |                |            |              |            |         |        |         |                    |                                     |                   |                                     |                                 |                 | •                    |
| 60.5       | 81.5           | 6 150      | 8 300        | 3 900      | 5 300   | DB     | DF      | DT                 | 102                                 | 102               | 123                                 | 125.5                           | 1               | 0.6                  |
| 109        | 134            | 11 100     | 13 600       | 3 700      | 4 900   | DB     | DF      | DT                 | 103.5                               | 103.5             | 136.5                               | 139.5                           | 1.5             | 1                    |
| 217        | 236            | 22 100     | 24 100       | 3 300      | 4 400   | DB     | DF      | DT                 | 107                                 | 102               | 158                                 | 163                             | 2               | 1                    |
| 196        | 215            | 20 000     | 21 900       | 2 900      | 3 800   | DB     | DF      | DT                 | 107                                 | 102               | 158                                 | 163                             | 2               | 1                    |
| 297        | 325            | 30 500     | 33 000       | 3 000      | 3 900   | DB     | DF      | DT                 | 109                                 | 102               | 186                                 | 193                             | 2.5             | 1                    |
| 272        | 298            | 27 700     | 30 500       | 2 600      | 3 400   | DB     | DF      | DT                 | 109                                 | 102               | 186                                 | 193                             | 2.5             | 1                    |
| 78.0       | 105            | 7 950      | 10 700       | 3 700      | 5 000   | DB     | DF      | DT                 | 107                                 | 107               | 133                                 | 135.5                           | 1               | 0.6                  |
| 111        | 141            | 11 300     | 14 400       | 3 500      | 4 600   | DB     | DF      | DT                 | 108.5                               | 108.5             | 141.5                               | 144.5                           | 1.5             | 1                    |
| 233        | 251            | 23 800     | 25 600       | 3 100      | 4 200   | DB     | DF      | DT                 | 112                                 | 107               | 168                                 | 173                             | 2               | 1                    |
| 212        | 229            | 21 600     | 23 300       | 2 700      | 3 600   | DB     | DF      | DT                 | 112                                 | 107               | 168                                 | 173                             | 2               | 1                    |
| 335        | 385            | 34 500     | 39 500       | 2 800      | 3 700   | DB     | DF      | DT                 | 114                                 | 107               | 201                                 | 208                             | 2.5             | 1                    |
| 310        | 355            | 31 500     | 36 000       | 2 400      | 3 300   | DB     | DF      | DT                 | 114                                 | 107               | 201                                 | 208                             | 2.5             | 1                    |
|            |                |            |              |            |         |        |         |                    |                                     |                   |                                     |                                 |                 |                      |
| 79.0       | 109            | 8 050      | 11 100       | 3 500      | 4 700   | DB     | DF      | DT                 | 112                                 | 112               | 138                                 | 140.5                           | 1               | 0.6                  |
| 130        | 163            | 13 300     | 16 700       | 3 300      | 4 400   | DB     | DF      | DT                 | 115                                 | 115               | 150                                 | 154.5                           | 2               | 1                    |
| 254        | 283            | 25 900     | 28 900       | 3 000      | 4 000   | DB     | DF      | DT                 | 117                                 | 112               | 178                                 | 183                             | 2               | 1                    |
| 231        | 258            | 23 500     | 26 300       | 2 600      | 3 500   | DB     | DF      | DT                 | 117                                 | 112               | 178                                 | 183                             | 2               | 1                    |
| 355        | 420            | 36 500     | 43 000       | 2 700      | 3 600   | DB     | DF      | DT                 | 119                                 | 112               | 211                                 | 218                             | 2.5             | 1                    |
| 330        | 385            | 33 500     | 39 500       | 2 300      | 3 100   | DB     | DF      | DT                 | 119                                 | 112               | 211                                 | 218                             | 2.5             | 1                    |
| 80.0       | 112            | 8 150      | 11 400       | 3 400      | 4 500   | DB     | DF      | DT                 | 117                                 | 117               | 143                                 | 145.5                           | 1               | 0.6                  |
| 149        | 186            | 15 200     | 18 900       | 3 100      | 4 200   | DB     | DF      | DT                 | 120                                 | 120               | 160                                 | 164.5                           | 2               | 1                    |
| 276        | 315            | 28 100     | 32 500       | 2 800      | 3 800   | DB     | DF      | DT                 | 122                                 | 117               | 188                                 | 193                             | 2               | 1                    |
| 250        | 289            | 25 500     | 29 400       | 2 500      | 3 300   | DB     | DF      | DT                 | 122                                 | 117               | 188                                 | 193                             | 2               | 1                    |
| 400        | 490            | 41 000     | 50 000       | 2 600      | 3 400   | DB     | DF      | DT                 | 124                                 | 117               | 226                                 | 233                             | 2.5             | 1                    |
| 365        | 455            | 37 500     | 46 000       | 2 200      | 3 000   | DB     | DF      | DT                 | 124                                 | 117               | 226                                 | 233                             | 2.5             | 1                    |
|            |                |            |              |            |         |        |         |                    |                                     |                   |                                     |                                 |                 |                      |
| 99.0       | 139            | 10 100     | 14 200       | 3 100      | 4 100   | DB     | DF      | DT                 | 127                                 | 127               | 158                                 | 160.5                           | 1               | 0.6                  |

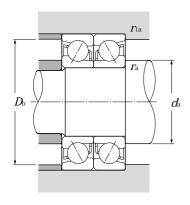
Note: For bearing series 79 and 70, inner rings are constructed with groove abutments on both sides. Therefore, the inner ring chamfer dimension n is identical to dimension r. Furthermore, the radius  $r_{1a}$  of the shaft corner roundness is likewise identical to  $r_a$ .

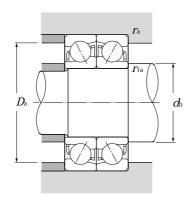









d 120 ~ 170mm


|        | В          | ounda    | ary dim    | ensions            | <b>;</b>           |             | Basic lo    | ad ratings       | ;           | Limiting        | speeds           | Bearing <sup>1)</sup> | Load       | Mass         |
|--------|------------|----------|------------|--------------------|--------------------|-------------|-------------|------------------|-------------|-----------------|------------------|-----------------------|------------|--------------|
|        |            |          |            |                    |                    | dynam       |             | dynamic          |             |                 |                  | numbers               | centerkg   | kg           |
|        |            |          | mm         |                    |                    |             | kN          |                  | gf          | m               | in <sup>-1</sup> |                       | mm         | single       |
| d      | D          | В        | 2 <i>B</i> | $r_{ m s min}^2$ ) | $n_{\rm s  min}^2$ | $C_{\rm r}$ | $C_{ m or}$ | $C_{\rm r}$      | $C_{ m or}$ | grease          | oil              |                       | а          | (approx.)    |
|        |            |          |            |                    |                    |             |             |                  |             |                 |                  |                       |            |              |
|        | 180        | 28       | 56         | 2                  | 1                  | 93.5        | 98.5        | 9 550            | 10 000      | 3 600           | 4 800            | 7024                  | 57.5       | 2.47         |
|        | 215        | 40       | 80         | 2.1                | 1.1                | 183         | 177         | 18 600           | 18 100      | 3 200           | 4 300            | 7224                  | 68.5       | 6.26         |
| 120    | 215        | 40       | 80         | 2.1                | 1.1                | 165         | 162         | 16 900           | 16 500      | 2 800           | 3 700            | 7224B                 | 90.5       | 6.26         |
|        | 260        | 55       | 110        | 3                  | 1.1                | 246         | 252         | 25 100           |             | 2 900           | 3 900            | 7324                  | 82.5       | 14.7         |
|        | 260        | 55       | 110        | 3                  | 1.1                | 225         | 231         | 23 000           | 23 600      | 2 500           | 3 300            | 7324B                 | 107        | 14.7         |
|        | 180        | 24       | 48         | 1.5                | 1                  | 75.0        | 87.5        | 7 650            | 8 900       | 3 600           | 4 700            | 7926                  | 56.5       | 1.82         |
|        | 200        | 33       | 66         | 2                  | 1                  | 117         | 125         | 12 000           | 12 800      | 3 300           | 4 400            | 7026                  | 64         | 3.73         |
| 400    | 230        | 40       | 80         | 3                  | 1.1                | 196         | 198         | 20 000           | 20 200      | 3 000           | 4 000            | 7226                  | 72         | 7.15         |
| 130    | 230        | 40       | 80         | 3                  | 1.1                | 177         | 180         | 18 100           | 18 300      | 2 500           | 3 400            | 7226B                 | 95.5       | 7.15         |
|        | 280        | 58       | 116        | 4                  | 1.5                | 273         | 293         | 27 900           | 29 800      | 2 700           | 3 600            | 7326                  | 88         | 17.6         |
|        | 280        | 58       | 116        | 4                  | 1.5                | 250         | 268         | 25 500           | 27 400      | 2 300           | 3 100            | 7326B                 | 115        | 17.6         |
|        | 100        | 24       | 40         | 1 5                | 1                  | 7F F        | 00.0        | 7 700            | 0.150       | 2 200           | 4.400            | 7020                  | E0 E       | 1.04         |
|        | 190        | 24       | 48<br>66   | 1.5<br>2           | 1                  | 75.5        | 90.0        | 7 700            | 9 150       | 3 300           | 4 400            | 7928                  | 59.5<br>67 | 1.94<br>3.96 |
|        | 210<br>250 | 33<br>42 | 66<br>84   | 3                  | 1<br>1.1           | 120<br>203  | 133<br>215  | 12 200<br>20 700 | 13 500      | 3 100           | 4 100            | 7028<br>7228          | 77.5       | 3.96<br>8.78 |
| 140    | 250        | 42       | 84         | 3                  | 1.1                | 183         | 195         |                  | 19 900      | 2 700<br>2 300  | 3 600<br>3 100   | 7228B                 | 103        | 8.78         |
|        | 300        | 62       | 124        | 4                  | 1.5                | 300         | 335         | 30 500           |             | 2 500           | 3 300            | 7328                  | 94.5       | 21.5         |
|        | 300        | 62       | 124        | 4                  | 1.5                | 275         | 310         | 28 100           |             | 2 100           | 2 800            | 7328B                 | 123        | 21.5         |
|        | 000        | 02       | 127        |                    | 1.0                | 210         | 010         | 20 100           | 01 000      | 2 100           | 2 000            | 70200                 | 120        | 21.0         |
|        | 210        | 28       | 56         | 2                  | 1                  | 97.5        | 117         | 9 900            | 11 900      | 3 100           | 4 100            | 7930                  | 66         | 2.96         |
|        | 225        | 35       | 70         | 2.1                | 1.1                | 137         | 154         | 14 000           | 15 700      | 2 800           | 3 800            | 7030                  | 71.5       | 4.82         |
| 150    | 270        | 45       | 90         | 3                  | 1.1                | 232         | 259         | 23 700           | 26 400      | 2 500           | 3 400            | 7230                  | 83         | 11           |
| 130    | 270        | 45       | 90         | 3                  | 1.1                | 210         | 235         | 21 400           |             | 2 200           | 2 900            | 7230B                 | 111        | 11           |
|        | 320        | 65       | 130        | 4                  | 1.5                | 330         | 380         | 33 500           |             | 2 300           | 3 100            | 7330                  | 100        | 25.1         |
|        | 320        | 65       | 130        | 4                  | 1.5                | 300         | 350         | 30 500           | 36 000      | 2 000           | 2 600            | 7330B                 | 131        | 25.1         |
|        | 220        | 28       | 56         | 2                  | 1                  | 98.5        | 121         | 10 000           | 12 300      | 2 800           | 3 800            | 7932                  | 69         | 3.13         |
|        | 240        | 38       | 76         | 2.1                | 1.1                | 155         | 176         | 15 800           | 18 000      | 2 700           | 3 600            | 7032                  | 77         | 5.96         |
| 460    | 290        | 48       | 96         | 3                  | 1.1                | 263         | 305         | 26 800           | 31 500      | 2 400           | 3 200            | 7232                  | 89         | 13.7         |
| 160    | 290        | 48       | 96         | 3                  | 1.1                | 238         | 279         | 24 200           | 28 400      | 2 000           | 2 700            | 7232B                 | 118        | 13.7         |
|        | 340        | 68       | 136        | 4                  | 1.5                | 345         | 420         | 35 500           | 43 000      | 2 100           | 2 800            | 7332                  | 106        | 29.8         |
|        | 340        | 68       | 136        | 4                  | 1.5                | 315         | 385         | 32 000           | 39 500      | 1 800           | 2 400            | 7332B                 | 139        | 29.8         |
|        | 230        | 28       | 56         | 2                  | 1                  | 102         | 129         | 10 400           | 13 100      | 2 700           | 3 600            | 7934                  | 71.5       | 3.29         |
|        | 260        | 42       | 84         | 2.1                | 1.1                | 186         | 214         | 18 900           |             | 2 500           | 3 300            | 7034                  | 83         | 7.96         |
| 170    |            | 52       | 104        | 4                  | 1.5                | 295         | 360         | 30 000           |             | 2 200           | 3 000            | 7234                  | 95.5       | 17           |
| 170    | 310        | 52       | 104        | 4                  | 1.5                | 266         | 325         | 27 200           |             | 1 900           | 2 500            | 7234B                 | 127        | 17           |
|        | 360        | 72       | 144        | 4                  | 1.5                | 390         | 485         | 39 500           |             | 2 000           | 2 700            | 7334                  | 113        | 35.3         |
| 1 ) Bo |            |          |            | -                  | -                  |             |             |                  |             | h this code hav |                  |                       |            | 55.5         |

<sup>1 )</sup> Bearing numbers appended with the code " $\mathbf{B}$ " have a contact angle of  $40^{\circ}$ ; bearings with this code have a contact angle of  $30^{\circ}$ .

<sup>2 )</sup> Smallest allowable dimension for chamfer dimension r or n.



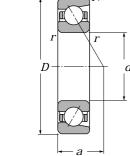


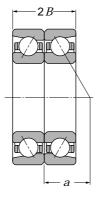


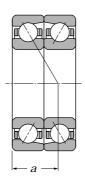
# Dynamic equivalent radial load $P_{\rm T}$ = $XF_{\rm T}$ + $YF_{\rm a}$

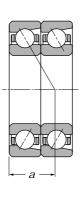
| Con-  |      |               | Singl           | e, DT         | •               |               | DB              | , DF          |                 |
|-------|------|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|
| tact  | e    | $F_{\rm a}/I$ | $F_{\rm r}$ $e$ | $F_{\rm a}/I$ | $F_{\rm r} > e$ | $F_{\rm a}/I$ | $F_{\rm r}$ $e$ | $F_{\rm a}/I$ | $F_{\rm r} > e$ |
| angle |      | X             | Y               | X             | Y               | X             | Y               | X             | Y               |
| 30°   | 0.80 | 1             | 0               | 0.39          | 0.76            | 1             | 0.78            | 0.63          | 1.24            |
| 40°   | 1.14 | 1             | 0               | 0.35          | 0.57            | 1             | 0.55            | 0.57          | 0.93            |

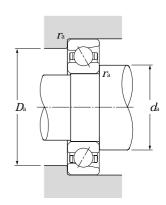
### Static equivalent radial load $P_{\text{or}}$ = $X_0 F_{\text{r}}$ + $Y_0 F_{\text{a}}$


| Con-<br>tact | Singl          | e, DT          | DB,            | DF             |
|--------------|----------------|----------------|----------------|----------------|
| angle        | X <sub>o</sub> | Y <sub>o</sub> | X <sub>0</sub> | Y <sub>o</sub> |
| 30°          | 0.5            | 0.33           | 1              | 0.66           |
| 40°          | 0.5            | 0.26           | 1              | 0.52           |


For single and DT arrangement, When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ 





|     | amic static<br>(duplex)<br>kN<br>Cr Cor | (du <sub>l</sub> | static<br>plex) | (dup   | lex)             |    |    |    |         |         |                               |             |     |
|-----|-----------------------------------------|------------------|-----------------|--------|------------------|----|----|----|---------|---------|-------------------------------|-------------|-----|
|     | kN                                      |                  |                 | m      | in <sup>-1</sup> |    |    |    |         |         | mm                            |             |     |
|     | $C_{\rm r}$ $C_{ m or}$                 |                  | gf              | •••    |                  |    |    |    | $d_{a}$ | $D_{a}$ | $D_{\scriptscriptstyle  m b}$ | $r_{ m as}$ | Nas |
|     |                                         | $C_{r}$          | $C_{ m or}$     | grease | oil              | DB | DF | DT | min     | max     | max                           | max         | max |
|     |                                         |                  |                 |        |                  |    |    |    |         |         |                               |             |     |
| 152 | 197                                     | 15 500           | 20 100          | 2 900  | 3 800            | DB | DF | DT | 130     | 170     | 174.5                         | 2           | 1   |
| 297 |                                         | 30 500           | 36 000          | 2 600  | 3 400            | DB | DF | DT | 132     | 203     | 208                           | 2           | 1   |
| 269 |                                         | 27 400           | 33 000          | 2 300  | 3 000            | DB | DF | DT | 132     | 203     | 208                           | 2           | 1   |
| 400 |                                         | 41 000           | 51 500          | 2 300  | 3 100            | DB | DF | DT | 134     | 246     | 253                           | 2.5         | 1   |
| 365 |                                         | 37 500           | 47 000          | 2 000  | 2 700            | DB | DF | DT | 134     | 246     | 253                           | 2.5         | 1   |
|     |                                         |                  |                 |        |                  |    |    |    |         |         |                               |             |     |
| 121 | 175                                     | 12 400           | 17 800          | 2 800  | 3 800            | DB | DF | DT | 138.5   | 171.5   | 174.5                         | 1.5         | 1   |
| 191 | 251                                     | 19 400           | 25 600          | 2 600  | 3 500            | DB | DF | DT | 140     | 190     | 194.5                         | 2           | 1   |
| 320 | 395                                     | 32 500           | 40 500          | 2 400  | 3 100            | DB | DF | DT | 144     | 216     | 223                           | 2.5         | 1   |
| 288 | 360                                     | 29 400           | 36 500          | 2 100  | 2 700            | DB | DF | DT | 144     | 216     | 223                           | 2.5         | 1   |
| 445 | 5 585                                   | 45 500           | 59 500          | 2 100  | 2 800            | DB | DF | DT | 148     | 262     | 271.5                         | 3           | 1.5 |
| 405 | 535                                     | 41 500           | 54 500          | 1 900  | 2 500            | DB | DF | DT | 148     | 262     | 271.5                         | 3           | 1.5 |
|     |                                         |                  |                 |        |                  |    |    |    |         |         |                               |             |     |
| 123 |                                         | 12 500           | 18 300          | 2 600  | 3 500            | DB | DF | DT | 148.5   | 181.5   | 184.5                         | 1.5         | 1   |
| 194 |                                         | 19 800           | 27 000          | 2 400  | 3 300            | DB | DF | DT | 150     | 200     | 204.5                         | 2           | 1   |
| 330 |                                         | 33 500           | 44 000          | 2 200  | 2 900            | DB | DF | DT | 154     | 236     | 243                           | 2.5         | 1   |
| 297 |                                         | 30 500           | 40 000          | 1 900  | 2 500            | DB | DF | DT | 154     | 236     | 243                           | 2.5         | 1   |
| 490 |                                         | 50 000           | 68 500          | 2 000  | 2 600            | DB | DF | DT | 158     | 282     | 291.5                         | 3           | 1.5 |
| 445 | 615                                     | 45 500           | 63 000          | 1 700  | 2 300            | DB | DF | DT | 158     | 282     | 291.5                         | 3           | 1.5 |
| 158 | 3 234                                   | 16 100           | 23 900          | 2 400  | 3 300            | DB | DF | DT | 160     | 200     | 204.5                         | 2           | 1   |
| 222 |                                         | 22 700           | 31 500          | 2 300  | 3 000            | DB | DF | DT | 162     | 213     | 218                           | 2           | 1   |
| 375 |                                         | 38 500           | 53 000          | 2 000  | 2 700            | DB | DF | DT | 164     | 256     | 263                           | 2.5         | 1   |
| 340 |                                         | 34 500           | 48 000          | 1 800  | 2 400            | DB | DF | DT | 164     | 256     | 263                           | 2.5         | 1   |
| 535 |                                         | 54 500           | 78 000          | 1 800  | 2 400            | DB | DF | DT | 168     | 302     | 311.5                         | 3           | 1.5 |
| 490 | 700                                     | 50 000           | 71 500          | 1 600  | 2 100            | DB | DF | DT | 168     | 302     | 311.5                         | 3           | 1.5 |
|     |                                         |                  |                 |        |                  |    |    |    |         |         |                               |             |     |
| 160 |                                         | 16 300           | 24 600          | 2 300  | 3 000            | DB | DF | DT | 170     | 210     | 214.5                         | 2           | 1   |
| 252 |                                         | 25 700           | 36 000          | 2 100  | 2 800            | DB | DF | DT | 172     | 228     | 233                           | 2           | 1   |
| 425 |                                         | 43 500           | 62 500          | 1 900  | 2 500            | DB | DF | DT | 174     | 276     | 283                           | 2.5         | 1   |
| 385 |                                         | 39 500           | 57 000          | 1 600  | 2 200            | DB | DF | DT | 174     | 276     | 283                           | 2.5         | 1   |
| 565 |                                         | 57 500           | 86 000          | 1 700  | 2 300            | DB | DF | DT | 178     | 322     | 331.5                         | 3           | 1.5 |
| 515 | 5 770                                   | 52 500           | 79 000          | 1 500  | 2 000            | DB | DF | DT | 178     | 322     | 331.5                         | 3           | 1.5 |
| 165 | 5 257                                   | 16 900           | 26 200          | 2 100  | 2 800            | DB | DF | DT | 180     | 220     | 224.5                         | 2           | 1   |
| 300 |                                         | 31 000           | 43 500          | 2 000  | 2 600            | DB | DF | DT | 182     | 248     | 253                           | 2           | 1   |
| 480 |                                         | 49 000           | 73 000          | 1 800  | 2 400            | DB | DF | DT | 188     | 292     | 301.5                         | 3           | 1.5 |
| 435 |                                         | 44 000           | 66 500          | 1 500  | 2 100            | DB | DF | DT | 188     | 292     | 301.5                         | 3           | 1.5 |
| 630 |                                         | 64 500           | 99 000          | 1 600  | 2 100            | DB | DF | DT | 188     | 342     | 351.5                         | 3           | 1.5 |
|     |                                         |                  |                 |        |                  |    |    |    |         |         |                               |             |     |











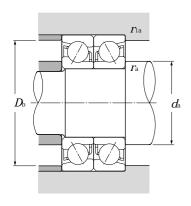


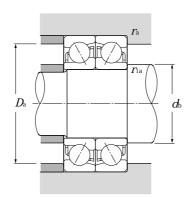

Single

Back-to-back arrangement (DB)

Face-to-face arrangement (DF)

Tandem arrangement (DT)


d 170 ~ 300mm


|     | В   | ounda | ary dim    | ensions            | •                   |         | Basic lo    | ad ratings  | •           | Limiting | speeds           | Bearing <sup>1)</sup> | Load     | Mass      |
|-----|-----|-------|------------|--------------------|---------------------|---------|-------------|-------------|-------------|----------|------------------|-----------------------|----------|-----------|
|     |     |       |            |                    |                     | dynam   | ic static   | dynamic     | static      |          |                  | numbers               | centerkg | l<br>kg   |
|     |     |       | mm         |                    |                     |         | kN          | k           | gf          | m        | in <sup>-1</sup> |                       | mm       | single    |
| d   | D   | В     | 2 <i>B</i> | $r_{ m s min}^2$ ) | $n_{ m s  min}^2$ ) | $C_{r}$ | $C_{ m or}$ | $C_{\rm r}$ | $C_{ m or}$ | grease   | oil              |                       | а        | (approx.) |
| 170 | 360 | 72    | 144        | 4                  | 1.5                 | 355     | 445         | 36 000      | 45 500      | 1 700    | 2 300            | 7334B                 | 147      | 35.3      |
|     |     |       |            |                    |                     |         |             |             |             |          |                  |                       |          |           |
|     | 250 | 33    | 66         | 2                  | 1                   | 131     | 163         | 13 400      |             | 2 500    | 3 300            | 7936                  | 78.5     | 4.87      |
|     | 280 | 46    | 92         | 2.1                | 1.1                 | 219     | 266         | 22 300      | 27 100      | 2 300    | 3 100            | 7036                  | 89.5     | 10.4      |
| 180 | 320 | 52    | 104        | 4                  | 1.5                 | 305     | 385         | 31 000      | 39 000      | 2 100    | 2 800            | 7236                  | 98       | 17.7      |
| 100 | 320 | 52    | 104        | 4                  | 1.5                 | 276     | 350         | 28 100      | 35 500      | 1 800    | 2 400            | 7236B                 | 131      | 17.7      |
|     | 380 | 75    | 150        | 4                  | 1.5                 | 410     | 535         | 41 500      | 54 500      | 1 900    | 2 500            | 7336                  | 118      | 40.9      |
|     | 380 | 75    | 150        | 4                  | 1.5                 | 375     | 490         | 38 000      | 50 000      | 1 600    | 2 100            | 7336B                 | 155      | 40.9      |
|     | 260 | 33    | 66         | 2                  | 1                   | 133     | 169         | 13 500      | 17 200      | 2 400    | 3 200            | 7938                  | 81.5     | 5.1       |
|     | 290 | 46    | 92         | 2.1                | 1.1                 | 224     | 280         | 22 800      | 28 600      | 2 200    | 2 900            | 7038                  | 92.5     | 10.8      |
|     | 340 | 55    | 110        | 4                  | 1.5                 | 305     | 390         | 31 000      |             | 2 000    | 2 600            | 7238                  | 104      | 21.3      |
| 190 | 340 | 55    | 110        | 4                  | 1.5                 | 273     | 355         | 27 800      | 36 000      | 1 700    | 2 200            | 7238B                 | 139      | 21.3      |
|     | 400 | 78    | 156        | 5                  | 2                   | 430     | 585         |             | 59 500      | 1 800    | 2 300            | 7338                  | 124      | 47        |
|     | 400 | 78    | 156        | 5                  | 2                   | 390     | 535         |             | 54 500      | 1 500    | 2 000            | 7338B                 | 163      | 47        |
|     | 280 | 38    | 76         | 2.1                | 1.1                 | 185     | 231         | 18 900      | 23 600      | 2 200    | 3 000            | 7940                  | 88.5     | 7.15      |
|     | 310 | 51    | 102        | 2.1                | 1.1                 | 252     | 325         | 25 700      | 33 000      | 2 100    | 2 800            | 7040                  | 99       | 14        |
|     | 360 | 58    | 116        | 4                  | 1.5                 | 335     | 450         | 34 500      | 46 000      | 1 900    | 2 500            | 7240                  | 110      | 25.3      |
| 200 | 360 | 58    | 116        | 4                  | 1.5                 | 305     | 410         | 31 000      |             | 1 600    | 2 100            | 7240B                 | 146      | 25.3      |
|     | 420 | 80    | 160        | 5                  | 2                   | 450     | 605         | 46 000      |             | 1 700    | 2 200            | 7340                  | 130      | 53.1      |
|     | 420 | 80    | 160        | 5                  | 2                   | 410     | 555         | 42 000      |             | 1 400    | 1 900            | 7340B                 | 170      | 53.1      |
| 220 | 300 | 38    | 76         | 2.1                | 1.1                 | 187     | 239         | 19 000      | 24 300      | 2 000    | 2 700            | 7944                  | 94       | 7.74      |
| 240 | 320 | 38    | 76         | 2.1                | 1.1                 | 193     | 255         | 19 600      | 26 000      | 1 800    | 2 400            | 7948                  | 100      | 8.34      |
| 260 | 360 | 46    | 92         | 2.1                | 1.1                 | 258     | 375         | 26 300      | 38 000      | 1 700    | 2 200            | 7952                  | 112      | 14        |
| 280 | 380 | 46    | 92         | 2.1                | 1.1                 | 261     | 385         | 26 600      | 39 500      | 1 500    | 2 100            | 7956                  | 118      | 14.8      |
| 300 | 420 | 56    | 112        | 3                  | 1.1                 | 325     | 520         | 33 500      | 53 000      | 1 400    | 1 900            | 7960                  | 132      | 23.7      |

<sup>1)</sup> Bearing numbers appended with the code "B" have a contact angle of 40°; bearings with this code have a contact angle of 30°.

2) Smallest allowable dimension for chamfer dimension *r* or *n*.



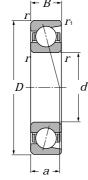


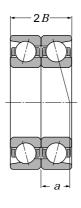


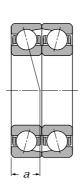
# Dynamic equivalent radial load $P_{\rm T}$ = $XF_{\rm T}$ + $YF_{\rm a}$

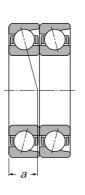
| Con-  |      |               | Singl           | e, DT         | •               |               | DB              | , DF    |                 |
|-------|------|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------|-----------------|
| tact  | e    | $F_{\rm a}/I$ | $F_{\rm r}$ $e$ | $F_{\rm a}/I$ | $F_{\rm r} > e$ | $F_{\rm a}/I$ | $F_{\rm r}$ $e$ | $F_a/I$ | $F_{\rm r} > e$ |
| angle |      | X             | Y               | X             | Y               | X             | Y               | X       | Y               |
| 30°   | 0.80 | 1             | 0               | 0.39          | 0.76            | 1             | 0.78            | 0.63    | 1.24            |
| 40°   | 1.14 | 1             | 0               | 0.35          | 0.57            | 1             | 0.55            | 0.57    | 0.93            |

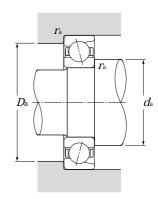
### Static equivalent radial load $P_{\text{or}}$ = $X_0 F_{\text{r}}$ + $Y_0 F_{\text{a}}$


| Con-<br>tact | Singl          | e, DT          | DB,            | DF   |
|--------------|----------------|----------------|----------------|------|
| angle        | X <sub>0</sub> | Y <sub>o</sub> | X <sub>0</sub> | Yo   |
| 30°          | 0.5            | 0.33           | 1              | 0.66 |
| 40°          | 0.5            | 0.26           | 1              | 0.52 |


For single and DT arrangement, When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ 





|             |             | ad ratings      |             | Limiting         | •                         | Beari | ng num | bers1) | Abı                           | utment a                        | nd fillet di                  | mensio         | ns           |
|-------------|-------------|-----------------|-------------|------------------|---------------------------|-------|--------|--------|-------------------------------|---------------------------------|-------------------------------|----------------|--------------|
|             | uplex)      | dynamic<br>(dup | ,           | (dup<br><b>m</b> | olex)<br>in <sup>-1</sup> |       |        |        |                               |                                 | mm                            |                |              |
|             | kN          | kç              |             |                  |                           |       |        |        | $d_{\scriptscriptstyle \! a}$ | $D_{\!\scriptscriptstyle  m a}$ | $D_{\scriptscriptstyle  m b}$ | $m{r}_{ m as}$ | <b>P</b> 1as |
| $C_{\rm r}$ | $C_{ m or}$ | $C_{ m r}$      | $C_{ m or}$ | grease           | oil                       | DB    | DF     | DT     | min                           | max                             | max                           | max            | max          |
| 575         | 890         | 59 000          | 90 500      | 1 400            | 1 800                     | DB    | DF     | DT     | 188                           | 342                             | 351.5                         | 3              | 1.5          |
| 213         | 325         | 21 700          | 33 500      | 2 000            | 2 700                     | DB    | DF     | DT     | 190                           | 240                             | 244.5                         | 2              | 1            |
| 355         | 530         | 36 500          | 54 000      | 1 900            | 2 500                     | DB    | DF     | DT     | 192                           | 268                             | 273                           | 2              | 1            |
| 495         | 770         | 50 500          | 78 500      | 1 700            | 2 200                     | DB    | DF     | DT     | 198                           | 302                             | 311.5                         | 3              | 1.5          |
| 450         | 700         | 45 500          | 71 000      | 1 400            | 1 900                     | DB    | DF     | DT     | 198                           | 302                             | 311.5                         | 3              | 1.5          |
| 665         | 1 070       | 68 000          | 109 000     | 1 500            | 2 000                     | DB    | DF     | DT     | 198                           | 362                             | 371.5                         | 3              | 1.5          |
| 605         | 975         | 62 000          | 99 500      | 1 300            | 1 700                     | DB    | DF     | DT     | 198                           | 362                             | 371.5                         | 3              | 1.5          |
| 216         | 335         | 22 000          | 34 500      | 1 900            | 2 500                     | DB    | DF     | DT     | 200                           | 250                             | 254.5                         | 2              | 1            |
| 365         | 560         | 37 000          | 57 000      | 1 800            | 2 300                     | DB    | DF     | DT     | 202                           | 278                             | 283                           | 2              | 1            |
| 495         | 780         | 50 000          | 79 500      | 1 600            | 2 100                     | DB    | DF     | DT     | 208                           | 322                             | 331.5                         | 3              | 1.5          |
| 445         | 705         | 45 000          | 72 000      | 1 400            | 1 800                     | DB    | DF     | DT     | 208                           | 322                             | 331.5                         | 3              | 1.5          |
| 695         | 1 170       | 71 000          | 119 000     | 1 400            | 1 900                     | DB    | DF     | DT     | 212                           | 378                             | 390                           | 4              | 2            |
| 635         | 1 070       | 64 500          | 109 000     | 1 200            | 1 600                     | DB    | DF     | DT     | 212                           | 378                             | 390                           | 4              | 2            |
| 300         | 465         | 30 500          | 47 000      | 1 800            | 2 400                     | DB    | DF     | DT     | 212                           | 268                             | 273                           | 2              | 1            |
| 410         | 650         | 41 500          | 66 000      | 1 700            | 2 200                     | DB    | DF     | DT     | 212                           | 298                             | 303                           | 2              | 1            |
| 550         | 900         | 56 000          | 92 000      | 1 500            | 2 000                     | DB    | DF     | DT     | 218                           | 342                             | 351.5                         | 3              | 1.5          |
| 495         | 815         | 50 500          | 83 000      | 1 300            | 1 700                     | DB    | DF     | DT     | 218                           | 342                             | 351.5                         | 3              | 1.5          |
| 730         | 1 210       | 74 500          | 124 000     | 1 300            | 1 800                     | DB    | DF     | DT     | 222                           | 398                             | 410                           | 4              | 2            |
| 665         | 1 110       | 68 000          | 113 000     | 1 200            | 1 500                     | DB    | DF     | DT     | 222                           | 398                             | 410                           | 4              | 2            |
| 305         | 475         | 31 000          | 48 500      | 1 600            | 2 100                     | DB    | DF     | DT     | 232                           | 288                             | 293                           | 2              | 1            |
| 315         | 510         | 32 000          | 52 000      | 1 500            | 1 900                     | DB    | DF     | DT     | 252                           | 308                             | 313                           | 2              | 1            |
| 420         | 750         | 42 500          | 76 500      | 1 300            | 1 800                     | DB    | DF     | DT     | 272                           | 348                             | 353                           | 2              | 1            |
| 425         | 775         | 43 000          | 79 000      | 1 200            | 1 600                     | DB    | DF     | DT     | 292                           | 368                             | 373                           | 2              | 1            |
| 530         | 1 040       | 54 000          | 106 000     | 1 100            | 1 500                     | DB    | DF     | DT     | 314                           | 406                             | 413                           | 2.5            | 1            |









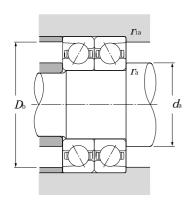


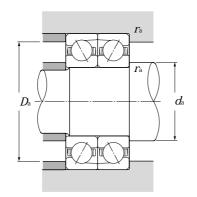



Single

Back-to-back arrangement (DB)

Face-to-face arrangement (DF)


Tandem arrangement (DT)


d 10 ~ 40mm

|    | В                          | ounda                     |                            | ensions                       |                                   | dynamic                              | static                               | ad ratings<br>dynamic                   | static                                | Factor                               | Ū                                              | speeds1)                                       | Bearing numbers                           | Load<br>center                   | <b>Mass</b><br>kg                         |
|----|----------------------------|---------------------------|----------------------------|-------------------------------|-----------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|---------------------------------------|--------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------|----------------------------------|-------------------------------------------|
| d  | D                          | В                         | mm<br>2 <i>B</i>           | $\Gamma_{\rm s  min}^2$ )     | Ns min <sup>2</sup> )             | k<br><i>C</i> r                      | cN<br>Cor                            | k,<br><i>C</i> r                        | $g$ f $C_{ m or}$                     | $f_{0}$                              | mi<br>grease                                   | n <sup>-1</sup><br>oil                         |                                           | mm<br>a                          | single<br>(approx.)                       |
| 10 | 26<br>30                   | 8<br>9                    | 16<br>18                   | 0.3<br>0.6                    | 0.15<br>0.3                       | 4.90<br>5.40                         | 2.20<br>2.64                         | 500<br>555                              | 225<br>269                            | 12.6<br>13.4                         | 43 000<br>41 000                               | 58 000<br>55 000                               | 7000C<br>7200C                            | 6.5<br>7                         | 0.019<br>0.029                            |
| 12 | 28<br>32                   | 8<br>10                   | 16<br>20                   | 0.3<br>0.6                    | 0.15<br>0.3                       | 5.40<br>7.10                         | 2.64<br>3.45                         | 555<br>720                              | 269<br>355                            | 13.4<br>12.9                         | 39 000<br>36 000                               | 52 000<br>49 000                               | 7001C<br>7201C                            | 6.5<br>8                         | 0.021<br>0.036                            |
| 15 | 32<br>35<br>42             | 9<br>11<br>13             | 18<br>22<br>26             | 0.3<br>0.6<br>1               | 0.15<br>0.3<br>0.6                | 6.25<br>9.00<br>13.30                | 3.40<br>4.50<br>6.85                 | 635<br>915<br>1 360                     | 345<br>460<br>700                     | 14.1<br>12.9<br>12.5                 | 34 000<br>32 000<br>28 000                     | 45 000<br>42 000<br>38 000                     | 7002C<br>7202C<br>7302C                   | 7.5<br>9<br>10.5                 | 0.029<br>0.045<br>0.081                   |
| 17 | 35<br>40<br>47             | 10<br>12<br>14            | 20<br>24<br>28             | 0.3<br>0.6<br>1               | 0.15<br>0.3<br>0.6                | 7.70<br>11.2<br>15.7                 | 4.10<br>5.75<br>8.25                 | 785<br>1 140<br>1 600                   | 420<br>590<br>840                     | 13.8<br>13.0<br>12.5                 | 31 000<br>29 000<br>26 000                     | 41 000<br>38 000<br>35 000                     | 7003C<br>7203C<br>7303C                   | 8.5<br>10<br>11.5                | 0.038<br>0.062<br>0.109                   |
| 20 | 42<br>47<br>52             | 12<br>14<br>15            | 24<br>28<br>30             | 0.6<br>1<br>1.1               | 0.3<br>0.6<br>0.6                 | 10.5<br>14.6<br>18.5                 | 6.05<br>8.15<br>9.95                 | 1 070<br>1 490<br>1 890                 | 615<br>835<br>1 020                   | 14.1<br>13.4<br>12.6                 | 27 000<br>25 000<br>23 000                     | 36 000<br>34 000<br>31 000                     | 7004C<br>7204C<br>7304C                   | 10<br>11.5<br>12.5               | 0.066<br>0.1<br>0.14                      |
| 25 | 37<br>42<br>47<br>52<br>62 | 7<br>9<br>12<br>15<br>17  | 14<br>18<br>24<br>30<br>34 | 0.3<br>0.3<br>0.6<br>1        | 0.15<br>0.15<br>0.3<br>0.6<br>0.6 | 5.05<br>7.85<br>11.7<br>16.6<br>26.4 | 3.85<br>5.40<br>7.45<br>10.2<br>15.3 | 515<br>800<br>1 190<br>1 690<br>2 690   | 390<br>555<br>755<br>1 050<br>1 560   | 16.2<br>15.5<br>14.7<br>14.0<br>12.8 | 27 000<br>25 000<br>23 000<br>21 000<br>19 000 | 36 000<br>33 000<br>31 000<br>28 000<br>26 000 | 7805C<br>7905C<br>7005C<br>7205C<br>7305C | 7.5<br>9<br>11<br>12.5<br>14.5   | 0.021<br>0.042<br>0.078<br>0.121<br>0.222 |
| 30 | 42<br>47<br>55<br>62<br>72 | 7<br>9<br>13<br>16<br>19  | 14<br>18<br>26<br>32<br>38 | 0.3<br>0.3<br>1<br>1          | 0.15<br>0.15<br>0.6<br>0.6<br>0.6 | 5.35<br>8.30<br>15.1<br>23.0<br>32.5 | 4.50<br>6.25<br>10.3<br>14.7<br>20.3 | 545<br>845<br>1 540<br>2 350<br>3 300   | 460<br>640<br>1 050<br>1 500<br>2 070 | 16.5<br>15.9<br>14.9<br>14.0<br>13.4 | 23 000<br>21 000<br>20 000<br>18 000<br>16 000 | 31 000<br>28 000<br>26 000<br>24 000<br>22 000 | 7806C<br>7906C<br>7006C<br>7206C<br>7306C | 8.5<br>9.5<br>12.5<br>14<br>16.5 | 0.025<br>0.048<br>0.112<br>0.191<br>0.33  |
| 35 | 47<br>55<br>62<br>72<br>80 | 7<br>10<br>14<br>17<br>21 | 14<br>20<br>28<br>34<br>42 | 0.3<br>0.6<br>1<br>1.1<br>1.5 | 0.15<br>0.3<br>0.6<br>0.6         | 5.80<br>13.2<br>19.1<br>30.5<br>40.5 | 5.25<br>9.65<br>13.7<br>19.9<br>25.8 | 590<br>1 340<br>1 950<br>3 100<br>4 100 |                                       | 16.4<br>15.5<br>15.0<br>13.9<br>13.3 | 20 000<br>19 000<br>17 000<br>16 000<br>14 000 | 27 000<br>25 000<br>23 000<br>21 000<br>19 000 | 7807C<br>7907C<br>7007C<br>7207C<br>7307C | 9<br>11<br>13.5<br>15.5<br>18    | 0.028<br>0.073<br>0.149<br>0.273<br>0.44  |
| 40 | 52<br>62<br>68<br>80       | 7<br>12<br>15<br>18       | 14<br>24<br>30<br>36       | 0.3<br>0.6<br>1<br>1.1        | 0.15<br>0.3<br>0.6<br>0.6         | 6.05<br>14.0<br>20.6<br>36.5         | 5.75<br>11.1<br>15.9<br>25.2         | 615<br>1 420<br>2 100<br>3 700          |                                       | 16.2<br>15.9<br>15.4<br>14.2         | 18 000<br>17 000<br>15 000<br>14 000           | 24 000<br>22 000<br>21 000<br>19 000           | 7808C<br>7908C<br>7008C<br>7208C          | 9.5<br>13<br>14.5<br>17          | 0.031<br>0.109<br>0.184<br>0.35           |

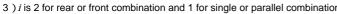
<sup>1 )</sup> This value was achieved with laminated phenol resin machined cages; in the case of molded resin cages, with oil lubricant, the value will be 75% of this. 2 ) Minimal allowable dimension for chamfer dimension r or n.







### Dynamic equivalent radial load $P_{\rm T} = XF_{\rm T} + YF_{\rm a}$

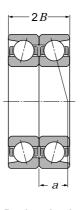

| 3)                          |      |      | Singl | e, DT         |       |      | DB,   | DF   |       |
|-----------------------------|------|------|-------|---------------|-------|------|-------|------|-------|
| $\frac{i f_0 \cdot F_a}{C}$ | e    | Fa/F | r $e$ | $F_{\rm a}/F$ | r > e | Fa/F | r $e$ | Fa/F | r > e |
| $C_{ m or}$                 |      | X    | Y     | X             | Y     | X    | Y     | X    | Y     |
| 0.178                       | 0.38 |      |       |               | 1.47  |      | 1.65  |      | 2.39  |
| 0.357                       | 0.40 |      |       |               | 1.40  |      | 1.57  |      | 2.28  |
| 0.714                       | 0.43 |      |       |               | 1.30  |      | 1.46  |      | 2.11  |
| 1.07                        | 0.46 |      |       |               | 1.23  |      | 1.38  |      | 2.00  |
| 1.43                        | 0.47 | 1    | 0     | 0.44          | 1.19  | 1    | 1.34  | 0.72 | 1.93  |
| 2.14                        | 0.50 |      |       | -             | 1.12  |      | 1.26  |      | 1.82  |
| 3.57                        | 0.55 |      |       |               | 1.02  |      | 1.14  |      | 1.66  |
| 5.35                        | 0.56 |      |       |               | 1.00  |      | 1.12  |      | 1.63  |
| 7.14                        | 0.56 |      |       |               | 1.00  |      | 1.12  |      | 1.63  |

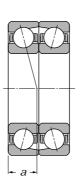
# Static equivalent radial load $P_{\text{Or}}$ = $X_0 F_{\text{r}}$ + $Y_0 F_{\text{a}}$

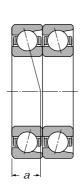
| Singl          | e, DT | DB,   | DF             |
|----------------|-------|-------|----------------|
| X <sub>o</sub> | $Y_0$ | $X_0$ | Y <sub>o</sub> |
| 0.5            | 0.46  | 1     | 0.92           |

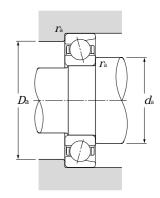
For single and DT arrangement, When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ 

|   | dynamic          | Basic loa    | ad ratings<br>dynamic | static             | _                | speeds1)               | Bear     | ing nun  | nbers    | Al             | butment a        | nd fillet d  | imensio         | ns           |
|---|------------------|--------------|-----------------------|--------------------|------------------|------------------------|----------|----------|----------|----------------|------------------|--------------|-----------------|--------------|
|   | (dupl            | ex)          | (dı                   | ıplex)             |                  | olex)                  |          |          |          |                |                  | mm           |                 |              |
|   | kN<br><i>C</i> r | $C_{ m or}$  | C <sub>r</sub>        | kgf<br><i>C</i> or |                  | n <sup>-1</sup><br>oil | DB       | DF       | DT       | d <sub>a</sub> | $D_{\mathrm{a}}$ | $D_{\rm b}$  | r <sub>as</sub> | <i>I</i> las |
|   | Cr               | Cor          | Cr                    | Cor                | grease           | Oii                    |          |          |          | min            | max              | max          | max             | max          |
|   | 7.95             | 4.40         | 815                   | 450                | 34 000           | 46 000                 | DB       | DF       | DT       | 12.5           | 23.5             | 24.8         | 0.3             | 0.15         |
|   | 8.80             | 5.25         | 900                   | 540                | 32 000           | 43 000                 | DB       | DF       | DT       | 14.5           | 25.5<br>25.5     | 27.5         | 0.6             | 0.13         |
| _ |                  | 0.20         |                       |                    |                  |                        |          |          |          |                |                  |              |                 |              |
|   | 8.80             | 5.25         | 900                   | 540                | 31 000           | 41 000                 | DB       | DF       | DT       | 14.5           | 25.5             | 26.8         | 0.3             | 0.15         |
|   | 11.5             | 6.95         | 1 170                 | 705                | 29 000           | 38 000                 | DB       | DF       | DT       | 16.5           | 27.5             | 29.5         | 0.6             | 0.3          |
|   | 10.1             | 6.75         | 1 030                 | 690                | 27 000           | 36 000                 | DB       | DF       | DT       | 17.5           | 29.5             | 30.8         | 0.3             | 0.15         |
|   | 14.6             | 9.05         | 1 490                 | 920                | 25 000           | 33 000                 | DB       | DF       | DT       | 19.5           | 30.5             | 32.5         | 0.6             | 0.3          |
|   | 21.6             | 13.7         | 2 200                 | 1 400              | 23 000           | 30 000                 | DB       | DF       | DT       | 20.5           | 36.5             | 37.5         | 1               | 0.6          |
| _ |                  |              |                       |                    |                  |                        |          |          |          |                |                  |              |                 |              |
|   | 12.5             | 8.25         | 1 280                 | 840                | 24 000           | 33 000                 | DB       | DF       | DT       | 19.5           | 32.5             | 33.8         | 0.3             | 0.15         |
|   | 18.1<br>25.6     | 11.5<br>16.5 | 1 850<br>2 610        | 1 180<br>1 680     | 23 000<br>21 000 | 30 000<br>27 000       | DB<br>DB | DF<br>DF | DT<br>DT | 21.5<br>22.5   | 35.5<br>41.5     | 37.5<br>42.5 | 0.6<br>1        | 0.3<br>0.6   |
|   | 23.0             | 16.5         | 2 0 1 0               | 1 000              | 21 000           | 27 000                 | υБ       | DF       | וט       | 22.5           | 41.5             | 42.0         | ı               | 0.6          |
|   | 17.0             | 12.1         | 1 740                 | 1 230              | 22 000           | 29 000                 | DB       | DF       | DT       | 24.5           | 37.5             | 39.5         | 0.6             | 0.3          |
|   | 23.7             | 16.3         | 2 420                 | 1 670              | 20 000           | 27 000                 | DB       | DF       | DT       | 25.5           | 41.5             | 42.5         | 1               | 0.6          |
|   | 30.0             | 19.9         | 3 050                 | 2 030              | 18 000           | 24 000                 | DB       | DF       | DT       | 27             | 45               | 47.5         | 1               | 0.6          |
|   | 8.20             | 7.65         | 835                   | 780                | 21 000           | 28 000                 | DB       | DF       | DT       | 27.5           | 34.5             | 35.8         | 0.3             | 0.15         |
|   | 12.7             | 10.8         | 1 300                 | 1 110              | 19 000           | 26 000                 | DB       | DF       | DT       | 27.5           | 39.5             | 40.8         | 0.3             | 0.15         |
|   | 19.0             | 14.9         | 1 940                 | 1 510              | 18 000           | 24 000                 | DB       | DF       | DT       | 29.5           | 42.5             | 44.5         | 0.6             | 0.3          |
|   | 27.0             | 20.5         | 2 750                 | 2 090              | 17 000           | 22 000                 | DB       | DF       | DT       | 30.5           | 46.5             | 47.5         | 1               | 0.6          |
|   | 43.0             | 30.5         | 4 350                 | 3 100              | 15 000           | 20 000                 | DB       | DF       | DT       | 32             | 55               | 57.5         | 1               | 0.6          |
|   | 8.70             | 9.00         | 890                   | 920                | 18 000           | 24 000                 | DB       | DF       | DT       | 32.5           | 39.5             | 40.8         | 0.3             | 0.15         |
|   | 13.5             | 12.5         | 1 380                 | 1 280              | 17 000           | 22 000                 | DB       | DF       | DT       | 32.5           | 44.5             | 45.8         | 0.3             | 0.15         |
|   | 24.6             | 20.6         | 2 510                 | 2 100              | 16 000           | 21 000                 | DB       | DF       | DT       | 35.5           | 49.5             | 50.5         | 1               | 0.6          |
|   | 37.5             | 29.5         | 3 800                 | 3 000              | 14 000           | 19 000                 | DB       | DF       | DT       | 35.5           | 56.5             | 57.5         | 1               | 0.6          |
|   | 52.5             | 40.5         | 5 350                 | 4 150              | 13 000           | 17 000                 | DB       | DF       | DT       | 37             | 65               | 67.5         | 1               | 0.6          |
|   | 9.40             | 10.5         | 960                   | 1 070              | 16 000           | 21 000                 | DB       | DF       | DT       | 37.5           | 44.5             | 45.8         | 0.3             | 0.15         |
|   | 21.4             | 19.3         | 2 180                 | 1 970              | 15 000           | 20 000                 | DB       | DF       | DT       | 37.5<br>39.5   | 50.5             | 52.5         | 0.5             | 0.13         |
|   | 31.0             | 27.3         | 3 150                 | 2 790              | 14 000           | 18 000                 | DB       | DF       | DT       | 40.5           | 56.5             | 57.5         | 1               | 0.6          |
|   | 49.5             | 40.0         | 5 050                 | 4 050              | 13 000           | 17 000                 | DB       | DF       | DT       | 42             | 65               | 67.5         | 1               | 0.6          |
|   | 65.5             | 51.5         | 6 700                 | 5 250              | 11 000           | 15 000                 | DB       | DF       | DT       | 43.5           | 71.5             | 74.5         | 1.5             | 1            |
| _ | 0.00             | 44.5         | 1.005                 | 4.476              | 11.005           | 40.000                 |          |          |          | 10.5           | 10.5             | <b>50.0</b>  |                 | 0.45         |
|   | 9.80             | 11.5         | 1 000                 | 1 170              | 14 000           | 19 000                 | DB       | DF       | DT       | 42.5           | 49.5             | 50.8         | 0.3             | 0.15         |
|   | 22.7<br>33.5     | 22.3<br>32.0 | 2 310<br>3 400        | 2 270<br>3 250     | 13 000<br>12 000 | 18 000<br>16 000       | DB<br>DB | DF<br>DF | DT       | 44.5<br>45.5   | 57.5<br>62.5     | 59.5<br>63.5 | 0.6<br>1        | 0.3<br>0.6   |
|   | 59.0             | 50.5         | 6 000                 | 5 150              | 11 000           | 15 000                 | DB       | DF       | DT<br>DT | 45.5<br>47     | 62.5<br>73       | 75.5         | 1<br>1          | 0.6          |
|   | 59.0             | 50.5         | 0 000                 | 0 100              | 11 000           | 13 000                 | DD       | DF       | D I      | 41             | 13               | 13.5         | 1               | 0.0          |





3 ) *i* is 2 for rear or front combination and 1 for single or parallel combination. Note: This bearing has a contact angle of 15° and is manufactured with accuracies of JIS Class 5 or higher.











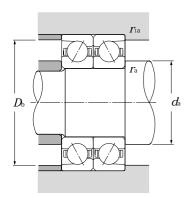


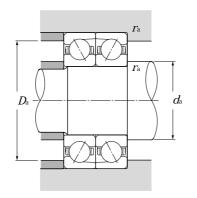

Single

Back-to-back arrangement (DB)

Face-to-face arrangement (DF)

Tandem arrangement (DT)


d 40 ~ 75mm


|    | В                              | ounda                      | •                          | ensions                         |                                | dynamic                              | static                               | ad ratings<br>dynamic                      | static                                    | Factor                               | J                                              | speeds <sup>1</sup> )                          | Bearing<br>numbers                        | Load<br>center                   | <b>Mass</b><br>kg                        |
|----|--------------------------------|----------------------------|----------------------------|---------------------------------|--------------------------------|--------------------------------------|--------------------------------------|--------------------------------------------|-------------------------------------------|--------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------|----------------------------------|------------------------------------------|
| d  | D                              | В                          | mm<br>2 <i>B</i>           | $r_{ m s min}^2$ )              | $n_{ m S min}^{2}$             |                                      | (N<br><i>C</i> or                    | K<br>Cr                                    | cgf $C$ or                                | $f_{\circ}$                          | mi<br>grease                                   | n-'<br>oil                                     |                                           | mm<br>a                          | single<br>(approx.)                      |
| 40 | 90                             | 23                         | 46                         | 1.5                             | 1                              | 49.5                                 | 32.5                                 | 5 050                                      | 3 300                                     | 13.4                                 | 13 000                                         | 17 000                                         | 7308C                                     | 20                               | 0.606                                    |
| 45 | 58<br>68<br>75<br>85<br>100    | 7<br>12<br>16<br>19<br>25  | 14<br>24<br>32<br>38<br>50 | 0.3<br>0.6<br>1<br>1.1<br>1.5   | 0.15<br>0.3<br>0.6<br>0.6<br>1 | 6.25<br>17.3<br>24.4<br>41.0<br>64.0 | 6.25<br>14.1<br>19.3<br>28.8<br>43.0 | 640<br>1 760<br>2 490<br>4 150<br>6 550    | 640<br>1 430<br>1 960<br>2 940<br>4 400   | 16.0<br>15.8<br>15.4<br>14.2<br>13.3 | 16 000<br>15 000<br>14 000<br>13 000<br>11 000 | 21 000<br>20 000<br>19 000<br>17 000<br>15 000 | 7809C<br>7909C<br>7009C<br>7209C<br>7309C | 10.4<br>13.5<br>16<br>18<br>22.5 | 0.030<br>0.126<br>0.233<br>0.4<br>0.83   |
| 50 | 65<br>72<br>80<br>90<br>110    | 7<br>12<br>16<br>20<br>27  | 14<br>24<br>32<br>40<br>54 | 0.3<br>0.6<br>1<br>1.1<br>2     | 0.15<br>0.3<br>0.6<br>0.6<br>1 | 7.90<br>18.3<br>26.0<br>43.0<br>75.0 | 8.05<br>15.8<br>21.9<br>31.5<br>51.5 | 805<br>1 870<br>2 650<br>4 350<br>7 650    | 820<br>1 620<br>2 230<br>3 250<br>5 250   | 16.1<br>16.1<br>15.7<br>14.5<br>13.4 | 14 000<br>14 000<br>13 000<br>12 000<br>10 000 | 19 000<br>18 000<br>17 000<br>15 000<br>14 000 | 7810C<br>7910C<br>7010C<br>7210C<br>7310C | 11<br>14<br>16.5<br>19.5<br>24.5 | 0.049<br>0.131<br>0.253<br>0.454<br>1.05 |
| 55 | 72<br>80<br>90<br>100<br>120   | 9<br>13<br>18<br>21<br>29  | 18<br>26<br>36<br>42<br>58 | 0.3<br>1.0<br>1.1<br>1.5<br>2.0 | 0.15<br>0.6<br>0.6<br>1        | 13.1<br>19.1<br>34.0<br>53.0<br>87.0 | 12.7<br>17.7<br>28.6<br>40.0<br>60.5 | 1 330<br>1 950<br>3 500<br>5 400<br>8 850  | 1 300<br>1 810<br>2 920<br>4 100<br>6 200 | 16.4<br>16.3<br>15.5<br>14.5<br>13.4 | 13 000<br>12 000<br>12 000<br>11 000<br>9 400  | 18 000<br>16 000<br>15 000<br>14 000<br>13 000 | 7811C<br>7911C<br>7011C<br>7211C<br>7311C | 13<br>15.5<br>18.5<br>21<br>26.5 | 0.079<br>0.178<br>0.37<br>0.593<br>1.34  |
| 60 | 78<br>85<br>95<br>110<br>130   | 10<br>13<br>18<br>22<br>31 | 20<br>26<br>36<br>44<br>62 | 0.3<br>1<br>1.1<br>1.5<br>2.1   | 0.15<br>0.6<br>0.6<br>1        | 13.4<br>20.0<br>35.0<br>64.0<br>99.0 | 13.6<br>19.5<br>30.5<br>49.5<br>70.5 | 1 370<br>2 040<br>3 550<br>6 550<br>10 100 | 1 390<br>1 990<br>3 150<br>5 050<br>7 150 | 16.3<br>16.5<br>15.7<br>14.5<br>13.4 | 12 000<br>11 000<br>11 000<br>9 700<br>8 700   | 16 000<br>15 000<br>14 000<br>13 000<br>12 000 | 7812C<br>7912C<br>7012C<br>7212C<br>7312C | 14<br>16<br>19.5<br>22.5<br>28.5 | 0.101<br>0.191<br>0.387<br>0.757<br>1.68 |
| 65 | 85<br>90<br>100<br>120<br>140  | 10<br>13<br>18<br>23<br>33 | 20<br>26<br>36<br>46<br>66 | 0.6<br>1<br>1.1<br>1.5<br>2.1   | 0.3<br>0.6<br>0.6<br>1         | 14.1<br>20.2<br>37.0<br>70.0<br>112  | 14.9<br>20.4<br>34.5<br>55.0<br>80.5 | 1 440<br>2 060<br>3 800<br>7 100<br>11 400 | 1 520<br>2 080<br>3 500<br>5 600<br>8 200 | 16.2<br>16.5<br>15.9<br>14.6<br>13.4 | 11 000<br>11 000<br>9 900<br>9 000<br>8 100    | 15 000<br>14 000<br>13 000<br>12 000<br>11 000 | 7813C<br>7913C<br>7013C<br>7213C<br>7313C | 15<br>17<br>20<br>24<br>30       | 0.122<br>0.204<br>0.421<br>0.948<br>2.06 |
| 70 | 90<br>100<br>110<br>125<br>150 | 10<br>16<br>20<br>24<br>35 | 20<br>32<br>40<br>48<br>70 | 0.6<br>1<br>1.1<br>1.5<br>2.1   | 0.3<br>0.6<br>0.6<br>1         | 14.5<br>28.9<br>47.0<br>76.0<br>126  | 15.8<br>29.0<br>43.0<br>60.0<br>92.0 | 1 470<br>2 950<br>4 800<br>7 750<br>12 900 | 1 610<br>2 960<br>4 400<br>6 150<br>9 350 | 16.1<br>16.4<br>15.7<br>14.6<br>13.4 | 10 000<br>9 900<br>9 200<br>8 300<br>7 500     | 14 000<br>13 000<br>12 000<br>11 000<br>10 000 | 7814C<br>7914C<br>7014C<br>7214C<br>7314C | 15.5<br>19.5<br>22<br>25<br>32   | 0.13<br>0.331<br>0.583<br>1.04<br>2.5    |
| 75 | 95<br>105                      | 10<br>16                   | 20<br>32                   | 0.6<br>1                        | 0.3<br>0.6                     | 14.8<br>29.4                         | 16.7<br>30.5                         |                                            | 1 700<br>3 100                            | 16.0<br>16.5                         | 9 700<br>9 200                                 | 13 000<br>12 000                               | 7815C<br>7915C                            | 16.5<br>20                       | 0.138<br>0.35                            |

<sup>1)</sup> This value was achieved with laminated phenol resin machined cages; in the case of molded resin cages, with oil lubricant, the value will be 75% of this.

<sup>2 )</sup> Minimal allowable dimension for chamfer dimension  $\it r$  or  $\it n$ .







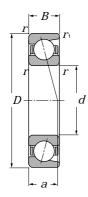
# Dynamic equivalent radial load $P_{\rm T} = XF_{\rm T} + YF_{\rm a}$

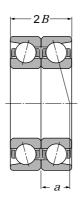
| 3)                          |      |      | Singl | e, DT         |       |      | DB,   | DF   |       |
|-----------------------------|------|------|-------|---------------|-------|------|-------|------|-------|
| $\frac{i f_0 \cdot F_a}{C}$ | e    | Fa/F | r $e$ | $F_{\rm a}/F$ | r > e | Fa/F | r $e$ | Fa/F | r > e |
| $C_{ m or}$                 |      | X    | Y     | X             | Y     | X    | Y     | X    | Y     |
| 0.178                       | 0.38 |      |       |               | 1.47  |      | 1.65  |      | 2.39  |
| 0.357                       | 0.40 |      |       |               | 1.40  |      | 1.57  |      | 2.28  |
| 0.714                       | 0.43 |      |       |               | 1.30  |      | 1.46  |      | 2.11  |
| 1.07                        | 0.46 |      |       |               | 1.23  |      | 1.38  |      | 2.00  |
| 1.43                        | 0.47 | 1    | 0     | 0.44          | 1.19  | 1    | 1.34  | 0.72 | 1.93  |
| 2.14                        | 0.50 |      |       | -             | 1.12  |      | 1.26  |      | 1.82  |
| 3.57                        | 0.55 |      |       |               | 1.02  |      | 1.14  |      | 1.66  |
| 5.35                        | 0.56 |      |       |               | 1.00  |      | 1.12  |      | 1.63  |
| 7.14                        | 0.56 |      |       |               | 1.00  |      | 1.12  |      | 1.63  |

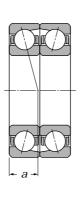
# Static equivalent radial load $P_{\text{Or}}$ = $X_0 F_{\text{r}}$ + $Y_0 F_{\text{a}}$

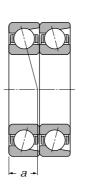
| Singl          | e, DT | DB,   | DF             |
|----------------|-------|-------|----------------|
| X <sub>o</sub> | $Y_0$ | $X_0$ | Y <sub>o</sub> |
| 0.5            | 0.46  | 1     | 0.92           |

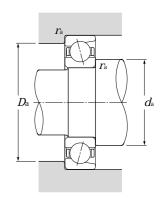
For single and DT arrangement, When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ 


| dv | /namic       | Basic Io     | ad ratings     |                | _                | speeds <sup>1</sup> ) | Bear     | ing nun  | bers     | Α            | butment a        | and fillet d                  | imensio     | ns           |
|----|--------------|--------------|----------------|----------------|------------------|-----------------------|----------|----------|----------|--------------|------------------|-------------------------------|-------------|--------------|
| uy | (dup         | olex)        | (dı            | uplex)         |                  |                       |          |          |          |              |                  | mm                            |             |              |
|    | k            |              |                | kgf            | mi               |                       | DB       | DF       | DT       | $d_{a}$      | $D_{\mathrm{a}}$ | $D_{\scriptscriptstyle  m b}$ | <b>T</b> as | <b>P</b> las |
|    | $C_{\rm r}$  | $C_{ m or}$  | $C_{ m r}$     | $C_{ m or}$    | grease           | oil                   |          |          |          | min          | max              | max                           | max         | max          |
|    | 80.0         | 64.5         | 8 150          | 6 600          | 10 000           | 13 000                | DB       | DF       | DT       | 48.5         | 81.5             | 84.5                          | 1.5         | 1            |
|    | 10.2<br>28.1 | 12.5<br>28.1 | 1 040<br>2 870 | 1 280<br>2 870 | 13 000<br>12 000 | 17 000<br>16 000      | DB<br>DB | DF<br>DF | DT<br>DT | 47.5<br>49.5 | 55.5<br>63.5     | 56.8<br>65.5                  | 0.3<br>0.6  | 0.15<br>0.3  |
|    | 39.5         | 38.5         | 4 050          | 3 950          | 11 000           | 15 000                | DB       | DF       | DT       | 50.5         | 69.5             | 70.5                          | 1           | 0.6          |
|    | 66.5         | 57.5         | 6 750          | 5 850          | 10 000           | 13 000                | DB       | DF       | DT       | 52           | 78               | 80.5                          | 1           | 0.6          |
|    | 04           | 86.0         | 10 600         | 8 800          | 9 000            | 12 000                | DB       | DF       | DT       | 53.5         | 91.5             | 94.5                          | 1.5         | 1            |
|    | 12.8         | 16.1         | 1 300          | 1 640          | 11 000           | 15 000                | DB       | DF       | DT       | 52.5         | 62.5             | 63.8                          | 0.3         | 0.15         |
|    | 29.8         | 31.5         | 3 050          | 3 250          | 11 000           | 14 000                | DB       | DF       | DT       | 54.5         | 67.5             | 69.5                          | 0.6         | 0.3          |
|    | 42.0         | 44.0         | 4 300          | 4 450          | 10 000           | 13 000                | DB       | DF       | DT       | 55.5         | 74.5             | 75.5                          | 1           | 0.6          |
|    | 69.5         | 63.5         | 7 100          | 6 450          | 9 100            | 12 000                | DB       | DF       | DT       | 57           | 83               | 85.5                          | 1           | 0.6          |
| 1  | 22           | 103          | 12 400         | 10 500         | 8 200            | 11 000                | DB       | DF       | DT       | 60           | 100              | 104.5                         | 2           | 1            |
|    | 21.2         | 25.5         | 2 160          | 2 600          | 10 000           | 14 000                | DB       | DF       | DT       | 57.5         | 69.5             | 70.8                          | 0.3         | 0.15         |
|    | 31.0         | 35.5         | 3 150          | 3 600          | 9 800            | 13 000                | DB       | DF       | DT       | 60.5         | 74.5             | 75.5                          | 1           | 0.6          |
|    | 55.5         | 57.5         | 5 650          | 5 850          | 9 200            | 12 000                | DB       | DF       | DT       | 62           | 83               | 85.5                          | 1           | 0.6          |
|    | 86.0         | 80.0         | 8 750          | 8 150          | 8 300            | 11 000                | DB       | DF       | DT       | 63.5         | 91.5             | 94.5                          | 1.5         | 1            |
| 1  | 41           | 121          | 14 400         | 12 400         | 7 500            | 9 900                 | DB       | DF       | DT       | 65           | 110              | 114.5                         | 2           | 1            |
|    | 21.8         | 27.2         | 2 230          | 2 770          | 9 600            | 13 000                | DB       | DF       | DT       | 62.5         | 75.5             | 76.8                          | 0.3         | 0.15         |
|    | 32.5         | 39.0         | 3 300          | 4 000          | 9 000            | 12 000                | DB       | DF       | DT       | 65.5         | 79.5             | 80.5                          | 1           | 0.6          |
|    | 57.0         | 61.5         | 5 800          | 6 250          | 8 400            | 11 000                | DB       | DF       | DT       | 67           | 88               | 90.5                          | 1           | 0.6          |
|    | 04           | 99.0         |                |                | 7 700            | 10 000                | DB       | DF       | DT       | 68.5         | 101.5            | 104.5                         | 1.5         | 1            |
| 1  | 61           | 141          | 16 400         | 14 300         | 6 900            | 9 200                 | DB       | DF       | DT       | 72           | 118              | 123                           | 2           | 1            |
|    | 22.9         | 29.9         | 2 340          | 3 050          | 8 900            | 12 000                | DB       | DF       | DT       | 69.5         | 80.5             | 82.5                          | 0.6         | 0.3          |
|    | 33.0         | 40.5         | 3 350          | 4 150          | 8 400            | 11 000                | DB       | DF       | DT       | 70.5         | 84.5             | 85.5                          | 1           | 0.6          |
|    | 60.5         | 68.5         | 6 150          | 7 000          | 7 800            | 10 000                | DB       | DF       | DT       | 72           | 93               | 95.5                          | 1           | 0.6          |
| 1  | 13           | 110          | 11 600         |                | 7 100            | 9 500                 | DB       | DF       | DT       | 73.5         | 111.5            | 114.5                         | 1.5         | 1            |
| 1  | 82           | 161          | 18 600         | 16 400         | 6 400            | 8 500                 | DB       | DF       | DT       | 77           | 128              | 133                           | 2           | 1            |
|    | 23.5         | 31.5         | 2 390          | 3 250          | 8 200            | 11 000                | DB       | DF       | DT       | 74.5         | 85.5             | 87.5                          | 0.6         | 0.3          |
|    | 47.0         | 58.0         | 4 800          | 5 900          | 7 800            | 10 000                | DB       | DF       | DT       | 75.5         | 94.5             | 95.5                          | 1           | 0.6          |
|    | 76.0         | 86.0         | 7 750          | 8 750          | 7 300            | 9 700                 | DB       | DF       | DT       | 77           | 103              | 105.5                         | 1           | 0.6          |
|    | 23           | 120          | 12 600         | 12 300         | 6 600            | 8 800                 | DB       | DF       | DT       | 78.5         | 116.5            | 119.5                         | 1.5         | 1            |
| 2  | 05           | 184          | 20 900         | 18 700         | 5 900            | 7 900                 | DB       | DF       | DT       | 82           | 138              | 143                           | 2           | 1            |
|    | 24.0         | 33.5         | 2 450          | 3 400          | 7 700            | 10 000                | DB       | DF       | DT       | 79.5         | 90.5             | 92.5                          | 0.6         | 0.3          |
|    | 47.5         | 61.0         | 4 850          | 6 200          | 7 300            | 9 700                 | DB       | DF       | DT       | 80.5         | 99.5             | 100.5                         | 1           | 0.6          |





Note: This bearing has a contact angle of 15° and is manufactured with accuracies of JIS Class 5 or higher.









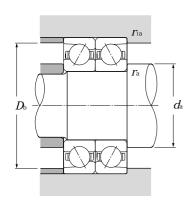


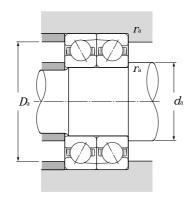



Single

Back-to-back arrangement (DB)

Face-to-face arrangement (DF)


Tandem arrangement (DT)


d 75 ~ 105mm

|           | В   | ounda | ry dim         | ensions            | •                    | dynami       | Basic Io    | oad ratings<br>dynamic |             | Factor  | Limiting | speeds1)        | Bearing<br>numbers | Load center | Mass                |
|-----------|-----|-------|----------------|--------------------|----------------------|--------------|-------------|------------------------|-------------|---------|----------|-----------------|--------------------|-------------|---------------------|
|           |     |       | mm             |                    |                      | ayrıarıı     | kN          | •                      | gf          |         | mi       | n <sup>-1</sup> |                    | mm          | kg<br>              |
| d         | D   | В     | 2 <i>B</i>     | $r_{ m s min}^2$ ) | ₽ls min <sup>2</sup> | ) <i>C</i> r | $C_{ m or}$ | $C_{ m r}$             | $C_{ m or}$ | $f_{0}$ | grease   | oil             |                    | a           | single<br>(approx.) |
|           | _   |       |                |                    |                      | -            |             | -                      |             |         | 9        |                 |                    | _           | ()                  |
|           | 445 | 20    | 40             | 4.4                | 0.0                  | 40.0         | 45.5        | 4.000                  | 4.050       | 45.0    | 0.000    | 44.000          | 70450              | 20.5        | 0.00                |
|           | 115 | 20    | 40             | 1.1                | 0.6                  | 48.0         | 45.5        | 4 900                  | 4 650       | 15.9    | 8 600    | 11 000          | 7015C              | 22.5        | 0.63                |
| <b>75</b> | 130 | 25    | 50             | 1.5                | 1                    | 79.5         | 65.5        | 8 100                  | 6 700       | 14.8    | 7 800    | 10 000          | 7215C              | 26.5        | 1.14                |
|           | 160 | 37    | 74             | 2.1                | 1.1                  | 137          | 104         | 14 000                 | 10 600      | 13.4    | 7 000    | 9 300           | 7315C              | 34          | 3.09                |
|           | 100 | 10    | 20             | 0.6                | 0.3                  | 15.1         | 17.6        | 1 540                  | 1 790       | 15.9    | 9 100    | 12 000          | 7816C              | 17          | 0.146               |
|           | 110 | 16    | 32             | 1                  | 0.6                  | 29.8         | 31.5        | 3 050                  | 3 200       | 16.5    | 8 600    | 12 000          | 7916C              | 21          | 0.37                |
| 00        | 125 | 22    | 44             | 1.1                | 0.6                  | 58.5         | 55.5        | 6 000                  | 5 650       | 15.7    | 8 000    | 11 000          | 7016C              | 24.5        | 0.822               |
| 80        | 140 | 26    | 52             | 2                  | 1                    | 93.0         | 77.5        | 9 450                  | 7 900       | 14.7    | 7 300    | 9 700           | 7216C              | 27.5        | 1.39                |
|           | 170 | 39    | 78             | 2.1                | 1.1                  | 149          | 117         | 15 200                 | 11 900      | 13.5    | 6 500    | 8 700           | 7316C              | 36          | 3.55                |
|           | 170 |       | , ,            | 2.1                |                      | 1 10         | ,           | 10 200                 | 11 000      | 10.0    | 0 000    | 0 7 00          | 70100              | 00          | 0.00                |
|           | 110 | 13    | 26             | 1                  | 0.6                  | 22.1         | 24.7        | 2 250                  | 2 520       | 16.1    | 8 600    | 11 000          | 7817C              | 19.5        | 0.257               |
|           | 120 | 18    | 36             | 1.1                | 0.6                  | 40.0         | 42.5        | 4 100                  | 4 300       | 16.5    | 8 100    | 11 000          | 7917C              | 22.5        | 0.523               |
| 85        | 130 | 22    | 44             | 1.1                | 0.6                  | 60.0         | 58.5        | 6 150                  | 6 000       | 15.9    | 7 600    | 10 000          | 7017C              | 25.5        | 0.862               |
| 00        | 150 | 28    | 56             | 2                  | 1                    | 104          | 90.5        | 10 600                 | 9 200       | 14.9    | 6 900    | 9 100           | 7217C              | 30          | 1.73                |
|           | 180 | 41    | 82             | 3                  | 1.1                  | 161          | 130         | 16 400                 | 13 300      | 13.5    | 6 200    | 8 200           | 7317C              | 38.5        | 4.18                |
|           |     |       |                |                    |                      |              |             |                        |             |         |          |                 |                    |             |                     |
|           | 115 | 13    | 26             | 1                  | 0.6                  | 22.7         | 26.1        | 2 320                  | 2 670       | 16.1    | 8 100    | 11 000          | 7818C              | 20          | 0.27                |
|           | 125 | 18    | 36             | 1.1                | 0.6                  | 39.5         | 42.5        | 4 050                  | 4 350       | 16.6    | 7 700    | 10 000          | 7918C              | 23.5        | 0.549               |
| 00        | 140 | 24    | 48             | 1.5                | 1                    | 71.5         | 69.0        | 7 300                  | 7 050       | 15.7    | 7 100    | 9 500           | 7018C              | 27.5        | 1.12                |
| 90        | 160 | 30    | 60             | 2                  | 1                    | 123          | 105         | 12 500                 | 10 700      | 14.6    | 6 500    | 8 600           | 7218C              | 31.5        | 2.13                |
|           | 190 | 43    | 86             | 3                  | 1.1                  | 183          | 158         | 18 700                 | 16 100      | 13.5    | 5 800    | 7 800           | 7318C              | 40.5        | 4.88                |
|           | 400 | 4.0   |                |                    |                      | 00.4         | 07.0        |                        |             | 400     | 7.000    | 10.000          | <b>-</b> 0400      | 0.4         |                     |
|           | 120 | 13    | 26             | 1                  | 0.6                  | 23.4         | 27.6        | 2 380                  | 2 820       | 16.0    | 7 600    | 10 000          | 7819C              | 21          | 0.283               |
|           | 130 | 18    | 36             | 1.1                | 0.6                  | 41.0         | 46.0        | 4 200                  | 4 650       | 16.5    | 7 300    | 9 700           | 7919C              | 24          | 0.574               |
| 95        | 145 | 24    | 48             | 1.5                | 1                    | 73.5         | 73.0        | 7 500                  | 7 450       | 15.9    | 6 800    | 9 000           | 7019C              | 28          | 1.17                |
|           | 170 | 32    | 64             | 2.1                | 1.1                  | 139          | 120         | 14 200                 | 12 200      | 14.6    | 6 100    | 8 100           | 7219C              | 34          | 2.58                |
|           | 200 | 45    | 90             | 3                  | 1.1                  | 196          | 174         | 20 000                 | 17 800      | 13.5    | 5 500    | 7 300           | 7319C              | 42.5        | 5.65                |
|           | 125 | 13    | 26             | 1                  | 0.6                  | 23.5         | 28.3        | 2 400                  | 2 890       | 16.0    | 7 200    | 9 600           | 7820C              | 21.5        | 0.296               |
|           | 140 | 20    | 40             | 1.1                | 0.6                  | 53.0         | 58.5        | 5 400                  | 6 000       | 16.5    | 6 900    | 9 100           | 7920C              | 26          | 0.230               |
| 466       | 150 | 24    | 48             | 1.5                | 1                    | 75.5         | 77.0        | 7 700                  | 7 900       | 16.0    | 6 400    | 8 600           | 7920C<br>7020C     | 28.5        | 1.25                |
| 100       | 180 | 34    | 68             | 2.1                | 1.1                  | 149          | 127         | 15 200                 | 12 900      | 14.5    | 5 800    | 7 700           | 7020C              | 36          | 3.08                |
|           | 215 | 47    | 94             | 3                  | 1.1                  | 222          | 207         | 22 700                 | 21 100      | 13.4    | 5 200    | 6 900           | 7320C              | 44.5        | 6.9                 |
|           | 210 | 41    | J <del>4</del> | J                  | 1.1                  | <i></i>      | 201         | 22 100                 | 21 100      | 13.4    | 3 200    | 0 300           | 73200              | 44.5        | 0.9                 |
|           | 130 | 13    | 26             | 1                  | 0.6                  | 24.1         | 29.8        | 2 460                  | 3 050       | 15.9    | 6 900    | 9 200           | 7821C              | 22          | 0.31                |
|           | 145 | 20    | 40             | 1.1                | 0.6                  | 54.0         | 61.5        | 5 500                  | 6 250       | 16.6    | 6 500    | 8 700           | 7921C              | 26.5        | 0.81                |
| 4 O E     | 160 | 26    | 52             | 2                  | 1                    | 88.0         | 89.5        | 9 000                  | 9 100       | 15.9    | 6 100    | 8 100           | 7021C              | 31          | 1.53                |
| 105       | 190 | 36    | 72             | 2.1                | 1.1                  | 162          | 143         | 16 600                 | 14 600      |         | 5 500    | 7 300           | 7221C              | 38          | 3.66                |
|           | 225 | 49    | 98             | 3                  | 1.1                  | 236          | 226         | 24 100                 | 23 000      |         | 4 900    | 6 600           | 7321C              | 46.5        | 7.86                |
|           |     | .5    |                | J                  |                      | _00          |             | 2.100                  | _0 000      | . 0. 1  | . 555    | 0 000           | .02.0              | .5.5        |                     |

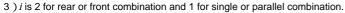
<sup>1 )</sup> This value was achieved with laminated phenol resin machined cages; in the case of molded resin cages, with oil lubricant, the value will be 75% of this. 2 ) Minimal allowable dimension for chamfer dimension r or n.







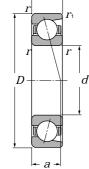
# Dynamic equivalent radial load $P_{\rm T} = XF_{\rm T} + YF_{\rm a}$

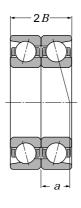

| 3)                          |      |      | Singl | le, DT |       |      | DB,   | DF   |       |
|-----------------------------|------|------|-------|--------|-------|------|-------|------|-------|
| $\frac{i f_0 \cdot F_a}{C}$ | e    | Fa/F | r $e$ | Fa/F   | r > e | Fa/F | r $e$ | Fa/F | r > e |
| $C_{ m or}$                 |      | X    | Y     | X      | Y     | X    | Y     | X    | Y     |
| 0.178                       | 0.38 |      |       |        | 1.47  |      | 1.65  |      | 2.39  |
| 0.357                       | 0.40 |      |       |        | 1.40  |      | 1.57  |      | 2.28  |
| 0.714                       | 0.43 |      |       |        | 1.30  |      | 1.46  |      | 2.11  |
| 1.07                        | 0.46 |      |       |        | 1.23  |      | 1.38  |      | 2.00  |
| 1.43                        | 0.47 | 1    | 0     | 0.44   | 1.19  | 1    | 1.34  | 0.72 | 1.93  |
| 2.14                        | 0.50 |      |       | _      | 1.12  |      | 1.26  |      | 1.82  |
| 3.57                        | 0.55 |      |       |        | 1.02  |      | 1.14  |      | 1.66  |
| 5.35                        | 0.56 |      |       |        | 1.00  |      | 1.12  |      | 1.63  |
| 7.14                        | 0.56 |      |       |        | 1.00  |      | 1.12  |      | 1.63  |

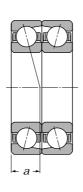
# Static equivalent radial load $P_{\text{Or}}$ = $X_0 F_{\text{r}}$ + $Y_0 F_{\text{a}}$

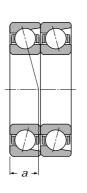
| Singl          | e, DT | DB,   | DF             |
|----------------|-------|-------|----------------|
| X <sub>o</sub> | $Y_0$ | $X_0$ | Y <sub>o</sub> |
| 0.5            | 0.46  | 1     | 0.92           |

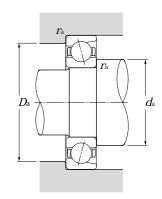
For single and DT arrangement, When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ 


| dynamic                            |                                   | oad rating       |                                               | Limiting s                                | -                                         | Bear                 | ing num              | nbers                      | Α                                   | butment a                           | and fillet d                            | imensio                   | ns                     |
|------------------------------------|-----------------------------------|------------------|-----------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------|----------------------|----------------------------|-------------------------------------|-------------------------------------|-----------------------------------------|---------------------------|------------------------|
| , (du                              | plex) kN Cor                      | •                | duplex) kgf  Cor                              | mir<br>grease                             |                                           | DB                   | DF                   | DT                         | $d_{\!\scriptscriptstyle a}$ min    | $D_{\!\scriptscriptstyle  m a}$ max | mm<br><i>D</i> ₅<br>max                 | r <sub>as</sub>           | <i>I</i> Դas<br>max    |
| 78.0<br>129<br>223                 | 91.5<br>131<br>208                |                  | 9 300<br>13 400<br>21 200                     | 6 800<br>6 200<br>5 500                   | 9 000<br>8 200<br>7 400                   | DB<br>DB<br>DB       | DF<br>DF<br>DF       | DT<br>DT<br>DT             | 82<br>83.5<br>87                    | 108<br>121.5<br>148                 | 110.5<br>124.5<br>153                   | 1<br>1.5<br>2             | 0.6<br>1<br>1          |
| 24.6<br>48.5<br>95.5<br>151<br>242 | 35.0<br>63.0<br>111<br>155<br>234 |                  | 3 600<br>6 450<br>11 300<br>15 800<br>23 800  | 7 200<br>6 800<br>6 400<br>5 800<br>5 200 | 9 600<br>9 100<br>8 500<br>7 700<br>6 900 | DB<br>DB<br>DB<br>DB | DF<br>DF<br>DF<br>DF | DT<br>DT<br>DT<br>DT<br>DT | 84.5<br>85.5<br>87<br>90<br>92      | 95.5<br>104.5<br>118<br>130<br>158  | 97.5<br>105.5<br>120.5<br>134.5<br>163  | 0.6<br>1<br>1<br>2<br>2   | 0.3<br>0.6<br>0.6<br>1 |
| 36.0<br>65.0<br>98.0<br>169<br>261 | 49.5<br>84.5<br>117<br>181<br>261 | 17 200           | 5 050<br>8 650<br>12 000<br>18 400<br>26 600  | 6 800<br>6 400<br>6 000<br>5 400<br>4 900 | 9 100<br>8 600<br>8 000<br>7 200<br>6 500 | DB<br>DB<br>DB<br>DB | DF<br>DF<br>DF<br>DF | DT<br>DT<br>DT<br>DT<br>DT | 90.5<br>92<br>92<br>95<br>99        | 104.5<br>113<br>123<br>140<br>166   | 105.5<br>115.5<br>125.5<br>144.5<br>173 | 1<br>1<br>1<br>2<br>2.5   | 0.6<br>0.6<br>0.6<br>1 |
| 37.0<br>64.5<br>116<br>199<br>297  | 52.5<br>85.0<br>138<br>209<br>315 | 20 300           | 5 350<br>8 700<br>14 100<br>21 400<br>32 000  | 6 400<br>6 100<br>5 700<br>5 100<br>4 600 | 8 500<br>8 100<br>7 500<br>6 800<br>6 100 | DB<br>DB<br>DB<br>DB | DF<br>DF<br>DF<br>DF | DT<br>DT<br>DT<br>DT<br>DT | 95.5<br>97<br>98.5<br>100<br>104    | 109.5<br>118<br>131.5<br>150<br>176 | 110.5<br>120.5<br>134.5<br>154.5<br>183 | 1<br>1<br>1.5<br>2<br>2.5 | 0.6<br>0.6<br>1<br>1   |
| 38.0<br>67.0<br>119<br>226<br>320  | 55.5<br>91.5<br>146<br>240<br>350 | 23 000           | 5 650<br>9 350<br>14 900<br>24 400<br>35 500  | 6 000<br>5 800<br>5 400<br>4 800<br>4 300 | 8 000<br>7 700<br>7 100<br>6 400<br>5 800 | DB<br>DB<br>DB<br>DB | DF<br>DF<br>DF<br>DF | DT<br>DT<br>DT<br>DT<br>DT | 100.5<br>102<br>103.5<br>107<br>109 | 114.5<br>123<br>136.5<br>158<br>186 | 115.5<br>125.5<br>139.5<br>163<br>193   | 1<br>1<br>1.5<br>2<br>2.5 | 0.6<br>0.6<br>1<br>1   |
| 38.0<br>86.0<br>122<br>242<br>360  | 56.5<br>117<br>154<br>254<br>415  | 12 500<br>24 700 | 5 750<br>12 000<br>15 800<br>25 900<br>42 000 | 5 700<br>5 400<br>5 100<br>4 600<br>4 100 | 7 600<br>7 200<br>6 800<br>6 100<br>5 500 | DB<br>DB<br>DB<br>DB | DF<br>DF<br>DF<br>DF | DT<br>DT<br>DT<br>DT<br>DT | 105.5<br>107<br>108.5<br>112<br>114 | 119.5<br>133<br>141.5<br>168<br>201 | 120.5<br>135.5<br>144.5<br>173<br>208   | 1<br>1<br>1.5<br>2<br>2.5 | 0.6<br>0.6<br>1<br>1   |
| 39.0<br>87.5<br>143<br>264<br>385  | 59.5<br>123<br>179<br>286<br>450  | 14 600<br>26 900 | 6 050<br>12 500<br>18 200<br>29 100<br>46 000 | 5 500<br>5 200<br>4 800<br>4 400<br>3 900 | 7 300<br>6 900<br>6 400<br>5 800<br>5 200 | DB<br>DB<br>DB<br>DB | DF<br>DF<br>DF<br>DF | DT<br>DT<br>DT<br>DT<br>DT | 110.5<br>112<br>115<br>117<br>119   | 124.5<br>138<br>150<br>178<br>211   | 125.5<br>140.5<br>154.5<br>183<br>218   | 1<br>1<br>2<br>2<br>2.5   | 0.6<br>0.6<br>1<br>1   |





Note: This bearing has a contact angle of 15° and is manufactured with accuracies of JIS Class 5 or higher.









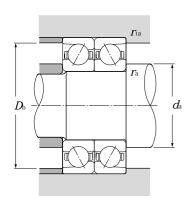


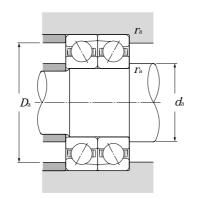



Single

Back-to-back arrangement (DB)

Face-to-face arrangement (DF)


Tandem arrangement (DT)


d 110 ~ 200mm

|     | В                               | ounda                      | ary dim                     | ensions                   |                        | dynamic                           |                                   | ad ratings<br>dynamic                        |                                              | Factor                               | Limiting                                  | speeds1)                                  | Bearing<br>numbers                        | Load<br>center                   | <b>Mass</b><br>kg                      |
|-----|---------------------------------|----------------------------|-----------------------------|---------------------------|------------------------|-----------------------------------|-----------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------|----------------------------------------|
|     |                                 |                            | mm                          |                           |                        |                                   | kN                                |                                              | gf                                           |                                      | mir                                       |                                           |                                           | mm                               | single                                 |
| d   | D                               | В                          | 2 <i>B</i>                  | $r_{\rm s  min}^{2}$      | $n_{\rm S min}^2$      | <i>C</i> <sub>r</sub>             | $C_{ m or}$                       | $C_{ m r}$                                   | $C_{ m or}$                                  | $f_0$                                | grease                                    | oil                                       |                                           | а                                | (approx.)                              |
| 110 | 140<br>150<br>170<br>200<br>240 | 16<br>20<br>28<br>38<br>50 | 32<br>40<br>56<br>76<br>100 | 1<br>1.1<br>2<br>2.1<br>3 | 0.6<br>0.6<br>1<br>1.1 | 34.5<br>54.5<br>101<br>176<br>249 | 42.5<br>63.5<br>101<br>160<br>241 | 3 550<br>5 550<br>10 300<br>17 900<br>25 400 | 4 350<br>6 450<br>10 300<br>16 300<br>24 600 | 16.1<br>16.5<br>15.7<br>14.5<br>13.3 | 6 500<br>6 200<br>5 800<br>5 200<br>4 700 | 8 700<br>8 300<br>7 700<br>6 900<br>6 300 | 7822C<br>7922C<br>7022C<br>7222C<br>7322C | 24.5<br>27.5<br>33<br>40<br>48.5 | 0.486<br>0.843<br>1.91<br>4.29<br>9.22 |
| 120 | 150<br>165<br>180<br>215        | 16<br>22<br>28<br>40       | 32<br>44<br>56<br>80        | 1<br>1.1<br>2<br>2.1      | 0.6<br>0.6<br>1<br>1.1 | 35.0<br>67.5<br>103<br>199        | 44.5<br>78.5<br>108<br>192        | 3 600<br>6 850<br>10 500<br>20 200           | 4 550<br>8 000<br>11 000<br>19 600           | 16.0<br>16.6<br>16.0<br>14.6         | 6 000<br>5 700<br>5 300<br>4 800          | 8 000<br>7 600<br>7 100<br>6 400          | 7824C<br>7924C<br>7024C<br>7224C          | 26<br>30<br>34<br>42.5           | 0.525<br>1.38<br>2.04<br>5.16          |
| 130 | 165<br>180<br>200<br>230        | 18<br>24<br>33<br>40       | 36<br>48<br>66<br>80        | 1.1<br>1.5<br>2<br>3      | 0.6<br>1<br>1<br>1.1   | 47.0<br>82.5<br>129<br>213        | 59.5<br>98.0<br>137<br>214        | 4 750<br>8 450<br>13 200<br>21 700           | 6 050<br>10 000<br>14 000<br>21 800          | 16.1<br>16.5<br>15.9<br>14.7         | 5 500<br>5 200<br>4 900<br>4 400          | 7 400<br>7 000<br>6 500<br>5 800          | 7826C<br>7926C<br>7026C<br>7226C          | 29<br>33<br>38.5<br>44           | 0.911<br>1.82<br>3.73<br>5.83          |
| 140 | 175<br>190<br>210<br>250        | 18<br>24<br>33<br>42       | 36<br>48<br>66<br>84        | 1.1<br>1.5<br>2<br>3      | 0.6<br>1<br>1<br>1.1   | 47.5<br>83.5<br>132<br>221        | 62.5<br>101<br>145<br>233         | 4 850<br>8 500<br>13 500<br>22 600           | 6 350<br>10 300<br>14 800<br>23 800          | 16.0<br>16.5<br>16.0<br>15.0         | 5 100<br>4 800<br>4 500<br>4 000          | 6 800<br>6 400<br>6 000<br>5 300          | 7828C<br>7928C<br>7028C<br>7228C          | 30<br>34<br>40<br>47             | 0.973<br>1.94<br>3.96<br>7.3           |
| 150 | 190<br>210<br>225<br>270        | 20<br>28<br>35<br>45       | 40<br>56<br>70<br>90        | 1.1<br>2<br>2.1<br>3      | 0.6<br>1<br>1.1<br>1.1 | 60.5<br>108<br>151<br>253         | 79.5<br>132<br>168<br>281         | 6 150<br>11 000<br>15 400<br>25 800          | 8 100<br>13 400<br>17 200<br>28 600          | 16.1<br>16.5<br>16.0<br>14.9         | 4 700<br>4 500<br>4 200<br>3 700          | 6 300<br>6 000<br>5 600<br>5 000          | 7830C<br>7930C<br>7030C<br>7230C          | 33<br>38<br>42.5<br>50.5         | 1.33<br>2.96<br>4.82<br>11             |
| 160 | 200<br>220<br>240               | 20<br>28<br>38             | 40<br>56<br>76              | 1.1<br>2<br>2.1           | 0.6<br>1<br>1.1        | 62.0<br>109<br>171                | 83.5<br>136<br>193                | 6 300<br>11 100<br>17 400                    | 8 500<br>13 900<br>19 700                    | 16.0<br>16.5<br>16.0                 | 4 400<br>4 200<br>3 900                   | 5 900<br>5 600<br>5 200                   | 7832C<br>7932C<br>7032C                   | 34<br>39.5<br>46                 | 1.41<br>3.13<br>5.96                   |
| 170 | 215<br>230<br>260               | 22<br>28<br>42             | 44<br>56<br>84              | 1.1<br>2<br>2.1           | 0.6<br>1<br>1.1        | 76.0<br>113<br>205                | 102<br>145<br>234                 | 7 750<br>11 500<br>20 900                    | 10 400<br>14 800<br>23 900                   | 16.1<br>16.4<br>15.9                 | 4 100<br>3 900<br>3 700                   | 5 500<br>5 300<br>4 900                   | 7834C<br>7934C<br>7034C                   | 37<br>41<br>50                   | 1.87<br>3.29<br>7.96                   |
| 180 |                                 | 46                         | 92                          | 2.1                       | 1.1                    | 241                               | 290                               | 24 500                                       | 29 600                                       | 15.7                                 | 3 400                                     | 4 600                                     | 7036C                                     |                                  | 10.4                                   |
| 190 | 290                             | 46                         | 92                          | 2.1                       | 1.1                    | 247                               | 305                               | 25 100                                       | 31 500                                       | 15.9                                 | 3 200                                     | 4 300                                     | 7038C                                     | 55                               | 10.8                                   |
| 200 | 310                             | 51                         | 102                         | 2.1                       | 1.1                    | 277                               | 355                               | 28 200                                       | 36 000                                       | 15.7                                 | 3 100                                     | 4 100                                     | 7040C                                     | 59.5                             | 14                                     |

<sup>1 )</sup> This value was achieved with laminated phenol resin machined cages; in the case of molded resin cages, with oil lubricant, the value will be 75% of this. 2 ) Minimal allowable dimension for chamfer dimension r or n.

#### High Speed Single and Duplex Angular Contact Ball Bearings



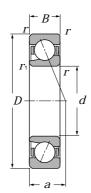


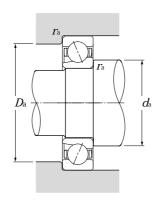
# Dynamic equivalent radial load $P_{\rm T} = XF_{\rm T} + YF_{\rm a}$

| 3)                          |      |      | Singl | le, DT |       |      | DB,   | DF   |       |
|-----------------------------|------|------|-------|--------|-------|------|-------|------|-------|
| $\frac{i f_0 \cdot F_a}{C}$ | e    | Fa/F | r $e$ | Fa/F   | r > e | Fa/F | r $e$ | Fa/F | r > e |
| $C_{ m or}$                 |      | X    | Y     | X      | Y     | X    | Y     | X    | Y     |
| 0.178                       | 0.38 |      |       |        | 1.47  |      | 1.65  |      | 2.39  |
| 0.357                       |      |      |       |        | 1.40  |      | 1.57  |      | 2.28  |
| 0.714                       | -    |      |       |        | 1.30  |      | 1.46  |      | 2.11  |
| 1.07                        | 0.46 |      |       |        | 1.23  |      | 1.38  |      | 2.00  |
| 1.43                        | 0.47 | 1    | 0     | 0.44   | 1.19  | 1    |       | 0.72 | 1.93  |
| 2.14                        | 0.50 |      |       |        | 1.12  |      | 1.26  |      | 1.82  |
| 3.57                        | 0.55 |      |       |        | 1.02  |      | 1.14  |      | 1.66  |
| 5.35                        | 0.56 |      |       |        | 1.00  |      | 1.12  |      | 1.63  |
| 7.14                        | 0.56 |      |       |        | 1.00  |      | 1.12  |      | 1.63  |

# Static equivalent radial load $P_{\text{Or}}$ = $X_0 F_{\text{r}}$ + $Y_0 F_{\text{a}}$

| Singl          | e, DT | DB,   | DF             |
|----------------|-------|-------|----------------|
| X <sub>o</sub> | $Y_0$ | $X_0$ | Y <sub>o</sub> |
| 0.5            | 0.46  | 1     | 0.92           |


For single and DT arrangement, When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ 


| dynamic     |             | oad rating<br>dynamic |             | Limiting s | -     | Bear       | ing nun | nbers | Α       | butment a        | and fillet d                  | imensio     | ns           |
|-------------|-------------|-----------------------|-------------|------------|-------|------------|---------|-------|---------|------------------|-------------------------------|-------------|--------------|
| •           | plex)       | (0                    | duplex)     |            |       |            |         |       |         |                  | mm                            |             |              |
|             | κN          | C                     | kgf         | mir        |       | DB         | DF      | DT    | $d_{a}$ | $D_{\mathrm{a}}$ | $D_{\scriptscriptstyle  m b}$ | $r_{ m as}$ | <b>I</b> las |
| $C_{\rm r}$ | $C_{ m or}$ | $C_{\rm r}$           | $C_{ m or}$ | grease     | oil   |            |         |       | min     | max              | max                           | max         | max          |
| 56.0        | 85.0        | 5 750                 | 8 700       | 5 200      | 6 900 | DB         | DF      | DT    | 115.5   | 134.5            | 135.5                         | 1           | 0.6          |
| 89.0        | 127         | 9 050                 | 12 900      | 4 900      | 6 600 | DB         | DF      | DT    | 117     | 143              | 145.5                         | 1           | 0.6          |
| 164         | 203         |                       | 20 700      | 4 600      | 6 100 | DB         | DF      | DT    | 120     | 160              | 164.5                         | 2           | 1            |
| 286         | 320         |                       | 32 500      | 4 100      | 5 500 | DB         | DF      | DT    | 122     | 188              | 193                           | 2           | 1            |
| 405         | 485         |                       | 49 000      | 3 700      | 5 000 | DB         | DF      | DT    | 124     | 226              | 233                           | 2.5         | 1            |
|             |             |                       |             |            |       |            |         |       | .=.     |                  |                               |             |              |
| 57.0        | 89.5        | 5 800                 | 9 100       | 4 700      | 6 300 | DB         | DF      | DT    | 125.5   | 144.5            | 145.5                         | 1           | 0.6          |
| 109         | 157         | 11 200                | 16 000      | 4 500      | 6 000 | DB         | DF      | DT    | 127     | 158              | 160.5                         | 1           | 0.6          |
| 168         | 216         | 17 100                | 22 000      | 4 200      | 5 600 | DB         | DF      | DT    | 130     | 170              | 174.5                         | 2           | 1            |
| 325         | 385         | 33 000                | 39 000      | 3 800      | 5 000 | DB         | DF      | DT    | 132     | 203              | 208                           | 2           | 1            |
| 76.0        | 119         | 7 750                 | 12 100      | 4 400      | 5 800 | DB         | DF      | DT    | 137     | 158              | 160.5                         | 1           | 0.60         |
| 134         | 196         |                       | 20 000      | 4 100      | 5 500 | DB         | DF      | DT    | 138.5   | 171.5            | 174.5                         | 1.5         | 1            |
| 210         | 274         |                       | 28 000      | 3 800      | 5 100 | DB         | DF      | DT    | 140     | 190              | 194.5                         | 2           | 1            |
| 345         | 430         |                       | 43 500      | 3 500      | 4 600 | DB         | DF      | DT    | 144     | 216              | 223                           | 2.5         | 1            |
| 343         | 430         | 33 300                | 43 300      | 3 300      | 4 000 | <i>D</i> B | DF      | וט    | 144     | 210              | 223                           | 2.5         | '            |
| 77.5        | 125         | 7 900                 | 12 700      | 4 000      | 5 400 | DB         | DF      | DT    | 147     | 168              | 170.5                         | 1           | 0.6          |
| 136         | 203         | 13 800                | 20 700      | 3 800      | 5 100 | DB         | DF      | DT    | 148.5   | 181.5            | 184.5                         | 1.5         | 1            |
| 214         | 290         | 21 900                | 29 600      | 3 600      | 4 800 | DB         | DF      | DT    | 150     | 200              | 204.5                         | 2           | 1            |
| 360         | 465         | 36 500                | 47 500      | 3 200      | 4 200 | DB         | DF      | DT    | 154     | 236              | 243                           | 2.5         | 1            |
| 98.5        | 159         | 10.000                | 16 200      | 3 700      | 5 000 | DB         | DF      | DT    | 157     | 183              | 185.5                         | 1           | 0.6          |
| 175         | 263         |                       | 26 800      | 3 600      | 4 800 | DB         | DF      | DT    | 160     | 200              | 204.5                         | 2           | 1            |
| 245         | 335         |                       | 34 500      | 3 300      | 4 400 | DB         | DF      | DT    | 162     | 213              | 218                           | 2           | 1            |
| 410         | 560         |                       | 57 500      | 3 000      | 4 000 | DB         | DF      | DT    | 164     | 256              | 263                           | 2.5         | 1            |
| 410         | 300         | 42 000                | 37 300      | 3 000      | 4 000 | <i>D</i> B | DF      | וט    | 104     | 250              | 203                           | 2.5         | '            |
| 100         | 167         | 10 200                | 17 000      | 3 500      | 4 700 | DB         | DF      | DT    | 167     | 193              | 195.5                         | 1           | 0.6          |
| 177         | 272         |                       | 27 800      | 3 300      | 4 400 | DB         | DF      | DT    | 170     | 210              | 214.5                         | 2           | 1            |
| 278         | 385         | 28 300                | 39 500      | 3 100      | 4 100 | DB         | DF      | DT    | 172     | 228              | 233                           | 2           | 1            |
|             |             |                       |             |            |       |            |         |       |         |                  |                               |             |              |
| 123         | 204         | 12 600                | 20 800      | 3 300      | 4 400 | DB         | DF      | DT    | 177     | 208              | 210.5                         | 1           | 0.6          |
| 183         | 290         | 18 700                | 29 600      | 3 100      | 4 200 | DB         | DF      | DT    | 180     | 220              | 224.5                         | 2           | 1            |
| 330         | 470         | 34 000                | 48 000      | 2 900      | 3 900 | DB         | DF      | DT    | 182     | 248              | 253                           | 2           | 1            |
| 390         | 580         | 40 000                | 59 000      | 2 700      | 3 600 | DB         | DF      | DT    | 192     | 268              | 273                           | 2           | 1            |
| 400         | 615         | 41 000                | 62 500      | 2 600      | 3 400 | DB         | DF      | DT    | 202     | 278              | 283                           | 2           | 1            |
| 450         | 710         | 46 000                | 72 500      | 2 400      | 3 200 | DB         | DF      | DT    | 212     | 298              | 303                           | 2           | 1            |

#### **Ultra-High Speed Angular Contact Ball Bearings**



#### **BNT** type



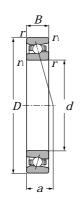


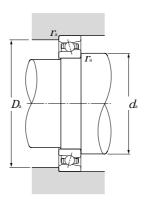
Dynamic equivalent radial load  $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 

| 1 1 211                               |      | u                            |   |        |                                             |
|---------------------------------------|------|------------------------------|---|--------|---------------------------------------------|
| $\frac{f_0 \cdot F_a}{C_{\text{or}}}$ | e    | $\frac{F_{\rm a}}{F_{ m r}}$ | e | F<br>F | $\frac{\overline{r_a}}{\overline{r_r}} > e$ |
| Coi                                   |      | X                            | Y | X      | Y                                           |
| 0.178                                 | 0.35 |                              |   |        | 1.57                                        |
| 0.357                                 | 0.37 |                              |   |        | 1.53                                        |
| 0.714                                 | 0.38 |                              |   |        | 1.46                                        |
| 1.07                                  | 0.39 |                              |   |        | 1.42                                        |
| 1.43                                  | 0.40 | 1                            | 0 | 0.44   | 1.38                                        |
| 2.14                                  | 0.42 |                              |   |        | 1.33                                        |
| 3.57                                  | 0.45 |                              |   |        | 1.25                                        |
| 5.35                                  | 0.47 |                              |   |        | 1.18                                        |
| 7.14                                  | 0.49 |                              |   |        | 1.13                                        |

Static equivalent radial load  $P_{\rm or}$  = 0.52 $F_{\rm r}$  + 0.54 $F_{\rm a}$ 

When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ 


| d | 1 | 0 | ~ | 4 | 5 | m | m |
|---|---|---|---|---|---|---|---|
|---|---|---|---|---|---|---|---|


|    | Во       | unda     | n <b>ry di</b><br>mn | mens            | ions               | dynamic      | Basic Io<br>static | dynami         |                | Factor      | <b>Limiting</b>  |                  | Bearing<br>numbers |                   | tment a<br>dimensi<br>mm<br><i>D</i> a | ons             | Load<br>center<br>mm | <b>Mass</b><br>kg |
|----|----------|----------|----------------------|-----------------|--------------------|--------------|--------------------|----------------|----------------|-------------|------------------|------------------|--------------------|-------------------|----------------------------------------|-----------------|----------------------|-------------------|
| a  | <b>'</b> | D        | В                    | $r_{ m smin}^1$ | $r_{ m lsmin}^{1}$ | ) <i>C</i> r | $C_{ m or}$        | $C_{ m r}$     | $C_{ m or}$    | $f_{0}$     | grease           | oil              |                    | <i>Q</i> a<br>min | <i>D</i> <sub>a</sub> max              | r <sub>as</sub> | а                    | (approx.)         |
| 10 |          | 26<br>30 | 8<br>9               | 0.3<br>0.6      | 0.15<br>0.3        | 3.75<br>4.15 | 1.45<br>1.71       | 385<br>420     | 148<br>175     | 8.3<br>8.7  | 48 000<br>46 000 | 64 000<br>61 000 | BNT000<br>BNT200   | 12.5<br>14.5      | 23.5<br>25.5                           | 0.3<br>0.6      | 6.5<br>7             | 0.015<br>0.019    |
| 12 |          | 28<br>32 | 8<br>10              | 0.3<br>0.6      | 0.15<br>0.3        | 4.15<br>5.40 | 1.73<br>2.28       | 420<br>550     | 176<br>232     | 8.8<br>8.5  | 43 000<br>40 000 | 57 000<br>54 000 | BNT001<br>BNT201   | 14.5<br>16.5      | 25.5<br>27.5                           | 0.3<br>0.6      | 6.5<br>8             | 0.020<br>0.025    |
| 1  |          | 32<br>35 | 9<br>11              | 0.3<br>0.6      | 0.15<br>0.3        | 4.75<br>6.85 | 2.22<br>2.97       | 485<br>700     | 226<br>300     | 9.2<br>8.5  | 38 000<br>35 000 | 50 000<br>47 000 | BNT002<br>BNT202   | 17.5<br>19.5      | 29.5<br>30.5                           | 0.3<br>0.6      | 7.5<br>9             | 0.029<br>0.035    |
| 17 | /        | 35<br>40 | 10<br>12             | 0.3<br>0.6      | 0.15<br>0.3        | 5.90<br>8.55 | 2.70<br>3.80       | 600<br>870     | 275<br>385     | 9.0<br>8.5  | 34 000<br>32 000 | 46 000<br>42 000 | BNT003<br>BNT203   | 19.5<br>21.5      | 32.5<br>35.5                           | 0.3<br>0.6      | 8.5<br>10            | 0.033<br>0.054    |
| 20 |          | 42<br>47 | 12<br>14             | 0.6<br>1        | 0.3<br>0.6         | 8.00<br>11.2 | 3.95<br>5.35       | 815<br>1 140   | 405<br>545     | 9.2<br>8.8  | 30 000<br>28 000 | 40 000<br>38 000 | BNT004<br>BNT204   | 24.5<br>25.5      | 37.5<br>41.5                           | 0.6<br>1        | 10<br>11.5           | 0.057<br>0.092    |
| 2  | •        | 47<br>52 | 12<br>15             | 0.6<br>1        | 0.3<br>0.6         | 8.95<br>12.7 | 4.85<br>6.70       | 910<br>1 290   | 495<br>685     | 9.6<br>9.2  | 25 000<br>24 000 | 34 000<br>31 000 | BNT005<br>BNT205   | 29.5<br>30.5      | 42.5<br>46.5                           | 0.6<br>1        | 11<br>12.5           | 0.067<br>0.127    |
| 30 |          | 55<br>62 | 13<br>16             | 1<br>1          | 0.6<br>0.6         | 11.6<br>17.6 | 6.75<br>9.60       | 1 180<br>1 800 | 685<br>980     | 9.8<br>9.2  | 22 000<br>20 000 | 29 000<br>27 000 | BNT006<br>BNT206   | 35.5<br>35.5      | 49.5<br>56.5                           | 1<br>1          | 12.5<br>14           | 0.109<br>0.201    |
| 3  | •        | 62<br>72 | 14<br>17             | 1<br>1.1        | 0.6<br>0.6         | 14.6<br>23.2 | 8.95<br>13.1       | 1 490<br>2 370 | 910<br>1 330   | 9.8<br>9.1  | 19 000<br>18 000 | 26 000<br>24 000 | BNT007<br>BNT207   | 40.5<br>42        | 56.5<br>65                             | 1<br>1          | 13.5<br>15.5         | 0.146<br>0.294    |
| 4( |          | 68<br>80 | 15<br>18             | 1<br>1.1        | 0.6<br>0.6         | 15.7<br>27.8 | 10.4<br>16.5       | 1 600<br>2 830 | 1 060<br>1 680 | 10.0<br>9.3 | 17 000<br>16 000 | 23 000<br>21 000 | BNT008<br>BNT208   | 45.5<br>47        | 62.5<br>73                             | 1<br>1          | 14.5<br>17           | 0.182<br>0.383    |
| 4  |          | 75<br>85 | 16<br>19             | 1<br>1.1        | 0.6<br>0.6         | 18.6<br>31.0 | 12.6<br>18.9       | 1 900<br>3 200 | 1 290<br>1 920 | 10.1<br>9.3 | 15 000<br>14 000 | 21 000<br>19 000 | BNT009<br>BNT209   | 50.5<br>52        | 69.5<br>78                             | 1<br>1          | 16<br>18             | 0.235<br>0.437    |
|    |          |          |                      |                 |                    |              |                    |                |                |             |                  |                  |                    |                   |                                        |                 |                      |                   |

#### **Ultra-High Speed Angular Contact Ball Bearings**



#### **HSB** type





Dynamic equivalent radial load  $P_T = XF_T + YF_a$ 

| 1 1 2 1 1                             |      | u                                       |   |        |      |
|---------------------------------------|------|-----------------------------------------|---|--------|------|
| $\frac{f_0 \cdot F_a}{C_{\text{or}}}$ | e    | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | e | F<br>F |      |
| Coi                                   |      | X                                       | Y | X      | Y    |
| 0.178                                 | 0.35 |                                         |   |        | 1.57 |
| 0.357                                 | 0.37 |                                         |   |        | 1.53 |
| 0.714                                 | 0.38 |                                         |   |        | 1.46 |
| 1.07                                  | 0.39 |                                         |   |        | 1.42 |
| 1.43                                  | 0.40 | 1                                       | 0 | 0.44   | 1.38 |
| 2.14                                  | 0.42 |                                         |   |        | 1.33 |
| 3.57                                  | 0.45 |                                         |   |        | 1.25 |
| 5.35                                  | 0.47 |                                         |   |        | 1.18 |
| 7.14                                  | 0.49 |                                         |   |        | 1.13 |

Static equivalent radial load  $P_{\text{or}} = 0.52F_{\text{r}} + 0.54F_{\text{a}}$ 

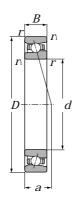
When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ 

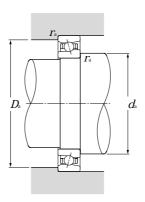
d 50 ~ 110mm

| <i>u</i> 50 ~ 110mm |       |                     |                   |                    |              |                            |                                 |             |         |                 |        |                    |           |                                  |                 |                      |                   |
|---------------------|-------|---------------------|-------------------|--------------------|--------------|----------------------------|---------------------------------|-------------|---------|-----------------|--------|--------------------|-----------|----------------------------------|-----------------|----------------------|-------------------|
| В                   | ounda | r <b>y di</b><br>mm |                   | ions               | •            | Basic Io<br>c static<br>kN | dynami                          | U           | Factor  | <b>Limiting</b> | •      | Bearing<br>numbers |           | tment a<br>dimension             |                 | Load<br>center<br>mm | <b>Mass</b><br>kg |
| d                   | D     | В                   | $r_{\rm s min}$ 1 | $r_{ m lsmin}^{1}$ | ) <i>C</i> r | $C_{ m or}$                | $C_{\scriptscriptstyle \Gamma}$ | $C_{ m or}$ | $f_{0}$ | grease          | oil    |                    | d₄<br>min | $D_{\!\scriptscriptstyle a}$ max | r <sub>as</sub> | a                    | (approx.)         |
| 50                  | 72    | 12                  | 0.6               | 0.3                | 10.6         | 7.30                       | 1 080                           | 745         | 11.1    | 15 000          | 20 000 | HSB910C            | 54.5      | 67.5                             | 0.6             | 14                   | 0.141             |
|                     | 80    | 16                  | 1                 | 0.6                | 20.8         | 11.4                       | 2 120                           | 1 160       | 10.4    | 14 000          | 19 000 | HSB010C            | 55.5      | 74.5                             | 1               | 16.5                 | 0.256             |
| 55                  | 80    | 13                  | 1                 | 0.6                | 13.5         | 9.20                       | 1 380                           | 940         | 11.0    | 14 000          | 18 000 | HSB911C            | 60.5      | 74.5                             | 1               | 15.5                 | 0.192             |
|                     | 90    | 18                  | 1.1               | 0.6                | 22.6         | 13.6                       | 2 300                           | 1 380       | 10.6    | 13 000          | 17 000 | HSB011C            | 62        | 83                               | 1               | 18.5                 | 0.397             |
| 60                  | 85    | 13                  | 1                 | 0.6                | 13.9         | 9.95                       | 1 420                           | 1 010       | 11.1    | 13 000          | 17 000 | HSB912C            | 65.5      | 79.5                             | 1               | 16                   | 0.206             |
|                     | 95    | 18                  | 1.1               | 0.6                | 23.7         | 15.0                       | 2 410                           | 1 530       | 10.7    | 12 000          | 16 000 | HSB012C            | 67        | 88                               | 1               | 19.5                 | 0.425             |
| 65                  | 90    | 13                  | 1                 | 0.6                | 14.3         | 10.7                       | 1 460                           | 1 090       | 11.2    | 12 000          | 16 000 | HSB913C            | 70.5      | 84.5                             | 1               | 17                   | 0.22              |
|                     | 100   | 18                  | 1.1               | 0.6                | 24           | 15.8                       | 2 450                           | 1 610       | 10.8    | 11 000          | 15 000 | HSB013C            | 72        | 93                               | 1               | 20                   | 0.452             |
| 70                  | 100   | 16                  | 1                 | 0.6                | 18           | 13.5                       | 1 830                           | 1 370       | 11.1    | 11 000          | 15 000 | HSB914C            | 75.5      | 94.5                             | 1               | 19.5                 | 0.362             |
|                     | 110   | 20                  | 1.1               | 0.6                | 29.4         | 19.9                       | 3 000                           | 2 030       | 10.8    | 10 000          | 14 000 | HSB014C            | 77        | 103                              | 1               | 22                   | 0.64              |
| 75                  | 105   | 16                  | 1                 | 0.6                | 18.5         | 14.4                       | 1 880                           | 1 470       | 11.2    | 10 000          | 14 000 | HSB915C            | 80.5      | 99.5                             | 1               | 20                   | 0.383             |
|                     | 115   | 20                  | 1.1               | 0.6                | 31.5         | 22.4                       | 3 200                           | 2 290       | 10.9    | 9 500           | 13 000 | HSB015C            | 82        | 108                              | 1               | 22.5                 | 0.68              |
| 80                  | 110   | 16                  | 1                 | 0.6                | 18.9         | 15.4                       | 1 930                           | 1 570       | 11.3    | 9 600           | 13 000 | HSB916C            | 85.5      | 104.5                            | 1               | 20.5                 | 0.405             |
|                     | 125   | 22                  | 1.1               | 0.6                | 36           | 25.7                       | 3 650                           | 2 620       | 10.9    | 8 900           | 12 000 | HSB016C            | 87        | 118                              | 1               | 24.5                 | 0.915             |
| 85                  | 120   | 18                  | 1.1               | 0.6                | 22.7         | 18.3                       | 2 320                           | 1 860       | 11.2    | 9 000           | 12 000 | HSB917C            | 92        | 113                              | 1               | 22.5                 | 0.578             |
|                     | 130   | 22                  | 1.1               | 0.6                | 36.5         | 26.8                       | 3 700                           | 2 740       | 10.9    | 8 400           | 11 000 | HSB017C            | 92        | 123                              | 1               | 25.5                 | 0.959             |
| 90                  | 125   | 18                  | 1.1               | 0.6                | 23.4         | 19.5                       | 2 380                           | 1 980       | 11.3    | 8 500           | 11 000 | HSB918C            | 97        | 118                              | 1               | 23.5                 | 0.607             |
|                     | 140   | 24                  | 1.5               | 1                  | 42           | 31.5                       | 4 300                           | 3 200       | 10.9    | 7 900           | 11 000 | HSB018C            | 98.5      | 131.5                            | 1.5             | 27.5                 | 1.25              |
| 95                  | 130   | 18                  | 1.1               | 0.6                | 24           | 20.6                       | 2 440                           | 2 110       | 11.3    | 8 100           | 11 000 | HSB919C            | 102       | 123                              | 1               | 24                   | 0.636             |
|                     | 145   | 24                  | 1.5               | 1                  | 42.5         | 32.5                       | 4 350                           | 3 350       | 11.0    | 7 500           | 10 000 | HSB019C            | 103.5     | 136.5                            | 1.5             | 28                   | 1.3               |
| 100                 | 140   | 20                  | 1.1               | 0.6                | 33.5         | 28                         | 3 450                           | 2 850       | 11.2    | 7 600           | 10 000 | HSB920C            | 107       | 133                              | 1               | 26                   | 0.856             |
|                     | 150   | 24                  | 1.5               | 1                  | 44           | 35                         | 4 500                           | 3 600       | 11.0    | 7 100           | 9 500  | HSB020C            | 108.5     | 141.5                            | 1.5             | 28.5                 | 1.36              |
| 105                 | 145   | 20                  | 1.1               | 0.6                | 34.5         | 29.7                       | 3 550                           | 3 050       | 11.2    | 7 300           | 9 700  | HSB921C            | 112       | 138                              | 1               | 26.5                 | 0.893             |
|                     | 160   | 26                  | 2                 | 1                  | 50.5         | 40.5                       | 5 150                           | 4 150       | 11.0    | 6 700           | 9 000  | HSB021C            | 115       | 150                              | 2               | 31                   | 1.73              |
| 110                 | 150   | 20                  | 1.1               | 0.6                | 35           | 30.5                       | 3 550                           | 3 150       | 11.3    | 6 900           | 9 200  | HSB922C            | 117       | 143                              | 1               | 27.5                 | 0.928             |
|                     | 170   | 28                  | 2                 | 1                  | 62.5         | 49.5                       | 6 400                           | 5 000       | 10.9    | 6 400           | 8 600  | HSB022C            | 120       | 160                              | 2               | 33                   | 2.13              |

1 ) Minimal allowable dimension for chamfer dimension r or n.

Note: This bearing is manufactured with accuracies of JIS Class 5 or higher.




#### **Ultra-High Speed Angular Contact Ball Bearings**

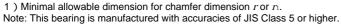


#### **HSB** type





Dynamic equivalent radial load  $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 


| $\frac{f_0 \cdot F_a}{C_{\text{or}}}$ | e    | $\frac{F_{\rm a}}{F_{\rm r}}$ | e | $\frac{F}{F}$ |      |
|---------------------------------------|------|-------------------------------|---|---------------|------|
| Cor                                   |      | X                             | Y | X             | Y    |
| 0.178                                 | 0.35 |                               |   |               | 1.57 |
| 0.357                                 | 0.37 |                               |   |               | 1.53 |
| 0.714                                 | 0.38 |                               |   |               | 1.46 |
| 1.07                                  | 0.39 |                               |   |               | 1.42 |
| 1.43                                  | 0.40 | 1                             | 0 | 0.44          | 1.38 |
| 2.14                                  | 0.42 |                               |   |               | 1.33 |
| 3.57                                  | 0.45 |                               |   |               | 1.25 |
| 5.35                                  | 0.47 |                               |   |               | 1.18 |
| 7.14                                  | 0.49 |                               |   |               | 1.13 |

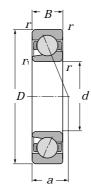
Static equivalent radial load  $P_{or} = 0.52F_r + 0.54F_a$ 

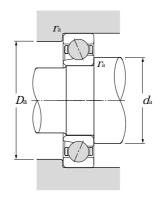
When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ 

d 120 ~ 170mm

|   | В  | ounda      | <b>ary di</b><br>mm | mensi    | ons                             | dynam        | Basic lo<br>ic static<br>kN | ,                       | •               | Factor       | <b>Limiting</b> |                | Bearing<br>numbers |                                  | tment a                   |                 | Load<br>center<br>mm | <b>Mass</b>  |
|---|----|------------|---------------------|----------|---------------------------------|--------------|-----------------------------|-------------------------|-----------------|--------------|-----------------|----------------|--------------------|----------------------------------|---------------------------|-----------------|----------------------|--------------|
|   | d  | D          |                     |          | ) <i>I</i> '1s min <sup>1</sup> | ) <i>C</i> r | $\mathcal{C}_{	ext{or}}$    | $\mathcal{C}_{	ext{r}}$ | C <sub>or</sub> | $f_{0}$      | grease          | oil            |                    | $d_{\!\scriptscriptstyle a}$ min | <i>D</i> <sub>a</sub> max | r <sub>as</sub> | а                    | (approx.)    |
| 1 | 20 | 165<br>180 | 22<br>28            | 1.1<br>2 | 0.60<br>1                       | 41<br>63     | 36.5<br>51.5                | 4 150<br>6 450          | 3 750<br>5 250  | 11.3<br>11.0 | 6 300<br>5 900  | 8 500<br>7 900 | HSB924C<br>HSB024C | 127<br>130                       | 158<br>170                | 1 2             | 30<br>34             | 1.27<br>2.28 |
| 1 | 30 | 180<br>200 | 24<br>33            | 1.5<br>2 | 1<br>1                          | 48.5<br>90.5 | 45<br>71                    | 4 950<br>9 250          | 4 600<br>7 250  | 11.3<br>10.8 | 5 800<br>5 400  | 7 800<br>7 200 | HSB926C<br>HSB026C | 138.5<br>140                     | 171.5<br>190              | 1.5<br>2        | 33<br>38.5           | 1.69<br>3.40 |
| 1 | 40 | 190<br>210 | 24<br>33            | 1.5<br>2 | 1<br>1                          | 48.5<br>93.5 | 46.5<br>77                  | 4 950<br>9 550          | 4 750<br>7 850  | 11.3<br>10.9 | 5 400<br>5 000  | 7 100<br>6 700 | HSB928C<br>HSB028C | 148.5<br>150                     | 181.5<br>200              | 1.5<br>2        | 34<br>40             | 1.8<br>3.68  |
| 1 | 50 | 210<br>225 | 28<br>35            | 2<br>2.1 | 1<br>1.1                        | 68<br>96.5   | 63<br>83                    | 6 950<br>9 850          | 6 400<br>8 450  | 11.2<br>11.0 | 5 000<br>4 600  | 6 700<br>6 200 | HSB930C<br>HSB030C | 160<br>162                       | 200<br>213                | 2<br>2          | 38<br>42.5           | 2.74<br>4.46 |
| 1 | 60 | 220<br>240 | 28<br>38            | 2<br>2.1 | 1<br>1.1                        | 69.5<br>113  | 66.5<br>97                  | 7 100<br>11 500         | 6 800<br>9 850  | 11.3<br>11.0 | 4 600<br>4 300  | 6 200<br>5 800 | HSB932C<br>HSB032C | 170<br>172                       | 210<br>228                | 2<br>2          | 39.5<br>46           | 2.89<br>5.46 |
| 1 | 70 | 230<br>260 | 28<br>42            | 2<br>2.1 | 1<br>1.1                        | 71<br>129    | 70.5<br>111                 | 7 250<br>13 200         | 7 200<br>11 300 | 11.3<br>10.9 | 4 400<br>4 100  | 5 800<br>5 400 | HSB934C<br>HSB034C | 180<br>182                       | 220<br>248                | 2<br>2          | 41<br>50             | 3.04<br>7.37 |







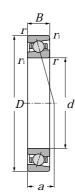


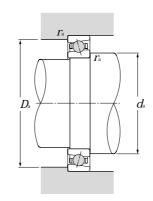

#### 5S-BNT type





 $d 10 \sim 45 \text{mm}$ 


|    | Bour     | •        | imension                     | s Ba                          | (app         | c load rating  | s <sup>2)</sup> Bearing numbers |                                | butment and<br>et dimension         |                        | Load<br>center | Mass           |
|----|----------|----------|------------------------------|-------------------------------|--------------|----------------|---------------------------------|--------------------------------|-------------------------------------|------------------------|----------------|----------------|
|    |          | mr       | n                            |                               | kN           | kgf            |                                 | $d_{\scriptscriptstyle\! m a}$ | mm                                  |                        | mm             | kg             |
| d  | D        | В        | <b>r</b> s min <sup>1)</sup> | <i>n</i> s min <sup>1</sup> ) | $C_{\rm r}$  | $C_{r}$        |                                 | <i>Q</i> a<br>min              | $D_{\!\scriptscriptstyle  m a}$ max | r <sub>as</sub><br>max | а              | (approx.)      |
|    | 26       | 8        | 0.3                          | 0.15                          | 3.75         | 385            | 5S-BNT000                       | 12.5                           | 23.5                                | 0.3                    | 6.5            | 0.013          |
| 10 | 30       | 9        | 0.6                          | 0.3                           | 4.95         | 500            | 5S-BNT200                       | 14.5                           | 25.5                                | 0.6                    | 7              | 0.016          |
| 12 | 28       | 8        | 0.3                          | 0.15                          | 4.15         | 420            | 5S-BNT001                       | 14.5                           | 25.5                                | 0.3                    | 6.5            | 0.018          |
|    | 32       | 10       | 0.6                          | 0.3                           | 5.40         | 550            | 5S-BNT201                       | 16.5                           | 27.5                                | 0.6                    | 8              | 0.021          |
| 15 | 32       | 9        | 0.3                          | 0.15                          | 4.75         | 485            | 5S-BNT002                       | 17.5                           | 29.5                                | 0.3                    | 7.5            | 0.026          |
|    | 35       | 11       | 0.6                          | 0.3                           | 6.85         | 700            | 5S-BNT202                       | 19.5                           | 30.5                                | 0.6                    | 9              | 0.03           |
| 17 | 35<br>40 | 10<br>12 | 0.3<br>0.6                   | 0.15<br>0.3                   | 5.90<br>8.55 | 600<br>870     | 5S-BNT003<br>5S-BNT203          | 19.5<br>21.5                   | 32.5<br>35.5                        | 0.3<br>0.6             | 8.5<br>10      | 0.029<br>0.046 |
|    |          |          |                              |                               |              |                |                                 |                                |                                     |                        |                |                |
| 20 | 42<br>47 | 12<br>14 | 0.6<br>1                     | 0.3<br>0.6                    | 8.00<br>11.2 | 815<br>1 140   | 5S-BNT004<br>5S-BNT204          | 24.5<br>25.5                   | 37.5<br>41.5                        | 0.6<br>1               | 10<br>11.5     | 0.05<br>0.08   |
|    |          |          |                              |                               |              |                |                                 |                                |                                     |                        |                |                |
| 25 | 47<br>52 | 12<br>15 | 0.6<br>1                     | 0.3<br>0.6                    | 8.95<br>12.7 | 910<br>1 290   | 5S-BNT005<br>5S-BNT205          | 29.5<br>30.5                   | 42.5<br>46.5                        | 0.6<br>1               | 11<br>12.5     | 0.059<br>0.113 |
| 30 | 55       | 13       | 1                            | 0.6                           | 11.6         | 1 180          | 5S-BNT006                       | 35.5                           | 49.5                                | 1                      | 12.5           | 0.097          |
| 30 | 62       | 16       | 1                            | 0.6                           | 17.6         | 1 800          | 5S-BNT206                       | 35.5                           | 56.5                                | 1                      | 14             | 0.113          |
| 35 | 62       | 14       | 1                            | 0.6                           | 14.6         | 1 490          | 5S-BNT007                       | 40.5                           | 56.5                                | 1                      | 13.5           | 0.128          |
|    | 72       | 17       | 1.1                          | 0.6                           | 23.2         | 2 370          | 5S-BNT207                       | 42                             | 65                                  | 1                      | 15.5           | 0.255          |
| 40 | 68       | 15       | 1                            | 0.6                           | 15.7         | 1 600          | 5S-BNT008                       | 45.5                           | 62.5                                | 1                      | 14.5           | 0.162          |
|    | 80       | 18       | 1.1                          | 0.6                           | 27.8         | 2 830          | 5S-BNT208                       | 47                             | 73                                  | 1                      | 17             | 0.331          |
| 45 | 75<br>85 | 16<br>19 | 1<br>1.1                     | 0.6<br>0.6                    | 18.6<br>31.0 | 1 900<br>3 200 | 5S-BNT009<br>5S-BNT209          | 50.5<br>52                     | 69.5<br>78                          | 1<br>1                 | 16<br>18       | 0.208<br>0.374 |
|    | 00       | 10       |                              | 0.0                           | 01.0         | 0 200          | 00 Divi200                      | 02                             | 70                                  | ,                      | 10             | 0.07 1         |
|    |          |          |                              |                               |              |                |                                 |                                |                                     |                        |                |                |
|    |          |          |                              |                               |              |                |                                 |                                |                                     |                        |                |                |
|    |          |          |                              |                               |              |                |                                 |                                |                                     |                        |                |                |
|    |          |          |                              |                               |              |                |                                 |                                |                                     |                        |                |                |
|    |          |          |                              |                               |              |                |                                 |                                |                                     |                        |                |                |


Minimal allowable dimension for chamfer dimension r or n.
 Basic rated dynamic load for bearings with ceramic balls is not stipulated by JIS. In NTN wear life testing, these bearings displayed the same wear life as steel angular contact ball bearings; therefore, the values for steel bearings have been given as reference.

### **Ceramic Ball Angular Contact Ball Bearings**



#### 5S-HSB type



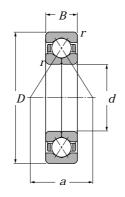


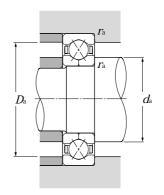
d 50 ~ 120mm

|     | Bour | ndary d | imension             | s E                  | -          | ic load rating | s <sup>2</sup> ) Bearing numbers |           | Abutment and let dimension         |                        | Load         | Mass      |
|-----|------|---------|----------------------|----------------------|------------|----------------|----------------------------------|-----------|------------------------------------|------------------------|--------------|-----------|
|     |      | mr      | n                    |                      | kN         | pprox.)<br>kgf | numbers                          |           | mm                                 | 5                      | center<br>mm | kg        |
| d   | D    | В       | rs min <sup>1)</sup> | Ns min <sup>1)</sup> | $C_{ m r}$ | $C_{r}$        |                                  | d₃<br>min | $D_{\!\scriptscriptstyle m a}$ max | r <sub>as</sub><br>max | а            | (approx.) |
| 50  | 72   | 12      | 0.6                  | 0.3                  | 10.6       | 1 080          | 5S-HSB910C                       | 54.5      | 67.5                               | 0.6                    | 14           | 0.134     |
|     | 80   | 16      | 1                    | 0.6                  | 20.8       | 2 120          | 5S-HSB010C                       | 55.5      | 74.5                               | 1                      | 16.5         | 0.234     |
| 55  | 80   | 13      | 1                    | 0.6                  | 13.5       | 1 380          | 5S-HSB911C                       | 60.5      | 74.5                               | 1                      | 15.5         | 0.18      |
|     | 90   | 18      | 1.1                  | 0.6                  | 22.6       | 2 300          | 5S-HSB011C                       | 62        | 83                                 | 1                      | 18.5         | 0.372     |
| 60  | 85   | 13      | 1                    | 0.6                  | 13.9       | 1 420          | 5S-HSB912C                       | 65.5      | 79.5                               | 1                      | 16           | 0.194     |
|     | 95   | 18      | 1.1                  | 0.6                  | 23.7       | 2 410          | 5S-HSB012C                       | 67        | 88                                 | 1                      | 19.5         | 0.398     |
| 65  | 90   | 13      | 1                    | 0.6                  | 14.3       | 1 460          | 5S-HSB913C                       | 70.5      | 84.5                               | 1                      | 17           | 0.207     |
|     | 100  | 18      | 1.1                  | 0.6                  | 24.0       | 2 450          | 5S-HSB103C                       | 72        | 93                                 | 1                      | 20           | 0.423     |
| 70  | 100  | 16      | 1                    | 0.6                  | 18.0       | 1 830          | 5S-HSB914C                       | 75.5      | 94.5                               | 1                      | 19.5         | 0.343     |
|     | 110  | 20      | 1.1                  | 0.6                  | 29.4       | 3 000          | 5S-HSB014C                       | 77        | 103                                | 1                      | 22           | 0.601     |
| 75  | 105  | 16      | 1                    | 0.6                  | 18.5       | 1 880          | 5S-HSB915C                       | 80.5      | 99.5                               | 1                      | 20           | 0.363     |
|     | 115  | 20      | 1.1                  | 0.6                  | 31.5       | 3 200          | 5S-HSB015C                       | 82        | 108                                | 1                      | 22.5         | 0.636     |
| 80  | 110  | 16      | 1                    | 0.6                  | 18.9       | 1 930          | 5S-HSB916C                       | 85.5      | 104.5                              | 1                      | 20.5         | 0.384     |
|     | 125  | 22      | 1.1                  | 0.6                  | 36.0       | 3 650          | 5S-HSB016C                       | 87        | 118                                | 1                      | 24.5         | 0.86      |
| 85  | 120  | 18      | 1.1                  | 0.6                  | 22.7       | 2 320          | 5S-HSB917C                       | 92        | 113                                | 1                      | 22.5         | 0.55      |
|     | 130  | 22      | 1.1                  | 0.6                  | 36.5       | 3 700          | 5S-HSB017C                       | 92        | 123                                | 1                      | 25.5         | 0.901     |
| 90  | 125  | 18      | 1.1                  | 0.6                  | 23.4       | 2 380          | 5S-HSB918C                       | 97        | 118                                | 1                      | 23.5         | 0.577     |
|     | 140  | 24      | 1.5                  | 1                    | 42.0       | 4 300          | 5S-HSB018C                       | 98.5      | 131.5                              | 1.5                    | 27.5         | 1.18      |
| 95  | 130  | 18      | 1.1                  | 0.6                  | 24.0       | 2 440          | 5S-HSB919C                       | 102       | 123                                | 1                      | 24           | 0.604     |
|     | 145  | 24      | 1.5                  | 1                    | 42.5       | 4 350          | 5S-HSB019C                       | 103.5     | 136.5                              | 1.5                    | 28           | 1.23      |
| 100 | 140  | 20      | 1.1                  | 0.6                  | 33.5       | 3 450          | 5S-HSB920C                       | 107       | 133                                | 1                      | 26           | 0.837     |
|     | 150  | 24      | 1.5                  | 1                    | 44.0       | 4 500          | 5S-HSB020C                       | 108.5     | 141.5                              | 1.5                    | 28.5         | 1.28      |
| 105 | 145  | 20      | 1.1                  | 0.6                  | 34.5       | 3 550          | 5S-HSB921C                       | 112       | 138                                | 1                      | 26.5         | 0.837     |
|     | 160  | 26      | 2                    | 1                    | 50.5       | 5 150          | 5S-HSB021C                       | 115       | 150                                | 2                      | 31           | 1.63      |
| 110 | 150  | 20      | 1.1                  | 0.6                  | 35.0       | 3 550          | 5S-HSB922C                       | 117       | 143                                | 1                      | 27.5         | 0.87      |
|     | 170  | 28      | 2                    | 1                    | 62.5       | 6 400          | 5S-HSB022C                       | 120       | 160                                | 2                      | 33           | 1.99      |
| 120 | 165  | 22      | 1.1                  | 0.6                  | 41.0       | 4 150          | 5S-HSB924C                       | 127       | 158                                | 1                      | 30           | 1.2       |
|     | 180  | 28      | 2                    | 1                    | 63.0       | 6 450          | 5S-HSB024C                       | 130       | 170                                | 2                      | 34           | 2.13      |

<sup>1)</sup> Minimal allowable dimension for chamfer dimension r or n. 2) Basic rated dynamic load for bearings with ceramic balls is not stipulated by JIS. In NTN fatigue life tests, these bearings achieved the same fatigue life as steel angular contact ball bearings; therefore, the values for steel bearings have been given as reference.

Note: For bearings with a bore diameter larger than 120mm, consult NTN Engineering.


B-71




#### **Four-Point Contact Ball Bearings**



#### QJ type





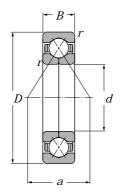
Dynamic equivalent axial load  $P_a = F_a$ Static equivalent axial load  $P_{\text{oa}} = F_{\text{a}}$ 

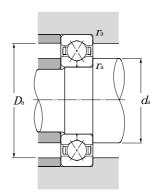
#### d 30 ~ 90mm

| В  | oundar     | <b>y dime</b> r | sions                 | ,            | Basic Ic<br>c static<br>kN | <b>bad ratings</b><br>dynamic<br>kį |                  |                | n <b>g speeds</b><br>min <sup>-1</sup> | Bearing<br>numbers    |            | utment a<br>dimensi<br>mm |          | Load<br>center<br>mm | <b>Mass</b><br>kg |
|----|------------|-----------------|-----------------------|--------------|----------------------------|-------------------------------------|------------------|----------------|----------------------------------------|-----------------------|------------|---------------------------|----------|----------------------|-------------------|
| d  | D          | В               | $r_{ m s~min}^{ m 1}$ | ) <i>C</i> a | $C_{\mathrm{oa}}$          | Ca                                  | Coa              | grease         | oil                                    |                       | min        | max                       | max      | а                    | (approx.)         |
| 30 | 72         | 19              | 1.1                   | 39.5         | 57.5                       | 4 050                               | 5 850            | 8 000          | 11 000                                 | QJ306                 | 37         | 65                        | 1        | 30                   | 0.42              |
| 35 | 80         | 21              | 1.5                   | 49.5         | 73.0                       | 5 050                               | 7 450            | 7 000          | 9 300                                  | QJ307                 | 43.5       | 71.5                      | 1.5      | 33                   | 0.57              |
| 40 | 80<br>90   | 18<br>23        | 1.1<br>1.5            | 44.0<br>60.5 | 70.5<br>91.5               | 4 500<br>6 200                      | 7 200<br>9 350   | 6 900<br>6 200 | 9 200<br>8 200                         | <b>QJ208</b><br>QJ308 | 47<br>48.5 | 73<br>81.5                | 1<br>1.5 | 34.5<br>37.5         | 0.45<br>0.78      |
| 45 | 85<br>100  | 19<br>25        | 1.1<br>1.5            | 49.5<br>79.0 | 81.0<br>121                | 5 050<br>8 050                      | 8 250<br>12 300  | 6 200<br>5 500 | 8 200<br>7 400                         | <b>QJ209</b><br>QJ309 | 52<br>53.5 | 78<br>91.5                | 1<br>1.5 | 37.5<br>42           | 0.52<br>1.05      |
| 50 | 90<br>110  | 20<br>27        | 1.1<br>2              | 52.0<br>92.0 | 89.0<br>145                | 5 300<br>9 400                      | 9 050<br>14 700  | 5 600<br>5 000 | 7 500<br>6 700                         | <b>QJ210</b> QJ310    | 57<br>60   | 83<br>100                 | 1<br>2   | 40.5<br>46           | 0.603<br>1.38     |
| 55 | 100<br>120 | 21<br>29        | 1.5<br>2              | 64.0<br>106  | 112<br>170                 | 6 550<br>10 900                     | 11 400<br>17 400 | 5 100<br>4 600 | 6 800<br>6 100                         | <b>QJ211</b> QJ311    | 63.5<br>65 | 91.5<br>110               | 1.5<br>2 | 44.5<br>50.5         | 0.78<br>1.76      |
| 60 | 110<br>130 | 22<br>31        | 1.5<br>2.1            | 77.5<br>122  | 138<br>198                 | 7 900<br>12 400                     | 14 000<br>20 200 | 4 700<br>4 200 | 6 300<br>5 700                         | <b>QJ212</b> QJ312    | 68.5<br>72 | 101.5<br>118              | 1.5<br>2 | 49<br>55             | 0.98<br>2.18      |
| 65 | 120<br>140 | 23<br>33        | 1.5<br>2.1            | 84.5<br>138  | 153<br>228                 | 8 600<br>14 100                     | 15 600<br>23 200 | 4 400<br>3 900 | 5 800<br>5 200                         | <b>QJ213</b> QJ313    | 73.5<br>77 | 111.5<br>128              | 1.5<br>2 | 53.5<br>59           | 1.24<br>2.7       |
| 70 | 125<br>150 | 24<br>35        | 1.5<br>2.1            | 92.0<br>155  | 168<br>260                 | 9 350<br>15 800                     | 17 200<br>26 500 | 4 000<br>3 600 | 5 400<br>4 800                         | <b>QJ214</b> QJ314    | 78.5<br>82 | 116.5<br>138              | 1.5<br>2 | 56.5<br>63.5         | 1.36<br>3.27      |
| 75 | 130<br>160 | 25<br>37        | 1.5<br>2.1            | 96.0<br>169  | 183<br>294                 | 9 750<br>17 200                     | 18 600<br>30 000 | 3 800<br>3 400 | 5 000<br>4 500                         | <b>QJ215</b><br>QJ315 | 83.5<br>87 | 121.5<br>148              | 1.5<br>2 | 59<br>68             | 1.53<br>3.9       |
| 80 | 140<br>170 | 26<br>39        | 2<br>2.1              | 112<br>183   | 217<br>330                 | 11 400<br>18 600                    | 22 100<br>33 500 | 3 500<br>3 200 | 4 700<br>4 200                         | <b>QJ216</b> QJ316    | 90<br>92   | 130<br>158                | 2<br>2   | 63.5<br>72           | 1.83<br>4.64      |
| 85 | 150<br>180 | 28<br>41        | 2<br>3                | 126<br>197   | 252<br>370                 | 12 800<br>20 100                    | 25 700<br>37 500 | 3 300<br>3 000 | 4 400<br>4 000                         | <b>QJ217</b> QJ317    | 95<br>99   | 140<br>166                | 2<br>2.5 | 68<br>76.5           | 2.3<br>5.43       |
| 90 | 160<br>190 | 30<br>43        | 2<br>3                | 148<br>212   | 293<br>410                 | 15 100<br>21 600                    | 29 900<br>41 500 | 3 100<br>2 800 | 4 200<br>3 800                         | <b>QJ218</b> QJ318    | 100<br>104 | 150<br>176                | 2<br>2.5 | 72<br>81             | 2.76<br>6.31      |

<sup>1 )</sup> Smallest allowable dimension for chamfer dimension  $\it r.$ 

Note: 1. These bearings are also manufactured with a slot in the chamfer section of the outer ring to stop whirling.


2. This bearing is widely used in applications where the only type of load is axial. When considering it for use where radial loads are applied, consult NTN Engineering.


8-72

#### **Four-Point Contact Ball Bearings**



#### QJ type

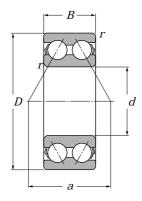


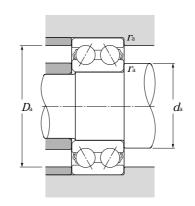


Dynamic equivalent axial load  $P_a = F_a$ Static equivalent axial load  $P_{\text{oa}} = F_{\text{a}}$ 

d 95 ~ 120mm

| Вс  | oundary    | <b>dimen</b> | sions             | dynami     |                   | oad ratings<br>dynamic<br>k | static                   |                | g speeds       | Bearing<br>numbers    |                                     | outment a<br>et dimens<br>mm     |                 | Load<br>center | <b>Mass</b><br>kg |
|-----|------------|--------------|-------------------|------------|-------------------|-----------------------------|--------------------------|----------------|----------------|-----------------------|-------------------------------------|----------------------------------|-----------------|----------------|-------------------|
| d   | D          | В            | $r_{ m smin}^{1}$ |            | $C_{\mathrm{oa}}$ | C <sub>a</sub>              | $\mathcal{C}_{	ext{oa}}$ | grease         | oil            |                       | $d_{\!\scriptscriptstyle  m a}$ min | $D_{\!\scriptscriptstyle a}$ max | r <sub>as</sub> | a              | (approx.)         |
| 95  | 170<br>200 | 32<br>45     | 2.1<br>3          | 168<br>227 | 335<br>450        | 17 200<br>23 100            | 34 000<br>46 000         | 3 000<br>2 700 | 3 900<br>3 500 | <b>QJ219</b> QJ319    | 107<br>109                          | 158<br>186                       | 2<br>2.5        | 76.5<br>85     | 3.35<br>7.41      |
| 100 | 180<br>215 | 34<br>47     | 2.1<br>3          | 181<br>273 | 355<br>585        | 18 400<br>27 800            | 36 000<br>59 500         | 2 800<br>2 500 | 3 700<br>3 400 | QJ220<br>QJ320        | 112<br>114                          | 168<br>201                       | 2<br>2.5        | 81<br>91       | 4.02<br>9.14      |
| 105 | 190<br>225 | 36<br>49     | 2.1<br>3          | 197<br>273 | 400<br>585        | 20 100<br>27 900            | 41 000<br>59 500         | 2 700<br>2 400 | 3 600<br>3 200 | <b>QJ221</b><br>QJ321 | 117<br>119                          | 178<br>211                       | 2<br>2.5        | 85<br>95.5     | 4.75<br>10.4      |
| 110 | 200<br>240 | 38<br>50     | 2.1<br>3          | 213<br>305 | 450<br>680        | 21 700<br>31 000            | 45 500<br>69 500         | 2 500<br>2 300 | 3 400<br>3 100 | <b>QJ222</b><br>QJ322 | 122<br>124                          | 188<br>226                       | 2<br>2.5        | 89.5<br>101    | 5.62<br>12        |
| 120 | 215<br>260 | 40<br>55     | 2.1<br>3          | 240<br>325 | 540<br>765        | 24 500<br>33 000            | 55 000<br>78 000         | 2 300<br>2 100 | 3 100<br>2 800 | <b>QJ224</b> QJ324    | 132<br>134                          | 203<br>246                       | 2<br>2.5        | 96.5<br>110    | 6.75<br>15.9      |


<sup>1 )</sup> Smallest allowable dimension for chamfer dimension  $\it r.$ 


Note: 1. These bearings are also manufactured with a slot in the chamfer section of the outer ring to stop whirling.

2. This bearing is widely used in applications where the only type of load is axial. When considering it for use where radial loads are applied, consult NTN Engineering.

R-73



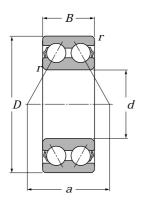


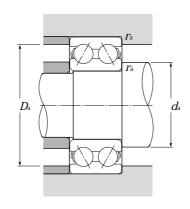


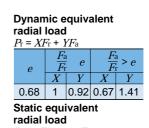
Dynamic equivalent radial load Pr = XFr + YFa

| I = AI + IIa |                   |      |                                   |      |  |  |  |  |  |
|--------------|-------------------|------|-----------------------------------|------|--|--|--|--|--|
| e            | $\frac{F_a}{F_r}$ | e    | $\frac{F_{\rm a}}{F_{\rm r}} > e$ |      |  |  |  |  |  |
|              | X                 | Y    | X                                 | Y    |  |  |  |  |  |
| 0.68         | 1                 | 0.92 | 0.67                              | 1.41 |  |  |  |  |  |

Static equivalent radial load  $P_{\text{or}} = F_{\text{r}} + 0.76F_{\text{a}}$ 


| d | 1 | 0 | ~ | 6 | 5 | mm | ı |
|---|---|---|---|---|---|----|---|
|---|---|---|---|---|---|----|---|


| Boundary dimensions |     |              | Basic loa          | load ratings Limiting speeds |             |                   | Bearing     | Abutment and      |        | and    | Load                             | Mass                                |                 |      |           |
|---------------------|-----|--------------|--------------------|------------------------------|-------------|-------------------|-------------|-------------------|--------|--------|----------------------------------|-------------------------------------|-----------------|------|-----------|
| mm                  |     | dynamic<br>k | static<br>N        | dynamic static<br>kgf        |             | min <sup>-1</sup> |             | numbers fillet di |        | dimens | imensions<br>mm                  |                                     | kg              |      |           |
| d                   | D   | В            | $r_{ m s min}^{1}$ | ) <i>C</i> <sub>r</sub>      | $C_{ m or}$ | $C_{ m r}$        | $C_{ m or}$ | grease            | oil    |        | $d_{\!\scriptscriptstyle a}$ min | $D_{\!\scriptscriptstyle  m a}$ max | r <sub>as</sub> | a    | (approx.) |
| 10                  | 30  | 14.3         | 0.6                | 7.15                         | 3.90        | 730               | 400         | 17 000            | 22 000 | 5200S  | 15                               | 25                                  | 0.6             | 14.5 | 0.05      |
| 12                  | 32  | 15.9         | 0.6                | 10.5                         | 5.80        | 1 070             | 590         | 15 000            | 20 000 | 5201S  | 17                               | 27                                  | 0.6             | 16.7 | 0.06      |
| 15                  | 35  | 15.9         | 0.6                | 11.7                         | 7.05        | 1 190             | 715         | 13 000            | 17 000 | 5202S  | 20                               | 30                                  | 0.6             | 18.3 | 0.07      |
|                     | 42  | 19           | 1                  | 17.6                         | 10.2        | 1 800             | 1 040       | 11 000            | 15 000 | 5302S  | 21                               | 36                                  | 1               | 22.0 | 0.11      |
| 17                  | 40  | 17.5         | 0.6                | 14.6                         | 9.05        | 1 490             | 920         | 11 000            | 15 000 | 5203S  | 22                               | 35                                  | 0.6             | 20.8 | 0.09      |
|                     | 47  | 22.2         | 1                  | 21.0                         | 12.6        | 2 140             | 1 280       | 10 000            | 13 000 | 5303S  | 23                               | 41                                  | 1               | 25.0 | 0.14      |
| 20                  | 47  | 20.6         | 1                  | 19.6                         | 12.4        | 2 000             | 1 270       | 10 000            | 13 000 | 5204S  | 26                               | 41                                  | 1               | 24.3 | 0.12      |
|                     | 52  | 22.2         | 1.1                | 24.6                         | 15.0        | 2 510             | 1 530       | 9 000             | 12 000 | 5304S  | 27                               | 45                                  | 1               | 26.7 | 0.23      |
| 25                  | 52  | 20.6         | 1                  | 21.3                         | 14.7        | 2 170             | 1 500       | 8 500             | 11 000 | 5205S  | 31                               | 46                                  | 1               | 26.8 | 0.19      |
|                     | 62  | 25.4         | 1.1                | 32.5                         | 20.7        | 3 350             | 2 110       | 7 500             | 10 000 | 5305S  | 32                               | 55                                  | 1               | 31.8 | 0.34      |
| 30                  | 62  | 23.8         | 1                  | 29.6                         | 21.1        | 3 000             | 2 150       | 7 100             | 9 500  | 5206S  | 36                               | 56                                  | 1               | 31.6 | 0.29      |
|                     | 72  | 30.2         | 1.1                | 40.5                         | 28.1        | 4 150             | 2 870       | 6 300             | 8 500  | 5306S  | 37                               | 65                                  | 1               | 36.5 | 0.51      |
| 35                  | 72  | 27           | 1.1                | 39.0                         | 28.7        | 4 000             | 2 920       | 6 300             | 8 000  | 5207S  | 42                               | 65                                  | 1               | 36.6 | 0.43      |
|                     | 80  | 34.9         | 1.5                | 51.0                         | 36.0        | 5 200             | 3 700       | 5 600             | 7 500  | 5307S  | 44                               | 71                                  | 1.5             | 41.6 | 0.79      |
| 40                  | 80  | 30.2         | 1.1                | 44.0                         | 33.5        | 4 500             | 3 400       | 5 600             | 7 100  | 5208S  | 47                               | 73                                  | 1               | 41.5 | 0.57      |
|                     | 90  | 36.5         | 1.5                | 56.5                         | 41.0        | 5 800             | 4 200       | 5 300             | 6 700  | 5308S  | 49                               | 81                                  | 1.5             | 45.5 | 1.05      |
| 45                  | 85  | 30.2         | 1.1                | 49.5                         | 38.0        | 5 050             | 3 900       | 5 000             | 6 700  | 5209S  | 52                               | 78                                  | 1               | 43.4 | 0.62      |
|                     | 100 | 39.7         | 1.5                | 68.5                         | 51.0        | 7 000             | 5 200       | 4 500             | 6 000  | 5309S  | 54                               | 91                                  | 1.5             | 50.6 | 1.40      |
| 50                  | 90  | 30.2         | 1.1                | 53.0                         | 43.5        | 5 400             | 4 400       | 4 800             | 6 000  | 5210S  | 57                               | 83                                  | 1               | 45.9 | 0.67      |
|                     | 110 | 44.4         | 2                  | 81.5                         | 61.5        | 8 300             | 6 250       | 4 300             | 5 600  | 5310S  | 60                               | 100                                 | 2               | 55.6 | 1.95      |
| 55                  | 100 | 33.3         | 1.5                | 56.0                         | 49.0        | 5 700             | 5 000       | 4 300             | 5 600  | 5211S  | 64                               | 91                                  | 1.5             | 50.1 | 0.96      |
|                     | 120 | 49.2         | 2                  | 95.0                         | 73.0        | 9 700             | 7 450       | 3 800             | 5 000  | 5311S  | 65                               | 110                                 | 2               | 60.6 | 2.30      |
| 60                  | 110 | 36.5         | 1.5                | 69.0                         | 62.0        | 7 150             | 6 300       | 3 800             | 5 000  | 5212S  | 69                               | 101                                 | 1.5             | 56.5 | 1.35      |
|                     | 130 | 54           | 2.1                | 125                          | 98.5        | 12 800            | 10 000      | 3 400             | 4 500  | 5312S  | 72                               | 118                                 | 2               | 69.2 | 3.15      |
| 65                  | 120 | 38.1         | 1.5                | 76.5                         | 69.0        | 7 800             | 7 050       | 3 600             | 4 500  | 5213S  | 74                               | 111                                 | 1.5             | 59.7 | 1.65      |
|                     | 140 | 58.7         | 2.1                | 142                          | 113         | 14 500            | 11 500      | 3 200             | 4 300  | 5313S  | 77                               | 128                                 | 2               | 72.8 | 3.85      |


<sup>1 )</sup> Smallest allowable dimension for chamfer dimension  $\it r.$ 



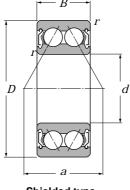


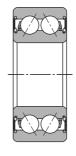


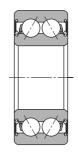




 $P_{\text{or}} = F_{\text{r}} + 0.76F_{\text{a}}$ 


d 70 ~ 85mm


|   | Вс | ounda      | Indary dimensions Basic load ratings Limiting speeds Bearing  dynamic static dynamic static numbers |                         |              | Bearing<br>numbers | •               |                 |                   | Load center    | Mass              |                    |                   |                         |              |              |    |    |
|---|----|------------|-----------------------------------------------------------------------------------------------------|-------------------------|--------------|--------------------|-----------------|-----------------|-------------------|----------------|-------------------|--------------------|-------------------|-------------------------|--------------|--------------|----|----|
|   |    |            | mm                                                                                                  |                         | ,            | kN                 | k               | gf              | min <sup>-1</sup> |                | min <sup>-1</sup> |                    |                   | mm $d_a = D_a = r_{as}$ |              |              | mm | kg |
|   | d  | D          | В                                                                                                   | $\it \Gamma$ s min $^1$ | ) <i>C</i> r | $C_{ m or}$        | $C_{ m r}$      | $C_{ m or}$     | grease            | oil            |                   | <i>C</i> la<br>min | <i>D</i> a<br>max | r <sub>as</sub>         | а            | (approx.)    |    |    |
| 7 | 0  | 125<br>150 | 39.7<br>63.5                                                                                        | 1.5<br>2.1              | 94.0<br>159  | 82.0<br>128        | 9 600<br>16 200 | 8 400<br>13 100 | 3 400<br>3 000    | 4 500<br>3 800 | 5214S<br>5314S    | 79<br>82           | 116<br>138        | 1.5<br>2                | 63.8<br>78.3 | 1.80<br>4.90 |    |    |
| 7 | 5  | 130        | 41.3                                                                                                | 1.5                     | 93.5         | 83.0               | 9 550           | 8 500           | 3 200             | 4 300          | 5215S             | 84                 | 121               | 1.5                     | 66.1         | 1.90         |    |    |
| 8 | 0  | 140        | 44.4                                                                                                | 2                       | 99.0         | 93.0               | 10 100          | 9 500           | 3 000             | 3 800          | 5216S             | 90                 | 130               | 2                       | 69.6         | 2.50         |    |    |
| 8 | 5  | 150        | 49.2                                                                                                | 2                       | 116          | 110                | 11 800          | 11 200          | 2 800             | 3 600          | 5217S             | 95                 | 140               | 2                       | 75.3         | 3.40         |    |    |











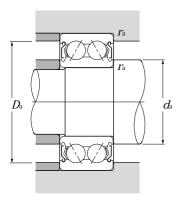



Shielded type (ZZ)

Non-contact sealed type (LLM)

Contact sealed type (LLD)

 $d 10 \sim 40 \text{mm}$ 


|    | Bounda   | ary dimer    | sions                | dynamic      | Basic Io     | oad ratings<br>dynamic | static         | Limiting speeds  |                   |                  | Bearing numbers <sup>2)</sup> |            |            |
|----|----------|--------------|----------------------|--------------|--------------|------------------------|----------------|------------------|-------------------|------------------|-------------------------------|------------|------------|
|    |          | mm           |                      | kľ           |              | ,                      | gf             | grea             | min <sup>-1</sup> | oil              |                               | non-contac | t contact  |
| d  | D        | В            | $r_{\rm s  min}^{1}$ | $C_{\rm r}$  | $C_{ m or}$  | $C_{r}$                | $C_{ m or}$    | ZZ,LLM           | LLD               | Z,LM             | sealed                        | type       | type       |
| 10 | 30       | 14.3         | 0.6                  | 7.15         | 3.90         | 730                    | 400            | 17 000           | 15 000            | 22 000           | 5200SCZZ                      | LLM        | LLD        |
| 12 | 32       | 15.9         | 0.6                  | 8.50         | 5.30         | 865                    | 540            | 15 000           | 12 000            | 20 000           | 5201SCZZ                      | LLM        | LLD        |
| 15 | 35       | 15.9         | 0.6                  | 8.50         | 5.30         | 865                    | 540            | 13 000           | 12 000            | 17 000           | 5202SCZZ                      | LLM        | LLD        |
| 17 | 40<br>47 | 17.5<br>22.2 | 0.6<br>1             | 12.7<br>19.6 | 8.30<br>12.4 | 1 290<br>2 000         | 850<br>1 270   | 11 000<br>10 000 | 10 000<br>9 500   | 15 000<br>13 000 | 5203SCZZ<br>5303SCZZ          | LLM<br>LLM | LLD<br>LLD |
| 20 | 47       | 20.6         | 1                    | 15.9         | 10.7         | 1 620                  | 1 090          | 10 000           | 9 000             | 13 000           | 5204SCZZ                      | LLM        | LLD        |
| 25 | 52<br>62 | 20.6<br>25.4 | 1<br>1.1             | 16.9<br>25.2 | 12.3<br>18.2 | 1 730<br>2 570         | 1 260<br>1 850 | 8 500<br>7 500   | 7 500<br>6 300    | 11 000<br>10 000 | 5205SCZZ 3 5305SCZZ           | LLM<br>LLM | LLD<br>LLD |
| 30 | 62<br>72 | 23.8<br>30.2 | 1<br>1.1             | 25.2<br>39.0 | 18.2<br>28.7 | 2 570<br>4 000         | 1 850<br>2 920 | 7 100<br>6 300   | 6 300<br>5 300    | 9 500<br>8 500   | 5206SCZZ<br>5306SCZZ          | LLM<br>LLM | LLD<br>LLD |
| 35 | 72<br>80 | 27.0<br>34.9 | 1.1<br>1.5           | 34.0<br>44.0 | 25.3<br>33.5 | 3 500<br>4 500         | 2 580<br>3 400 | 6 300<br>5 600   | 5 300<br>4 800    | 8 500<br>7 500   | 5207SCZZ<br>5307SCZZ          | LLM<br>LLM | LLD<br>LLD |
| 40 | 80<br>90 | 30.2<br>36.5 | 1.1<br>1.5           | 36.5<br>49.5 | 29.0<br>38.0 | 3 700<br>5 050         | 2 960<br>3 900 | 5 600<br>5 300   | 4 800<br>4 500    | 7 100<br>6 700   | 5208SCZZ 33<br>5308SCZZ       | LLM<br>LLM | LLD<br>LLD |



Smallest allowable dimension for chamfer dimension *r*.
 This bearing number is for double sealed and double shielded type bearings, but single sealed and single shielded type are also available.
 Resin formed cage is standard for 5205SC and 5208SC.

## **Double Row Angular Contact Ball Bearings**





# Dynamic equivalent radial load Pr = XFr + YFa

| e    | $\frac{F_{\rm c}}{F_{\rm f}}$ | e    | $\frac{F_{\rm a}}{F_{\rm r}} > e$ |      |  |
|------|-------------------------------|------|-----------------------------------|------|--|
|      | X                             | Y    | X                                 | Y    |  |
| 0.68 | 1                             | 0.92 | 0.67                              | 1.41 |  |

Static equivalent radial load  $P_{\text{or}} = F_{\text{r}} + 0.76F_{\text{a}}$ 



| Abutn | nent and fi                |             | nsions         | Load<br>center<br>mm |
|-------|----------------------------|-------------|----------------|----------------------|
|       | $d_{\scriptscriptstyle a}$ | $D_{\rm a}$ | $m{r}_{ m as}$ |                      |
| min   | max                        | max         | max            | а                    |
|       |                            |             |                |                      |
| 14    | 15.5                       | 26          | 0.6            | 14.5                 |
| 16    | 19.0                       | 28          | 0.6            | 16.3                 |
| 19    | 19.0                       | 31          | 0.6            | 16.3                 |
| 21    | 23.5                       | 36          | 0.6            | 20.1                 |
| 23    | 25.5                       | 41          | 1              | 24.3                 |
| 26    | 26.5                       | 41          | 1              | 23.0                 |
| 31    | 32.0                       | 46          | 1              | 25.4                 |
| 32    | 38.5                       | 55          | 1              | 30.9                 |
| 36    | 38.5                       | 56          | 1              | 30.9                 |
| 37    | 44.5                       | 65          | 1              | 36.6                 |
| 42    | 45.0                       | 65          | 1              | 36.3                 |
| 44    | 50.5                       | 71          | 1.5            | 41.5                 |
| 47    | 50.5                       | 73          | 1              | 39.4                 |
| 49    | 53.0                       | 81          | 1.5            | 43.0                 |





#### 1. Design features and characteristics

The outer ring raceway of self-aligning ball bearings forms a spherical surface whose center is common to the bearing center. The inner ring of the bearing has two raceways. The balls, cage, and inner ring of these bearings are capable of a shifting in order to compensate for a certain degree of misalignment with the outer rings. As a result, the bearing is able to align itself and compensate for shaft / housing finishing unevenness, bearing fitting error, and other sources of misalignment as shown in **Diagram 1**.

However, since axial load capacity is limited, self-aligning ball bearings are not suitable for applications with heavy axial loads.

Furthermore, if an adapter is used on the tapered bore of the inner diameter, installation and disassembly are much simpler and for this reason adapters are often used on equipment with drive shafts.

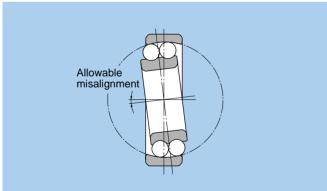



Diagram 1.

#### 2. Standard cage types

All bearing series are equipped with a pressed cage, except 2322S, which is equipped with a machined cage.

#### 3. Ball protrusion

Bearings with part numbers listed in **Diagram 2** below have balls which protrude slightly from the bearing face.

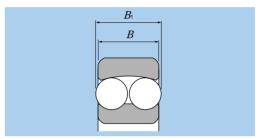
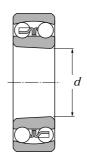
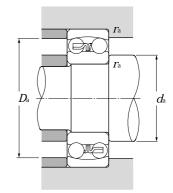



Diagram 2.

their degree of protrusion is listed below

Units mm


| Bearing number | Width dimension B | Total width dimension B <sub>1</sub> |
|----------------|-------------------|--------------------------------------|
| 2222S (K)      | 53                | 54                                   |
| 2316S (K)      | 58                | 59                                   |
| 2319S (K)      | 67                | 68                                   |
| 2320S (K)      | 73                | 74                                   |
| 2321S          | 77                | 78                                   |
| 2322S (K)      | 80                | 81                                   |
| 1318S (K)      | 43                | 46                                   |
| 1319S (K)      | 45                | 49                                   |
| 1320S (K)      | 47                | 53                                   |
| 1321S          | 49                | 55                                   |
| 1322S (K)      | 50                | 56                                   |


#### 4. Allowable misalignment angle

Listed below are the allowable misalignment angles for bearings with self-aligning characteristics when placed under normal load conditions. This degree of allowable misalignment may be limited by the design of structures around the bearing.

Allowable misalignment under normal loads (loads equivalent to 0.09 C): 0.07 rad (4°)







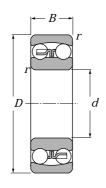
Cylindrical bore

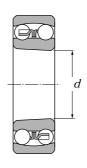
**Tapered bore** 

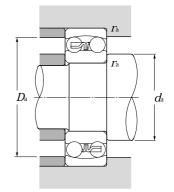
## d 10 ~ 35mm

| Boundary dimensions |    |    | sions               | dynamic     | static      | ad ratings<br>dynamic | static      | Limiting speeds |                  | Bearing numbers |                        | Abutment and fillet dimensions        |                                    |             |
|---------------------|----|----|---------------------|-------------|-------------|-----------------------|-------------|-----------------|------------------|-----------------|------------------------|---------------------------------------|------------------------------------|-------------|
|                     |    | mm |                     | k           | κN          | k                     | gf          | m               | in <sup>-1</sup> | cylindrical     | tapered <sup>2</sup> ) | $d_{\!\scriptscriptstyle \mathrm{a}}$ | mm $D_{\!\scriptscriptstyle  m a}$ | <i>r</i> as |
| d                   | D  | В  | $r_{\rm s  min}$ 1) | $C_{\rm r}$ | $C_{ m or}$ | $C_{\rm r}$           | $C_{ m or}$ | grease          | oil              | bore            | bore                   | min                                   | max                                | max max     |
|                     | 30 | 9  | 0.6                 | 5.55        | 1.19        | 570                   | 121         | 22 000          | 28 000           | 1200S           |                        | 14.0                                  | 26.0                               | 0.6         |
| 40                  | 30 | 14 | 0.6                 | 7.45        | 1.59        | 760                   | 162         | 24 000          | 28 000           | 2200S           |                        | 14.0                                  | 26.0                               | 0.6         |
| 10                  | 35 | 11 | 0.6                 | 7.35        | 1.62        | 750                   | 165         | 20 000          | 24 000           | 1300S           |                        | 14.0                                  | 31.0                               | 0.6         |
|                     | 35 | 17 | 0.6                 | 9.20        | 2.01        | 935                   | 205         | 18 000          | 22 000           | 2300S           |                        | 14.0                                  | 31.0                               | 0.6         |
|                     | 32 | 10 | 0.6                 | 5.70        | 1.27        | 580                   | 130         | 22 000          | 26 000           | 1201S           |                        | 16.0                                  | 28.0                               | 0.6         |
| 12                  | 32 | 14 | 0.6                 | 7.75        | 1.73        | 790                   | 177         | 22 000          | 26 000           | 2201S           |                        | 16.0                                  | 28.0                               | 0.6         |
| 12                  | 37 | 12 | 1                   | 9.65        | 2.16        | 985                   | 221         | 18 000          | 22 000           | 1301S           |                        | 17.0                                  | 32.0                               | 1           |
|                     | 37 | 17 | 1                   | 12.1        | 2.73        | 1 240                 | 278         | 17 000          | 22 000           | 2301S           |                        | 17.0                                  | 32.0                               | 1           |
|                     | 35 | 11 | 0.6                 | 7.60        | 1.75        | 775                   | 179         | 18 000          | 22 000           | 1202S           |                        | 19.0                                  | 31.0                               | 0.6         |
| 15                  | 35 | 14 | 0.6                 | 7.80        | 1.85        | 795                   | 188         | 18 000          | 22 000           | 2202S           |                        | 19.0                                  | 31.0                               | 0.6         |
| 13                  | 42 | 13 | 1                   | 9.70        | 2.29        | 990                   | 234         | 16 000          | 20 000           | 1302S           |                        | 20.0                                  | 37.0                               | 1           |
|                     | 42 | 17 | 1                   | 12.3        | 2.91        | 1 250                 | 296         | 14 000          | 18 000           | 2302S           |                        | 20.0                                  | 37.0                               | 1           |
|                     | 40 | 12 | 0.6                 | 8.00        | 2.01        | 815                   | 205         | 16 000          | 20 000           | 1203S           |                        | 21.0                                  | 36.0                               | 0.6         |
| 17                  | 40 | 16 | 0.6                 | 9.95        | 2.42        | 1 010                 | 247         | 16 000          | 20 000           | 2203S           |                        | 21.0                                  | 36.0                               | 0.6         |
|                     | 47 | 14 | 1                   | 12.7        | 3.20        | 1 300                 | 325         | 14 000          | 17 000           | 1303S           |                        | 22.0                                  | 42.0                               | 1           |
|                     | 47 | 19 | 1                   | 14.7        | 3.55        | 1 500                 | 365         | 13 000          | 16 000           | 2303S           |                        | 22.0                                  | 42.0                               | 1           |
|                     | 47 | 14 | 1                   | 10.0        | 2.61        | 1 020                 | 266         | 14 000          | 17 000           | 1204S           | 1204SK                 | 25.0                                  | 42.0                               | 1           |
| 20                  | 47 | 18 | 1                   | 12.8        | 3.30        | 1 310                 | 340         | 14 000          | 17 000           | 2204S           | 2204SK                 | 25.0                                  | 42.0                               | 1           |
| 20                  | 52 | 15 | 1.1                 | 12.6        | 3.35        | 1 280                 | 340         | 12 000          | 15 000           | 1304S           | 1304SK                 | 26.5                                  | 45.5                               | 1           |
|                     | 52 | 21 | 1.1                 | 18.5        | 4.70        | 1 880                 | 480         | 11 000          | 14 000           | 2304S           | 2304SK                 | 26.5                                  | 45.5                               | 1           |
|                     | 52 | 15 | 1                   | 12.2        | 3.30        | 1 250                 | 335         | 12 000          | 14 000           | 1205S           | 1205SK                 | 30.0                                  | 47.0                               | 1           |
| 25                  | 52 | 18 | 1                   | 12.4        | 3.45        | 1 270                 | 350         | 12 000          | 14 000           | 2205S           | 2205SK                 | 30.0                                  | 47.0                               | 1           |
| 25                  | 62 | 17 | 1.1                 | 18.2        | 5.00        | 1 850                 | 510         | 10 000          | 13 000           | 1305S           | 1305SK                 | 31.5                                  | 55.5                               | 1           |
|                     | 62 | 24 | 1.1                 | 24.9        | 6.60        | 2 530                 | 675         | 9 500           | 12 000           | 2305S           | 2305SK                 | 31.5                                  | 55.5                               | 1           |
|                     | 62 | 16 | 1                   | 15.8        | 4.65        | 1 610                 | 475         | 10 000          | 12 000           | 1206S           | 1206SK                 | 35.0                                  | 57.0                               | 1           |
| 30                  | 62 | 20 | 1                   | 15.3        | 4.55        | 1 560                 | 460         | 10 000          | 12 000           | 2206S           | 2206SK                 | 35.0                                  | 57.0                               | 1           |
| 30                  | 72 | 19 | 1.1                 | 21.4        | 6.30        | 2 190                 | 645         | 8 500           | 11 000           | 1306S           | 1306SK                 | 36.5                                  | 65.5                               | 1           |
|                     | 72 | 27 | 1.1                 | 32.0        | 8.75        | 3 250                 | 895         | 8 000           | 10 000           | 2306S           | 2306SK                 | 36.5                                  | 65.5                               | 1           |
|                     | 72 | 17 | 1.1                 | 15.9        | 5.10        | 1 620                 | 520         | 8 500           | 10 000           | 1207S           | 1207SK                 | 41.5                                  | 65.5                               | 1           |
| 35                  | 72 | 23 | 1.1                 | 21.7        | 6.60        | 2 210                 | 675         | 8 500           | 10 000           | 2207S           | 2207SK                 | 41.5                                  | 65.5                               | 1           |
|                     | 80 | 21 | 1.5                 | 25.3        | 7.85        | 2 580                 | 800         | 7 500           | 9 500            | 1307S           | 1307SK                 | 43.0                                  | 72.0                               | 1.5         |
|                     | 80 | 31 | 1.5                 | 40.0        | 11.3        | 4 100                 | 1 150       | 7 100           | 9 000            | 2307S           | 2307SK                 | 43.0                                  | 72.0                               | 1.5         |

<sup>1 )</sup> Smallest allowable dimension for chamfer dimension r. 2 ) " $\mathbf{K}$ " indicates bearings have tapered bore with a taper ratio of 1: 12.


## Equivalent bearing load dynamic


 $\frac{P_{\rm r} = XF_{\rm r} + YF_{\rm a}}{F_{\rm a}}$ 


1 Y<sub>1</sub> 0.65 Y<sub>2</sub>

static  $P_{0r} = F_r + Y_0 F_a$  For values of e ,  $Y_1$  ,  $Y_2$  and  $Y_0$  see the table below.

| Constant | Ax    | ial load fac | tors        | <b>Mass</b><br>kg |
|----------|-------|--------------|-------------|-------------------|
| e        | $Y_1$ | $Y_2$        | $Y_{\circ}$ | (approx.)         |
| 0.32     | 2.00  | 3.10         | 2.10        | 0.033             |
| 0.64     | 0.98  | 1.50         | 1.00        | 0.042             |
| 0.35     | 1.80  | 2.80         | 1.90        | 0.057             |
| 0.71     | 0.89  | 1.40         | 0.93        | 0.077             |
| 0.36     | 1.80  | 2.70         | 1.80        | 0.039             |
| 0.58     | 1.10  | 1.70         | 1.10        | 0.048             |
| 0.33     | 1.90  | 2.90         | 2.00        | 0.066             |
| 0.60     | 1.10  | 1.60         | 1.10        | 0.082             |
| 0.32     | 2.00  | 3.10         | 2.10        | 0.051             |
| 0.50     | 1.30  | 1.90         | 1.30        | 0.055             |
| 0.33     | 1.90  | 2.90         | 2.00        | 0.093             |
| 0.51     | 1.20  | 1.90         | 1.30        | 0.108             |
| 0.31     | 2.00  | 3.10         | 2.10        | 0.072             |
| 0.50     | 1.30  | 1.90         | 1.30        | 0.085             |
| 0.32     | 2.00  | 3.10         | 2.10        | 0.130             |
| 0.51     | 1.20  | 1.90         | 1.30        | 0.150             |
| 0.29     | 2.20  | 3.40         | 2.30        | 0.120             |
| 0.47     | 1.30  | 2.10         | 1.40        | 0.133             |
| 0.29     | 2.20  | 3.40         | 2.30        | 0.15              |
| 0.50     | 1.20  | 1.90         | 1.30        | 0.193             |
| 0.28     | 2.30  | 3.50         | 2.40        | 0.140             |
| 0.41     | 1.50  | 2.40         | 1.60        | 0.150             |
| 0.28     | 2.30  | 3.50         | 2.40        | 0.255             |
| 0.47     | 1.40  | 2.10         | 1.40        | 0.319             |
| 0.25     | 2.50  | 3.90         | 2.60        | 0.220             |
| 0.38     | 1.60  | 2.50         | 1.70        | 0.249             |
| 0.26     | 2.40  | 3.70         | 2.50        | 0.385             |
| 0.44     | 1.40  | 2.20         | 1.50        | 0.480             |
| 0.23     | 2.70  | 4.20         | 2.80        | 0.320             |
| 0.37     | 1.70  | 2.60         | 1.80        | 0.378             |
| 0.26     | 2.50  | 3.80         | 2.60        | 0.510             |
| 0.46     | 1.40  | 2.10         | 1.40        | 0.642             |







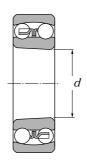
Cylindrical bore

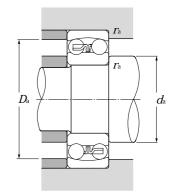
**Tapered bore** 

## d 40 ~ 75mm

| В  | Boundary dimensions      |                      |                          | Basic load ratings<br>dynamic static dynamic static<br>kN kgf |                              |                                   | _                                | Limiting speeds                  |                                  | Bearing numbers                  |                                      | Abutment and fillet dimensions      |                                     |                      |
|----|--------------------------|----------------------|--------------------------|---------------------------------------------------------------|------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|----------------------|
| d  | D                        | В                    | $r_{ m s min}^{1}$       | $C_{\scriptscriptstyle \Gamma}$                               | $C_{ m or}$                  | $C_{ m r}$                        | $\mathcal{C}_{	ext{or}}$         | grease                           | oil                              | cylindrical<br>bore              | tapered <sup>2)</sup> bore           | $d_{\!\scriptscriptstyle  m a}$ min | $D_{\!\scriptscriptstyle  m a}$ max | r <sub>as</sub>      |
| 40 | 80                       | 18                   | 1.1                      | 19.3                                                          | 6.50                         | 1 970                             | 665                              | 7 500                            | 9 000                            | 1208S                            | 1208SK                               | 46.5                                | 73.5                                | 1                    |
|    | 80                       | 23                   | 1.1                      | 22.4                                                          | 7.35                         | 2 290                             | 750                              | 7 500                            | 9 000                            | 2208S                            | 2208SK                               | 46.5                                | 73.5                                | 1                    |
|    | 90                       | 23                   | 1.5                      | 29.8                                                          | 9.70                         | 3 050                             | 990                              | 6 700                            | 8 500                            | 1308S                            | 1308SK                               | 48.0                                | 82.0                                | 1.5                  |
|    | 90                       | 33                   | 1.5                      | 45.5                                                          | 13.5                         | 4 650                             | 1 380                            | 6 300                            | 8 000                            | 2308S                            | 2308SK                               | 48.0                                | 82.0                                | 1.5                  |
| 45 | 85                       | 19                   | 1.1                      | 22.0                                                          | 7.35                         | 2 240                             | 750                              | 7 100                            | 8 500                            | 1209S                            | 1209SK                               | 51.5                                | 78.5                                | 1                    |
|    | 85                       | 23                   | 1.1                      | 23.3                                                          | 8.15                         | 2 380                             | 830                              | 7 100                            | 8 500                            | 2209S                            | 2209SK                               | 51.5                                | 78.5                                | 1                    |
|    | 100                      | 25                   | 1.5                      | 38.5                                                          | 12.7                         | 3 900                             | 1 300                            | 6 000                            | 7 500                            | 1309S                            | 1309SK                               | 53.0                                | 92.0                                | 1.5                  |
|    | 100                      | 36                   | 1.5                      | 55.0                                                          | 16.7                         | 5 600                             | 1 700                            | 5 600                            | 7 100                            | 2309S                            | 2309SK                               | 53.0                                | 92.0                                | 1.5                  |
| 50 | 90                       | 20                   | 1.1                      | 22.8                                                          | 8.10                         | 2 330                             | 830                              | 6 300                            | 8 000                            | 1210S                            | 1210SK                               | 56.5                                | 83.5                                | 1                    |
|    | 90                       | 23                   | 1.1                      | 23.3                                                          | 8.45                         | 2 380                             | 865                              | 6 300                            | 8 000                            | 2210S                            | 2210SK                               | 56.5                                | 83.5                                | 1                    |
|    | 110                      | 27                   | 2                        | 43.5                                                          | 14.1                         | 4 450                             | 1 440                            | 5 600                            | 6 700                            | 1310S                            | 1310SK                               | 59.0                                | 101                                 | 2                    |
|    | 110                      | 40                   | 2                        | 65.0                                                          | 20.2                         | 6 650                             | 2 060                            | 5 000                            | 6 300                            | 2310S                            | 2310SK                               | 59.0                                | 101                                 | 2                    |
| 55 | 100                      | 21                   | 1.5                      | 26.9                                                          | 10.0                         | 2 750                             | 1 020                            | 6 000                            | 7 100                            | 1211S                            | 1211SK                               | 63.0                                | 92.0                                | 1.5                  |
|    | 100                      | 25                   | 1.5                      | 26.7                                                          | 9.90                         | 2 720                             | 1 010                            | 6 000                            | 7 100                            | 2211S                            | 2211SK                               | 63.0                                | 92.0                                | 1.5                  |
|    | 120                      | 29                   | 2                        | 51.5                                                          | 17.9                         | 5 250                             | 1 820                            | 5 000                            | 6 300                            | 1311S                            | 1311SK                               | 64.0                                | 111                                 | 2                    |
|    | 120                      | 43                   | 2                        | 76.5                                                          | 24.0                         | 7 800                             | 2 450                            | 4 800                            | 6 000                            | 2311S                            | 2311SK                               | 64.0                                | 111                                 | 2                    |
| 60 | 110                      | 22                   | 1.5                      | 30.5                                                          | 11.5                         | 3 100                             | 1 180                            | 5 300                            | 6 300                            | 1212S                            | 1212SK                               | 68.0                                | 102                                 | 1.5                  |
|    | 110                      | 28                   | 1.5                      | 34.0                                                          | 12.6                         | 3 500                             | 1 290                            | 5 300                            | 6 300                            | 2212S                            | 2212SK                               | 68.0                                | 102                                 | 1.5                  |
|    | 130                      | 31                   | 2.1                      | 57.5                                                          | 20.8                         | 5 900                             | 2 130                            | 4 500                            | 5 600                            | 1312S                            | 1312SK                               | 71.0                                | 119                                 | 2                    |
|    | 130                      | 46                   | 2.1                      | 88.5                                                          | 28.3                         | 9 000                             | 2 880                            | 4 300                            | 5 300                            | 2312S                            | 2312SK                               | 71.0                                | 119                                 | 2                    |
| 65 | 120<br>120<br>140<br>140 | 23<br>31<br>33<br>48 | 1.5<br>1.5<br>2.1<br>2.1 | 31.0<br>43.5<br>62.5<br>97.0                                  | 12.5<br>16.4<br>22.9<br>32.5 | 3 150<br>4 450<br>6 350<br>9 900  | 1 280<br>1 670<br>2 330<br>3 300 | 4 800<br>4 800<br>4 300<br>3 800 | 6 000<br>6 000<br>5 300<br>4 800 | 1213S<br>2213S<br>1313S<br>2313S | 1213SK<br>2213SK<br>1313SK<br>2313SK | 73.0<br>76.0                        | 112<br>112<br>129<br>129            | 1.5<br>1.5<br>2<br>2 |
| 70 | 125<br>125<br>150<br>150 | 24<br>31<br>35<br>51 | 1.5<br>1.5<br>2.1<br>2.1 | 35.0<br>44.0<br>75.0<br>111                                   | 13.8<br>17.1<br>27.7<br>37.5 | 3 550<br>4 500<br>7 650<br>11 300 | 1 410<br>1 740<br>2 830<br>3 850 | 4 800<br>4 500<br>4 000<br>3 600 | 5 600<br>5 600<br>5 000<br>4 500 | 1214S<br>2214S<br>1314S<br>2314S |                                      | 78.0<br>78.0<br>81.0<br>81.0        | 117<br>117<br>139<br>139            | 1.5<br>1.5<br>2<br>2 |
| 75 | 130                      | 25                   | 1.5                      | 39.0                                                          | 15.7                         | 4 000                             | 1 600                            | 4 300                            | 5 300                            | 1215S                            | 1215SK                               | 83.0                                | 122                                 | 1.5                  |
|    | 130                      | 31                   | 1.5                      | 44.5                                                          | 17.8                         | 4 550                             | 1 820                            | 4 300                            | 5 300                            | 2215S                            | 2215SK                               | 83.0                                | 122                                 | 1.5                  |
|    | 160                      | 37                   | 2.1                      | 80.0                                                          | 30.0                         | 8 150                             | 3 050                            | 3 800                            | 4 500                            | 1315S                            | 1315SK                               | 86.0                                | 149                                 | 2                    |
|    | 160                      | 55                   | 2.1                      | 125                                                           | 43.0                         | 12 700                            | 4 400                            | 3 400                            | 4 300                            | 2315S                            | 2315SK                               | 86.0                                | 149                                 | 2                    |

<sup>1 )</sup> Smallest allowable dimension for chamfer dimension r. 2 ) "K" indicates bearings have tapered bore with a taper ratio of 1: 12.


# Equivalent bearing load dynamic $P_T = XF_T + YF_A$


| $\frac{F_{\rm a}}{F_{ m r}}$ | e          | $\frac{F_{\rm a}}{F_{\rm r}} > e$ |       |  |  |  |
|------------------------------|------------|-----------------------------------|-------|--|--|--|
| X                            | Y          | X                                 | Y     |  |  |  |
| 1                            | <b>Y</b> 1 | 0.65                              | $Y_2$ |  |  |  |

static  $P_{0r} = F_r + Y_0 F_a$  For values of e ,  $Y_1$  ,  $Y_2$  and  $Y_0$  see the table below.

| Constant | Αx         | xial load fac | tors        | <b>Mass</b><br>kg |
|----------|------------|---------------|-------------|-------------------|
| e        | <b>Y</b> 1 | $Y_2$         | $Y_{\circ}$ | (approx.)         |
| 0.22     | 2.8        | 4.3           | 2.9         | 0.415             |
| 0.33     | 1.9        | 3.0           | 2.0         | 0.477             |
| 0.24     | 2.6        | 4.0           | 2.7         | 0.715             |
| 0.43     | 1.5        | 2.3           | 1.5         | 0.889             |
| 0.21     | 3.0        | 4.7           | 3.1         | 0.465             |
| 0.30     | 2.1        | 3.2           | 2.2         | 0.522             |
| 0.25     | 2.6        | 4.0           | 2.7         | 0.955             |
| 0.41     | 1.5        | 2.4           | 1.6         | 1.200             |
| 0.21     | 3.1        | 4.7           | 3.2         | 0.525             |
| 0.28     | 2.2        | 3.4           | 2.3         | 0.564             |
| 0.23     | 2.7        | 4.2           | 2.8         | 1.250             |
| 0.42     | 1.5        | 2.3           | 1.6         | 1.580             |
| 0.20     | 3.2        | 4.9           | 3.3         | 0.705             |
| 0.28     | 2.3        | 3.5           | 2.4         | 0.746             |
| 0.23     | 2.7        | 4.2           | 2.8         | 1.600             |
| 0.41     | 1.5        | 2.4           | 1.6         | 2.030             |
| 0.18     | 3.4        | 5.3           | 3.6         | 0.900             |
| 0.28     | 2.3        | 3.5           | 2.4         | 1.030             |
| 0.23     | 2.8        | 4.3           | 2.9         | 2.030             |
| 0.40     | 1.6        | 2.4           | 1.6         | 2.570             |
| 0.17     | 3.7        | 5.7           | 3.8         | 1.150             |
| 0.28     | 2.3        | 3.5           | 2.4         | 1.400             |
| 0.23     | 2.7        | 4.2           | 2.9         | 2.540             |
| 0.39     | 1.6        | 2.5           | 1.7         | 3.200             |
| 0.18     | 3.4        | 5.3           | 3.6         | 1.300             |
| 0.26     | 2.4        | 3.7           | 2.5         | 1.520             |
| 0.22     | 2.8        | 4.4           | 3.0         | 3.190             |
| 0.38     | 1.7        | 2.6           | 1.8         | 3.900             |
| 0.17     | 3.6        | 5.6           | 3.8         | 1.410             |
| 0.25     | 2.5        | 3.9           | 2.6         | 1.600             |
| 0.22     | 2.8        | 4.4           | 2.9         | 3.650             |
| 0.38     | 1.6        | 2.5           | 1.7         | 4.770             |







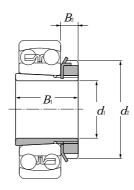
Cylindrical bore

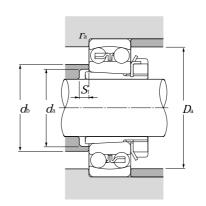
**Tapered bore** 

#### d 80 ~ 110mm

| В   | oundar | y dimer  | nsions                         | dynamic     | static       | ad ratings<br>dynamic | static         |        | g speeds         | Bearing             | numbers                        | Abutment and fillet dimensions      |                                     |                 |
|-----|--------|----------|--------------------------------|-------------|--------------|-----------------------|----------------|--------|------------------|---------------------|--------------------------------|-------------------------------------|-------------------------------------|-----------------|
|     |        | mm       |                                | [           | kN           | k                     | gf             | mi     | in <sup>-1</sup> |                     | . 12)                          | ,                                   | mm                                  |                 |
| d   | D      | В        | <i>I</i> 's min <sup>1</sup> ) | $C_{\rm r}$ | $C_{ m or}$  | $C_{\rm r}$           | $C_{ m or}$    | grease | oil              | cylindrical<br>bore | tapered <sup>2</sup> )<br>bore | $d_{\!\scriptscriptstyle  m a}$ min | $D_{\!\scriptscriptstyle  m a}$ max | r <sub>as</sub> |
|     | 140    | 26       | 2                              | 40.0        | 17.0         | 4 100                 | 1 730          | 4 000  | 5 000            | 1216S               | 1216SK                         | 89                                  | 131                                 | 2               |
| 00  | 140    | 33       | 2                              | 49.0        | 19.9         | 5 000                 | 2 030          | 4 000  | 5 000            | 2216S               | 2216SK                         | 89                                  | 131                                 | 2               |
| 80  | 170    | 39       | 2.1                            | 89.0        | 33.0         | 9 100                 | 3 400          | 3 600  | 4 300            | 1316S               | 1316SK                         | 91                                  | 159                                 | 2               |
|     | 170    | 58       | 2.1                            | 130         | 45.0         | 13 200                | 4 600          | 3 200  | 4 000            | 2316S               | 2316SK                         | 91                                  | 159                                 | 2               |
|     | 150    | 28       | 2                              | 49.5        | 20.8         | 5 050                 | 2 120          | 3 800  | 4 500            | 1217S               | 1217SK                         | 94                                  | 141                                 | 2               |
| 85  | 150    | 36       | 2                              | 58.5        | 23.6         | 5 950                 | 2 400          | 3 800  | 4 800            | 2217S               | 2217SK                         | 94                                  | 141                                 | 2               |
| 03  | 180    | 41       | 3                              | 98.5        | 38.0         | 10 000                | 3 850          | 3 400  | 4 000            | 1317S               | 1317SK                         | 98                                  | 167                                 | 2.5             |
|     | 180    | 60       | 3                              | 142         | 51.5         | 14 500                | 5 250          | 3 000  | 3 800            | 2317S               | 2317SK                         | 98                                  | 167                                 | 2.5             |
|     | 160    | 30       | 2                              | 57.5        | 23.5         | 5 850                 | 2 400          | 3 600  | 4 300            | 1218S               | 1218SK                         | 99                                  | 151                                 | 2               |
| 90  | 160    | 40       | 2                              | 70.5        | 28.7         | 7 200                 | 2 930          | 3 600  | 4 300            | 2218S               | 2218SK                         | 99                                  | 151                                 | 2               |
| 30  | 190    | 43       | 3                              | 117         | 44.5         | 12 000                | 4 550          | 3 200  | 3 800            | 1318S               | 1318SK                         | 103                                 | 177                                 | 2.5             |
|     | 190    | 64       | 3                              | 154         | 57.5         | 15 700                | 5 850          | 2 800  | 3 600            | 2318S               | 2318SK                         | 103                                 | 177                                 | 2.5             |
|     | 170    | 32       | 2.1                            | 64.0        | 27.1         | 6 550                 | 2 770          | 3 400  | 4 000            | 1219S               | 1219SK                         | 106                                 | 159                                 | 2               |
| 95  | 170    | 43       | 2.1                            | 84.0        | 34.5         | 8 550                 | 3 500          | 3 400  | 4 000            | 2219S               | 2219SK                         | 106                                 | 159                                 | 2               |
|     | 200    | 45       | 3                              | 129         | 51.0         | 13 200                | 5 200          | 3 000  | 3 600            | 13195               | 1319SK                         | 108                                 | 187                                 | 2.5             |
|     | 200    | 67       | 3                              | 161         | 64.5         | 16 400                | 6 550          | 2 800  | 3 400            | 2319S               | 2319SK                         | 108                                 | 187                                 | 2.5             |
|     | 180    | 34       | 2.1                            | 69.5        | 29.7         | 7 100                 | 3 050          | 3 200  | 3 800            | 1220S               | 1220SK                         | 111                                 | 169                                 | 2               |
| 100 | 180    | 46       | 2.1                            | 94.5        | 38.5         | 9 650                 | 3 900          | 3 200  | 3 800            | 2220S               | 2220SK                         | 111                                 | 169                                 | 2               |
|     | 215    | 47<br>72 | 3                              | 140         | 57.5<br>79.0 | 14 300                | 5 850<br>8 050 | 2 800  | 3 400<br>3 200   | 1320S<br>2320S      | 1320SK<br>2320SK               | 113                                 | 202                                 | 2.5<br>2.5      |
|     | 215    | 73       | 3                              | 187         | 79.0         | 19 100                | 8 050          | 2 400  | 3 200            | 23205               | 23205K                         | 113                                 | 202                                 | 2.5             |
|     | 190    | 36       | 2.1                            | 75.0        | 32.5         | 7 650                 | 3 300          | 3 000  | 3 600            | 1221S               |                                | 116                                 | 179                                 | 2               |
| 105 | 190    | 50       | 2.1                            | 109         | 45.0         | 11 100                | 4 550          | 3 000  | 3 600            | 22215               |                                | 116                                 | 179                                 | 2               |
|     | 225    | 49<br>77 | 3                              | 154         | 64.5         | 15 700                | 6 600          | 2 600  | 3 200            | 13215               |                                | 118                                 | 212                                 | 2.5             |
|     | 225    | 77       | 3                              | 200         | 87.0         | 20 400                | 8 850          | 2 400  | 3 000            | 2321S               |                                | 118                                 | 212                                 | 2.5             |
|     | 200    | 38       | 2.1                            | 87.0        | 38.5         | 8 900                 | 3 950          | 2 800  | 3 400            | 1222S               | 1222SK                         | 121                                 | 189                                 | 2               |
| 110 | 200    | 53       | 2.1                            | 122         | 51.5         | 12 500                | 5 250          | 2 800  | 3 400            | 2222S               | 2222SK                         | 121                                 | 189                                 | 2               |
|     | 240    | 50<br>80 | 3                              | 161         | 72.5         | 16 400                | 7 300          | 2 400  | 3 000            | 1322S               | 1322SK<br>2322SK               | 123                                 | 227                                 | 2.5             |
|     | 240    | δU       | 3                              | 211         | 94.5         | 21 600                | 9 650          | 2 200  | 2 800            | 232253)             | 23225K                         | 123                                 | 227                                 | 2.5             |
|     |        |          |                                |             |              |                       |                |        |                  |                     |                                |                                     |                                     |                 |
|     |        |          |                                |             |              |                       |                |        |                  |                     |                                |                                     |                                     |                 |
|     |        |          |                                |             |              |                       |                |        |                  |                     |                                |                                     |                                     |                 |

<sup>1 )</sup>Smallest allowable dimension for chamfer dimension *r*. 2 ) "**K**" indicates bearings have tapered bore with a taper ratio of 1: 12. 3 )Machined cage is standard for 2322S (K).


# Equivalent bearing load dynamic Pr = XFr + YFa


| $\frac{F_{\rm a}}{F_{\rm r}}$ | e          | $\frac{F_{\rm a}}{F_{\rm r}} > e$ |       |  |  |  |
|-------------------------------|------------|-----------------------------------|-------|--|--|--|
| X                             | Y          | X                                 | Y     |  |  |  |
| 1                             | <b>Y</b> 1 | 0.65                              | $Y_2$ |  |  |  |

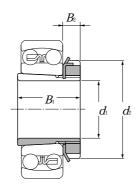
static  $P_{0r} = F_r + Y_0 F_a$  For values of e ,  $Y_1$  ,  $Y_2$  and  $Y_0$  see the table below.

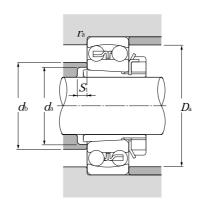
| Constant | Axi   | al load fact | ors         | <b>Mass</b><br>kg |
|----------|-------|--------------|-------------|-------------------|
| e        | $Y_1$ | $Y_2$        | $Y_{\circ}$ | (approx.)         |
| 0.16     | 3.9   | 6.0          | 4.1         | 1.73              |
| 0.25     | 2.5   | 3.9          | 2.7         | 1.97              |
| 0.22     | 2.9   | 4.5          | 3.1         | 4.31              |
| 0.39     | 1.6   | 2.5          | 1.7         | 5.54              |
| 0.17     | 3.7   | 5.7          | 3.8         | 2.09              |
| 0.25     | 2.5   | 3.9          | 2.6         | 2.48              |
| 0.21     | 2.9   | 4.6          | 3.1         | 5.13              |
| 0.37     | 1.7   | 2.6          | 1.8         | 6.56              |
| 0.17     | 3.8   | 5.8          | 3.9         | 2.55              |
| 0.27     | 2.4   | 3.7          | 2.5         | 3.13              |
| 0.22     | 2.8   | 4.3          | 2.9         | 5.94              |
| 0.38     | 1.7   | 2.6          | 1.7         | 7.76              |
| 0.17     | 3.7   | 5.8          | 3.9         | 3.21              |
| 0.27     | 2.4   | 3.7          | 2.5         | 3.87              |
| 0.23     | 2.8   | 4.3          | 2.9         | 6.84              |
| 0.38     | 1.7   | 2.6          | 1.8         | 9.01              |
| 0.17     | 3.6   | 5.6          | 3.8         | 3.82              |
| 0.27     | 2.4   | 3.7          | 2.5         | 4.53              |
| 0.24     | 2.7   | 4.1          | 2.8         | 8.46              |
| 0.38     | 1.7   | 2.6          | 1.8         | 11.6              |
| 0.18     | 3.6   | 5.5          | 3.7         | 4.52              |
| 0.28     | 2.3   | 3.5          | 2.4         | 5.64              |
| 0.23     | 2.7   | 4.2          | 2.9         | 10.0              |
| 0.38     | 1.7   | 2.6          | 1.7         | 14.4              |
| 0.18     | 3.7   | 5.7          | 3.9         | 5.33              |
| 0.28     | 2.2   | 3.5          | 2.3         | 6.64              |
| 0.22     | 2.8   | 4.4          | 3.0         | 12.0              |
| 0.37     | 1.7   | 2.6          | 1.8         | 17.4              |

### (for self-aligning ball bearings)






d 17 ~ 50mm


|       | Boundar        | y dimension | ıs    | Bearing numbers       |                                 | Abutment                        | butment and fillet dimensions |                                 |             |           |  |
|-------|----------------|-------------|-------|-----------------------|---------------------------------|---------------------------------|-------------------------------|---------------------------------|-------------|-----------|--|
|       |                |             |       |                       | $d_{\!\scriptscriptstyle  m a}$ | $d_{\scriptscriptstyle \!\! b}$ | $S_1$                         | $D_{\!\scriptscriptstyle  m a}$ | $r_{ m as}$ | kg        |  |
| $d_1$ | $B_1$          | $d_2$       | $B_2$ |                       | min                             | max                             | min                           | max                             | max         | (approx.) |  |
| Q1    | D <sub>1</sub> | αz.         | Di    |                       | 111111                          | max                             | 111111                        | max                             | max         | (арргох.) |  |
|       | 0.4            | 00          | 7     | 400401/.11004         | 00                              | 07                              | _                             | 44                              | 4           | 0.044     |  |
|       | 24             | 32          | 7     | 1204SK; <b>H 204</b>  | 23                              | 27                              | 5                             | 41                              | 1           | 0.041     |  |
| 17    | 28             | 32          | 7     | 2204SK; <b>H 304</b>  | 24                              | 28                              | 5                             | 41                              | 1           | 0.045     |  |
|       | 28             | 32          | 7     | 1304SK; <b>H 304</b>  | 24                              | 31                              | 8                             | 45                              | 1           | 0.045     |  |
|       | 31             | 32          | 7     | 2304SK; <b>H2304</b>  | 24                              | 28                              | 5                             | 45                              | 1           | 0.049     |  |
|       | 26             | 38          | 8     | 1205SK; <b>H 205X</b> | 28                              | 33                              | 5                             | 46                              | 1           | 0.07      |  |
| 20    | 29             | 38          | 8     | 2205SK; <b>H 305X</b> | 29                              | 33                              | 5                             | 46                              | 1           | 0.075     |  |
| 20    | 29             | 38          | 8     | 1305SK; <b>H 305X</b> | 29                              | 37                              | 6                             | 55                              | 1           | 0.075     |  |
|       | 35             | 38          | 8     | 2305SK; <b>H2305X</b> | 29                              | 34                              | 5                             | 55                              | 1           | 0.087     |  |
|       | 27             | 45          | 8     | 1206SK; <b>H 206X</b> | 33                              | 39                              | 5                             | 56                              | 1           | 0.099     |  |
|       | 31             | 45<br>45    | 8     | 2206SK; <b>H 306X</b> | 33<br>34                        | 39<br>39                        | 5<br>5                        | 56                              | 1           | 0.099     |  |
| 25    | 31             | 45<br>45    | 8     | 1306SK; <b>H 306X</b> | 34                              | 39<br>44                        | 6                             | 65                              | 1           | 0.109     |  |
|       | 38             | 45<br>45    | 8     | 2306SK; <b>H2306X</b> | 3 <del>4</del><br>35            | 44<br>40                        | 5                             | 65                              | 1           | 0.109     |  |
|       | 30             | 40          | 0     | 23003N, <b>H2300X</b> | 33                              | 40                              | 5                             | 65                              | ı           | 0.120     |  |
|       | 29             | 52          | 9     | 1207SK; <b>H 207X</b> | 38                              | 46                              | 5                             | 65                              | 1           | 0.125     |  |
| 30    | 35             | 52          | 9     | 2207SK; <b>H 307X</b> | 39                              | 45                              | 5                             | 65                              | 1           | 0.142     |  |
| 30    | 35             | 52          | 9     | 1307SK; <b>H 307X</b> | 39                              | 50                              | 7                             | 71.5                            | 1.5         | 0.142     |  |
|       | 43             | 52          | 9     | 2307SK; <b>H2307X</b> | 40                              | 46                              | 5                             | 71.5                            | 1.5         | 0.165     |  |
|       | 31             | 58          | 10    | 1208SK; <b>H 208X</b> | 44                              | 52                              | 5                             | 73                              | 1           | 0.174     |  |
|       | 36             | 58          | 10    | 2208SK; <b>H 308X</b> | 44                              | 50                              | 5                             | 73                              | 1           | 0.189     |  |
| 35    | 36             | 58          | 10    | 1308SK; <b>H 308X</b> | 44                              | 56                              | 5                             | 81.5                            | 1.5         | 0.189     |  |
|       | 46             | 58          | 10    | 2308SK; <b>H2308X</b> | 45                              | 52                              | 5                             | 81.5                            | 1.5         | 0.224     |  |
|       | 33             | 65          | 11    | 1209SK; <b>H 209X</b> | 49                              | 57                              | 5                             | 78                              | 1           | 0.227     |  |
|       | 39             | 65          | 11    | 2209SK; <b>H 309X</b> | 49                              | 57                              | 8                             | 78                              | 1           | 0.248     |  |
| 40    | 39             | 65          | 11    | 1309SK; <b>H 309X</b> | 49                              | 61                              | 5                             | 91.5                            | 1.5         | 0.248     |  |
|       | 50             | 65          | 11    | 2309SK; <b>H2309X</b> | 50                              | 58                              | 5                             | 91.5                            | 1.5         | 0.28      |  |
|       | 35             | 70          | 12    | 1210SK; <b>H 210X</b> | 53                              | 62                              | 5                             | 83                              | 1           | 0.274     |  |
|       | 42             | 70          | 12    | 2210SK; <b>H 310X</b> | 54                              | 63                              | 10                            | 83                              | 1           | 0.303     |  |
| 45    | 42             | 70          | 12    | 1310SK; <b>H 310X</b> | 54                              | 67                              | 5                             | 100                             | 2           | 0.303     |  |
|       | 55             | 70          | 12    | 2310SK; <b>H2310X</b> | 56                              | 65                              | 5                             | 100                             | 2           | 0.362     |  |
| 50    | 37             | 75          | 12    | 1211SK; <b>H 211X</b> | 60                              | 70                              | 6                             | 91.5                            | 1.5         | 0.308     |  |
|       | 31             | 7.5         | 14    | 1211011,112117        | 00                              | 70                              | U                             | 31.0                            | 1.5         | 0.500     |  |

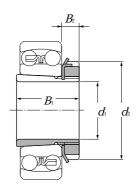
Refers to adapter mass.
 Note: 1. For bearing dimensions, basic rated loads, and mass, refer to pages B-82 to B-84.
 Adapters for series 12 bearings can also be used with H2 and H3 series bearings.
 Caution: the B<sub>1</sub> dimension of H3 series bearings is longer than that of H2 series bearings.

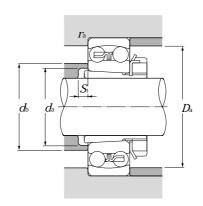
 Adapter numbers which are appended with the code "X" indicate narrow slit type adapters which use washer with straight inner tabs.
 For adapter locknut and washer dimensions, please refer to pages C-2 to C-7, and C-12 to C-14.

### (for self-aligning ball bearings)






d 50 ~ 85mm


|       | Boundar | y dimension | ıs    | Bearing numbers       |                                       | Abutment                            | and fillet d | limensions                      |             | Mass <sup>1)</sup><br>kg |
|-------|---------|-------------|-------|-----------------------|---------------------------------------|-------------------------------------|--------------|---------------------------------|-------------|--------------------------|
|       |         |             |       |                       | $d_{\!\scriptscriptstyle \mathrm{a}}$ | $d_{\scriptscriptstyle \mathrm{b}}$ | $S_1$        | $D_{\!\scriptscriptstyle  m a}$ | <i>T</i> as | '\9                      |
| $d_1$ | $B_1$   | $d_2$       | $B_2$ |                       | min                                   | max                                 | min          | max                             | max         | (approx.)                |
|       |         |             |       |                       |                                       |                                     |              |                                 |             |                          |
|       | 45      | 75          | 12    | 2211SK; <b>H 311X</b> | 60                                    | 69                                  | 11           | 91.5                            | 1.5         | 0.345                    |
| 50    | 45      | 75          | 12    | 1311SK; <b>H 311X</b> | 60                                    | 73                                  | 6            | 110                             | 2           | 0.345                    |
|       | 59      | 75          | 12    | 2311SK; <b>H2311X</b> | 61                                    | 71                                  | 6            | 110                             | 2           | 0.42                     |
|       | 38      | 80          | 13    | 1212SK; <b>H 212X</b> | 64                                    | 76                                  | 5            | 101.5                           | 1.5         | 0.346                    |
|       | 47      | 80          | 13    | 2212SK; <b>H 312X</b> | 65                                    | 75                                  | 9            | 101.5                           | 1.5         | 0.394                    |
| 55    | 47      | 80          | 13    | 1312SK; <b>H 312X</b> | 65                                    | 79                                  | 5            | 118                             | 2           | 0.394                    |
|       | 62      | 80          | 13    | 2312SK; <b>H2312X</b> | 66                                    | 77                                  | 5            | 118                             | 2           | 0.481                    |
|       | 40      | 85          | 14    | 1213SK; <b>H 213X</b> | 70                                    | 83                                  | 5            | 111.5                           | 1.5         | 0.401                    |
|       | 50      | 85          | 14    | 2213SK; <b>H 313X</b> | 70                                    | 81                                  | 8            | 111.5                           | 1.5         | 0.458                    |
| 60    | 50      | 85          | 14    | 1313SK; <b>H 313X</b> | 70                                    | 85                                  | 5            | 128                             | 2           | 0.458                    |
|       | 65      | 85          | 14    | 2313SK; <b>H2313X</b> | 72                                    | 84                                  | 5            | 128                             | 2           | 0.557                    |
|       | 43      | 98          | 15    | 1215SK; <b>H 215X</b> | 80                                    | 93                                  | 5            | 121.5                           | 1.5         | 0.707                    |
| CE    | 55      | 98          | 15    | 2215SK; <b>H 315X</b> | 80                                    | 93                                  | 12           | 121.5                           | 1.5         | 0.831                    |
| 65    | 55      | 98          | 15    | 1315SK; <b>H 315X</b> | 80                                    | 97                                  | 5            | 148                             | 2           | 0.831                    |
|       | 73      | 98          | 15    | 2315SK; <b>H2315X</b> | 82                                    | 96                                  | 5            | 148                             | 2           | 1.05                     |
|       | 46      | 105         | 17    | 1216SK; <b>H 216X</b> | 85                                    | 100                                 | 5            | 130                             | 2           | 0.882                    |
| 70    | 59      | 105         | 17    | 2216SK; <b>H 316X</b> | 86                                    | 98                                  | 12           | 130                             | 2           | 1.03                     |
| 70    | 59      | 105         | 17    | 1316SK; <b>H 316X</b> | 86                                    | 103                                 | 5            | 158                             | 2           | 1.03                     |
|       | 78      | 105         | 17    | 2316SK; <b>H2316X</b> | 87                                    | 103                                 | 5            | 158                             | 2           | 1.28                     |
|       | 50      | 110         | 18    | 1217SK; <b>H 217X</b> | 90                                    | 106                                 | 6            | 140                             | 2           | 1.02                     |
| 75    | 63      | 110         | 18    | 2217SK; <b>H 317X</b> | 91                                    | 104                                 | 12           | 140                             | 2           | 1.18                     |
| 75    | 63      | 110         | 18    | 1317SK; <b>H 317X</b> | 91                                    | 110                                 | 6            | 166                             | 2.5         | 1.18                     |
|       | 82      | 110         | 18    | 2317SK; <b>H2317X</b> | 94                                    | 110                                 | 6            | 166                             | 2.5         | 1.45                     |
|       | 52      | 120         | 18    | 1218SK; <b>H 218X</b> | 95                                    | 111                                 | 6            | 150                             | 2           | 1.19                     |
|       | 65      | 120         | 18    | 2218SK; <b>H 318X</b> | 96                                    | 112                                 | 10           | 150                             | 2           | 1.37                     |
| 80    | 65      | 120         | 18    | 1318SK; <b>H 318X</b> | 96                                    | 116                                 | 6            | 176                             | 2.5         | 1.37                     |
|       | 86      | 120         | 18    | 2318SK; <b>H2318X</b> | 99                                    | 117                                 | 6            | 176                             | 2.5         | 1.69                     |
| 0.5   | 55      | 125         | 19    | 1219SK; <b>H 219X</b> | 101                                   | 118                                 | 7            | 158                             | 2           | 1.37                     |
| 85    | 68      | 125         | 19    | 2219SK; <b>H 319X</b> | 102                                   | 117                                 | 9            | 158                             | 2           | 1.56                     |

Refers to adapter mass.
 Note: 1. For bearing dimensions, basic rated loads, and mass, refer to pages B-82 to B-84.
 Adapters for series 12 bearings can also be used with H2 and H3 series bearings.
 Caution: the B<sub>1</sub> dimension of H3 series bearings is longer than that of H2 series bearings.

 Adapter numbers which are appended with the code "X" indicate narrow slit type adapters which use washer with straight inner tabs.
 For adapter locknut and washer dimensions, please refer to pages C-2 to C-7, and C-12 to C-14.

### (for self-aligning ball bearings)



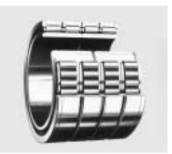


d 85 ~ 100mm

|       | Boundar | y dimensior | ns    | Bearing numbers       |         | Abutment                            | and fillet o | dimensions |               | Mass <sup>1)</sup> |
|-------|---------|-------------|-------|-----------------------|---------|-------------------------------------|--------------|------------|---------------|--------------------|
|       |         | mm          |       |                       |         |                                     | mm           |            |               | kg                 |
|       |         |             |       |                       | $d_{a}$ | $d_{\scriptscriptstyle \mathrm{b}}$ | $S_1$        | $D_{a}$    | $m{arGas}$ as | · ·                |
| $d_1$ | $B_1$   | $d_2$       | $B_2$ |                       | min     | max                                 | min          | max        | max           | (approx.)          |
|       |         |             |       |                       |         |                                     |              |            |               |                    |
| 85    | 68      | 125         | 19    | 1319SK; <b>H 319X</b> | 102     | 123                                 | 7            | 186        | 2.5           | 1.56               |
| 05    | 90      | 125         | 19    | 2319SK; <b>H2319X</b> | 105     | 123                                 | 7            | 186        | 2.5           | 1.92               |
|       | 58      | 130         | 20    | 1220SK; <b>H 220X</b> | 106     | 125                                 | 7            | 168        | 2             | 1.49               |
| 90    | 71      | 130         | 20    | 2220SK; <b>H 320X</b> | 107     | 123                                 | 8            | 168        | 2             | 1.69               |
| 90    | 71      | 130         | 20    | 1320SK; <b>H 320X</b> | 107     | 130                                 | 7            | 201        | 2.5           | 1.69               |
|       | 97      | 130         | 20    | 2320SK; <b>H2320X</b> | 110     | 129                                 | 7            | 201        | 2.5           | 2.15               |
|       | 63      | 145         | 21    | 1222SK; <b>H 222X</b> | 116     | 138                                 | 7            | 188        | 2             | 1.93               |
| 400   | 77      | 145         | 21    | 2222SK; <b>H 322X</b> | 117     | 137                                 | 6            | 188        | 2             | 2.18               |
| 100   | 77      | 145         | 21    | 1322SK; <b>H 322X</b> | 117     | 150                                 | 9            | 226        | 2.5           | 2.18               |
|       | 105     | 145         | 21    | 2322SK; <b>H2322X</b> | 121     | 142                                 | 7            | 226        | 2.5           | 2.74               |
|       |         |             |       | •                     |         |                                     |              |            |               |                    |
|       |         |             |       |                       |         |                                     |              |            |               |                    |

- Refers to adapter mass.
   Note: 1. For bearing dimensions, basic rated loads, and mass, refer to pages B-82 to B-84.
   Adapters for series 12 bearings can also be used with H2 and H3 series bearings.
   Caution: the B<sub>1</sub> dimension of H3 series bearings is longer than that of H2 series bearings.

   Adapter numbers which are appended with the code "X" indicate narrow slit type adapters which use washer with straight inner tabs.
   For adapter locknut and washer dimensions, please refer to pages C-2 to C-7, and C-12 to C-14.














Cylindrical roller bearing

E Type cylindrical roller bearing

Double row cylindrical roller bearing

Four row cylindrical roller bearing

## 1. Types, design features, and characteristics

Since the rolling elements in cylindrical roller bearings make line contact with raceways, these bearings can accommodate heavy radial loads. The rollers are guided by ribs on either the inner or outer ring, therefore these bearings are also suitable for high speed applications. Furthermore, cylindrical roller bearings are separable, and relatively easy to install and disassemble even when interference fits are required.

Among the various types of cylindrical roller bearings, Type E has a high load capacity and its boundary dimensions are identical to standard type. HT type has a large axial load capacity, and HL type provides extended wear life in conditions where the development of a lubricating film inside the bearing is difficult.

Double and multiple row bearing arrangements are also available.

For extremely heavy load applications, the non-separable full complement SL type bearing offers special advantages.

**Table 1** shows the various types and characteristics of single row cylindrical roller bearings. **Table 2** shows the characteristics of non-standard type cylindrical roller bearings.

Table 1 Cylindrical roller bearing types and characteristics

| Type code                        | Design            | Characteristics                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NU type<br>N type                | NU type  N type   | <ul> <li>NU type outer rings have double ribs; outer ring and roller as well as cage can be separated from inner ring. N type inner ring have double ribs; inner ring and roller as well as cage can be separated from outer ring.</li> <li>Unable to accommodate even the lightest axial loads.</li> <li>This type is extremely suitable for, and widely used as, the floating side bearing.</li> </ul> |
| NJ type<br>NF type               | NJ type  NF type  | <ul> <li>NJ type has double ribs on outer ring, single rib on inner ring; NF type has single rib on outer ring, and double rib on inner ring.</li> <li>Can receive single direction axial loads.</li> <li>When there is no distinction between the fixed side and floating side bearing, can be used as a pair in close proximity.</li> </ul>                                                            |
| NUP type<br>NH type<br>(NJ + HJ) | NUP type  NH type | <ul> <li>NUP type has a collar ring attached to the ribless side of the inner ring; NH type is NJ type with an L type collar ring attached. All of these collar rings are separable, and therefore it is necessary to fix the inner ring axially.</li> <li>Can accommodate axial loads in either direction.</li> <li>Widely used as the shaft's fixed-side bearing.</li> </ul>                           |

Table 2 Non-standard type cylindrical roller bearing characteristics

| Bearing type                                               | Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|                                                            | <ul> <li>Boundary dimensions are the same as the standard type, but the diameter, length and number of the rollers have been increased, as well as load capacity.</li> <li>Identified by addition of "E" to end of basic roller number.</li> <li>Enables compact design due to its high load rating.</li> <li>Rollers' inscribed circle diameter differs from standard type rollers and therefore cannot be interchanged.</li> </ul> |  |  |  |  |  |  |  |  |  |
| E Type cylindrical<br>roller bearing                       | NU2220E NU320 NU224E  C=335kN C=299kN C=335kN  E type Standard type bearing  Standard type bearing  bearing                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |
|                                                            | Remarks: In the dimension tables, both E type and standard type are listed, but in the future JIS will change to E type.                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |
| Large axial load use cylindrical roller bearings (HT type) | <ul> <li>Can accommodate larger axial loads than standard type thanks to improved geometry of the rib roller end surface.</li> <li>Please consult NTN Engineering concerning the many factors which require consideration, such as load, lubricant, and installation conditions.</li> </ul>                                                                                                                                          |  |  |  |  |  |  |  |  |  |
| Double row cylindrical roller bearings                     | <ul> <li>NN type and NNU type available.</li> <li>Widely used for applications requiring thin-walled bearings, such the main shafts of machine tools, rolling machine rollers, and in printing equipment.</li> <li>Internal radial clearance is adjusted for the spindle of machine tools by pressing the tapered bore of the inner ring on a tapered shaft.</li> </ul>                                                              |  |  |  |  |  |  |  |  |  |
| Four row cylindrical roller bearings                       | <ul> <li>Used mainly in the necks of rolling machine rollers; designed for maximum rated load to accommodate the severely limited space in the roller neck section of such equipment.</li> <li>Many varieties exist, including sealed types, which have been specially designed for high speed use, to prevent creeping, provide dust and water proofing properties, etc. Contact NTN Engineering.</li> </ul>                        |  |  |  |  |  |  |  |  |  |
| SL type cylindrical roller bearings                        | <ul> <li>Full complement roller bearing capable of handling heavy loads.</li> <li>Consult NTN Engineering regarding special application designs for SL type cylindrical roller bearings.</li> </ul>                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |

#### 2. Standard cage types

**Table 3** shows the standard varieties for cylindrical roller bearings.

Table 3 Standard cage types

| Bearing series | Molded resin cage | Pressed cage | Machined cage                |
|----------------|-------------------|--------------|------------------------------|
| NU10           |                   |              | 1005 ~ 10/500                |
| NU 2<br>NU2E   | 204E ~ 218E       | 208 ~ 230    | 232 ~ 264<br>219E ~ 240E     |
| NU22<br>NU22E  | 2204E ~ 2218E     | 2208 ~ 2230  | 2232 ~ 2264<br>2219E ~ 2240E |
| NU3<br>NU3E    | 304E ~ 314E       | 308 ~ 324    | 326 ~ 356<br>315E ~ 332E     |
| NU23<br>NU23E  | 2304E ~ 2311E     | 2308 ~ 2320  | 2322 ~ 2356<br>2312E ~ 2332E |
| NU4            |                   | 405 ~ 416    |                              |

The basic road ratings listed in the dimension charts correspond to values achieved with the standard cages listed in **Table 3**. Furthermore, please note that even for the identical bearing, in cases where the number of rolling elements or the cage type differs, the basic rated load will also differ from the values listed in the dimension charts.

Note: 1) Within the same bearing series, cage type is identical even if the type code (NJ, NUP, N, NF) differs.

- For high speed and other special applications, machined cages can be manufactured when necessary.
   Consult NTN Engineering.
- Among E type bearings (those using molded resin cages), certain varieties may also use pressed cages. Consult NTN Engineering.
- 4) Although machined cages are standard for two row and four row cylindrical roller bearings, molded resin cages may also be used in some of these bearings for machine tool applications.
- 5) Due to their material properties, molded resin cages cannot be used in applications where temperatures exceed 120°C. #04 - #07 however use resin material with superior ability to withstand heat and high temperatures, which are capable of withstanding temperatures up to 150°C.
- 6) Formed resin cages capable of withstanding temperatures up to 150°C can be manufactured by request for type E (formed resin cage) of #08 or greater. For information, please contact NTN Engineering.

#### 3. Allowable misalignment

Although values vary somewhat depending on bearing type and internal specifications, under general load conditions, to avoid the occurrence of edge loading, allowable misalignments have been set as follows:

Does not include high precision bearings for machine tool main shaft applications.

# 4. Allowable axial load for cylindrical roller bearings

Cylindrical roller bearings with ribs on the inner and outer rings are capable of simultaneously bearing a radial load and an axial load of a certain degree. Unlike basic road ratings based on rolling fatigue, allowable axial load is determined by heat produced on the sliding surface between the ends of the rollers and rib, seizure and wear. Allowable axial load when center axial load is applied is approximately determined by formula (1), which is based upon experience and testing.

$$P_1 = k \cdot d^2 \cdot P_2 \dots (1)$$

Where:

P: Allowable axial load when rotating N (kgf)

k : Factor determined by internal design of bearing (see **Table 4**)

d: Bearing bore  $\,\mathrm{mm}$ 

Pz : Allowable surface pressure of rib MPa {kgf/mm²} (see **Diagram 1**)

If axial load is greater than radial load, the rollers will not rotate properly. The allowable axial load therefore must not exceed the value for  $F_{a \max}$  given in **Table 4**.

The following are also important to operate the bearing smoothly under axial load:

- (1) Do not make the internal radial clearance any larger than necessary.
- (2) Use lubricant with extreme pressure additive.
- (3) Make the shoulder of the housing and shaft high enough for the rib of the bearing.
- (4) If the bearing is to support an extreme axial load, mounting precision should be improved and the bearing should rotate slowly before actual use.

If large cylindrical roller bearings (bore of 300 mm or more)

are to support an axial load or moment load simultaneously, please contact NTN Engineering.

NTN Engineering also offers cylindrical roller bearings for high axial loads (HT type). For details, please contact NTN Engineering.

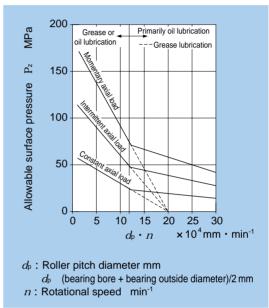
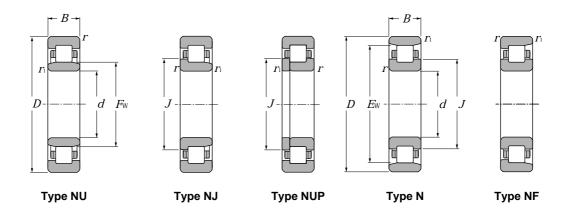
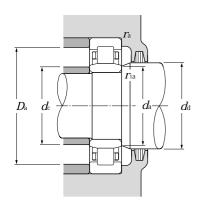



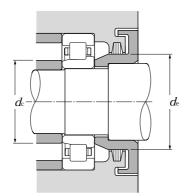

Diagram 1 Allowable surface pressure of rib

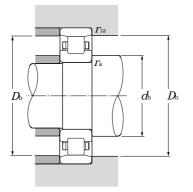
Table 4 Factor k values and allowable axial load ( $F_{a max}$ )

| Bearing series                                  | k     | $F_{ m a\ max}$ |
|-------------------------------------------------|-------|-----------------|
| NJ, NUP10<br>NJ, NUP, NF, NH2,<br>NJ, NUP, NH22 | 0.040 | 0.4 <i>F</i> r  |
| NJ, NUP, NF, NH3,<br>NJ, NUP, NH23              | 0.065 | 0.4 <i>F</i> r  |
| NJ, NUP, NH2E,<br>NJ, NUP, NH22E                | 0.050 | 0.4 <i>F</i> r  |
| NJ, NUP, NH3E,<br>NJ, NUP, NH23E                | 0.080 | 0.4 <i>F</i> r  |
| NJ, NUP, NH4,                                   | 0.100 | $0.4F_{ m r}$   |
| SL01-48                                         | 0.022 | $0.2F_{ m r}$   |
| SL01-49                                         | 0.034 | $0.2F_{ m r}$   |
| SL04-50                                         | 0.044 | $0.2F_{ m r}$   |







d 20 ~ 40mm


|      | Bounda | ry dime | ensions              |                        |             | Basic lo    | ad ratings |             | Limiting | speeds1)         | Beari   | ng num | bers <sup>2</sup> ) |      |
|------|--------|---------|----------------------|------------------------|-------------|-------------|------------|-------------|----------|------------------|---------|--------|---------------------|------|
|      |        |         |                      |                        | dynamic     |             | dynamic    |             |          |                  |         |        |                     |      |
|      |        | mm      |                      |                        | k           | :N          | k          | gf          | m        | in <sup>-1</sup> | type    | type   | type                | type |
| d    | D      | В       | $r_{ m s min}^{3}$ ) | $\Gamma$ ls min $^3$ ) | $C_{\rm r}$ | $C_{ m or}$ | $C_{r}$    | $C_{ m or}$ | grease   | oil              | NU      | NJ     | NUP                 | N    |
|      | 47     | 14      | 1                    | 0.6                    | 25.7        | 22.6        | 2 620      | 2 310       | 15 000   | 18 000           | NU204E  | NJ     | NUP                 |      |
|      | 47     | 18      | 1                    | 0.6                    | 30.5        | 28.3        | 3 100      | 2 890       | 14 000   | 16 000           | NU2204E | NJ     | NUP                 |      |
| 20   | 52     | 15      | 1.1                  | 0.6                    | 31.5        | 26.9        | 3 200      | 2 740       | 13 000   | 15 000           | NU304E  | NJ     | NUP                 |      |
|      | 52     | 21      | 1.1                  | 0.6                    | 42.0        | 39.0        | 4 300      | 3 950       | 12 000   | 14 000           | NU2304E | NJ     | NUP                 |      |
|      | 47     | 12      | 0.6                  | 0.3                    | 15.1        | 14.1        | 1 540      | 1 430       | 16 000   | 19 000           | NU1005  | NJ     | NUP                 | N    |
|      | 52     | 15      | 1                    | 0.6                    | 29.3        | 27.7        | 2 990      | 2 830       | 13 000   | 15 000           | NU205E  | NJ     | NUP                 |      |
| O.F. | 52     | 18      | 1                    | 0.6                    | 35.0        | 34.5        | 3 550      | 3 550       | 11 000   | 13 000           | NU2205E | NJ     | NUP                 |      |
| 25   | 62     | 17      | 1.1                  | 1.1                    | 41.5        | 37.5        | 4 250      | 3 800       | 11 000   | 13 000           | NU305E  | NJ     | NUP                 |      |
|      | 62     | 24      | 1.1                  | 1.1                    | 57.0        | 56.0        | 5 800      | 5 700       | 9 700    | 11 000           | NU2305E | NJ     | NUP                 |      |
|      | 80     | 21      | 1.5                  | 1.5                    | 46.5        | 40.0        | 4 750      | 4 050       | 8 500    | 10 000           | NU405   | NJ     | NUP                 | N    |
|      | 55     | 13      | 1                    | 0.6                    | 19.7        | 19.6        | 2 000      | 2 000       | 14 000   | 16 000           | NU1006  | NJ     | NUP                 | N    |
|      | 62     | 16      | 1                    | 0.6                    | 39.0        | 37.5        | 4 000      | 3 800       | 11 000   | 13 000           | NU206E  | NJ     | NUP                 |      |
| 30   | 62     | 20      | 1                    | 0.6                    | 49.0        | 50.0        | 5 000      | 5 100       | 9 700    | 11 000           | NU2206E | NJ     | NUP                 |      |
| 30   | 72     | 19      | 1.1                  | 1.1                    | 53.0        | 50.0        | 5 400      | 5 100       | 9 300    | 11 000           | NU306E  | NJ     | NUP                 |      |
|      | 72     | 27      | 1.1                  | 1.1                    | 74.5        | 77.5        | 7 600      | 7 900       | 8 300    | 9 700            | NU2306E | NJ     | NUP                 |      |
|      | 90     | 23      | 1.5                  | 1.5                    | 62.5        | 55.0        | 6 400      | 5 600       | 7 300    | 8 500            | NU406   | NJ     | NUP                 | N    |
|      | 62     | 14      | 1                    | 0.6                    | 22.6        | 23.2        | 2 310      | 2 360       | 12 000   | 15 000           | NU1007  | NJ     | NUP                 | N    |
|      | 72     | 17      | 1.1                  | 0.6                    | 50.5        | 50.0        | 5 150      | 5 100       | 9 500    | 11 000           | NU207E  | NJ     | NUP                 |      |
| 35   | 72     | 23      | 1.1                  | 0.6                    | 61.5        | 65.5        | 6 300      | 6 650       | 8 500    | 10 000           | NU2207E | NJ     | NUP                 |      |
| 33   | 80     | 21      | 1.5                  | 1.1                    | 71.0        | 71.0        | 7 200      | 7 200       | 8 100    | 9 600            | NU307E  | NJ     | NUP                 |      |
|      | 80     | 31      | 1.5                  | 1.1                    | 99.0        | 109         | 10 100     | 11 100      | 7 200    | 8 500            | NU2307E | NJ     | NUP                 |      |
|      | 100    | 25      | 1.5                  | 1.5                    | 75.5        | 69.0        | 7 700      | 7 050       | 6 400    | 7 500            | NU407   | NJ     | NUP                 | N    |
|      | 68     | 15      | 1                    | 0.6                    | 27.3        | 29.0        | 2 780      | 2 950       | 11 000   | 13 000           | NU1008  | NJ     | NUP                 | N    |
|      | 80     | 18      | 1.1                  | 1.1                    | 43.5        | 43.0        | 4 450      | 4 350       | 9 400    | 11 000           | NU208   | NJ     | NUP                 | N    |
|      | 80     | 18      | 1.1                  | 1.1                    | 55.5        | 55.5        | 5 700      | 5 650       | 8 500    | 10 000           | NU208E  | NJ     | NUP                 |      |
|      | 80     | 23      | 1.1                  | 1.1                    | 58.0        | 62.0        | 5 950      | 6 300       | 8 500    | 10 000           | NU2208  | NJ     | NUP                 | N    |
| 40   | 80     | 23      | 1.1                  | 1.1                    | 72.5        | 77.5        | 7 400      | 7 900       | 7 600    | 8 900            | NU2208E | NJ     | NUP                 |      |
| 70   | 90     | 23      | 1.5                  | 1.5                    | 58.5        | 57.0        | 6 000      | 5 800       | 8 000    | 9 400            | NU308   | NJ     | NUP                 | N    |
|      | 90     | 23      | 1.5                  | 1.5                    | 83.0        | 81.5        | 8 500      | 8 300       | 7 200    | 8 500            | NU308E  | NJ     | NUP                 |      |
|      | 90     | 33      | 1.5                  | 1.5                    | 82.5        | 88.0        | 8 400      | 8 950       | 7 000    | 8 200            | NU2308  | NJ     | NUP                 | N    |
|      | 90     | 33      | 1.5                  | 1.5                    | 114         | 122         | 11 600     | 12 500      | 6 400    | 7 500            | NU2308E | NJ     | NUP                 | N.   |
|      | 110    | 27      | 2                    | 2                      | 95.5        | 89.0        | 9 750      | 9 100       | 5 700    | 6 700            | NU408   | NJ     | NUP                 | N    |
|      |        |         |                      |                        |             |             |            |             |          |                  |         |        |                     |      |

- 1 ) This value achieved with machined cages; when pressed cages are used, 80% of this value is acceptable.
- 2 ) Production switched to E type only for bearing number for which there is no standard form.
  3 ) Minimal allowable dimension for chamfer dimension r or r.

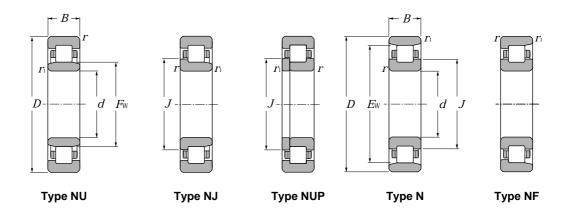








Dynamic equivalent radial load  $P_{\Gamma} = F_{\Gamma}$ 

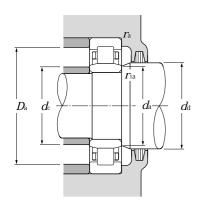

Static equivalent radial load

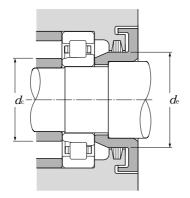
 $P_{\text{or}} = F_{\text{r}}$ 

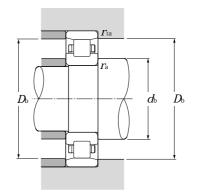
| type<br>NF | 26.5<br>26.5<br>27.5<br>27.5 | mm $E_{ m w}$                 | J<br>29.5 | d₄<br>min  | $d_{\!\scriptscriptstyle  m b}$ min | $d_{c}$  | $d_{ m d}$           | mr             | n          |                                     |                    |     |     | kç      | 3                 |
|------------|------------------------------|-------------------------------|-----------|------------|-------------------------------------|----------|----------------------|----------------|------------|-------------------------------------|--------------------|-----|-----|---------|-------------------|
|            | 26.5<br>26.5<br>27.5         | $E_{\scriptscriptstyle  m W}$ |           |            |                                     |          |                      |                |            | $D_{ m b}$ $r_{ m as}$ $r_{ m las}$ |                    |     |     | kg      |                   |
| NF .       | 26.5<br>26.5<br>27.5         | $E_{ m w}$                    |           | min        | min                                 |          |                      |                |            |                                     | 4.5                |     |     | type NU | type N            |
|            | 26.5<br>27.5                 |                               | 29.5      |            |                                     | max      | min                  | min            | max        | max                                 | min <sup>4</sup> ) | max | max | (app    | rox.)             |
|            | 26.5<br>27.5                 |                               | 29.5      |            |                                     |          |                      |                |            |                                     |                    |     |     |         |                   |
|            | 27.5                         |                               |           | 24         |                                     | 26       | 29                   | 32             | 42         |                                     |                    | 1   | 0.6 | 0.122   |                   |
|            |                              |                               | 29.5      | 24         |                                     | 26       | 29                   | 32             | 42         |                                     |                    | 1   | 0.6 | 0.158   |                   |
|            | ソノち                          |                               | 31.1      | 24         |                                     | 27       | 30                   | 33             | 45.5       |                                     |                    | 1   | 0.6 | 0.176   |                   |
|            | 27.0                         |                               | 31.1      | 24         |                                     | 27       | 30                   | 33             | 45.5       |                                     |                    | 1   | 0.6 | 0.242   |                   |
|            | 30.5                         | 41.5                          | 32.7      | 27         | 29                                  | 30       | 32                   | 33             | 43         | 45                                  | 42.5               | 0.6 | 0.3 | 0.092   | 0.091             |
|            | 31.5                         |                               | 34.5      | 29         |                                     | 31       | 34                   | 37             | 47         |                                     |                    | 1   | 0.6 | 0.151   |                   |
|            | 31.5                         |                               | 34.5      | 29         |                                     | 31       | 34                   | 37             | 47         |                                     |                    | 1   | 0.6 | 0.186   |                   |
|            | 34                           |                               | 38        | 31.5       |                                     | 33       | 37                   | 40             | 55.5       |                                     |                    | 1   | 1   | 0.275   |                   |
|            | 34                           |                               | 38        | 31.5       |                                     | 33       | 37                   | 40             | 55.5       |                                     |                    | 1   | 1   | 0.386   |                   |
| NF         | 38.8                         | 62.8                          | 43.6      | 33         | 33                                  | 38       | 41                   | 46             | 72         | 72                                  | 64                 | 1.5 | 1.5 | 0.55    | 0.536             |
|            | 36.5                         | 48.5                          | 38.9      | 34         | 35                                  | 35       | 38                   | 39.5           | 50         | 51                                  | 49.5               | 1   | 0.6 | 0.13    | 0.128             |
|            | 37.5                         | 10.0                          | 41.1      | 34         | 00                                  | 37       | 40                   | 44             | 57         | 0.                                  | 10.0               | 1   | 0.6 | 0.226   | 0.120             |
|            | 37.5                         |                               | 41.1      | 34         |                                     | 37       | 40                   | 44             | 57         |                                     |                    | 1   | 0.6 | 0.297   |                   |
|            | 40.5                         |                               | 44.9      | 36.5       |                                     | 40       | 44                   | 48             | 65.5       |                                     |                    | 1   | 1   | 0.398   |                   |
|            | 40.5                         |                               | 44.9      | 36.5       |                                     | 40       | 44                   | 48             | 65.5       |                                     |                    | 1   | 1   | 0.58    |                   |
| NF         | 45                           | 73                            | 50.5      | 38         | 38                                  | 44       | 47                   | 52             | 82         | 82                                  | 74                 | 1.5 | 1.5 | 0.751   | 0.732             |
|            | 42                           | 55                            | 44.6      | 39         | 40                                  | 41       | 44                   | 45             | 57         | 58                                  | 56                 | 1   | 0.6 | 0.179   | 0.176             |
|            | 44                           | 55                            | 48        | 39         | 40                                  | 43       | 46                   | <del>4</del> 3 | 65.5       | 50                                  | 30                 | 1   | 0.6 | 0.179   | 0.170             |
|            | 44                           |                               | 48        | 39         |                                     | 43       | 46                   | 50             | 65.5       |                                     |                    | 1   | 0.6 | 0.327   |                   |
|            | 46.2                         |                               | 51        | 41.5       |                                     | 45       | 48                   | 53             | 72         |                                     |                    | 1.5 | 1   | 0.545   |                   |
|            | 46.2                         |                               | 51        | 41.5       |                                     | 45       | 48                   | 53             | 72         |                                     |                    | 1.5 | 1   | 0.78    |                   |
| NF         | 53                           | 83                            | 59        | 43         | 43                                  | 52       | 55                   | 61             | 92         | 92                                  | 84                 | 1.5 | 1.5 | 0.99    | 0.965             |
|            | 47                           | 61                            | 49.8      | 44         | 45                                  | 46       | 49                   | 50.5           | 63         | 64                                  | 62                 | 1   | 0.6 | 0.22    | 0.217             |
| NF         | 50                           | 70                            | 54.2      | 44<br>46.5 | 46.5                                | 49       | <del>4</del> 9<br>52 | 56             | 73.5       | 73.5                                | 72                 | 1   | 1   | 0.22    | 0.217             |
| INF        | 49.5                         | 70                            | 53.9      | 46.5       | 40.5                                | 49<br>49 | 52                   | 56             | 73.5       | 73.5                                | 12                 | 1   | 1   | 0.376   | 0.37              |
|            | <del>4</del> 9.5             | 70                            | 54.2      | 46.5       | 46.5                                | 49       | 52                   | 56             | 73.5       | 73.5                                | 72                 | 1   | 1   | 0.420   | 0.48              |
|            | 49.5                         | 70                            | 53.9      | 46.5       | +0.0                                | 49<br>49 | 52                   | 56             | 73.5       | 13.3                                | 12                 | 1   | 1   | 0.49    | U. <del>1</del> U |
| NF         | 53.5                         | 77.5                          | 58.4      | 48.5       | 48                                  | 51       | 55                   | 60             | 73.5<br>82 | 82                                  | 80                 | 1.5 | 1.5 | 0.552   | 0.643             |
| .41        | 52                           | 11.5                          | 57.6      | 48         | <del>-1</del> 0                     | 51       | 55                   | 60             | 82         | 02                                  | 50                 | 1.5 | 1.5 | 0.056   | 0.0-3             |
|            | 53.5                         | 77.5                          | 58.4      | 48         | 48                                  | 51       | 55                   | 60             | 82         | 82                                  | 80                 | 1.5 | 1.5 | 0.754   | 0.932             |
|            | 52                           | 11.5                          | 57.6      | 48         | <del>-1</del> 0                     | 51       | 55                   | 60             | 82         | 02                                  | 00                 | 1.5 | 1.5 | 1.06    | 0.302             |
| NF         | 58                           | 92                            | 64.8      | 49         | 49                                  | 57       | 60                   | 67             | 101        | 101                                 | 93                 | 2   | 2   | 1.3     | 1.27              |
|            | 50                           | 32                            | 0-7.0     | T-U        | 70                                  | 51       | 00                   | O1             | 101        | 101                                 | 90                 | _   |     | 1.0     | 1.41              |

<sup>4 )</sup> Does not apply to side of the outer ring rib of type  $\mbox{\bf NF}$  bearings.







|            | Bounda   | ry dime        | ensions            |                        |                |              | ad ratings                      |                | Limiting speeds <sup>1)</sup> Bearing numbers <sup>2)</sup> |                 |                   |      |             |           |
|------------|----------|----------------|--------------------|------------------------|----------------|--------------|---------------------------------|----------------|-------------------------------------------------------------|-----------------|-------------------|------|-------------|-----------|
|            |          |                |                    |                        | dynamic        | static<br>:N | dynamic                         |                |                                                             | ·1              | <b>4</b> ,        | 4    | 4           | 4         |
| J          | D        | mm<br><i>B</i> | $r_{ m s min}^{3}$ | rls min <sup>3</sup> ) | C <sub>r</sub> |              |                                 | gf             |                                                             | in-1            | type<br>NU        | type | type<br>NUP | type<br>N |
| d          | D        | D              | I's min            | I'ls min               | Cr             | $C_{ m or}$  | $C_{\scriptscriptstyle \Gamma}$ | $C_{ m or}$    | grease                                                      | oil             | NU                | NJ   | NUP         | IN        |
|            | 75       | 40             | 4                  | 0.0                    | 24.0           | 24.0         | 2 200                           | 0.450          | 0.000                                                       | 40.000          | NU1009            | NJ   | NUP         | N         |
|            | 75       | 16<br>19       | 1<br>1.1           | 0.6<br>1.1             | 31.0<br>46.0   | 34.0         | 3 200                           | 3 450<br>4 800 | 9 900<br>8 400                                              | 12 000<br>9 900 | NU209             | NJ   | NUP         | N<br>N    |
|            | 85<br>85 | 19             | 1.1                | 1.1                    | 46.0<br>63.0   | 47.0<br>66.5 | 4 700<br>6 450                  | 6 800          | 7 600                                                       | 9 000           | NU209<br>NU209E   | NJ   | NUP         | N         |
|            | 85       | 23             | 1.1                | 1.1                    | 61.5           | 68.0         | 6 250                           | 6 900          | 7 600<br>7 600                                              | 9 000           | NU209E<br>NU2209  | NJ   | NUP         | N         |
|            | 85       | 23<br>23       | 1.1                | 1.1                    | 76.0           | 84.5         | 7 750                           | 8 600          | 6 800                                                       | 8 000           | NU2209<br>NU2209E | NJ   | NUP         | IN        |
| 45         | 100      | 25<br>25       | 1.5                | 1.5                    | 74.0           | 71.0         | 7 550                           | 7 250          | 7 200                                                       | 8 400           | NU309             | NJ   | NUP         | N         |
|            | 100      | 25             | 1.5                | 1.5                    | 97.5           | 98.5         | 9 950                           | 10 000         | 6 500                                                       | 7 600           | NU309E            | NJ   | NUP         | 14        |
|            | 100      | 36             | 1.5                | 1.5                    | 99.0           | 104          | 10 100                          | 10 600         | 6 300                                                       | 7 400           | NU2309            | NJ   | NUP         | N         |
|            | 100      | 36             | 1.5                | 1.5                    | 137            | 153          | 14 000                          | 15 600         | 5 700                                                       | 6 800           | NU2309E           | NJ   | NUP         | • •       |
|            | 120      | 29             | 2                  | 2                      | 107            | 102          | 10 900                          | 10 400         | 5 100                                                       | 6 000           | NU409             | NJ   | NUP         | N         |
|            | 120      |                |                    |                        | 107            | 102          | 10 000                          | 10 100         | 0 100                                                       | 0 000           |                   | 110  |             |           |
|            | 80       | 16             | 1                  | 0.6                    | 32.0           | 36.0         | 3 300                           | 3 700          | 8 900                                                       | 11 000          | NU1010            | NJ   | NUP         | N         |
|            | 90       | 20             | 1.1                | 1.1                    | 48.0           | 51.0         | 4 900                           | 5 200          | 7 600                                                       | 9 000           | NU210             | NJ   | NUP         | N         |
|            | 90       | 20             | 1.1                | 1.1                    | 66.0           | 72.0         | 6 750                           | 7 350          | 6 900                                                       | 8 100           | NU210E            | NJ   | NUP         |           |
|            | 90       | 23             | 1.1                | 1.1                    | 64.0           | 73.5         | 6 550                           | 7 500          | 6 900                                                       | 8 100           | NU2210            | NJ   | NUP         | N         |
| <b>-</b> 0 | 90       | 23             | 1.1                | 1.1                    | 79.5           | 91.5         | 8 100                           | 9 350          | 6 200                                                       | 7 300           | NU2210E           | NJ   | NUP         |           |
| 50         | 110      | 27             | 2                  | 2                      | 87.0           | 86.0         | 8 850                           | 8 800          | 6 500                                                       | 7 700           | NU310             | NJ   | NUP         | N         |
|            | 110      | 27             | 2                  | 2                      | 110            | 113          | 11 200                          | 11 500         | 5 900                                                       | 6 900           | NU310E            | NJ   | NUP         |           |
|            | 110      | 40             | 2                  | 2                      | 121            | 131          | 12 300                          | 13 400         | 5 700                                                       | 6 700           | NU2310            | NJ   | NUP         | N         |
|            | 110      | 40             | 2                  | 2                      | 163            | 187          | 16 600                          | 19 000         | 5 200                                                       | 6 100           | NU2310E           | NJ   | NUP         |           |
|            | 130      | 31             | 2.1                | 2.1                    | 129            | 124          | 13 200                          | 12 600         | 4 700                                                       | 5 500           | NU410             | NJ   | NUP         | N         |
|            | 90       | 18             | 1.1                | 1                      | 37.5           | 44.0         | 3 850                           | 4 450          | 8 200                                                       | 9 700           | NU1011            | NJ   | NUP         | N         |
|            | 100      | 21             | 1.5                | 1.1                    | 58.0           | 62.5         | 5 900                           | 6 350          | 6 900                                                       | 8 200           | NU211             | NJ   | NUP         | N         |
|            | 100      | 21             | 1.5                | 1.1                    | 82.5           | 93.0         | 8 400                           | 9 500          | 6 300                                                       | 7 400           | NU211E            | NJ   | NUP         | .,        |
|            | 100      | 25             | 1.5                | 1.1                    | 75.5           | 87.0         | 7 700                           | 8 900          | 6 300                                                       | 7 400           | NU2211            | NJ   | NUP         | N         |
|            | 100      | 25             | 1.5                | 1.1                    | 97.0           | 114          | 9 900                           | 11 700         | 5 600                                                       | 6 600           | NU2211E           | NJ   | NUP         | •         |
| 55         | 120      | 29             | 2                  | 2                      | 111            | 111          | 11 300                          | 11 400         | 5 900                                                       | 7 000           | NU311             | NJ   | NUP         | N         |
|            | 120      | 29             | 2                  | 2                      | 137            | 143          | 14 000                          | 14 600         | 5 300                                                       | 6 300           | NU311E            | NJ   | NUP         |           |
|            | 120      | 43             | 2                  | 2                      | 148            | 162          | 15 100                          | 16 500         | 5 200                                                       | 6 100           | NU2311            | NJ   | NUP         | N         |
|            | 120      | 43             | 2                  | 2                      | 201            | 233          | 20 500                          | 23 800         | 4 700                                                       | 5 600           | NU2311E           | NJ   | NUP         |           |
|            | 140      | 33             | 2.1                | 2.1                    | 139            | 138          | 14 200                          | 14 100         | 4 300                                                       | 5 000           | NU411             | NJ   | NUP         | N         |
|            |          |                |                    |                        | 40.5           | 45 -         | 4 :                             | 4.6=5          |                                                             | 0.555           |                   |      |             |           |
|            | 95       | 18             | 1.1                | 1                      | 40.0           | 48.5         | 4 100                           | 4 950          | 7 500                                                       | 8 800           | NU1012            | NJ   | NUP         | N         |
| 60         | 110      | 22             | 1.5                | 1.5                    | 68.5           | 75.0         | 7 000                           | 7 650          | 6 400                                                       | 7 600           | NU212             | NJ   | NUP         | N         |
|            | 110      | 22             | 1.5                | 1.5                    | 97.5           | 107          | 9 950                           | 10 900         | 5 800                                                       | 6 800           | NU212E            | NJ   | NUP         | N         |
|            | 110      | 28             | 1.5                | 1.5                    | 96.0           | 116          | 9 800                           | 11 800         | 5 800                                                       | 6 800           | NU2212            | NJ   | NUP         | N         |
|            |          |                |                    |                        |                |              |                                 |                |                                                             |                 |                   |      |             |           |

- 1 ) This value achieved with machined cages; when pressed cages are used, 80% of this value is acceptable.
- 2 ) Production switched to E type only for bearing number for which there is no standard form.
  3 ) Minimal allowable dimension for chamfer dimension r or r.

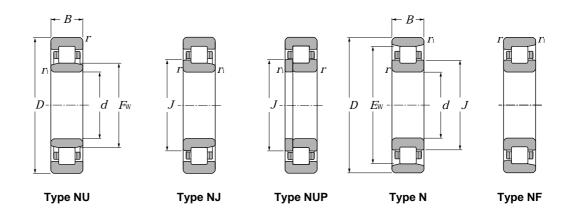








Dynamic equivalent radial load  $P_{\rm r} = F_{\rm r}$ 

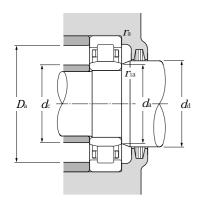

Static equivalent

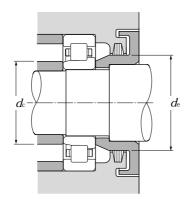
radial load  $P_{\text{or}} = F_{\text{r}}$ 

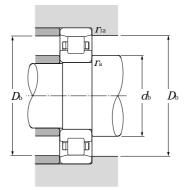
|      | Dii          | mensions   | <b>.</b>     |          |                                     |          | Abutme     | ent and fi | llet dime                       | nsions     |                    |            |                    | Mass         |        |  |
|------|--------------|------------|--------------|----------|-------------------------------------|----------|------------|------------|---------------------------------|------------|--------------------|------------|--------------------|--------------|--------|--|
|      |              | mm         |              |          |                                     |          |            | mr         | n                               |            |                    |            |                    | k            | g      |  |
| type |              | -          | 7            | $d_{a}$  | $d_{\scriptscriptstyle \mathrm{b}}$ | $d_{c}$  | $d_{ m d}$ | $d_{e}$    | $D_{\!\scriptscriptstyle  m a}$ | $D_{ m f}$ |                    | $m{arGas}$ | $m{\varGamma}$ las | type NU      | type N |  |
| NF   | $F_{ m w}$   | $E_{ m w}$ | J            | min      | min                                 | max      | min        | min        | max                             | max        | min <sup>4</sup> ) | max        | max                | (арр         | rox.)  |  |
|      | 52.5         | 67.5       | 55.5         | 49       | 50                                  | 52       | 54         | 56         | 70                              | 71         | 68.5               | 1          | 0.6                | 0.28         | 0.276  |  |
| NF   | 55           | 75         | 59           | 51.5     | 51.5                                | 54       | 57         | 61         | 78.5                            | 78.5       | 77                 | 1          | 1                  | 0.432        | 0.423  |  |
|      | 54.5         |            | 58.9         | 51.5     |                                     | 54       | 57         | 61         | 78.5                            |            |                    | 1          | 1                  | 0.495        |        |  |
|      | 55           | 75         | 59           | 51.5     | 51.5                                | 54       | 57         | 61         | 78.5                            | 78.5       | 77                 | 1          | 1                  | 0.53         | 0.52   |  |
|      | 54.5         |            | 58.9         | 51.5     |                                     | 54       | 57         | 61         | 78.5                            |            |                    | 1          | 1                  | 0.6          |        |  |
| NF   | 58.5         | 86.5       | 64           | 53       | 53                                  | 57       | 60         | 66         | 92                              | 92         | 89                 | 1.5        | 1.5                | 0.877        | 0.857  |  |
|      | 58.5         |            | 64.5         | 53       |                                     | 57       | 60         | 66         | 92                              |            |                    | 1.5        | 1.5                | 0.996        |        |  |
|      | 58.5         | 86.5       | 64           | 53       | 53                                  | 57       | 60         | 66         | 92                              | 92         | 89                 | 1.5        | 1.5                | 1.27         | 1.24   |  |
|      | 58.5         |            | 64.5         | 53       |                                     | 57       | 60         | 66         | 92                              |            |                    | 1.5        | 1.5                | 1.41         |        |  |
| NF   | 64.5         | 100.5      | 71.8         | 54       | 54                                  | 63       | 66         | 74         | 111                             | 111        | 102                | 2          | 2                  | 1.62         | 1.58   |  |
|      | 57.5         | 72.5       | 60.5         | 54       | 55                                  | 57       | 59         | 61         | 75                              | 76         | 73.5               | 1          | 0.6                | 0.295        | 0.291  |  |
| NF   | 60.4         | 80.4       | 64.6         | 56.5     | 56.5                                | 58       | 62         | 67         | 83.5                            | 83.5       | 83                 | 1          | 1                  | 0.47         | 0.46   |  |
|      | 59.5         |            | 63.9         | 56.5     |                                     | 58       | 62         | 67         | 83.5                            |            |                    | 1          | 1                  | 0.54         |        |  |
|      | 60.4         | 80.4       | 64.6         | 56.5     | 56.5                                | 58       | 62         | 67         | 83.5                            | 83.5       | 83                 | 1          | 1                  | 0.571        | 0.56   |  |
|      | 59.5         |            | 63.9         | 56.5     |                                     | 58       | 62         | 67         | 83.5                            |            |                    | 1          | 1                  | 0.652        |        |  |
| NF   | 65           | 95         | 71           | 59       | 59                                  | 63       | 67         | 73         | 101                             | 101        | 98                 | 2          | 2                  | 1.14         | 1.11   |  |
|      | 65           |            | 71.4         | 59       |                                     | 63       | 67         | 73         | 101                             |            |                    | 2          | 2                  | 1.3          |        |  |
|      | 65           | 95         | 71           | 59       | 59                                  | 63       | 67         | 73         | 101                             | 101        | 98                 | 2          | 2                  | 1.7          | 1.67   |  |
|      | 65           |            | 71.4         | 59       |                                     | 63       | 67         | 73         | 101                             |            |                    | 2          | 2                  | 1.9          |        |  |
| NF   | 70.8         | 110.8      | 78.8         | 61       | 61                                  | 69       | 73         | 81         | 119                             | 119        | 112                | 2          | 2                  | 2.02         | 1.97   |  |
|      | 64.5         | 80.5       | 67.7         | 60       | 61.5                                | 63       | 66         | 68.5       | 83.5                            | 85         | 81.5               | 1          | 1                  | 0.442        | 0.435  |  |
| NF   | 66.5         | 88.5       | 70.8         | 61.5     | 63                                  | 65       | 68         | 73         | 92                              | 93.5       | 91                 | 1.5        | 1                  | 0.638        | 0.626  |  |
|      | 66           |            | 70.8         | 61.5     |                                     | 65       | 68         | 73         | 92                              |            |                    | 1.5        | 1                  | 0.718        |        |  |
|      | 66.5         | 88.5       | 70.8         | 61.5     | 63                                  | 65       | 68         | 73         | 92                              | 93.5       | 91                 | 1.5        | 1                  | 0.773        | 0.758  |  |
|      | 66           |            | 70.8         | 61.5     |                                     | 65       | 68         | 73         | 92                              |            |                    | 1.5        | 1                  | 0.968        |        |  |
| NF   | 70.5         | 104.5      | 77.2         | 64       | 64                                  | 69       | 72         | 80         | 111                             | 111        | 107                | 2          | 2                  | 1.45         | 1.42   |  |
|      | 70.5         | 4045       | 77.7         | 64       | 0.4                                 | 69       | 72         | 80         | 111                             | 444        | 407                | 2          | 2                  | 1.65         | 0.40   |  |
|      | 70.5         | 104.5      | 77.2         | 64       | 64                                  | 69       | 72<br>70   | 80         | 111                             | 111        | 107                | 2          | 2                  | 2.17         | 2.13   |  |
| NF   | 70.5<br>77.2 | 117.2      | 77.7<br>85.2 | 64<br>66 | 66                                  | 69<br>76 | 72<br>79   | 80<br>87   | 111<br>129                      | 120        | 110                | 2<br>2     | 2<br>2             | 2.37<br>2.48 | 2.42   |  |
| INF  | 11.2         | 111.2      | 00.2         | 00       | 66                                  | 70       | 19         | 01         | 129                             | 129        | 119                |            |                    | ∠.40         | 2.42   |  |
|      | 69.5         | 85.5       | 72.7         | 65       | 66.5                                | 68       | 71         | 73.5       | 88.5                            | 90         | 86.5               | 1          | 1                  | 0.474        | 0.467  |  |
| NF   | 73.5         | 97.5       | 78.4         | 68       | 68                                  | 71       | 75         | 80         | 102                             | 102        | 100                | 1.5        | 1.5                | 0.818        | 0.802  |  |
|      | 72           |            | 77.6         | 68       |                                     | 71       | 75         | 80         | 102                             |            |                    | 1.5        | 1.5                | 0.923        |        |  |
|      | 73.5         | 97.5       | 78.4         | 68       | 68                                  | 71       | 75         | 80         | 102                             | 102        | 100                | 1.5        | 1.5                | 1.06         | 1.04   |  |
|      |              |            |              |          |                                     |          |            |            |                                 |            |                    |            |                    |              |        |  |

<sup>4 )</sup> Does not apply to side of the outer ring rib of type  $\mbox{\bf NF}$  bearings.







|    | Bounda | ry dime  | nsions              |                    | dynamic |             | ad ratings<br>dynamic | static      | Limiting       | speeds1)        | Beari            | ng num   | bers <sup>2</sup> ) |      |
|----|--------|----------|---------------------|--------------------|---------|-------------|-----------------------|-------------|----------------|-----------------|------------------|----------|---------------------|------|
|    |        | mm       |                     |                    | •       | (N          | •                     | gf          | mir            | n <sup>-1</sup> | type             | type     | type                | type |
| d  | D      | В        | $r_{ m smin}^{3}$ ) | $r_{ m lsmin}^{3}$ |         | $C_{ m or}$ | $C_{\Gamma}$          | $C_{ m or}$ | grease         | oil             | NU               | NJ       | NUP                 | N    |
|    | 110    | 28       | 1.5                 | 1.5                | 131     | 157         | 13 400                | 16 000      | 5 200          | 6 100           | NU2212E          | NJ       | NUP                 |      |
|    | 130    | 31       | 2.1                 | 2.1                | 124     | 126         | 12 600                | 12 900      | 5 500          | 6 500           | NU312            | NJ       | NUP                 | N    |
|    | 130    | 31       | 2.1                 | 2.1                | 150     | 157         | 15 200                | 16 000      | 4 900          | 5 800           | NU312E           | NJ       | NUP                 |      |
| 60 | 130    | 46       | 2.1                 | 2.1                | 169     | 188         | 17 200                | 19 200      | 4 800          | 5 700           | NU2312           | NJ       | NUP                 | N    |
|    | 130    | 46       | 2.1                 | 2.1                | 222     | 262         | 22 700                | 26 700      | 4 400          | 5 200           | NU2312E          | NJ       | NUP                 |      |
|    | 150    | 35       | 2.1                 | 2.1                | 167     | 168         | 17 100                | 17 200      | 3 900          | 4 600           | NU412            | NJ       | NUP                 | N    |
|    | 100    | 18       | 1.1                 | 1                  | 41.0    | 51.0        | 4 200                 | 5 200       | 7 000          | 8 200           | NU1013           | NJ       | NUP                 | N    |
|    | 120    | 23       | 1.5                 | 1.5                | 84.0    | 94.5        | 8 550                 | 9 650       | 5 900          | 7 000           | NU213            | NJ       | NUP                 | N    |
|    | 120    | 23       | 1.5                 | 1.5                | 108     | 119         | 11 000                | 12 100      | 5 400          | 6 300           | NU213E           | NJ       | NUP                 |      |
|    | 120    | 31       | 1.5                 | 1.5                | 120     | 149         | 12 200                | 15 200      | 5 400          | 6 300           | NU2213           | NJ       | NUP                 | N    |
| 65 | 120    | 31       | 1.5                 | 1.5                | 149     | 181         | 15 200                | 18 400      | 4 800          | 5 600           | NU2213E          | NJ       | NUP                 |      |
| 03 | 140    | 33       | 2.1                 | 2.1                | 135     | 139         | 13 800                | 14 200      | 5 100          | 6 000           | NU313            | NJ       | NUP                 | N    |
|    | 140    | 33       | 2.1                 | 2.1                | 181     | 191         | 18 400                | 19 500      | 4 600          | 5 400           | NU313E           | NJ       | NUP                 |      |
|    | 140    | 48       | 2.1                 | 2.1                | 188     | 212         | 19 100                | 21 700      | 4 400          | 5 200           | NU2313           | NJ       | NUP                 | N    |
|    | 140    | 48       | 2.1                 | 2.1                | 248     | 287         | 25 200                | 29 300      | 4 100          | 4 800           | NU2313E          | NJ       | NUP                 |      |
|    | 160    | 37       | 2.1                 | 2.1                | 182     | 186         | 18 600                | 19 000      | 3 600          | 4 300           | NU413            | NJ       | NUP                 | N    |
|    | 110    | 20       | 1.1                 | 1                  | 58.5    | 70.5        | 5 950                 | 7 200       | 6 500          | 7 600           | NU1014           | NJ       | NUP                 | N    |
|    | 125    | 24       | 1.5                 | 1.5                | 83.5    | 95.0        | 8 500                 | 9 700       | 5 500          | 6 500           | NU214            | NJ       | NUP                 | N    |
|    | 125    | 24       | 1.5                 | 1.5                | 119     | 137         | 12 100                | 14 000      | 5 000          | 5 900           | NU214E           | NJ       | NUP                 |      |
|    | 125    | 31       | 1.5                 | 1.5                | 119     | 151         | 12 200                | 15 400      | 5 000          | 5 900           | NU2214           | NJ       | NUP                 | N    |
| 70 | 125    | 31       | 1.5                 | 1.5                | 156     | 194         | 15 900                | 19 800      | 4 500          | 5 200           | NU2214E          | NJ       | NUP                 |      |
| 70 | 150    | 35       | 2.1                 | 2.1                | 158     | 168         | 16 100                | 17 200      | 4 700          | 5 500           | NU314            | NJ       | NUP                 | N    |
|    | 150    | 35       | 2.1                 | 2.1                | 205     | 222         | 20 900                | 22 600      | 4 200          | 5 000           | NU314E           | NJ       | NUP                 |      |
|    | 150    | 51       | 2.1                 | 2.1                | 223     | 262         | 22 700                | 26 700      | 4 100          | 4 800           | NU2314           | NJ       | NUP                 | N    |
|    | 150    | 51       | 2.1                 | 2.1                | 274     | 325         | 27 900                | 33 000      | 3 800          | 4 400           | NU2314E          | NJ       | NUP                 |      |
|    | 180    | 42       | 3                   | 3                  | 228     | 236         | 23 200                | 24 000      | 3 400          | 4 000           | NU414            | NJ       | NUP                 | N    |
|    | 115    | 20       | 1.1                 | 1                  | 60.0    | 74.5        | 6 100                 | 7 600       | 6 100          | 7 100           | NU1015           | NJ       | NUP                 | N    |
|    | 130    | 25       | 1.5                 | 1.5                | 96.5    | 111         | 9 850                 | 11 300      | 5 100          | 6 000           | NU215            | NJ       | NUP                 | N    |
|    | 130    | 25       | 1.5                 | 1.5                | 130     | 156         | 13 300                | 16 000      | 4 700          | 5 500           | NU215E           | NJ       | NUP                 |      |
| 75 | 130    | 31       | 1.5                 | 1.5                | 130     | 162         | 13 200                | 16 500      | 4 700          | 5 500           | NU2215           | NJ       | NUP                 | N    |
| _  | 130    | 31       | 1.5                 | 1.5                | 162     | 207         | 16 500                | 21 100      | 4 200          | 4 900           | NU2215E          | NJ       | NUP                 | NI.  |
|    | 160    | 37<br>27 | 2.1                 | 2.1                | 190     | 205         | 19 400                | 20 900      | 4 400          | 5 200           | NU315            | NJ       | NUP                 | N    |
|    | 160    | 37<br>55 | 2.1<br>2.1          | 2.1<br>2.1         | 240     | 263<br>300  | 24 500<br>26 300      | 26 800      | 4 000<br>3 800 | 4 700<br>4 500  | NU315E<br>NU2315 | NJ<br>NJ | NUP<br>NUP          | N    |
|    | 160    | ၁၁       | ۷.۱                 | ۷.۱                | 258     | 300         | 20 300                | 31 000      | 3 000          | 4 500           | NUZSIS           | NJ       | NUP                 | IN   |
|    |        |          |                     |                    |         |             |                       |             |                |                 |                  |          |                     |      |

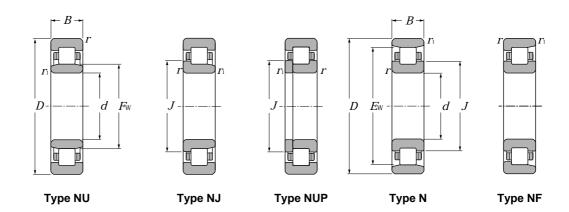
- 1 ) This value achieved with machined cages; when pressed cages are used, 80% of this value is acceptable.
- 2 ) Production switched to E type only for bearing number for which there is no standard form.
  3 ) Minimal allowable dimension for chamfer dimension r or r.









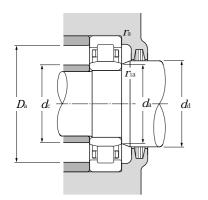

Dynamic equivalent radial load  $P_{\rm r} = F_{\rm r}$ 

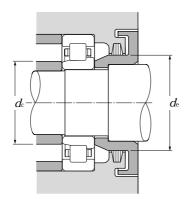
Static equivalent radial load  $P_{\rm or} = F_{\rm r}$ 

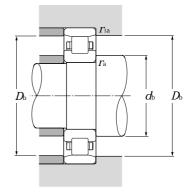
|            | Dii        | mension                      | s     |                                     |                                     |                                     | Abutme              | ent and fi                         | llet dime                           | nsions |                                         |                 |                      | Ma      | ss               |
|------------|------------|------------------------------|-------|-------------------------------------|-------------------------------------|-------------------------------------|---------------------|------------------------------------|-------------------------------------|--------|-----------------------------------------|-----------------|----------------------|---------|------------------|
|            |            | mm                           |       |                                     |                                     |                                     |                     | mr                                 |                                     |        |                                         |                 |                      | k       | g                |
| type<br>NF | $F_{ m w}$ | $E_{\scriptscriptstyle m W}$ | J     | $d_{\!\scriptscriptstyle  m a}$ min | $d_{\!\scriptscriptstyle  m b}$ min | $d_{\!\scriptscriptstyle  m C}$ max | $d_{\!	ext{d}}$ min | $d_{\!\scriptscriptstyle m e}$ min | $D_{\!\scriptscriptstyle  m a}$ max | max 1  | $D_{\rm b}$ min <sup>4</sup> )          | r <sub>as</sub> | <i>I</i> ¹las<br>max | type NU | type N<br>orox.) |
|            | 1 W        | Lw                           | J     |                                     |                                     | max                                 |                     |                                    | max                                 | max    | *************************************** | max             | max                  | (арр    | nox.)            |
|            | 72         |                              | 77.6  | 68                                  |                                     | 71                                  | 75                  | 80                                 | 102                                 |        |                                         | 1.5             | 1.5                  | 1.21    |                  |
| NF         | 77         | 113                          | 84.2  | 71                                  | 71                                  | 75                                  | 79                  | 86                                 | 119                                 | 119    | 116                                     | 2               | 2                    | 1.8     | 1.76             |
|            | 77         |                              | 84.6  | 71                                  |                                     | 75                                  | 79                  | 86                                 | 119                                 |        |                                         | 2               | 2                    | 2.05    |                  |
|            | 77         | 113                          | 84.2  | 71                                  | 71                                  | 75                                  | 79                  | 86                                 | 119                                 | 119    | 116                                     | 2               | 2                    | 2.71    | 2.66             |
|            | 77         |                              | 84.6  | 71                                  |                                     | 75                                  | 79                  | 86                                 | 119                                 |        |                                         | 2               | 2                    | 2.96    |                  |
| NF         | 83         | 127                          | 91.8  | 71                                  | 71                                  | 82                                  | 85                  | 94                                 | 139                                 | 139    | 128                                     | 2               | 2                    | 3       | 2.93             |
|            | 74.5       | 90.5                         | 77.7  | 70                                  | 71.5                                | 73                                  | 76                  | 78.5                               | 93.5                                | 95     | 91.5                                    | 1               | 1                    | 0.485   | 0.477            |
| NF         | 79.6       | 105.6                        | 84.8  | 73                                  | 73                                  | 77                                  | 81                  | 87                                 | 112                                 | 112    | 108                                     | 1.5             | 1.5                  | 1.02    | 1                |
|            | 78.5       |                              | 84.5  | 73                                  |                                     | 77                                  | 81                  | 87                                 | 112                                 |        |                                         | 1.5             | 1.5                  | 1.21    |                  |
|            | 79.6       | 105.6                        | 84.8  | 73                                  | 73                                  | 77                                  | 81                  | 87                                 | 112                                 | 112    | 108                                     | 1.5             | 1.5                  | 1.4     | 1.37             |
|            | 78.5       |                              | 84.5  | 73                                  |                                     | 77                                  | 81                  | 87                                 | 112                                 |        |                                         | 1.5             | 1.5                  | 1.6     |                  |
| NF         | 83.5       | 121.5                        | 91    | 76                                  | 76                                  | 81                                  | 85                  | 93                                 | 129                                 | 129    | 125                                     | 2               | 2                    | 2.23    | 2.18             |
|            | 82.5       |                              | 91    | 76                                  |                                     | 81                                  | 85                  | 93                                 | 129                                 |        |                                         | 2               | 2                    | 2.54    |                  |
|            | 83.5       | 121.5                        | 91    | 76                                  | 76                                  | 81                                  | 85                  | 93                                 | 129                                 | 129    | 125                                     | 2               | 2                    | 3.27    | 3.2              |
|            | 82.5       |                              | 91    | 76                                  |                                     | 81                                  | 85                  | 93                                 | 129                                 |        |                                         | 2               | 2                    | 3.48    |                  |
| NF         | 89.3       | 135.3                        | 98.5  | 76                                  | 76                                  | 88                                  | 91                  | 100                                | 149                                 | 149    | 137                                     | 2               | 2                    | 3.6     | 3.5              |
|            | 80         | 100                          | 84    | 75                                  | 76.5                                | 78                                  | 82                  | 85                                 | 103.5                               | 105    | 101                                     | 1               | 1                    | 0.699   | 0.689            |
| NF         | 84.5       | 110.5                        | 89.6  | 78                                  | 78                                  | 82                                  | 86                  | 92                                 | 117                                 | 117    | 114                                     | 1.5             | 1.5                  | 1.12    | 1.1              |
|            | 83.5       |                              | 89.5  | 78                                  |                                     | 82                                  | 86                  | 92                                 | 117                                 |        |                                         | 1.5             | 1.5                  | 1.3     |                  |
|            | 84.5       | 110.5                        | 89.6  | 78                                  | 78                                  | 82                                  | 86                  | 92                                 | 117                                 | 117    | 114                                     | 1.5             | 1.5                  | 1.47    | 1.44             |
|            | 83.5       |                              | 89.5  | 78                                  |                                     | 82                                  | 86                  | 92                                 | 117                                 |        |                                         | 1.5             | 1.5                  | 1.7     |                  |
| NF         | 90         | 130                          | 98    | 81                                  | 81                                  | 87                                  | 92                  | 100                                | 139                                 | 139    | 134                                     | 2               | 2                    | 2.71    | 2.65             |
|            | 89         |                              | 98    | 81                                  |                                     | 87                                  | 92                  | 100                                | 139                                 |        |                                         | 2               | 2                    | 3.1     |                  |
|            | 90         | 130                          | 98    | 81                                  | 81                                  | 87                                  | 92                  | 100                                | 139                                 | 139    | 134                                     | 2               | 2                    | 3.98    | 3.9              |
|            | 89         |                              | 98    | 81                                  |                                     | 87                                  | 92                  | 100                                | 139                                 |        |                                         | 2               | 2                    | 4.25    |                  |
| NF         | 100        | 152                          | 110.5 | 83                                  | 83                                  | 99                                  | 102                 | 112                                | 167                                 | 167    | 153                                     | 2.5             | 2.5                  | 5.24    | 5.1              |
|            | 85         | 105                          | 89    | 80                                  | 81.5                                | 83                                  | 87                  | 90                                 | 108.5                               | 110    | 106                                     | 1               | 1                    | 0.738   | 0.727            |
| NF         | 88.5       | 116.5                        | 94    | 83                                  | 83                                  | 87                                  | 90                  | 96                                 | 122                                 | 122    | 120                                     | 1.5             | 1.5                  | 1.23    | 1.21             |
|            | 88.5       |                              | 94.5  | 83                                  |                                     | 87                                  | 90                  | 96                                 | 122                                 |        |                                         | 1.5             | 1.5                  | 1.41    |                  |
|            | 88.5       | 116.5                        | 94    | 83                                  | 83                                  | 87                                  | 90                  | 96                                 | 122                                 | 122    | 120                                     | 1.5             | 1.5                  | 1.55    | 1.52             |
|            | 88.5       |                              | 94.5  | 83                                  |                                     | 87                                  | 90                  | 96                                 | 122                                 |        |                                         | 1.5             | 1.5                  | 1.79    |                  |
| NF         | 95.5       | 139.5                        | 104.2 | 86                                  | 86                                  | 93                                  | 97                  | 106                                | 149                                 | 149    | 143                                     | 2               | 2                    | 3.28    | 3.21             |
|            | 95         |                              | 104.6 | 86                                  |                                     | 93                                  | 97                  | 106                                | 149                                 |        |                                         | 2               | 2                    | 3.74    |                  |
|            | 95.5       | 139.5                        | 104.2 | 86                                  | 86                                  | 93                                  | 97                  | 106                                | 149                                 | 149    | 143                                     | 2               | 2                    | 4.87    | 4.77             |
|            |            |                              |       |                                     |                                     |                                     |                     |                                    |                                     |        |                                         |                 |                      |         |                  |

<sup>4 )</sup> Does not apply to side of the outer ring rib of type  $\mbox{\bf NF}$  bearings.







|           | Bounda     | ry dime  | nsions                |                    | -l          |             | ad ratings       | -1-1:-                   | Limiting       | speeds1)       | Beari             | ng num     | bers <sup>2)</sup> |           |
|-----------|------------|----------|-----------------------|--------------------|-------------|-------------|------------------|--------------------------|----------------|----------------|-------------------|------------|--------------------|-----------|
|           |            | mm       |                       |                    | dynamic     | static<br>N | dynamic<br>k     |                          | mir            | s-1            | type              | tuno       | type               | tuno      |
| d         | D          | В        | r <sub>s min</sub> 3) | $r_{ m lsmin}^{3}$ |             | $C_{ m or}$ | $C_{\rm r}$      | $\mathcal{C}_{	ext{or}}$ | grease         | oil            | NU                | type<br>NJ | NUP                | type<br>N |
|           | 400        |          | 0.4                   |                    |             | 00=         | 00.500           | 40.000                   | 0.500          | 4.400          | \!!!!             |            |                    |           |
| <b>75</b> | 160<br>190 | 55<br>45 | 2.1<br>3              | 2.1<br>3           | 330<br>262  | 395<br>274  | 33 500<br>26 800 | 40 000<br>27 900         | 3 500<br>3 200 | 4 100<br>3 700 | NU2315E<br>NU415  | NJ<br>NJ   | NUP<br>NUP         | N         |
|           |            |          |                       |                    |             |             | 7.100            | 0.050                    | <b>5.700</b>   | 0.700          |                   |            |                    |           |
|           | 125<br>140 | 22<br>26 | 1.1                   | 1                  | 72.5<br>106 | 90.5<br>122 | 7 400            | 9 250                    | 5 700<br>4 800 | 6 700<br>5 700 | NU1016            | NJ         | NUP                | N<br>N    |
|           | 140        | 26<br>26 | 2<br>2                | 2                  | 139         | 167         | 10 800           | 12 500<br>17 000         | 4 400<br>4 400 | 5 700<br>5 100 | NU216<br>NU216E   | NJ         | NUP<br>NUP         | N         |
|           | 140        | 33       | 2                     | 2                  | 147         | 186         | 14 200<br>15 000 | 19 000                   | 4 400<br>4 400 | 5 100          | NU216E<br>NU2216  | NJ<br>NJ   | NUP                | N         |
|           | 140        | 33       | 2                     | 2                  | 186         | 243         | 19 000           | 24 800                   | 3 900          | 4 600          | NU2216<br>NU2216E | NJ         | NUP                | IN        |
| 80        | 170        | 39       | 2.1                   | 2.1                | 190         | 243         | 19 400           | 21 100                   | 4 100          | 4 800          | NU316             | NJ         | NUP                | N         |
|           | 170        | 39       | 2.1                   | 2.1                | 256         | 282         | 26 100           | 28 800                   | 3 700          | 4 400          | NU316E            | NJ         | NUP                | IN        |
|           | 170        | 58       | 2.1                   | 2.1                | 274         | 330         | 27 900           | 34 000                   | 3 600          | 4 200          | NU2316            | NJ         | NUP                | N         |
|           | 170        | 58       | 2.1                   | 2.1                | 355         | 430         | 36 500           | 44 000                   | 3 300          | 3 900          | NU2316E           | NJ         | NUP                | .,        |
|           | 200        | 48       | 3                     | 3                  | 299         | 315         | 30 500           | 32 000                   | 3 000          | 3 500          | NU416             | NJ         | NUP                | N         |
|           | 200        |          |                       |                    |             | 0.0         |                  | 02 000                   | 0 000          | 0 000          |                   |            |                    |           |
|           | 130        | 22       | 1.1                   | 1                  | 74.5        | 95.5        | 7 600            | 9 750                    | 5 400          | 6 300          | NU1017            | NJ         | NUP                | N         |
|           | 150        | 28       | 2                     | 2                  | 120         | 140         | 12 300           | 14 300                   | 4 500          | 5 300          | NU217             | NJ         | NUP                | N         |
|           | 150        | 28       | 2                     | 2                  | 167         | 199         | 17 000           | 20 300                   | 4 100          | 4 800          | NU217E            | NJ         | NUP                |           |
|           | 150        | 36       | 2                     | 2                  | 170         | 218         | 17 300           | 22 200                   | 4 100          | 4 800          | NU2217            | NJ         | NUP                | N         |
| 85        | 150        | 36       | 2                     | 2                  | 217         | 279         | 22 200           | 28 400                   | 3 700          | 4 300          | NU2217E           | NJ         | NUP                |           |
|           | 180        | 41       | 3                     | 3                  | 212         | 228         | 21 600           | 23 300                   | 3 900          | 4 600          | NU317             | NJ         | NUP                | N         |
|           | 180        | 41       | 3                     | 3                  | 291         | 330         | 29 700           | 33 500                   | 3 500          | 4 100          | NU317E            | NJ         | NUP                |           |
|           | 180        | 60       | 3                     | 3                  | 315         | 380         | 32 000           | 39 000                   | 3 400          | 4 000          | NU2317            | NJ         | NUP                | N         |
|           | 180        | 60       | 3                     | 3                  | 395         | 485         | 40 000           | 49 500                   | 3 100          | 3 700          | NU2317E           | NJ         | NUP                |           |
|           | 140        | 24       | 1.5                   | 1.1                | 88.0        | 114         | 9 000            | 11 700                   | 5 100          | 5 900          | NU1018            | NJ         | NUP                | N         |
|           | 160        | 30       | 2                     | 2                  | 152         | 178         | 15 500           | 18 100                   | 4 300          | 5 000          | NU218             | NJ         | NUP                | N         |
|           | 160        | 30       | 2                     | 2                  | 182         | 217         | 18 500           | 22 200                   | 3 900          | 4 600          | NU218E            | NJ         | NUP                |           |
|           | 160        | 40       | 2                     | 2                  | 197         | 248         | 20 100           | 25 300                   | 3 900          | 4 600          | NU2218            | NJ         | NUP                | N         |
| 90        | 160        | 40       | 2                     | 2                  | 242         | 315         | 24 700           | 32 000                   | 3 500          | 4 100          | NU2218E           | NJ         | NUP                |           |
|           | 190        | 43       | 3                     | 3                  | 240         | 265         | 24 500           | 27 100                   | 3 700          | 4 300          | NU318             | NJ         | NUP                | N         |
|           | 190        | 43       | 3                     | 3                  | 315         | 355         | 32 000           | 36 000                   | 3 300          | 3 900          | NU318E            | NJ         | NUP                |           |
|           | 190        | 64       | 3                     | 3                  | 325         | 395         | 33 500           | 40 000                   | 3 200          | 3 800          | NU2318            | NJ         | NUP                | N         |
|           | 190        | 64       | 3                     | 3                  | 435         | 535         | 44 500           | 54 500                   | 2 900          | 3 400          | NU2318E           | NJ         | NUP                |           |
|           | 145        | 24       | 1.5                   | 1.1                | 90.5        | 120         | 9 250            | 12 300                   | 4 800          | 5 600          | NU1019            | NJ         | NUP                | N         |
| 95        | 170        | 32       | 2.1                   | 2.1                | 166         | 195         | 16 900           | 19 900                   | 4 000          | 4 700          | NU219             | NJ         | NUP                | N         |
|           | 170        | 32       | 2.1                   | 2.1                | 220         | 265         | 22 500           | 27 000                   | 3 600          | 4 300          | NU219E            | NJ         | NUP                |           |
| 4 > 71    |            |          |                       |                    |             |             |                  |                          |                |                |                   |            |                    |           |

- 1 ) This value achieved with machined cages; when pressed cages are used, 80% of this value is acceptable. 2 ) Production switched to E type only for bearing number for which there is no standard form. 3 ) Minimal allowable dimension for chamfer dimension r or r.

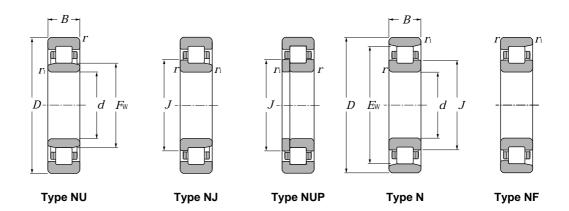








Dynamic equivalent radial load  $P_{\Gamma} = F_{\Gamma}$ 

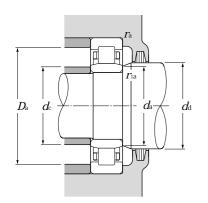

Static equivalent radial load

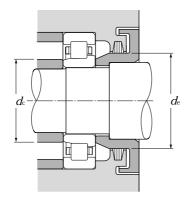
 $P_{\text{or}} = F_{\text{r}}$ 

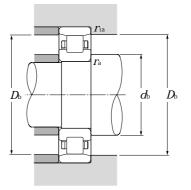
|      | Dii        | mension                      | s     |         |                                     |         | Abutme     | ent and f | illet dime                      | nsions     |                    |                |                    | Ма      | ss     |
|------|------------|------------------------------|-------|---------|-------------------------------------|---------|------------|-----------|---------------------------------|------------|--------------------|----------------|--------------------|---------|--------|
|      |            | mm                           |       |         |                                     |         |            | m         | nm                              |            |                    |                |                    | k       | g      |
| type |            | _                            | _     | $d_{a}$ | $d_{\scriptscriptstyle \mathrm{b}}$ | $d_{c}$ | $d_{ m d}$ | $d_{e}$   | $D_{\!\scriptscriptstyle  m a}$ | $D_{ m t}$ |                    | $m{r}_{ m as}$ | $m{r}_{	ext{las}}$ | type NU | type N |
| NF   | $F_{ m w}$ | $E_{\scriptscriptstyle m W}$ | J     | min     | min                                 | max     | min        | min       | max                             | max        | min <sup>4</sup> ) | max            | max                | (ард    | orox.) |
|      | 95         |                              | 104.6 | 86      |                                     | 93      | 97         | 106       | 149                             |            |                    | 2              | 2                  | 5.25    |        |
| NF   | 104.5      | 160.5                        | 116   | 88      | 88                                  | 103     | 107        | 118       | 177                             | 177        | 162                | 2.5            | 2.5                | 6.22    | 6.06   |
|      | 91.5       | 113.5                        | 95.9  | 85      | 86.5                                | 90      | 94         | 97        | 118.5                           | 120        | 114.5              | 1              | 1                  | 0.98    | 0.965  |
| NF   | 95.3       | 125.3                        | 101.2 | 89      | 89                                  | 94      | 97         | 104       | 131                             | 131        | 128                | 2              | 2                  | 1.5     | 1.47   |
|      | 95.3       |                              | 101.7 | 89      |                                     | 94      | 97         | 104       | 131                             |            |                    | 2              | 2                  | 1.67    |        |
|      | 95.3       | 125.3                        | 101.2 | 89      | 89                                  | 94      | 97         | 104       | 131                             | 131        | 128                | 2              | 2                  | 1.93    | 1.89   |
|      | 95.3       |                              | 101.7 | 89      |                                     | 94      | 97         | 104       | 131                             |            |                    | 2              | 2                  | 2.12    |        |
| NF   | 103        | 147                          | 111.8 | 91      | 91                                  | 99      | 105        | 114       | 159                             | 159        | 151                | 2              | 2                  | 3.86    | 3.77   |
|      | 101        |                              | 111   | 91      |                                     | 99      | 105        | 114       | 159                             |            |                    | 2              | 2                  | 4.22    |        |
|      | 103        | 147                          | 111.8 | 91      | 91                                  | 99      | 105        | 114       | 159                             | 159        | 151                | 2              | 2                  | 5.79    | 5.67   |
|      | 101        |                              | 111   | 91      |                                     | 99      | 105        | 114       | 159                             |            |                    | 2              | 2                  | 6.25    |        |
| NF   | 110        | 170                          | 122   | 93      | 93                                  | 109     | 112        | 124       | 187                             | 187        | 172                | 2.5            | 2.5                | 7.32    | 7.14   |
|      | 96.5       | 118.5                        | 100.9 | 90      | 91.5                                | 95      | 99         | 102       | 123.5                           | 125        | 119.5              | 1              | 1                  | 1.03    | 1.01   |
| NF   | 101.8      | 133.8                        | 108.2 | 94      | 94                                  | 99      | 104        | 110       | 141                             | 141        | 137                | 2              | 2                  | 1.87    | 1.83   |
|      | 100.5      |                              | 107.7 | 94      |                                     | 99      | 104        | 110       | 141                             |            |                    | 2              | 2                  | 2.11    |        |
|      | 101.8      | 133.8                        | 108.2 | 94      | 94                                  | 99      | 104        | 110       | 141                             | 141        | 137                | 2              | 2                  | 2.44    | 2.39   |
|      | 100.5      |                              | 107.7 | 94      |                                     | 99      | 104        | 110       | 141                             |            |                    | 2              | 2                  | 2.68    |        |
| NF   | 108        | 156                          | 117.5 | 98      | 98                                  | 106     | 110        | 119       | 167                             | 167        | 160                | 2.5            | 2.5                | 4.54    | 4.44   |
|      | 108        |                              | 118.4 | 98      |                                     | 106     | 110        | 119       | 167                             |            |                    | 2.5            | 2.5                | 4.81    |        |
|      | 108        | 156                          | 117.5 | 98      | 98                                  | 106     | 110        | 119       | 167                             | 167        | 160                | 2.5            | 2.5                | 6.7     | 6.57   |
|      | 108        |                              | 118.4 | 98      |                                     | 106     | 110        | 119       | 167                             |            |                    | 2.5            | 2.5                | 7.16    |        |
|      | 103        | 127                          | 107.8 | 96.5    | 98                                  | 101     | 106        | 109       | 132                             | 133.5      | 129                | 1.5            | 1                  | 1.33    | 1.31   |
| NF   | 107        | 143                          | 114.2 | 99      | 99                                  | 105     | 109        | 116       | 151                             | 151        | 146                | 2              | 2                  | 2.3     | 2.25   |
|      | 107        |                              | 114.6 | 99      |                                     | 105     | 109        | 116       | 151                             |            |                    | 2              | 2                  | 2.44    |        |
|      | 107        | 143                          | 114.2 | 99      | 99                                  | 105     | 109        | 116       | 151                             | 151        | 146                | 2              | 2                  | 3.1     | 3.04   |
|      | 107        |                              | 114.6 | 99      |                                     | 105     | 109        | 116       | 151                             |            |                    | 2              | 2                  | 3.33    |        |
| NF   | 115        | 165                          | 125   | 103     | 103                                 | 111     | 117        | 127       | 177                             | 177        | 169                | 2.5            | 2.5                | 5.3     | 5.18   |
|      | 113.5      |                              | 124.7 | 103     |                                     | 111     | 117        | 127       | 177                             |            |                    | 2.5            | 2.5                | 5.72    |        |
|      | 115        | 165                          | 125   | 103     | 103                                 | 111     | 117        | 127       | 177                             | 177        | 169                | 2.5            | 2.5                | 7.95    | 7.79   |
|      | 113.5      |                              | 124.7 | 103     |                                     | 111     | 117        | 127       | 177                             |            |                    | 2.5            | 2.5                | 8.56    |        |
|      | 108        | 132                          | 112.8 | 101.5   | 103                                 | 106     | 111        | 114       | 137                             | 138.5      | 134                | 1.5            | 1                  | 1.4     | 1.38   |
| NF   | 113.5      | 151.5                        | 121   | 106     | 106                                 | 111     | 116        | 123       | 159                             | 159        | 155                | 2              | 2                  | 2.78    | 2.72   |
|      | 112.5      |                              | 121   | 106     |                                     | 111     | 116        | 123       | 159                             |            |                    | 2              | 2                  | 3.02    |        |
|      |            |                              |       | -       |                                     |         | -          | -         | -                               |            |                    |                |                    | -       |        |

<sup>4 )</sup> Does not apply to side of the outer ring rib of type  $\mbox{\bf NF}$  bearings.







d 95 ~ 120mm


|       | Bounda     | ry dime  | nsions            |                      | dynamic    |             | ad ratings<br>dynamic | etatic           | Limiting       | speeds1)        | Beari            | ng num   | bers <sup>2)</sup> |      |
|-------|------------|----------|-------------------|----------------------|------------|-------------|-----------------------|------------------|----------------|-----------------|------------------|----------|--------------------|------|
|       |            | mm       |                   |                      | •          | kN          | kį                    |                  | mir            | n <sup>-1</sup> | type             | type     | type               | type |
| d     | D          | В        | $r_{ m smin}^3$ ) | rls min <sup>3</sup> |            | $C_{ m or}$ | $C_{ m r}$            | $C_{ m or}$      | grease         | oil             | NU               | NJ       | NUP                | N    |
|       | 170        | 43       | 2.1               | 2.1                  | 230        | 298         | 23 500                | 30 500           | 3 600          | 4 300           | NU2219           | NJ       | NUP                | N    |
|       | 170        | 43       | 2.1               | 2.1                  | 286        | 370         | 29 200                | 38 000           | 3 300          | 3 800           | NU2219E          | NJ       | NUP                |      |
| οE    | 200        | 45       | 3                 | 3                    | 259        | 285         | 26 400                | 29 500           | 3 400          | 4 000           | NU319            | NJ       | NUP                | N    |
| 95    | 200        | 45       | 3                 | 3                    | 335        | 385         | 34 000                | 39 500           | 3 100          | 3 600           | NU319E           | NJ       | NUP                |      |
|       | 200        | 67       | 3                 | 3                    | 370        | 460         | 38 000                | 47 000           | 3 000          | 3 500           | NU2319           | NJ       | NUP                | N    |
|       | 200        | 67       | 3                 | 3                    | 460        | 585         | 47 000                | 59 500           | 2 700          | 3 200           | NU2319E          | NJ       | NUP                |      |
|       | 150        | 24       | 1.5               | 1.1                  | 93.0       | 126         | 9 500                 | 12 800           | 4 600          | 5 400           | NU1020           | NJ       | NUP                | N    |
|       | 180        | 34       | 2.1               | 2.1                  | 183        | 217         | 18 600                | 22 200           | 3 800          | 4 500           | NU220            | NJ       | NUP                | N    |
|       | 180        | 34       | 2.1               | 2.1                  | 249        | 305         | 25 400                | 31 000           | 3 500          | 4 100           | NU220E           | NJ       | NUP                |      |
| 4.0.0 | 180        | 46       | 2.1               | 2.1                  | 258        | 340         | 26 300                | 34 500           | 3 500          | 4 100           | NU2220           | NJ       | NUP                | N    |
| 100   | 180        | 46       | 2.1               | 2.1                  | 335        | 445         | 34 000                | 45 500           | 3 100          | 3 600           | NU2220E          | NJ       | NUP                |      |
|       | 215<br>215 | 47<br>47 | 3<br>3            | 3                    | 299<br>380 | 335<br>425  | 30 500                | 34 500           | 3 300<br>2 900 | 3 800<br>3 500  | NU320<br>NU320E  | NJ<br>NJ | NUP<br>NUP         | N    |
|       | 215        | 47<br>73 | 3                 | 3<br>3               | 410        | 425<br>505  | 38 500<br>42 000      | 43 500<br>51 500 | 2 900          | 3 400           | NU320E<br>NU2320 | NJ       | NUP                | N    |
|       | 215        | 73<br>73 | 3<br>3            | 3                    | 570        | 715         | 58 000                | 73 000           | 2 600          | 3 100           | NU2320E          | NJ       | NUP                | N    |
|       | 213        | 73       | <u> </u>          | <u> </u>             | 370        | 715         | 38 000                | 73 000           | 2 000          | 3 100           | NUZJZUE          | INO      | NOF                |      |
|       | 160        | 26       | 2                 | 1.1                  | 105        | 142         | 10 700                | 14 500           | 4 300          | 5 100           | NU1021           | NJ       | NUP                | N    |
| 105   | 190        | 36       | 2.1               | 2.1                  | 201        | 241         | 20 500                | 24 600           | 3 600          | 4 300           | NU221            | NJ       | NUP                | N    |
|       | 225        | 49       | 3                 | 3                    | 320        | 360         | 32 500                | 36 500           | 3 100          | 3 700           | NU321            | NJ       | NUP                | N    |
|       | 170        | 28       | 2                 | 1.1                  | 131        | 174         | 13 400                | 17 700           | 4 100          | 4 800           | NU1022           | NJ       | NUP                | N    |
|       | 200        | 38       | 2.1               | 2.1                  | 240        | 290         | 24 500                | 29 500           | 3 400          | 4 000           | NU222            | NJ       | NUP                | N    |
|       | 200        | 38       | 2.1               | 2.1                  | 293        | 365         | 29 800                | 37 000           | 3 100          | 3 700           | NU222E           | NJ       | NUP                |      |
|       | 200        | 53       | 2.1               | 2.1                  | 320        | 415         | 32 500                | 42 000           | 3 100          | 3 700           | NU2222           | NJ       | NUP                | N    |
| 110   | 200        | 53       | 2.1               | 2.1                  | 385        | 515         | 39 000                | 52 500           | 2 800          | 3 300           | NU2222E          | NJ       | NUP                |      |
|       | 240        | 50       | 3                 | 3                    | 360        | 400         | 36 500                | 41 000           | 3 000          | 3 500           | NU322            | NJ       | NUP                | N    |
|       | 240        | 50       | 3                 | 3                    | 450        | 525         | 46 000                | 53 500           | 2 700          | 3 100           | NU322E           | NJ       | NUP                |      |
|       | 240        | 80       | 3                 | 3                    | 605        | 790         | 61 500                | 80 500           | 2 600          | 3 100           | NU2322           | NJ       | NUP                | N    |
|       | 240        | 80       | 3                 | 3                    | 675        | 880         | 69 000                | 89 500           | 2 400          | 2 800           | NU2322E          | NJ       | NUP                |      |
|       | 180        | 28       | 2                 | 1.1                  | 139        | 191         | 14 100                | 19 500           | 3 800          | 4 400           | NU1024           | NJ       | NUP                | N    |
|       | 215        | 40       | 2.1               | 2.1                  | 260        | 320         | 26 500                | 32 500           | 3 200          | 3 700           | NU224            | NJ       | NUP                | N    |
| 120   | 215        | 40       | 2.1               | 2.1                  | 335        | 420         | 34 000                | 43 000           | 2 900          | 3 400           | NU224E           | NJ       | NUP                |      |
| 120   | 215        | 58       | 2.1               | 2.1                  | 350        | 460         | 35 500                | 47 000           | 2 900          | 3 400           | NU2224           | NJ       | NUP                | N    |
|       | 215        | 58<br>55 | 2.1               | 2.1                  | 450        | 620         | 46 000                | 63 000           | 2 600          | 3 000           | NU2224E          | NJ       | NUP                | N.   |
|       | 260        | 55       | 3                 | 3                    | 450        | 510         | 46 000                | 52 000           | 2 700          | 3 200           | NU324            | NJ       | NUP                | N    |
|       |            |          |                   |                      |            |             |                       |                  |                |                 |                  |          |                    |      |

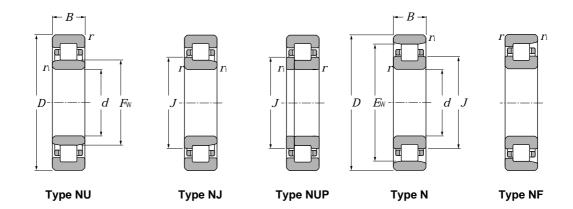
- 1 ) This value achieved with machined cages; when pressed cages are used, 80% of this value is acceptable.
- 2 ) Production switched to E type only for bearing number for which there is no standard form.
  3 ) Minimal allowable dimension for chamfer dimension r or r.









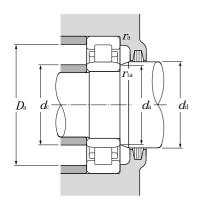

Dynamic equivalent radial load  $P_{\rm T} = F_{\rm T}$ 

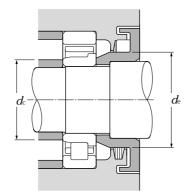
Static equivalent radial load  $P_{
m or} = F_{
m r}$ 

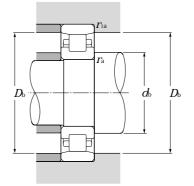
|            | Dir        | mension                      | S     |           |                                     |                | Abutme         | ent and f           | illet dime | nsions         |                    |     |              | Ma      | ass     |
|------------|------------|------------------------------|-------|-----------|-------------------------------------|----------------|----------------|---------------------|------------|----------------|--------------------|-----|--------------|---------|---------|
|            |            | mm                           |       |           |                                     |                |                | m                   | m          |                |                    |     |              | 1       | kg      |
| type<br>NF | $F_{ m w}$ | $E_{\scriptscriptstyle m W}$ | J     | da<br>min | $d_{\!\scriptscriptstyle  m b}$ min | d <sub>c</sub> | $d_{ m d}$ min | $d_{\!	ext{e}}$ min | $D_{a}$    | D <sub>t</sub> | min <sup>4</sup> ) | ras | <i>P</i> las | type NU | type N  |
| NF         | ₽w         | $\mathcal{L}_{	ext{W}}$      | J     | min       | min                                 | max            | min            | min                 | max        | max            | min . ,            | max | max          | (ap     | pprox.) |
|            | 113.5      | 151.5                        | 121   | 106       | 106                                 | 111            | 116            | 123                 | 159        | 159            | 155                | 2   | 2            | 3.79    | 3.71    |
|            | 112.5      |                              | 121   | 106       |                                     | 111            | 116            | 123                 | 159        |                |                    | 2   | 2            | 4.14    |         |
| NF         | 121.5      | 173.5                        | 132   | 108       | 108                                 | 119            | 124            | 134                 | 187        | 187            | 178                | 2.5 | 2.5          | 6.13    | 5.99    |
|            | 121.5      |                              | 132.7 | 108       |                                     | 119            | 124            | 134                 | 187        |                |                    | 2.5 | 2.5          | 6.62    |         |
|            | 121.5      | 173.5                        | 132   | 108       | 108                                 | 119            | 124            | 134                 | 187        | 187            | 178                | 2.5 | 2.5          | 9.2     | 9.02    |
|            | 121.5      |                              | 132.7 | 108       |                                     | 119            | 124            | 134                 | 187        |                |                    | 2.5 | 2.5          | 9.8     |         |
|            | 113        | 137                          | 117.8 | 106.5     | 108                                 | 111            | 116            | 119                 | 142        | 143.5          | 139                | 1.5 | 1            | 1.45    | 1.43    |
| NF         | 120        | 160                          | 128   | 111       | 111                                 | 117            | 122            | 130                 | 169        | 169            | 164                | 2   | 2            | 3.33    | 3.26    |
|            | 119        |                              | 128   | 111       |                                     | 117            | 122            | 130                 | 169        |                |                    | 2   | 2            | 3.66    |         |
|            | 120        | 160                          | 128   | 111       | 111                                 | 117            | 122            | 130                 | 169        | 169            | 164                | 2   | 2            | 4.57    | 4.48    |
|            | 119        |                              | 128   | 111       |                                     | 117            | 122            | 130                 | 169        |                |                    | 2   | 2            | 5.01    |         |
| NF         | 129.5      | 185.5                        | 140.5 | 113       | 113                                 | 125            | 132            | 143                 | 202        | 202            | 190                | 2.5 | 2.5          | 7.49    | 7.32    |
|            | 127.5      |                              | 140.3 | 113       |                                     | 125            | 132            | 143                 | 202        |                |                    | 2.5 | 2.5          | 8.57    |         |
|            | 129.5      | 185.5                        | 140.5 | 113       | 113                                 | 125            | 132            | 143                 | 202        | 202            | 190                | 2.5 | 2.5          | 11.7    | 11.5    |
|            | 127.5      |                              | 140.3 | 113       |                                     | 125            | 132            | 143                 | 202        |                |                    | 2.5 | 2.5          | 12.8    |         |
|            | 119.5      | 145.5                        | 124.7 | 111.5     | 114                                 | 118            | 122            | 126                 | 151        | 153.5          | 147.5              | 2   | 1            | 1.84    | 1.81    |
| NF         | 126.8      | 168.8                        | 135   | 116       | 116                                 | 124            | 129            | 137                 | 179        | 179            | 173                | 2   | 2            | 3.95    | 3.87    |
| NF         | 135        | 195                          | 147   | 118       | 118                                 | 132            | 137            | 149                 | 212        | 212            | 199                | 2.5 | 2.5          | 8.53    | 8.33    |
|            | 125        | 155                          | 131   | 116.5     | 119                                 | 124            | 128            | 132                 | 161        | 163.5          | 157                | 2   | 1            | 2.33    | 2.3     |
| NF         | 132.5      | 178.5                        | 141.5 | 121       | 121                                 | 130            | 135            | 144                 | 189        | 189            | 182                | 2   | 2            | 4.63    | 4.54    |
|            | 132.5      |                              | 142.1 | 121       |                                     | 130            | 135            | 144                 | 189        |                |                    | 2   | 2            | 4.27    |         |
|            | 132.5      | 178.5                        | 141.5 | 121       | 121                                 | 130            | 135            | 144                 | 189        | 189            | 182                | 2   | 2            | 6.56    | 6.43    |
|            | 132.5      |                              | 142.1 | 121       |                                     | 130            | 135            | 144                 | 189        |                |                    | 2   | 2            | 7.4     |         |
| NF         | 143        | 207                          | 155.5 | 123       | 123                                 | 140            | 145            | 158                 | 227        | 227            | 211                | 2.5 | 2.5          | 10      | 9.77    |
|            | 143        |                              | 156.6 | 123       |                                     | 140            | 145            | 158                 | 227        |                |                    | 2.5 | 2.5          | 11.1    |         |
|            | 143        | 207                          | 155.5 | 123       | 123                                 | 140            | 145            | 158                 | 227        | 227            | 211                | 2.5 | 2.5          | 17.1    | 16.8    |
|            | 143        |                              | 156.6 | 123       |                                     | 140            | 145            | 158                 | 227        |                |                    | 2.5 | 2.5          | 19.4    |         |
|            | 135        | 165                          | 141   | 126.5     | 129                                 | 134            | 138            | 142                 | 171        | 173.5          | 167                | 2   | 1            | 2.44    | 2.4     |
| NF         | 143.5      | 191.5                        | 153   | 131       | 131                                 | 141            | 146            | 156                 | 204        | 204            | 196                | 2   | 2            | 5.57    | 5.46    |
|            | 143.5      |                              | 153.9 | 131       |                                     | 141            | 146            | 156                 | 204        |                |                    | 2   | 2            | 5.97    |         |
|            | 143.5      | 191.5                        | 153   | 131       | 131                                 | 141            | 146            | 156                 | 204        | 204            | 196                | 2   | 2            | 8.19    | 8.03    |
|            | 143.5      |                              | 153.9 | 131       |                                     | 141            | 146            | 156                 | 204        |                |                    | 2   | 2            | 9.18    |         |
| NF         | 154        | 226                          | 168.5 | 133       | 133                                 | 151            | 156            | 171                 | 247        | 247            | 230                | 2.5 | 2.5          | 12.8    | 12.5    |
|            |            |                              |       |           |                                     |                |                |                     |            |                |                    |     |              |         |         |

<sup>4 )</sup> Does not apply to side of the outer ring rib of type **NF** bearings.







#### d 120 ~ 160mm


| ı   | Bounda     | ary dime  | nsions                     |                         | dynamic                    |              | oad ratings<br>dynamic | static            | Limiting       | speeds1)        | Bear              | ing num  | nbers <sup>2)</sup> |      |
|-----|------------|-----------|----------------------------|-------------------------|----------------------------|--------------|------------------------|-------------------|----------------|-----------------|-------------------|----------|---------------------|------|
|     |            | mm        |                            | ,                       | •                          | kN           | ,                      | gf                | mir            | n <sup>-1</sup> | type              | type     | type                | type |
| d   | D          | В         | $I \sim 10^{3}$ min $^3$ ) | $r_{ m lsmin}^{ m 3}$ ) | $\mathcal{C}_{\mathrm{r}}$ | $C_{ m or}$  | $C_{ m r}$             | $C_{ m or}$       | grease         | oil             | NU                | NJ       | NUP                 | N    |
|     | 260        | 55        | 3                          | 3                       | 530                        | 610          | 54 000                 | 62 000            | 2 400          | 2 800           | NU324E            | NJ       | NUP                 |      |
| 120 | 260<br>260 | 86<br>86  | 3<br>3                     | 3<br>3                  | 710<br>795                 | 920<br>1 030 | 72 500<br>81 000       | 93 500<br>105 000 | 2 400<br>2 200 | 2 800<br>2 500  | NU2324<br>NU2324E | NJ<br>NJ | NUP<br>NUP          | N    |
|     | 200        | 33        | 2                          | 1.1                     | 172                        | 238          | 17 500                 | 24 200            | 3 400          | 4 000           | NU1026            | NJ       | NUP                 | N    |
|     | 230        | 40        | 3                          | 3                       | 270                        | 340          | 27 600                 | 35 000            | 2 900          | 3 400           | NU226             | NJ       | NUP                 | N    |
|     | 230        | 40        | 3                          | 3                       | 365                        | 455          | 37 000                 | 46 000            | 2 600          | 3 100           | NU226E            | NJ       | NUP                 |      |
|     | 230        | 64        | 3                          | 3                       | 380                        | 530          | 38 500                 | 54 000            | 2 600          | 3 100           | NU2226            | NJ       | NUP                 | N    |
| 130 | 230        | 64        | 3                          | 3                       | 530                        | 735          | 54 000                 | 75 000            | 2 300          | 2 700           | NU2226E           | NJ       | NUP                 |      |
|     | 280        | 58<br>50  | 4                          | 4                       | 560                        | 665          | 57 000                 | 68 000            | 2 500          | 2 900           | NU326             | NJ       | NUP                 | N    |
|     | 280<br>280 | 58<br>93  | 4<br>4                     | 4<br>4                  | 615<br>840                 | 735<br>1 130 | 63 000<br>85 500       | 75 000<br>115 000 | 2 200<br>2 200 | 2 600<br>2 600  | NU326E<br>NU2326  | NJ<br>NJ | NUP<br>NUP          | N    |
|     | 280        | 93        | 4                          | 4                       | 920                        | 1 230        | 94 000                 | 126 000           | 2 000          | 2 300           | NU2326E           | NJ       | NUP                 | N    |
|     | 210        | 33        | 2                          | 1.1                     | 176                        | 250          | 17 900                 | 25 500            | 3 200          | 3 800           | NU1028            | NJ       | NUP                 | N    |
|     | 250        | 42        | 3                          | 3                       | 310                        | 400          | 31 500                 | 40 500            | 2 700          | 3 100           | NU228             | NJ       | NUP                 | N    |
|     | 250        | 42        | 3                          | 3                       | 395                        | 515          | 40 000                 | 52 500            | 2 400          | 2 800           | NU228E            | NJ       | NUP                 |      |
|     | 250        | 68        | 3                          | 3                       | 445                        | 635          | 45 500                 | 64 500            | 2 400          | 2 800           | NU2228            | NJ       | NUP                 | N    |
| 140 | 250        | 68        | 3                          | 3                       | 575                        | 835          | 58 500                 | 85 000            | 2 100          | 2 500           | NU2228E           | NJ       | NUP                 |      |
|     | 300        | 62<br>62  | 4<br>4                     | 4<br>4                  | 615<br>665                 | 745<br>705   | 63 000<br>67 500       | 76 000            | 2 300          | 2 700<br>2 400  | NU328<br>NU328E   | NJ       | NUP<br>NUP          | N    |
|     | 300<br>300 | 62<br>102 | 4                          | 4                       | 920                        | 795<br>1 250 | 94 000                 | 81 500<br>127 000 | 2 100<br>2 000 | 2 300           | NU328E            | NJ<br>NJ | NUP                 | N    |
|     | 300        | 102       | 4                          |                         | 1 020                      | 1 380        | 104 000                | 141 000           | 1 800          | 2 100           | NU2328E           | NJ       | NUP                 | 14   |
|     | 225        | 35        | 2.1                        | 1.5                     | 202                        | 294          | 20 600                 | 29 900            | 3 000          | 3 500           | NU1030            | NJ       | NUP                 | N    |
|     | 270        | 45        | 3                          | 3                       | 345                        | 435          | 35 000                 | 44 500            | 2 500          | 2 900           | NU230             | NJ       | NUP                 | N    |
|     | 270        | 45        | 3                          | 3                       | 450                        | 595          | 45 500                 | 60 500            | 2 200          | 2 600           | NU230E            | NJ       | NUP                 |      |
|     | 270        | 73        | 3                          | 3                       | 500                        | 710          | 51 000                 | 72 500            | 2 200          | 2 600           | NU2230            | NJ       | NUP                 | N    |
| 150 | 270        | 73<br>65  | 3                          | 3                       | 660                        | 980          | 67 500                 | 100 000           | 2 000          | 2 400           | NU2230E           | NJ       | NUP                 | N    |
|     | 320<br>320 | 65<br>65  | 4<br>4                     | 4<br>4                  | 665<br>760                 | 805<br>920   | 67 500<br>77 500       | 82 500<br>94 000  | 2 100<br>1 900 | 2 500<br>2 300  | NU330<br>NU330E   | NJ<br>NJ | NUP<br>NUP          | N    |
|     | 320        | 108       | 4                          |                         | 1 020                      | 1 400        | 104 000                | 143 000           | 1 900          | 2 200           | NU2330            | NJ       | NUP                 | N    |
|     | 320        | 108       | 4                          |                         | 1 160                      | 1 600        | 118 000                | 163 000           | 1 700          | 2 000           | NU2330E           | NJ       | NUP                 | ••   |
|     | 240        | 38        | 2.1                        | 1.5                     | 238                        | 340          | 24 200                 | 35 000            | 2 800          | 3 300           | NU1032            | NJ       | NUP                 | N    |
| 160 | 290        | 48        | 3                          | 3                       | 430                        | 570          | 43 500                 | 58 000            | 2 300          | 2 700           | NU232             | NJ       | NUP                 | N    |
|     | 290        | 48        | 3                          | 3                       | 500                        | 665          | 51 000                 | 68 000            | 2 100          | 2 400           | NU232E            | NJ       | NUP                 |      |
|     |            |           |                            |                         |                            |              |                        |                   |                |                 |                   |          |                     |      |

- 1 ) This value achieved with machined cages; when pressed cages are used, 80% of this value is acceptable.
- 2 ) Production switched to E type only for bearing number for which there is no standard form.
  3 ) Minimal allowable dimension for chamfer dimension r or r.

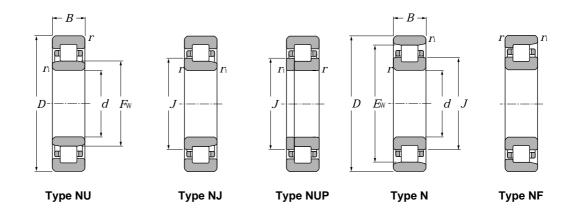








Dynamic equivalent radial load

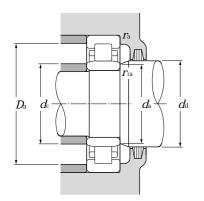

 $P_{\rm r} = F_{\rm r}$ 

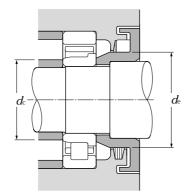
Static equivalent radial load  $P_{\text{or}} = F_{\text{r}}$ 

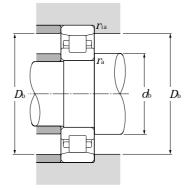
|      | Di         | mension                      | s     |         |                                       |            | Abutm | ent and f  | illet dime         | ensions          |                    |            |                  | Ма           | ss          |
|------|------------|------------------------------|-------|---------|---------------------------------------|------------|-------|------------|--------------------|------------------|--------------------|------------|------------------|--------------|-------------|
|      |            | mm                           |       |         |                                       |            |       | m          | nm                 |                  |                    |            |                  | k            | g           |
| type |            |                              |       | $d_{a}$ | $d_{\!\scriptscriptstyle \mathrm{b}}$ | $d_{c}$    | dd    | $d_{e}$    | $D_{\mathrm{a}}$   | D                |                    | arGammaas  | $m{arGamma}$ las | type NU      | type N      |
| NF   | $F_{ m w}$ | $E_{\scriptscriptstyle m W}$ | J     | min     | min                                   | max        | min   | min        | max                | max              | min <sup>4</sup> ) | max        | max              | (app         | rox.)       |
|      |            |                              |       |         |                                       |            |       |            |                    |                  |                    |            |                  |              |             |
|      | 154        |                              | 169.2 | 133     | 400                                   | 151        | 156   | 171        | 247                | 0.47             |                    | 2.5        | 2.5              | 13.9         | 04.4        |
|      | 154        | 226                          | 168.5 | 133     | 133                                   | 151        | 156   | 171        | 247                | 247              | 230                | 2.5        | 2.5              | 21.5         | 21.1        |
|      | 154        |                              | 169.2 | 133     |                                       | 151        | 156   | 171        | 247                |                  |                    | 2.5        | 2.5              | 26.1         |             |
|      | 148        | 182                          | 154.8 | 136.5   | 139                                   | 146        | 151   | 156        | 191                | 193.5            | 184                | 2          | 1                | 3.69         | 3.63        |
| NF   | 156        | 204                          | 165.5 | 143     | 143                                   | 151        | 158   | 168        | 217                | 217              | 208                | 2.5        | 2.5              | 6.3          | 6.17        |
|      | 153.5      |                              | 164.7 | 143     |                                       | 151        | 158   | 168        | 217                |                  |                    | 2.5        | 2.5              | 6.9          |             |
|      | 156        | 204                          | 165.5 | 143     | 143                                   | 151        | 158   | 168        | 217                | 217              | 208                | 2.5        | 2.5              | 10.2         | 10          |
|      | 153.5      |                              | 164.7 | 143     |                                       | 151        | 158   | 168        | 217                |                  |                    | 2.5        | 2.5              | 11.8         |             |
| NF   | 167        | 243                          | 182   | 146     | 146                                   | 164        | 169   | 184        | 264                | 264              | 247                | 3          | 3                | 17.4         | 17          |
|      | 167        |                              | 183   | 146     |                                       | 164        | 169   | 184        | 264                |                  |                    | 3          | 3                | 19.4         |             |
|      | 167        | 243                          | 182   | 146     | 146                                   | 164        | 169   | 184        | 264                | 264              | 247                | 3          | 3                | 26.9         | 26.4        |
|      | 167        |                              | 183   | 146     |                                       | 164        | 169   | 184        | 264                |                  |                    | 3          | 3                | 30.9         |             |
|      | 158        | 192                          | 164.8 | 146.5   | 149                                   | 156        | 161   | 166        | 201                | 203.5            | 194                | 2          | 1                | 4.05         | 3.98        |
| NF   | 169        | 221                          | 179.5 | 153     | 153                                   | 166        | 171   | 182        | 237                | 237              | 225                | 2.5        | 2.5              | 7.88         | 7.72        |
|      | 169        |                              | 180.2 | 153     | .00                                   | 166        | 171   | 182        | 237                | 20.              |                    | 2.5        | 2.5              | 8.73         |             |
|      | 169        | 221                          | 179.5 | 153     | 153                                   | 166        | 171   | 182        | 237                | 237              | 225                | 2.5        | 2.5              | 12.9         | 12.6        |
|      | 169        |                              | 180.2 | 153     |                                       | 166        | 171   | 182        | 237                | _0.              |                    | 2.5        | 2.5              | 15.8         |             |
| NF   | 180        | 260                          | 196   | 156     | 156                                   | 176        | 182   | 198        | 284                | 284              | 265                | 3          | 3                | 21.2         | 20.7        |
|      | 180        |                              | 196.8 | 156     |                                       | 176        | 182   | 198        | 284                |                  |                    | 3          | 3                | 23.2         |             |
|      | 180        | 260                          | 196   | 156     | 156                                   | 176        | 182   | 198        | 284                | 284              | 265                | 3          | 3                | 33.8         | 33.1        |
|      | 180        |                              | 196.8 | 156     |                                       | 176        | 182   | 198        | 284                | -                |                    | 3          | 3                | 38.7         |             |
|      | 169.5      | 205 5                        | 176.7 | 158     | 161                                   | 167        | 173   | 170        | 214                | 247              | 207 F              | 2          | 1.5              | 4.77         | 4.7         |
| NF   | 182        | 205.5<br>238                 | 176.7 | 163     | 163                                   | 167<br>179 | 184   | 178<br>196 | 214<br>257         | 217<br>257       | 207.5<br>242       | 2<br>2.5   | 2.5              | 4.77<br>9.92 | 4.7<br>9.72 |
| NE   | 182        | 230                          | 193   | 163     | 103                                   | 179        | 184   | 196        | 25 <i>1</i><br>257 | 257              | 242                | 2.5<br>2.5 | 2.5              | 9.92<br>11   | 9.72        |
|      | 182        | 238                          | 194   | 163     | 163                                   | 179        | 184   | 196        | 257<br>257         | 257              | 242                | 2.5        | 2.5              | 16.3         | 16          |
|      | 182        | 230                          | 194   | 163     | 103                                   | 179        | 184   | 196        | 257                | 231              | 242                | 2.5        | 2.5              | 19.7         | 10          |
| NF   | 193        | 277                          | 210   | 166     | 166                                   | 190        | 195   | 213        | 304                | 304              | 282                | 3          | 3                | 25.3         | 24.7        |
| 141  | 193        | 211                          | 211   | 166     | 100                                   | 190        | 195   | 213        | 304                | 30 <del>-1</del> | 202                | 3          | 3                | 28.4         | 27.1        |
|      | 193        | 277                          | 210   | 166     | 166                                   | 190        | 195   | 213        | 304                | 304              | 282                | 3          | 3                | 40.6         | 39.8        |
|      | 193        | 211                          | 211   | 166     | 100                                   | 190        | 195   | 213        | 304                | 304              | 202                | 3          | 3                | 47.2         | 00.0        |
|      | 400        | 000                          | 400   | 400     | 474                                   | 470        | 404   | 400        | 000                | 000              | 000                |            | 4.5              |              |             |
| NE   | 180        | 220                          | 188   | 168     | 171                                   | 178        | 184   | 189        | 229                | 232              | 222                | 2          | 1.5              | 5.9          | 5.81        |
| NF   | 195        | 255                          | 207   | 173     | 173                                   | 192        | 197   | 210        | 277                | 277              | 259                | 2.5        | 2.5              | 13.7         | 13.4        |
|      | 195        |                              | 207.8 | 173     |                                       | 192        | 197   | 210        | 277                |                  |                    | 2.5        | 2.5              | 15.6         |             |

<sup>4 )</sup> Does not apply to side of the outer ring rib of type  $\mbox{\bf NF}$  bearings.







|     | Bounda | ary dime             | ensions               |                       | dun amia |              | oad ratings    | atatia             | Limiting | speeds1) | Bear       | ing num    | nbers <sup>2)</sup> |           |
|-----|--------|----------------------|-----------------------|-----------------------|----------|--------------|----------------|--------------------|----------|----------|------------|------------|---------------------|-----------|
|     |        | mm                   |                       |                       | dynamic  | static<br>kN | dynamic        | static<br>gf       | mir      | n-1      | tuno       | typo       | typo                | tuno      |
| d   | D      | В                    | Γs min <sup>3</sup> ) | $r_{ m lsmin}^{ m 3}$ |          | $C_{ m or}$  | C <sub>r</sub> | .gı<br><i>C</i> or | grease   | oil      | type<br>NU | type<br>NJ | type<br>NUP         | type<br>N |
| u   | D      | Б                    | <b>1</b> S IIIIII     | 1 18 mm               | Cr       | Cor          | Ci             | Cor                | grease   | Oii      | NO         | 140        | 1401                | N.        |
|     | 290    | 80                   | 3                     | 3                     | 630      | 940          | 64 500         | 96 000             | 2 100    | 2 400    | NU2232     | NJ         | NUP                 | N         |
|     | 290    | 80                   | 3                     | 3                     | 810      | 1 190        | 82 500         | 121 000            | 1 900    | 2 200    | NU2232E    | NJ         | NUP                 | 14        |
|     | 340    | 68                   | 4                     | 4                     | 700      | 875          | 71 000         | 89 500             | 2 000    | 2 300    | NU332      | NJ         | NUP                 | N         |
| 160 | 340    | 68                   | 4                     | 4                     | 860      | 1 050        | 87 500         | 107 000            | 1 800    | 2 100    | NU332E     | NJ         | NUP                 | •         |
|     | 340    | 114                  | 4                     | 4                     | 1 070    | 1 520        | 109 000        | 155 000            | 1 700    | 2 000    | NU2332     | NJ         | NUP                 | N         |
|     | 340    | 114                  | 4                     | 4                     | 1 310    | 1 820        | 134 000        | 186 000            | 1 600    | 1 900    | NU2332E    | NJ         | NUP                 | ••        |
|     | 0.0    |                      | •                     | •                     |          |              |                |                    |          | . 000    |            |            |                     |           |
|     | 260    | 42                   | 2.1                   | 2.1                   | 278      | 400          | 28 300         | 41 000             | 2 600    | 3 000    | NU1034     | NJ         | NUP                 | N         |
|     | 310    | 52                   | 4                     | 4                     | 475      | 635          | 48 500         | 65 000             | 2 200    | 2 500    | NU234      | NJ         | NUP                 | N         |
|     | 310    | 52                   | 4                     | 4                     | 605      | 800          | 61 500         | 81 500             | 2 000    | 2 300    | NU234E     | NJ         | NUP                 |           |
| 170 | 310    | 86                   | 4                     | 4                     | 715      | 1 080        | 73 000         | 110 000            | 2 000    | 2 300    | NU2234     | NJ         | NUP                 | N         |
|     | 310    | 86                   | 4                     | 4                     | 965      | 1 410        | 98 500         | 144 000            | 1 800    | 2 100    | NU2234E    | NJ         | NUP                 |           |
|     | 360    | 72                   | 4                     | 4                     | 795      | 1 010        | 81 500         | 103 000            | 1 800    | 2 200    | NU334      | NJ         | NUP                 | N         |
|     | 360    | 120                  | 4                     | 4                     | 1 220    | 1 750        | 125 000        | 179 000            | 1 600    | 1 900    | NU2334     | NJ         | NUP                 | N         |
|     | 280    | 46                   | 2.1                   | 2.1                   | 340      | 485          | 35 000         | 49 500             | 2 400    | 2 900    | NU1036     | NJ         | NUP                 | N         |
|     | 320    | <del>4</del> 0<br>52 | 4                     | 4                     | 495      | 675          | 50 500         | 69 000             | 2 000    | 2 400    | NU236      | NJ         | NUP                 | N         |
|     | 320    | 52                   | 4                     | 4                     | 625      | 850          | 64 000         | 87 000             | 1 800    | 2 200    | NU236E     | NJ         | NUP                 | 14        |
| 180 | 320    | 86                   | 4                     | 4                     | 745      | 1 140        | 76 000         | 117 000            | 1 800    | 2 200    | NU2236     | NJ         | NUP                 | N         |
| 100 | 320    | 86                   | 4                     | 4                     | 1 010    | 1 510        | 103 000        | 154 000            | 1 600    | 1 900    | NU2236E    | NJ         | NUP                 | •         |
|     | 380    | 75                   | 4                     | 4                     | 905      | 1 150        | 92 000         | 118 000            | 1 700    | 2 000    | NU336      | NJ         | NUP                 | N         |
|     | 380    | 126                  | 4                     | 4                     | 1 380    | 1 990        | 141 000        | 203 000            | 1 500    | 1 800    | NU2336     | NJ         | NUP                 | N         |
|     |        | 120                  | •                     | •                     | . 000    |              |                |                    | . 000    | . 000    |            |            |                     | ••        |
|     | 290    | 46                   | 2.1                   | 2.1                   | 350      | 510          | 36 000         | 52 000             | 2 300    | 2 700    | NU1038     | NJ         | NUP                 | N         |
|     | 340    | 55                   | 4                     | 4                     | 555      | 770          | 56 500         | 78 500             | 1 900    | 2 200    | NU238      | NJ         | NUP                 | N         |
|     | 340    | 55                   | 4                     | 4                     | 695      | 955          | 71 000         | 97 500             | 1 700    | 2 000    | NU238E     | NJ         | NUP                 |           |
| 190 | 340    | 92                   | 4                     | 4                     | 830      | 1 290        | 84 500         | 131 000            | 1 700    | 2 000    | NU2238     | NJ         | NUP                 | N         |
|     | 340    | 92                   | 4                     | 4                     | 1 100    | 1 670        | 113 000        | 170 000            | 1 500    | 1 800    | NU2238E    | NJ         | NUP                 |           |
|     | 400    | 78                   | 5                     | 5                     | 975      | 1 260        | 99 500         | 129 000            | 1 600    | 1 900    | NU338      | NJ         | NUP                 | N         |
|     | 400    | 132                  | 5                     | 5                     | 1 520    | 2 220        | 155 000        | 226 000            | 1 400    | 1 700    | NU2338     | NJ         | NUP                 | N         |
|     | 310    | 51                   | 2.1                   | 2.1                   | 390      | 580          | 40 000         | 59 500             | 2 200    | 2 600    | NU1040     | NJ         | NUP                 | N         |
|     | 360    | 58                   | 4                     | 4                     | 620      | 865          | 63 500         | 88 500             | 1 800    | 2 100    | NU240      | NJ         | NUP                 | N         |
|     | 360    | 58                   | 4                     | 4                     | 765      | 1 060        | 78 000         | 108 000            | 1 600    | 1 900    | NU240E     | NJ         | NUP                 |           |
| 200 | 360    | 98                   | 4                     | 4                     | 925      | 1 440        | 94 000         | 147 000            | 1 600    | 1 900    | NU2240     | NJ         | NUP                 | N         |
|     | 360    | 98                   | 4                     | 4                     | 1 220    | 1 870        | 125 000        | 191 000            | 1 500    | 1 700    | NU2240E    | NJ         | NUP                 |           |
|     | 420    | 80                   | 5                     | 5                     | 975      | 1 270        | 99 500         | 130 000            | 1 500    | 1 800    | NU340      | NJ         | NUP                 | N         |
|     | 0      | 30                   | •                     | Ū                     | 5.0      | 0            | 22 000         | .00 000            | . 500    | . 500    |            |            |                     |           |
|     |        |                      |                       |                       |          |              |                |                    |          |          |            |            |                     |           |

- 1 ) This value achieved with machined cages; when pressed cages are used, 80% of this value is acceptable.
- 2 ) Production switched to E type only for bearing number for which there is no standard form.
  3 ) Minimal allowable dimension for chamfer dimension r or r.

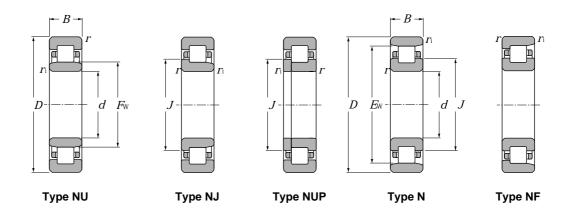








Dynamic equivalent radial load

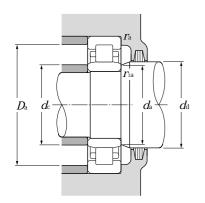

 $P_{\rm r} = F_{\rm r}$ 

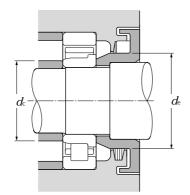
Static equivalent radial load  $P_{\text{or}} = F_{\text{r}}$ 

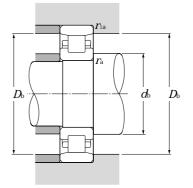
|      | D          | imensio                      | ns         |         |         |         | Abutm            | ent and t | fillet dime      | ensions |                                                 |                |        | Ма      | iss    |
|------|------------|------------------------------|------------|---------|---------|---------|------------------|-----------|------------------|---------|-------------------------------------------------|----------------|--------|---------|--------|
|      |            | mm                           |            |         |         |         |                  | m         | nm               |         |                                                 |                |        | k       | a      |
| type |            |                              |            | $d_{a}$ | $d_{b}$ | $d_{c}$ | $d_{\mathrm{d}}$ | $d_{e}$   | $D_{\mathrm{a}}$ | I       | $\mathcal{O}_{\!\scriptscriptstyle \mathrm{b}}$ | $m{r}_{ m as}$ | rlas   | type NU | type N |
| NF   | $F_{ m w}$ | $E_{\scriptscriptstyle m W}$ | J          | min     | min     | max     | min              | min       | max              | max     | min <sup>4</sup> )                              | max            | max    | (арр    | rox.)  |
|      | 195        | 255                          | 207        | 173     | 173     | 192     | 197              | 210       | 277              | 277     | 259                                             | 2.5            | 2.5    | 22      | 21.6   |
|      | 193        | 255                          | 206.6      | 173     | 173     | 192     | 197              | 210       | 277              | 211     | 209                                             | 2.5            | 2.5    | 25.1    | 21.0   |
| NF   | 208        | 292                          | 200.0      | 176     | 176     | 200     | 211              | 228       | 324              | 324     | 297                                             | 3              | 3      | 31.3    | 30.6   |
| 141  | 204        | 232                          | 223.2      | 176     | 170     | 200     | 211              | 228       | 324              | 324     | 231                                             | 3              | 3      | 34      | 30.0   |
|      | 204        | 292                          | 225.2      | 176     | 176     | 200     | 211              | 228       | 324              | 324     | 297                                             | 3              | 3      | 50.5    | 49.5   |
|      | 204        | 232                          | 223.2      | 176     | 170     | 200     | 211              | 228       | 324              | 324     | 231                                             | 3              | 3      | 56.5    | 43.3   |
|      | 204        |                              | 225.2      | 170     |         | 200     | 211              | 220       | 324              |         |                                                 | 3              | 3      |         |        |
|      | 193        | 237                          | 201.8      | 181     | 181     | 190     | 197              | 203       | 249              | 249     | 239                                             | 2              | 2      | 7.88    | 7.76   |
| NF   | 208        | 272                          | 220.5      | 186     | 186     | 204     | 211              | 223       | 294              | 294     | 277                                             | 3              | 3      | 17      | 16.7   |
|      | 207        |                              | 221.4      | 186     |         | 204     | 211              | 223       | 294              |         |                                                 | 3              | 3      | 19.6    |        |
|      | 208        | 272                          | 220.5      | 186     | 186     | 204     | 211              | 223       | 294              | 294     | 277                                             | 3              | 3      | 27.2    | 26.7   |
|      | 205        |                              | 220.2      | 186     |         | 204     | 211              | 223       | 294              |         |                                                 | 3              | 3      | 31      |        |
| NF   | 220        | 310                          | 238        | 186     | 186     | 216     | 223              | 241       | 344              | 344     | 315                                             | 3              | 3      | 37      | 36.1   |
|      | 220        | 310                          | 238        | 186     | 186     | 216     | 223              | 241       | 344              | 344     | 315                                             | 3              | 3      | 59.5    | 58.3   |
|      | 205        | 255                          | 215        | 191     | 191     | 203     | 209              | 216       | 269              | 269     | 257                                             | 2              | 2      | 10.3    | 10.1   |
| NF   | 218        | 282                          | 230.5      | 196     | 196     | 214     | 221              | 233       | 304              | 304     | 287                                             | 3              | 3      | 17.7    | 17.3   |
|      | 217        |                              | 231.4      | 196     |         | 214     | 221              | 233       | 304              |         | _0.                                             | 3              | 3      | 20.4    |        |
|      | 218        | 282                          | 230.5      | 196     | 196     | 214     | 221              | 233       | 304              | 304     | 287                                             | 3              | 3      | 28.4    | 27.8   |
|      | 215        |                              | 230.2      | 196     |         | 214     | 221              | 233       | 304              |         | _                                               | 3              | 3      | 31.9    |        |
| NF   | 232        | 328                          | 252        | 196     | 196     | 227     | 235              | 255       | 364              | 364     | 333                                             | 3              | 3      | 44.2    | 43.2   |
|      | 232        | 328                          | 252        | 196     | 196     | 227     | 235              | 255       | 364              | 364     | 333                                             | 3              | 3      | 69.5    | 68.1   |
|      | 045        | 005                          | 205        | 004     | 004     | 040     | 040              | 000       | 070              | 070     | 007                                             |                |        | 40.7    | 40.5   |
| NIE  | 215        | 265                          | 225        | 201     | 201     | 213     | 219              | 226       | 279              | 279     | 267                                             | 2              | 2      | 10.7    | 10.5   |
| NF   | 231        | 299                          | 244.5      | 206     | 206     | 227     | 234              | 247       | 324              | 324     | 304                                             | 3              | 3      | 21.3    | 20.8   |
|      | 230        | 000                          | 245.2      | 206     | 000     | 227     | 234              | 247       | 324              | 004     | 004                                             | 3              | 3      | 24.2    | 00.7   |
|      | 231        | 299                          | 244.5      | 206     | 206     | 227     | 234              | 247       | 324              | 324     | 304                                             | 3              | 3      | 34.4    | 33.7   |
| NIE  | 228        | 245                          | 244        | 206     | 240     | 227     | 234              | 247       | 324              | 200     | 254                                             | 3              | 3      | 39.5    | 40.0   |
| NF   | 245        | 345                          | 265<br>265 | 210     | 210     | 240     | 248              | 268       | 380              | 380     | 351                                             | 4<br>4         | 4<br>4 | 49.4    | 48.3   |
|      | 245        | 345                          | 205        | 210     | 210     | 240     | 248              | 268       | 380              | 380     | 351                                             | 4              | 4      | 80.5    | 78.9   |
|      | 229        | 281                          | 239.4      | 211     | 211     | 226     | 233              | 241       | 299              | 299     | 283                                             | 2              | 2      | 13.9    | 13.7   |
| NF   | 244        | 316                          | 258        | 216     | 216     | 240     | 247              | 261       | 344              | 344     | 321                                             | 3              | 3      | 25.3    | 24.8   |
|      | 243        |                              | 259        | 216     |         | 240     | 247              | 261       | 344              |         |                                                 | 3              | 3      | 28.1    |        |
|      | 244        | 316                          | 258        | 216     | 216     | 240     | 247              | 261       | 344              | 344     | 321                                             | 3              | 3      | 41.3    | 40.5   |
|      | 241        |                              | 257.8      | 216     |         | 240     | 247              | 261       | 344              |         |                                                 | 3              | 3      | 47.8    |        |
| NF   | 260        | 360                          | 280        | 220     | 220     | 254     | 263              | 283       | 400              | 400     | 366                                             | 4              | 4      | 55.8    | 54.5   |
|      |            |                              |            |         |         |         |                  |           |                  |         |                                                 |                |        |         |        |

<sup>4 )</sup> Does not apply to side of the outer ring rib of type  $\mbox{\bf NF}$  bearings.







d 200 ~ 360mm


| ı   | Bounda | ary dime | ensions            |                        | dynamic     |             | oad ratings<br>dynamic | static      | Limiting | speeds1)        | Bea    | ring num | nbers <sup>2)</sup> |      |
|-----|--------|----------|--------------------|------------------------|-------------|-------------|------------------------|-------------|----------|-----------------|--------|----------|---------------------|------|
|     |        | mm       |                    |                        |             | κN          | k                      | gf          | mir      | 1 <sup>-1</sup> | type   | type     | type                | type |
| d   | D      | В        | $r_{ m s min}^3$ ) | $\Gamma$ 1s min $^3$ ) | $C_{\rm r}$ | $C_{ m or}$ | $C_{ m r}$             | $C_{ m or}$ | grease   | oil             | NU     | NJ       | NUP                 | N    |
| 200 | 420    | 138      | 5                  | 5                      | 1 510       | 2 240       | 154 000                | 229 000     | 1 400    | 1 600           | NU2340 | NJ       | NUP                 | N    |
|     | 340    | 56       | 3                  | 3                      | 500         | 750         | 51 000                 | 76 500      | 2 000    | 2 300           | NU1044 | NJ       | NUP                 | N    |
|     | 400    | 65       | 4                  | 4                      | 760         | 1 080       | 77 500                 | 110 000     | 1 600    | 1 900           | NU244  | NJ       | NUP                 | N    |
| 220 | 400    | 108      | 4                  | 4                      | 1 140       | 1 810       | 116 000                | 184 000     | 1 500    | 1 700           | NU2244 | NJ       | NUP                 | N    |
|     | 460    | 88       | 5                  | 5                      | 1 190       | 1 570       | 122 000                | 161 000     | 1 400    | 1 600           | NU344  | NJ       | NUP                 | N    |
|     | 460    | 145      | 5                  | 5                      | 1 780       | 2 620       | 181 000                | 268 000     | 1 200    | 1 400           | NU2344 | NJ       | NUP                 | N    |
|     | 360    | 56       | 3                  | 3                      | 530         | 820         | 54 000                 | 83 500      | 1 800    | 2 100           | NU1048 | NJ       | NUP                 | N    |
|     | 440    | 72       | 4                  | 4                      | 935         | 1 340       | 95 500                 | 136 000     | 1 500    | 1 700           | NU248  | NJ       | NUP                 | N    |
| 240 | 440    | 120      | 4                  | 4                      | 1 440       | 2 320       | 146 000                | 236 000     | 1 300    | 1 600           | NU2248 | NJ       | NUP                 | N    |
|     | 500    | 95       | 5                  | 5                      | 1 430       | 1 950       | 146 000                | 198 000     | 1 300    | 1 500           | NU348  | NJ       | NUP                 | N    |
|     | 500    | 155      | 5                  | 5                      | 2 100       | 3 200       | 214 000                | 325 000     | 1 100    | 1 300           | NU2348 | NJ       | NUP                 | N    |
|     | 400    | 65       | 4                  | 4                      | 645         | 1 000       | 65 500                 | 102 000     | 1 600    | 1 900           | NU1052 | NJ       | NUP                 | N    |
|     | 480    | 80       | 5                  | 5                      | 1 150       | 1 660       | 117 000                | 170 000     | 1 300    | 1 600           | NU252  | NJ       | NUP                 | N    |
| 260 | 480    | 130      | 5                  | 5                      | 1 780       | 2 930       | 182 000                | 299 000     | 1 200    | 1 400           | NU2252 | NJ       | NUP                 | N    |
|     | 540    | 102      | 6                  | 6                      | 1 620       | 2 230       | 165 000                | 228 000     | 1 200    | 1 400           | NU352  | NJ       | NUP                 | N    |
|     | 540    | 165      | 6                  | 6                      | 2 340       | 3 600       | 239 000                | 365 000     | 1 000    | 1 200           | NU2352 | NJ       | NUP                 | N    |
|     | 420    | 65       | 4                  | 4                      | 660         | 1 050       | 67 000                 | 107 000     | 1 500    | 1 800           | NU1056 | NJ       | NUP                 | N    |
|     | 500    | 80       | 5                  | 5                      | 1 190       | 1 760       | 121 000                | 180 000     | 1 200    | 1 400           | NU256  | NJ       | NUP                 | N    |
| 280 | 500    | 130      | 5                  | 5                      | 1 840       | 3 100       | 188 000                | 315 000     | 1 100    | 1 300           | NU2256 | NJ       | NUP                 | N    |
|     | 580    | 108      | 6                  | 6                      | 1 820       | 2 540       | 185 000                | 259 000     | 1 100    | 1 200           | NU356  | NJ       | NUP                 | N    |
|     | 580    | 175      | 6                  | 6                      | 2 700       | 4 250       | 275 000                | 430 000     | 920      | 1 100           | NU2356 | NJ       | NUP                 | N    |
|     | 460    | 74       | 4                  | 4                      | 855         | 1 340       | 87 000                 | 137 000     | 1 400    | 1 600           | NU1060 | NJ       | NUP                 | N    |
| 300 | 540    | 85       | 5                  | 5                      | 1 400       | 2 070       | 143 000                | 211 000     | 1 100    | 1 300           | NU260  | NJ       | NUP                 | N    |
|     | 540    | 140      | 5                  | 5                      | 2 180       | 3 650       | 223 000                | 370 000     | 1 000    | 1 200           | NU2260 | NJ       | NUP                 | N    |
|     | 480    | 74       | 4                  | 4                      | 875         | 1 410       | 89 500                 | 143 000     | 1 300    | 1 500           | NU1064 | NJ       | NUP                 | N    |
| 320 | 580    | 92       | 5                  | 5                      | 1 600       | 2 390       | 164 000                | 244 000     | 1 000    | 1 200           | NU264  | NJ       | NUP                 | N    |
|     | 580    | 150      | 5                  | 5                      | 2 550       | 4 350       | 260 000                | 445 000     | 950      | 1 100           | NU2264 | NJ       | NUP                 | N    |
| 340 | 520    | 82       | 5                  | 5                      | 1 050       | 1 670       | 107 000                | 170 000     | 1 200    | 1 400           | NU1068 | NJ       | NUP                 | N    |
| 360 | 540    | 82       | 5                  | 5                      | 1 080       | 1 750       | 110 000                | 179 000     | 1 100    | 1 300           | NU1072 | NJ       | NUP                 | N    |
|     |        |          |                    |                        |             |             |                        |             |          |                 |        |          |                     |      |

- 1 ) This value achieved with machined cages; when pressed cages are used, 80% of this value is acceptable.
- 2 ) Production switched to E type only for bearing number for which there is no standard form.
  3 ) Minimal allowable dimension for chamfer dimension r or r.



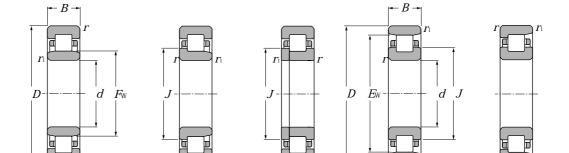






Dynamic equivalent radial load

 $P_{\rm r} = F_{\rm r}$ 


Static equivalent radial load  $P_{\text{or}} = F_{\text{r}}$ 

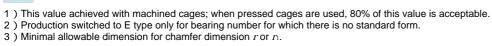
|      | D                            | imensio                      | าร    |         |                                     |         | Abutme     | ent and f | illet dime                      | ensions |                    |             |            | M       | ass    |
|------|------------------------------|------------------------------|-------|---------|-------------------------------------|---------|------------|-----------|---------------------------------|---------|--------------------|-------------|------------|---------|--------|
|      |                              | mm                           |       |         |                                     |         |            | m         | m                               |         |                    |             |            | [       | kg     |
| type |                              |                              |       | $d_{a}$ | $d_{\scriptscriptstyle \mathrm{b}}$ | $d_{c}$ | $d_{ m d}$ | $d_{e}$   | $D_{\!\scriptscriptstyle  m a}$ | I       | $O_{\rm b}$        | $rac{a}{a}$ | $m{r}$ las | type NU | type N |
| NF   | $F_{\scriptscriptstyle m W}$ | $E_{\scriptscriptstyle m W}$ | J     | min     | min                                 | max     | min        | min       | max                             | max     | min <sup>4</sup> ) | max         | max        | (ap     | prox.) |
|      | 000                          | 000                          | 000   | 000     | 000                                 | 05.4    | 000        | 000       | 400                             | 400     | 000                |             |            | 00.0    | 00.7   |
|      | 260                          | 360                          | 280   | 220     | 220                                 | 254     | 263        | 283       | 400                             | 400     | 366                | 4           | 4          | 92.6    | 90.7   |
|      | 250                          | 310                          | 262   | 233     | 233                                 | 248     | 254        | 264       | 327                             | 327     | 313                | 2.5         | 2.5        | 18.2    | 17.9   |
| NF   | 270                          | 350                          | 286   | 236     | 236                                 | 266     | 273        | 289       | 384                             | 384     | 355                | 3           | 3          | 37.7    | 37     |
|      | 270                          | 350                          | 286   | 236     | 236                                 | 266     | 273        | 289       | 384                             | 384     | 355                | 3           | 3          | 59      | 57.8   |
| NF   | 284                          | 396                          | 307   | 240     | 240                                 | 279     | 287        | 307       | 440                             | 440     | 402                | 4           | 4          | 73.4    | 71.7   |
|      | 284                          | 396                          | 307   | 240     | 240                                 | 279     | 287        | 307       | 440                             | 440     | 402                | 4           | 4          | 116     | 114    |
|      | 270                          | 330                          | 282   | 253     | 253                                 | 268     | 275        | 284       | 347                             | 347     | 333                | 2.5         | 2.5        | 19.6    | 19.3   |
| NF   | 295                          | 385                          | 313   | 256     | 256                                 | 293     | 298        | 316       | 424                             | 424     | 390                | 3           | 3          | 50.2    | 49.2   |
|      | 295                          | 385                          | 313   | 256     | 256                                 | 293     | 298        | 316       | 424                             | 424     | 390                | 3           | 3          | 80      | 78.4   |
| NF   | 310                          | 430                          | 335   | 260     | 260                                 | 305     | 313        | 333       | 480                             | 480     | 436                | 4           | 4          | 93.4    | 91.3   |
|      | 310                          | 430                          | 335   | 260     | 260                                 | 305     | 313        | 333       | 480                             | 480     | 436                | 4           | 4          | 147     | 144    |
|      |                              |                              |       |         |                                     |         |            |           |                                 |         |                    |             |            |         |        |
|      | 296                          | 364                          | 309.6 | 276     | 276                                 | 292     | 300        | 312       | 384                             | 384     | 367                | 3           | 3          | 29.1    | 28.7   |
| NF   | 320                          | 420                          | 340   | 280     | 280                                 | 318     | 323        | 343       | 460                             | 460     | 426                | 4           | 4          | 66.9    | 65.6   |
|      | 320                          | 420                          | 340   | 280     | 280                                 | 318     | 323        | 343       | 460                             | 460     | 426                | 4           | 4          | 104     | 102    |
| NF   | 336                          | 464                          | 362   | 284     | 284                                 | 331     | 339        | 359       | 516                             | 516     | 471                | 5           | 5          | 117     | 114    |
|      | 336                          | 464                          | 362   | 284     | 284                                 | 331     | 339        | 359       | 516                             | 516     | 471                | 5           | 5          | 182     | 178    |
|      | 316                          | 384                          | 329.6 | 296     | 296                                 | 312     | 320        | 332       | 404                             | 404     | 387                | 3           | 3          | 30.9    | 30.4   |
| NF   | 340                          | 440                          | 360   | 300     | 300                                 | 336     | 343        | 365       | 480                             | 480     | 446                | 4           | 4          | 70.8    | 69.4   |
|      | 340                          | 440                          | 360   | 300     | 300                                 | 336     | 343        | 365       | 480                             | 480     | 446                | 4           | 4          | 109     | 107    |
| NF   | 362                          | 498                          | 390   | 304     | 304                                 | 356     | 366        | 386       | 556                             | 556     | 505                | 5           | 5          | 142     | 139    |
|      | 362                          | 498                          | 390   | 304     | 304                                 | 356     | 366        | 386       | 556                             | 556     | 505                | 5           | 5          | 222     | 218    |
|      | 340                          | 420                          | 356   | 316     | 316                                 | 336     | 344        | 358       | 444                             | 444     | 423                | 3           | 3          | 43.6    | 42.9   |
| NF   | 364                          | 476                          | 387   | 320     | 320                                 | 361     | 368        | 392       | 520                             | 520     | 482                | 4           | 4          | 88.2    | 86.4   |
|      | 364                          | 476                          | 387   | 320     | 320                                 | 361     | 368        | 392       | 520                             | 520     | 482                | 4           | 4          | 138     | 135    |
|      | 200                          | 440                          | 070   | 200     | 200                                 | 252     | 20.4       | 070       | 404                             | 404     | 4.40               |             |            | 40      | 45.0   |
| NE   | 360                          | 440                          | 376   | 336     | 336                                 | 356     | 364        | 378       | 464                             | 464     | 443                | 3           | 3          | 46      | 45.3   |
| NF   | 390                          | 510                          | 415   | 340     | 340                                 | 386     | 393        | 419       | 560                             | 560     | 516                | 4           | 4          | 111     | 109    |
|      | 390                          | 510                          | 415   | 340     | 340                                 | 386     | 393        | 419       | 560                             | 560     | 516                | 4           | 4          | 172     | 168    |
|      | 385                          | 475                          | 403   | 360     | 360                                 | 381     | 390        | 405       | 500                             | 500     | 479                | 4           | 4          | 61.8    | 60.8   |
|      | 405                          | 495                          | 423   | 380     | 380                                 | 401     | 410        | 425       | 520                             | 520     | 499                | 4           | 4          | 64.7    | 63.7   |

<sup>4 )</sup> Does not apply to side of the outer ring rib of type  $\mbox{\bf NF}$  bearings.

Type NU

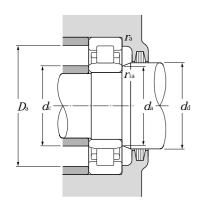
Type NF

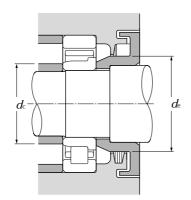


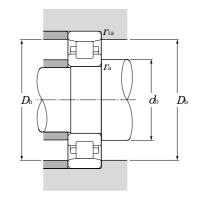

Type NUP

Type N

d 380 ~ 500mm


| ı   | Bounda | ary dime | nsions             | Basic load ratings dynamic static dynamic static |       |        |         |         | Limiting speeds <sup>1)</sup> |                        | Bearing numbers <sup>2)</sup> |            |             |           |
|-----|--------|----------|--------------------|--------------------------------------------------|-------|--------|---------|---------|-------------------------------|------------------------|-------------------------------|------------|-------------|-----------|
| d   | D      | mm<br>B  | $r_{ m smin}^{3)}$ | $r$ ls min $^3$                                  | ŀ     | KN Cor | •       | kgf Cor | mir<br>grease                 | n <sup>-1</sup><br>oil | type<br>NU                    | type<br>NJ | type<br>NUP | type<br>N |
| 380 | 560    | 82       | 5                  | 5                                                | 1 100 | 1 840  | 112 000 | 187 000 | 1 100                         | 1 200                  | NU1076                        | NJ         | NUP         | N         |
| 400 | 600    | 90       | 5                  | 5                                                | 1 320 | 2 190  | 134 000 | 223 000 | 990                           | 1 200                  | NU1080                        | NJ         | NUP         | N         |
| 420 | 620    | 90       | 5                  | 5                                                | 1 350 | 2 290  | 138 000 | 233 000 | 950                           | 1 100                  | NU1084                        | NJ         | NUP         | N         |
| 440 | 650    | 94       | 6                  | 6                                                | 1 430 | 2 430  | 146 000 | 248 000 | 900                           | 1 100                  | NU1088                        | NJ         | NUP         | N         |
| 460 | 680    | 100      | 6                  | 6                                                | 1 540 | 2 630  | 157 000 | 269 000 | 850                           | 1 000                  | NU1092                        | NJ         | NUP         | N         |
| 480 | 700    | 100      | 6                  | 6                                                | 1 580 | 2 750  | 161 000 | 280 000 | 810                           | 960                    | NU1096                        | NJ         | NUP         | N         |
| 500 | 720    | 100      | 6                  | 6                                                | 1 610 | 2 870  | 164 000 | 292 000 | 770                           | 910                    | NU10/500                      | NJ         | NUP         | N         |


Type NJ














Dynamic equivalent radial load

 $P_{\rm r} = F_{\rm r}$ 

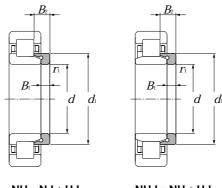

Static equivalent radial load  $P_{\text{or}} = F_{\text{r}}$ 

|            | D          | imensio                           | าร    |           |                                     |                                     | Abutme         | ent and f                          | illet dime     | ensions  |                                  |                 |                     | Ma      | ass              |
|------------|------------|-----------------------------------|-------|-----------|-------------------------------------|-------------------------------------|----------------|------------------------------------|----------------|----------|----------------------------------|-----------------|---------------------|---------|------------------|
| type<br>NF | $F_{ m w}$ | mm $E_{\!\scriptscriptstyle m W}$ | J     | da<br>min | $d_{\!\scriptscriptstyle  m b}$ min | $d_{\!\scriptscriptstyle  m C}$ max | $d_{ m d}$ min | $d_{\!\scriptscriptstyle m e}$ min | $D_{ m a}$ max | I<br>max | Ω <sub>b</sub> min <sup>4)</sup> | r <sub>as</sub> | <i>r</i> ₁as<br>max | type NU | type N<br>prox.) |
|            | 425        | 515                               | 443   | 400       | 400                                 | 421                                 | 430            | 445                                | 540            | 540      | 519                              | 4               | 4                   | 67.5    | 66.5             |
|            | 450        | 550                               | 470   | 420       | 420                                 | 446                                 | 455            | 473                                | 580            | 580      | 554                              | 4               | 4                   | 87.6    | 86.3             |
|            | 470        | 570                               | 490   | 440       | 440                                 | 466                                 | 475            | 493                                | 600            | 600      | 574                              | 4               | 4                   | 91      | 89.6             |
|            | 493        | 597                               | 513.8 | 464       | 464                                 | 488                                 | 499            | 517                                | 626            | 626      | 602                              | 5               | 5                   | 105     | 103              |
|            | 516        | 624                               | 537.6 | 484       | 484                                 | 511                                 | 522            | 541                                | 656            | 656      | 629                              | 5               | 5                   | 122     | 120              |
|            | 536        | 644                               | 557.6 | 504       | 504                                 | 531                                 | 542            | 561                                | 676            | 676      | 649                              | 5               | 5                   | 126     | 124              |
|            | 556        | 664                               | 577.6 | 524       | 524                                 | 551                                 | 562            | 581                                | 696            | 696      | 669                              | 5               | 5                   | 130     | 128              |

<sup>4 )</sup> Does not apply to side of the outer ring rib of type  $\mbox{\bf NF}$  bearings.

## NTN

## L type collar ring




d 20 ~ 60mm

|    | Dir                                                                  | nensio                               | ons                                                   |                                                      | Bearing<br>numbers                                                                    | Mass                                                                          |    | Dir                                                                  | nensio                               | ns                                                  |                                                   | Bearing<br>numbers                                                                    | Mass                                                                |
|----|----------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----|----------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------|
|    |                                                                      | mm                                   |                                                       |                                                      | numbers                                                                               | kg                                                                            |    |                                                                      | mm                                   |                                                     |                                                   | numbers                                                                               | kg                                                                  |
| d  | $d_1$                                                                | $B_1$                                | $B_2$                                                 | $r$ 1s min $^1$ )                                    |                                                                                       | (approx.)                                                                     | d  | <b>d</b> ı                                                           | $B_1$                                | $B_2$                                               | r¹ls min¹)                                        |                                                                                       | (approx.)                                                           |
| 20 | 29.9<br>29.5<br>29.9<br>29.5<br>31.8<br>31.1<br>31.8<br>31.1         | 3<br>3<br>3<br>4<br>4<br>4<br>4      | 6.75<br>5.5<br>7.5<br>6.5<br>7.5<br>6.5<br>8.5<br>7.5 | 0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6        | HJ204<br>HJ204E<br>HJ2204<br>HJ2204E<br>HJ304<br>HJ304E<br>HJ2304<br>HJ2304E          | 0.012<br>0.009<br>0.013<br>0.01<br>0.017<br>0.014<br>0.018<br>0.015           | 40 | 54.2<br>53.9<br>54.2<br>53.9<br>58.4<br>57.6<br>58.4<br>57.6<br>64.8 | 5<br>5<br>5<br>7<br>7<br>7<br>8      | 9<br>8.5<br>9.5<br>9<br>12.5<br>11<br>14.5<br>12.5  | 1.1<br>1.1<br>1.1<br>1.5<br>1.5<br>1.5            | HJ208<br>HJ208E<br>HJ2208<br>HJ2208E<br>HJ308<br>HJ308E<br>HJ2308<br>HJ2308E<br>HJ408 | 0.046<br>0.042<br>0.047<br>0.045<br>0.083<br>0.07<br>0.09<br>0.08   |
| 25 | 34.8<br>34.5<br>34.8<br>34.5<br>39<br>38<br>39<br>38<br>43.6         | 3<br>3<br>3<br>4<br>4<br>4<br>4<br>6 | 7.25<br>6.<br>7.5<br>6.5<br>8<br>7<br>9<br>8          | 0.6<br>0.6<br>0.6<br>1.1<br>1.1<br>1.1<br>1.5        | HJ205<br>HJ205E<br>HJ2205<br>HJ2205E<br>HJ305<br>HJ305E<br>HJ2305<br>HJ2305E<br>HJ405 | 0.015<br>0.012<br>0.015<br>0.013<br>0.025<br>0.021<br>0.027<br>0.024<br>0.057 | 45 | 59<br>58.9<br>58.9<br>64<br>64.5<br>64<br>64.5<br>71.8               | 5<br>5<br>5<br>7<br>7<br>7<br>7<br>8 | 9.5<br>8.5<br>9<br>12.5<br>11.5<br>15<br>13         | 1.1<br>1.1<br>1.5<br>1.5<br>1.5<br>1.5<br>2       | * HJ209<br>HJ209E<br>HJ2209E<br>HJ309<br>HJ309E<br>HJ2309<br>HJ2309E<br>HJ409         | 0.053<br>0.047<br>0.05<br>0.099<br>0.093<br>0.109<br>0.103<br>0.175 |
| 30 | 41.7<br>41.1<br>41.7<br>41.1<br>45.9<br>44.9<br>45.9<br>44.9<br>50.5 | 4<br>4<br>4<br>5<br>5<br>5<br>7      | 8.25<br>7<br>8.5<br>7.5<br>9.5<br>8.5<br>11.5<br>9.5  | 0.6<br>0.6<br>0.6<br>0.6<br>1.1<br>1.1<br>1.1<br>1.5 | HJ206<br>HJ206E<br>HJ2206<br>HJ2206E<br>HJ306<br>HJ306E<br>HJ2306<br>HJ2306E<br>HJ406 | 0.025<br>0.017<br>0.025<br>0.02<br>0.039<br>0.035<br>0.043<br>0.035<br>0.08   | 50 | 64.6<br>63.9<br>64.6<br>71<br>71.4<br>71<br>71.4<br>78.8             | 5<br>5<br>5<br>8<br>8<br>8<br>8<br>9 | 10<br>9<br>9.5<br>14<br>13<br>17<br>14.5            | 1.1<br>1.1<br>1.1<br>2<br>2<br>2<br>2<br>2<br>2.1 | HJ210<br>* HJ210E<br>HJ2210<br>HJ310<br>HJ310E<br>HJ2310<br>HJ2310E<br>HJ410          | 0.063<br>0.055<br>0.061<br>0.142<br>0.134<br>0.157<br>0.15<br>0.23  |
| 35 | 47.6<br>48<br>47.6<br>48<br>50.8<br>51                               | 4<br>4<br>4<br>4<br>6<br>6<br>6<br>6 | 8<br>7<br>8.5<br>8.5<br>11<br>9.5<br>14               | 0.6<br>0.6<br>0.6<br>0.6<br>1.1<br>1.1<br>1.1        | HJ207<br>HJ207E<br>HJ2207<br>HJ2207E<br>HJ307<br>HJ307E<br>HJ2307                     | 0.03<br>0.027<br>0.031<br>0.031<br>0.056<br>0.048<br>0.064<br>0.055           | 55 | 70.8<br>70.8<br>70.8<br>77.2<br>77.7<br>77.2<br>77.7<br>85.2         | 6<br>6<br>9<br>9<br>9                | 11<br>9.5<br>10<br>15<br>14<br>18.5<br>15.5<br>16.5 | 1.1<br>1.1<br>1.1<br>2<br>2<br>2<br>2<br>2<br>2.1 | * HJ211<br>HJ211E<br>HJ2211E<br>HJ311<br>HJ311E<br>HJ2311<br>HJ2311E<br>HJ411         | 0.084<br>0.072<br>0.076<br>0.182<br>0.168<br>0.203<br>0.185<br>0.29 |
|    | 59                                                                   | 8                                    | 13                                                    | 1.5                                                  | HJ407                                                                                 | 0.12                                                                          | 60 | 78.4<br>77.6                                                         | 6<br>6                               | 11<br>10                                            | 1.5<br>1.5                                        | * HJ212<br>* HJ212E                                                                   | 0.108<br>0.094                                                      |

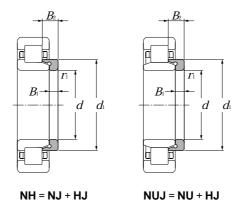
<sup>1)</sup> Minimal allowable dimension for chamfer dimension r. Note: 1. This L type collar ring is used with **NU** type cylindrical roller bearings; in duplex arrangements with **NJ** or **NU** type bearing numbers, they become **NH** type and **NUJ** type respectively. For bearing dimensions, allowable rotations, and mass, please refer to pages **B-94** to **B-98**. 2. " \* " indicates L type collar rings that can also be used with dimension series **22** bearings.





NH = NJ + HJ

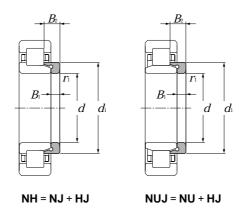
NUJ = NU + HJ


d 60 ~ 105mm

|         | Di             | mensic   | ons          |                        | Bearing<br>numbers  | Mass           |     | Dir            | nensic   | ns           |                              | Bearing<br>numbers | Mass           |
|---------|----------------|----------|--------------|------------------------|---------------------|----------------|-----|----------------|----------|--------------|------------------------------|--------------------|----------------|
|         |                | mm       |              |                        | numbers             | kg             |     |                | mm       |              |                              | numbers            | kg             |
| d       | $d_1$          | $B_1$    | $B_2$        | $\Gamma$ ls min $^1$ ) |                     | (approx.)      | d   | <b>d</b> ı     | $B_1$    | $B_2$        | <b>∏</b> s min <sup>1)</sup> |                    | (approx.)      |
|         | 84.2           | 9        | 15.5         | 2.1                    | HJ312               | 0.22           |     | 111            | 11       | 20           | 2.1                          | HJ2316E            | 0.45           |
|         | 84.6<br>84.2   | 9        | 14.5<br>19   | 2.1<br>2.1             | HJ312E<br>HJ2312    | 0.205<br>0.245 | 80  | 122            | 13       | 22           | 3                            | HJ416              | 0.78           |
| 60      | 84.6           | 9        | 16           | 2.1                    | HJ2312E             | 0.23           |     | 108.2          | 8        | 14           | 2                            | * HJ217            | 0.25           |
|         | 91.8           | 10       | 16.5         | 2.1                    | HJ412               | 0.34           |     | 107.7<br>107.7 | 8<br>8   | 12.5<br>13   | 2<br>2                       | HJ217E<br>HJ2217E  | 0.21<br>0.216  |
|         | 84.8<br>84.5   | 6<br>6   | 11<br>10     | 1.5<br>1.5             | HJ213<br>HJ213E     | 0.123<br>0.111 | 85  | 117.5<br>118.4 | 12<br>12 | 20.5<br>18.5 | 3<br>3                       | HJ317<br>HJ317E    | 0.56<br>0.505  |
|         | 84.8           | 6        | 11.5         | 1.5                    | HJ2213              | 0.126          |     | 117.5          | 12       | 24           | 3                            | HJ2317             | 0.606          |
| 65      | 84.5<br>91     | 6<br>10  | 10.5<br>17   | 1.5<br>2.1             | HJ2213E<br>HJ313    | 0.118<br>0.28  |     | 118.4          | 12       | 22           | 3                            | HJ2317E            | 0.55           |
|         | 91<br>91       | 10<br>10 | 15.5<br>20   | 2.1<br>2.1             | HJ313E<br>HJ2313    | 0.25<br>0.304  |     | 114.2<br>114.6 | 9<br>9   | 15<br>14     | 2<br>2                       | HJ218<br>HJ218E    | 0.305<br>0.272 |
|         | 91<br>98.5     | 10<br>11 | 18<br>18     | 2.1<br>2.1             | HJ2313E<br>HJ413    | 0.29<br>0.42   |     | 114.2<br>114.6 | 9<br>9   | 16<br>15     | 2<br>2                       | HJ2218<br>HJ2218E  | 0.315<br>0.308 |
|         | 89.6           | 7        | 12.5         | 1.5                    | * HJ214             | 0.15           | 90  | 125<br>124.7   | 12<br>12 | 21<br>18.5   | 3                            | HJ318<br>HJ318E    | 0.63<br>0.548  |
|         | 89.5           | 7        | 11           | 1.5                    | HJ214E              | 0.13           |     | 125            | 12       | 26           | 3                            | HJ2318             | 0.704          |
|         | 89.5<br>98     | 7<br>10  | 11.5<br>17.5 | 1.5<br>2.1             | HJ2214E<br>HJ314    | 0.138<br>0.33  |     | 124.7          | 12       | 22           | 3                            | HJ2318E            | 0.69           |
| 70      | 98<br>98       | 10<br>10 | 15.5<br>20.5 | 2.1<br>2.1             | HJ314E<br>HJ2314    | 0.293<br>0.358 |     | 121<br>121     | 9<br>9   | 15.5<br>14.0 | 2.1<br>2.1                   | HJ219<br>HJ219E    | 0.352<br>0.304 |
|         | 98             | 10       | 18.5         | 2.1                    | HJ2314E             | 0.35           |     | 121            | 9        | 16.5         | 2.1                          | HJ2219             | 0.363          |
|         | 110.5          | 12       | 20           | 3                      | HJ414               | 0.605          | 95  | 121<br>132     | 9<br>13  | 15.5<br>22.5 | 2.1<br>3                     | HJ2219E<br>HJ319   | 0.335<br>0.76  |
|         | 94<br>94.5     | 7<br>7   | 12.5<br>11   | 1.5<br>1.5             | * HJ215<br>HJ215E   | 0.156<br>0.141 |     | 132.7<br>132   | 13<br>13 | 20.5<br>26.5 | 3<br>3                       | HJ319E<br>HJ2319   | 0.7<br>0.826   |
|         | 94.5<br>104.2  | 7<br>11  | 11.5<br>18.5 | 1.5<br>2.1             | HJ2215E<br>HJ315    | 0.164<br>0.4   |     | 132.7          | 13       | 24.5         | 3                            | HJ2319E            | 8.0            |
| 75      | 104.6          | 11       | 16.5         | 2.1                    | HJ315E              | 0.35           |     | 128            | 10       | 17           | 2.1                          | HJ220              | 0.444          |
|         | 104.2<br>104.6 | 11<br>11 | 21.5<br>19.5 | 2.1<br>2.1             | HJ2315<br>HJ2315E   | 0.432<br>0.41  |     | 128<br>128     | 10<br>10 | 15<br>18     | 2.1<br>2.1                   | HJ220E<br>HJ2220   | 0.38<br>0.456  |
|         | 116.0          | 13       | 21.5         | 3                      | HJ415               | 0.71           | 100 | 128<br>140.5   | 10<br>13 | 16<br>22.5   | 2.1<br>3                     | HJ2220E<br>HJ320   | 0.385<br>0.895 |
|         | 101.2<br>101.7 | 8<br>8   | 13.5         | 2<br>2                 | * HJ216<br>* HJ216E | 0.207          |     | 140.3<br>140.5 | 13       | 20.5         | 3                            | HJ320E             | 0.8            |
| 80      | 111.8          | 11       | 12.5<br>19.5 | 2.1                    | HJ316               | 0.193<br>0.47  |     | 140.5          | 13<br>13 | 27.5<br>23.5 | 3<br>3                       | HJ2320<br>HJ2320E  | 0.986<br>0.92  |
| 4 > 8.0 | 111<br>111.8   | 11<br>11 | 17<br>23     | 2.1<br>2.1             | HJ316E<br>HJ2316    | 0.405<br>0.511 | 105 | 135.0          | 10       | 17.5         | 2.1                          | HJ221              | 0.505          |

<sup>1)</sup> Minimal allowable dimension for chamfer dimension r. Note: 1. This L type collar ring is used with **NU** type cylindrical roller bearings; in duplex arrangements with **NJ** or **NU** type bearing numbers, they become **NH** type and **NUJ** type respectively. For bearing dimensions, allowable rotations, and mass, please refer to pages **B-98** to **B-102**. 2. "  $\star$  " indicates L type collar rings that can also be used with dimension series **22** bearings.

## NTN

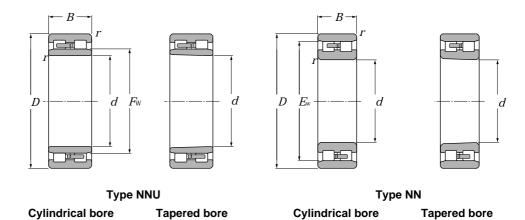

## L type collar ring



d 105 ~ 200mm

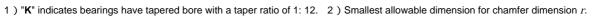
|     | Dii        | mensio   | ons        |                    | Bearing<br>numbers | Mass        |     | Dii            | mensic   | ons          |                         | Bearing<br>numbers | Mass                     |
|-----|------------|----------|------------|--------------------|--------------------|-------------|-----|----------------|----------|--------------|-------------------------|--------------------|--------------------------|
|     |            | mm       |            |                    | numbers            | kg          |     |                | mm       |              |                         | Humbers            | kg                       |
| d   | <b>d</b> ı | $B_1$    | $B_2$      | $r_{ m lsmin}^{1}$ |                    | (approx.)   | d   | <i>d</i> ı     | $B_1$    | $B_2$        | $arGamma$ ls min $^1$ ) |                    | (approx.)                |
| 105 | 147.0      | 13       | 22.5       | 3                  | HJ321              | 0.97        |     | 194            | 12       | 19.5         | 3                       | HJ230E             | 1.18                     |
|     | 141.5      | 11       | 18.5       | 2.1                | HJ222              | 0.615       |     | 193<br>194     | 12<br>12 | 26.5<br>24.5 | 3<br>3                  | HJ2230<br>HJ2230E  | 1.39<br>1.42             |
|     | 142.1      | 11       | 17         | 2.1                | HJ222E             | 0.553       | 150 |                | 15       | 26.5         | 4                       | HJ330              | 2.37                     |
|     | 141.5      | 11       | 20.5       | 2.1                | HJ2222             | 0.645       |     | 211            | 15       | 25           | 4                       | HJ330E             | 2.25                     |
| 440 | 142.1      | 11       | 19.5       | 2.1                | HJ2222E            | 0.605       |     | 210            | 15       | 34           | 4                       | HJ2330             | 2.69                     |
| 110 | 155.5      | 14       | 23         | 3                  | HJ322              | 1.17        |     | 211            | 15       | 31.5         | 4                       | HJ2330E            | 2.6                      |
|     | 156.6      | 14       | 22         | 3                  | HJ322E             | 1.09        |     |                |          |              |                         |                    |                          |
|     | 155.5      | 14       | 28         | 3                  | HJ2322             | 1.28        |     | 207            | 12       | 21           | 3                       | HJ232              | 1.48                     |
|     | 156.6      | 14       | 26.5       | 3                  | HJ2322E            | 1.25        |     | 207.8          | 12       | 20           | 3                       | HJ232E             | 1.34                     |
|     |            |          |            |                    |                    |             |     | 207            | 12       | 28           | 3                       | HJ2232             | 1.69                     |
|     | 153        | 11       | 19         | 2.1                | HJ224              | 0.715       | 160 | 206.6          | 12       | 24.5         | 3                       | HJ2232E            | 1.61                     |
|     | 153.9      | 11       | 17         | 2.1                | HJ224E             | 0.634       | 100 | 225            | 15       | 28           | 4                       | HJ332              | 2.75                     |
|     | 153        | 11       | 22         | 2.1                | HJ2224             | 0.767       |     | 223.2          | 15       | 25           | 4                       | HJ332E             | 2.4                      |
| 120 | 153.9      | 11       | 20         | 2.1                | HJ2224E            | 0.705       |     | 225            | 15       | 37           | 4                       | HJ2332             | 3.16                     |
| 120 | 168.5      | 14       | 23.5       | 3                  | HJ324              | 1.4         |     | 223.2          | 15       | 32           | 4                       | HJ2332E            | 2.85                     |
|     | 169.2      | 14       | 22.5       | 3                  | HJ324E             | 1.28        |     |                |          |              |                         |                    |                          |
|     | 168.5      | 14       | 28         | 3                  | HJ2324             | 1.53        |     | 220.5          | 12       | 22           | 4                       | HJ234              | 1.7                      |
|     | 169.2      | 14       | 26         | 3                  | HJ2324E            | 1.42        |     | 221.4          | 12       | 20           | 4                       | HJ234E             | 1.51                     |
|     | 405.5      | 4.4      | 40         | 0                  | 11.1000            | 0.04        | 170 | 220.5          | 12       | 29           | 4                       | HJ2234             | 1.93                     |
|     | 165.5      | 11       | 19         | 3                  | HJ226              | 0.84        |     | 220.2          | 12       | 24           | 4                       | HJ2234E            | 1.82                     |
|     | 164.7      | 11       | 17         | 3                  | HJ226E             | 0.684       |     | 238            | 16       | 29.5         | 4                       | HJ334              | 3.25                     |
|     | 165.5      | 11       | 25         | 3                  | HJ2226             | 0.953       |     | 238            | 16       | 38.5         | 4                       | HJ2334             | 3.71                     |
| 130 | 164.7      | 11       | 21         | 3                  | HJ2226E            | 0.831       |     | 000 5          | 40       | 00           | 4                       | 11.1000            | 4.0                      |
|     | 182        | 14       | 24<br>23   | 4                  | HJ326              | 1.62        |     | 230.5          | 12       | 22           | 4                       | HJ236              | 1.8                      |
|     | 183<br>182 | 14<br>14 | 23<br>29.5 | 4                  | HJ326E             | 1.53        |     | 231.4          | 12<br>12 | 20<br>29     | 4                       | HJ236E             | 1.7<br>2.04              |
|     | 183        | 14       | 29.5<br>28 | 4<br>4             | HJ2326<br>HJ2326E  | 1.8<br>1.75 | 180 | 230.5<br>230.2 | 12       | 29<br>24     | 4<br>4                  | HJ2236<br>HJ2236E  | 2.0 <del>4</del><br>1.91 |
|     | 103        | 14       | 20         | 4                  | ПJ2320E            | 1.75        |     | 250.2          | 17       | 30.5         | 4                       | HJ336              | 3.85                     |
|     | 179.5      | 11       | 19         | 3                  | HJ228              | 1           |     | 252            | 17       | 40           | 4                       | HJ2336             | 4.42                     |
|     | 180.2      | 11       | 18         | 3                  | HJ228E             | 0.929       |     | 232            | 17       | 40           | 4                       | 1132330            | 4.42                     |
|     | 179.5      | 11       | 25         | 3                  | HJ2228             | 1.14        |     | 244.5          | 13       | 23.5         | 4                       | HJ238              | 2.2                      |
|     | 180.2      | 11       | 23         | 3                  | HJ2228E            | 1.14        |     | 245.2          | 13       | 21.5         | 4                       | HJ238E             | 1.94                     |
| 140 | 196        | 15       | 26         | 4                  | HJ328              | 1.93        |     | 244.5          | 13       | 31.5         | 4                       | HJ2238             | 2.52                     |
|     | 196.8      | 15       | 25         | 4                  | HJ328E             | 1.91        | 190 | 244            | 13       | 26.5         | 4                       | HJ2238E            | 2.38                     |
|     | 196        | 15       | 33.5       | 4                  | HJ2328             | 2.21        |     | 265            | 18       | 32           | 5                       | HJ338              | 4.45                     |
|     | 196.8      | 15       | 31         | 4                  | HJ2328E            | 2.3         |     | 265            | 18       | 41.5         | 5                       | HJ2338             | 5.05                     |
|     |            |          |            |                    |                    |             | 200 |                |          |              |                         |                    |                          |
| 150 | 193        | 12       | 20.5       | 3                  | HJ230              | 1.24        | 200 | 258            | 14       | 25           | 4                       | HJ240              | 2.6                      |

<sup>1)</sup> Minimal allowable dimension for chamfer dimension r. Note: 1. This L type collar ring is used with **NU** type cylindrical roller bearings; in duplex arrangements with **NJ** or **NU** type bearing numbers, they become **NH** type and **NUJ** type respectively. For bearing dimensions, allowable rotations, and mass, please refer to pages **B-102** to **B-108**. 2. " \* " indicates L type collar rings that can also be used with dimension series **22** bearings.




d 200 ~ 320mm

|     | Dir   | mensic | ons   |                                | Bearing | Mass      |
|-----|-------|--------|-------|--------------------------------|---------|-----------|
|     |       | mm     |       |                                | numbers | kg        |
| d   | $d_1$ | $B_1$  | $B_2$ | <i>I</i> rls min <sup>1)</sup> |         | (approx.) |
| 200 | 259   | 14     | 23    | 4                              | HJ240E  | 2.35      |
|     | 258   | 14     | 34    | 4                              | HJ2240  | 2.99      |
|     | 257.8 | 14     | 28    | 4                              | HJ2240E | 2.86      |
|     | 280   | 18     | 33    | 5                              | HJ340   | 5         |
|     | 280   | 18     | 44.5  | 5                              | HJ2340  | 5.76      |
| 220 | 286   | 15     | 27.5  | 4                              | HJ244   | 3.55      |
|     | 307   | 20     | 36    | 5                              | HJ344   | 7.05      |
| 240 | 313   | 16     | 29.5  | 4                              | HJ248   | 4.65      |
|     | 335   | 22     | 39.5  | 5                              | HJ348   | 8.2       |
| 260 | 340   | 18     | 33    | 5                              | HJ252   | 6.2       |
|     | 362   | 24     | 43    | 6                              | HJ352   | 11.4      |
| 280 | 360   | 18     | 33    | 5                              | HJ256   | 7.39      |
|     | 390   | 26     | 46    | 6                              | HJ356   | 13.9      |
| 300 | 387   | 20     | 34.5  | 5                              | HJ260   | 9.14      |
| 320 | 415   | 21     | 37    | 5                              | HJ264   | 11.3      |


<sup>1)</sup> Minimal allowable dimension for chamfer dimension r. Note: 1. This L type collar ring is used with **NU** type cylindrical roller bearings; in duplex arrangements with **NJ** or **NU** type bearing numbers, they become **NH** type and **NUJ** type respectively. For bearing dimensions, allowable rotations, and mass, please refer to pages **B-108** to **B-111**. 2. " \* " indicates L type collar rings that can also be used with dimension series **22** bearings.





d 25 ~ 110mm

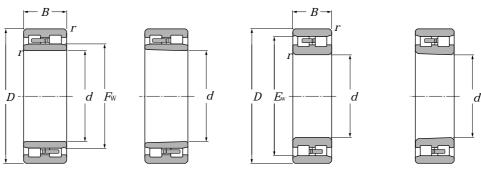
|     | Boundary   |          | ns                            | dynamic          | static                   | ad ratings<br>dynamic | static                       | _              | g speeds                 |                     | Bearing                    |
|-----|------------|----------|-------------------------------|------------------|--------------------------|-----------------------|------------------------------|----------------|--------------------------|---------------------|----------------------------|
| d   | D m        | nm<br>B  | <b>r</b> s min <sup>2 )</sup> | kl<br><i>C</i> r | $\mathcal{C}_{	ext{or}}$ | C <sub>r</sub>        | kgf $\mathcal{C}_{	ext{or}}$ | grease         | iin <sup>-1</sup><br>oil | cylindrical<br>bore | tapered <sup>1)</sup> bore |
| 25  | 47         | 16       | 0.6                           | 25.8             | 30.0                     | 2 630                 | 3 050                        | 14 000         | 17 000                   |                     |                            |
| 30  | 55         | 19       | 1                             | 31.0             | 37.0                     | 3 150                 | 3 800                        | 12 000         | 15 000                   |                     |                            |
| 35  | 62         | 20       | 1                             | 38.0             | 47.5                     | 3 850                 | 4 850                        | 11 000         | 13 000                   |                     |                            |
| 40  | 68         | 21       | 1                             | 43.5             | 55.5                     | 4 400                 | 5 650                        | 9 700          | 11 000                   |                     |                            |
| 45  | 75         | 23       | 1                             | 52.0             | 68.5                     | 5 300                 | 7 000                        | 8 800          | 10 000                   |                     |                            |
| 50  | 80         | 23       | 1                             | 53.0             | 72.5                     | 5 400                 | 7 400                        | 8 000          | 9 400                    |                     |                            |
| 55  | 90         | 26       | 1.1                           | 69.5             | 96.5                     | 7 050                 | 9 850                        | 7 300          | 8 600                    |                     |                            |
| 60  | 95         | 26       | 1.1                           | 71.0             | 102                      | 7 250                 | 10 400                       | 6 700          | 7 900                    |                     |                            |
| 65  | 100        | 26       | 1.1                           | 75.0             | 111                      | 7 650                 | 11 400                       | 6 200          | 7 300                    |                     |                            |
| 70  | 110        | 30       | 1.1                           | 94.5             | 143                      | 9 650                 | 14 600                       | 5 800          | 6 800                    |                     |                            |
| 75  | 115        | 30       | 1.1                           | 96.5             | 149                      | 9 850                 | 15 200                       | 5 400          | 6 300                    |                     |                            |
| 80  | 125        | 34       | 1.1                           | 116              | 179                      | 11 800                | 18 200                       | 5 100          | 5 900                    |                     |                            |
| 85  | 130        | 34       | 1.1                           | 122              | 194                      | 12 400                | 19 800                       | 4 800          | 5 600                    |                     |                            |
| 90  | 140        | 37       | 1.5                           | 143              | 228                      | 14 600                | 23 200                       | 4 500          | 5 300                    |                     |                            |
| 95  | 145        | 37       | 1.5                           | 146              | 238                      | 14 900                | 24 200                       | 4 300          | 5 000                    |                     |                            |
| 100 | 140<br>150 | 40<br>37 | 1.1<br>1.5                    | 131<br>153       | 260<br>256               | 13 300<br>15 600      | 26 500<br>26 100             | 4 300<br>4 000 | 5 100<br>4 800           | NNU4920             | NNU4920K                   |
| 105 | 145<br>160 | 40<br>41 | 1.1<br>2                      | 133<br>198       | 268<br>320               | 13 500<br>20 200      | 27 400<br>33 000             | 4 100<br>3 800 | 4 800<br>4 500           | NNU4921             | NNU4921K                   |
| 110 | 150<br>170 | 40<br>45 | 1.1<br>2                      | 137<br>229       | 284<br>375               | 14 000<br>23 300      | 28 900<br>38 000             | 3 900<br>3 600 | 4 600<br>4 300           | NNU4922             | NNU4922K                   |










Dynamic equivalent radial load  $P_{\rm T} = F_{\rm T}$ 

Static equivalent radial load  $P_{
m or}$  =  $F_{
m r}$ 

| numbers   |                                  | Dimen      | sions                           |              |                                     | Abutme                           | nt and f       | illet dime                          | ensions      |                                                       |                                |      | (approx.)                   |              |
|-----------|----------------------------------|------------|---------------------------------|--------------|-------------------------------------|----------------------------------|----------------|-------------------------------------|--------------|-------------------------------------------------------|--------------------------------|------|-----------------------------|--------------|
| ,         | l<br>pered <sup>1)</sup><br>bore | $F_{ m w}$ | nm $E_{\scriptscriptstyle m W}$ | d₄<br>min    | $d_{\!\scriptscriptstyle  m b}$ min | $d_{\!\scriptscriptstyle c}$ max | $d_{ m d}$ min | $D_{\!\scriptscriptstyle  m a}$ max | L<br>max     | $oldsymbol{\mathcal{D}}_{\!\scriptscriptstyle b}$ min | type  Tas cylindrical max bore | NNU  | type<br>cylindrical<br>bore |              |
| NN3005 NN | I3005K                           |            | 41.3                            | 29           | 30                                  |                                  |                |                                     | 43           | 42                                                    | 0.6                            |      | 0.124                       | 0.121        |
| NN3006 NN | 13006K                           |            | 48.5                            | 35           | 36.5                                |                                  |                |                                     | 50           | 49                                                    | 1                              |      | 0.199                       | 0.193        |
| NN3007 NN | 13007K                           |            | 55                              | 40           | 41.5                                |                                  |                |                                     | 57           | 56                                                    | 1                              |      | 0.242                       | 0.235        |
| NN3008 NN | 13008K                           |            | 61                              | 45           | 47                                  |                                  |                |                                     | 63           | 62                                                    | 1                              |      | 0.312                       | 0.303        |
| NN3009 NN | 13009K                           |            | 67.5                            | 50           | 52                                  |                                  |                |                                     | 70           | 69                                                    | 1                              |      | 0.405                       | 0.393        |
| NN3010 NN | 13010K                           |            | 72.5                            | 55           | 57                                  |                                  |                |                                     | 75           | 74                                                    | 1                              |      | 0.433                       | 0.419        |
| NN3011 NN | I3011K                           |            | 81                              | 61.5         | 63.5                                |                                  |                |                                     | 83.5         | 82                                                    | 1                              |      | 0.651                       | 0.631        |
| NN3012 NN | I3012K                           |            | 86.1                            | 66.5         | 68.5                                |                                  |                |                                     | 88.5         | 87                                                    | 1                              |      | 0.704                       | 0.683        |
| NN3013 NN | I3013K                           |            | 91                              | 71.5         | 73.5                                |                                  |                |                                     | 93.5         | 92                                                    | 1                              |      | 0.758                       | 0.735        |
| NN3014 NN | I3014K                           |            | 100                             | 76.5         | 79                                  |                                  |                |                                     | 103.5        | 101                                                   | 1                              |      | 1.04                        | 1.01         |
| NN3015 NN | I3015K                           |            | 105                             | 81.5         | 84                                  |                                  |                |                                     | 108.5        | 106                                                   | 1                              |      | 1.14                        | 1.11         |
| NN3016 NN | I3016K                           |            | 113                             | 86.5         | 89.5                                |                                  |                |                                     | 118.5        | 114                                                   | 1                              |      | 1.52                        | 1.47         |
| NN3017 NN | I3017K                           |            | 118                             | 91.5         | 94.5                                |                                  |                |                                     | 123.5        | 119                                                   | 1                              |      | 1.61                        | 1.56         |
| NN3018 NN | I3018K                           |            | 127                             | 98           | 101                                 |                                  |                |                                     | 132          | 129                                                   | 1.5                            |      | 2.07                        | 2.01         |
| NN3019 NN | 13019K                           |            | 132                             | 103          | 106                                 |                                  |                |                                     | 137          | 134                                                   | 1.5                            |      | 2.17                        | 2.1          |
|           | 14920K<br>13020K                 | 113        | 129<br>137                      | 106.5<br>108 | 110<br>111                          | 111                              | 115            | 133.5                               | 133.5<br>142 | 131<br>139                                            | 1 1.83<br>1.5                  | 1.75 | 1.75<br>2.26                | 1.67<br>2.19 |
| _         | 14921K<br>13021K                 | 118        | 134<br>146                      | 111.5<br>114 | 115<br>117                          | 116                              | 120            | 138.5                               | 138.5<br>151 | 136<br>148                                            | 1 1.91<br>2                    | 1.82 | 1.82<br>2.89                | 1.73<br>2.8  |
| _         | 14922K<br>13022K                 | 123        | 139<br>155                      | 116.5<br>119 | 120<br>123                          | 121                              | 125            | 143.5                               | 143.5<br>161 | 141<br>157                                            | 1 1.99<br>2                    | 1.9  | 1.9<br>3.69                 | 1.81<br>3.56 |



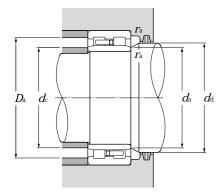


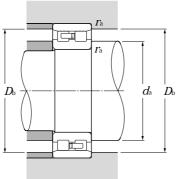


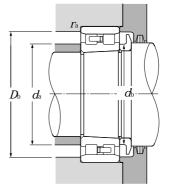
Type NNU
Cylindrical bore Tapered bore

Type NN

Cylindrical bore Tapered bore


d 120 ~ 280mm


| E   | Boundary   | dimensio   | ns                 | d a          |                | ad ratings        | -4-4:-             | Limiting       | speeds           |                     | Bearing                       |
|-----|------------|------------|--------------------|--------------|----------------|-------------------|--------------------|----------------|------------------|---------------------|-------------------------------|
|     | n          | nm         |                    | dynamic      | static<br>kN   | dynamic<br>k      | static<br>cgf      | m              | in <sup>-1</sup> | ,,                  | NNU                           |
| d   | D          | В          | $r_{\rm s  min}^2$ | $C_{\rm r}$  | $C_{ m or}$    | $C_{ m r}$        | $C_{ m or}$        | grease         | oil              | cylindrical<br>bore | tapered <sup>1)</sup><br>bore |
| 120 | 165<br>180 | 45<br>46   | 1.1<br>2           | 183<br>233   | 360<br>390     | 18 700<br>23 700  | 37 000<br>40 000   | 3 600<br>3 300 | 4 200<br>3 900   | NNU4924             | NNU4924K                      |
| 130 | 180<br>200 | 50<br>52   | 1.5<br>2           | 220<br>284   | 440<br>475     | 22 400<br>29 000  | 45 000<br>48 500   | 3 300<br>3 100 | 3 900<br>3 600   | NNU4926             | NNU4926K                      |
| 140 | 190<br>210 | 50<br>53   | 1.5<br>2           | 227<br>298   | 470<br>515     | 23 100<br>30 500  | 48 000<br>52 500   | 3 000<br>2 800 | 3 600<br>3 300   | NNU4928             | NNU4928K                      |
| 150 | 210<br>225 | 60<br>56   | 2<br>2.1           | 345<br>335   | 690<br>585     | 35 000<br>34 000  | 70 500<br>60 000   | 2 800<br>2 600 | 3 300<br>3 100   | NNU4930             | NNU4930K                      |
| 160 | 220<br>240 | 60<br>60   | 2<br>2.1           | 355<br>375   | 740<br>660     | 36 500<br>38 000  | 75 500<br>67 500   | 2 600<br>2 500 | 3 100<br>2 900   | NNU4932             | NNU4932K                      |
| 170 | 230<br>260 | 60<br>67   | 2<br>2.1           | 360<br>440   | 765<br>775     | 37 000<br>45 000  | 78 000<br>79 000   | 2 500<br>2 300 | 2 900<br>2 700   | NNU4934             | NNU4934K                      |
| 180 | 250<br>280 | 69<br>74   | 2<br>2.1           | 460<br>565   | 965<br>995     | 46 500<br>57 500  | 98 500<br>102 000  | 2 300<br>2 200 | 2 700<br>2 600   | NNU4936             | NNU4936K                      |
| 190 | 260<br>290 | 69<br>75   | 2<br>2.1           | 475<br>580   | 1 030<br>1 040 | 48 500<br>59 000  | 105 000<br>106 000 | 2 200<br>2 000 | 2 600<br>2 400   | NNU4938             | NNU4938K                      |
| 200 | 280<br>310 | 80<br>82   | 2.1<br>2.1         | 555<br>655   | 1 180<br>1 170 | 56 500<br>66 500  | 120 000<br>119 000 | 2 100<br>1 900 | 2 400<br>2 300   | NNU4940             | NNU4940K                      |
| 220 | 300<br>340 | 80<br>90   | 2.1<br>3           | 585<br>815   | 1 300<br>1 480 | 59 500<br>83 000  | 132 000<br>151 000 | 1 900<br>1 700 | 2 200<br>2 100   | NNU4944             | NNU4944K                      |
| 240 | 320<br>360 | 80<br>92   | 2.1<br>3           | 610<br>855   | 1 410<br>1 600 | 62 500<br>87 000  | 144 000<br>163 000 | 1 700<br>1 600 | 2 000<br>1 900   | NNU4948             | NNU4948K                      |
| 260 | 360<br>400 | 100<br>104 | 2.1<br>4           | 900<br>1 060 | 2 070<br>1 990 | 92 000<br>108 000 | 211 000<br>203 000 | 1 600<br>1 500 | 1 800<br>1 700   | NNU4952             | NNU4952K                      |
| 280 | 380<br>420 | 100<br>106 | 2.1<br>4           | 925<br>1 080 | 2 200<br>2 080 | 94 500<br>110 000 | 224 000<br>212 000 | 1 400<br>1 300 | 1 700<br>1 600   | NNU4956             | NNU4956K                      |

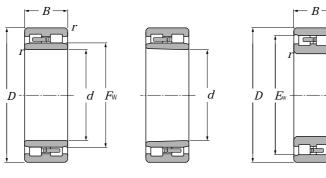






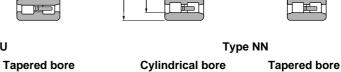





Dynamic equivalent radial load  $P_{\Gamma} = F_{\Gamma}$ 

Static equivalent radial load  $P_{\text{or}} = F_{\text{r}}$ 


| numbers             |                               | Dimen      | sions                        |                                  |                                     | Abut                                | ment ar             | nd fillet di                        | mension    | ıs           |                 |                    | Mas               | S (approx.)        |                   |
|---------------------|-------------------------------|------------|------------------------------|----------------------------------|-------------------------------------|-------------------------------------|---------------------|-------------------------------------|------------|--------------|-----------------|--------------------|-------------------|--------------------|-------------------|
|                     | NN                            | m          | ım                           | 7                                | ,                                   | ,                                   | ,                   | mm                                  |            |              |                 | ,,                 | NNU               |                    | e NN              |
| cylindrical<br>bore | tapered <sup>1)</sup><br>bore | $F_{ m w}$ | $E_{\scriptscriptstyle m W}$ | $d_{\!\scriptscriptstyle a}$ min | $d_{\!\scriptscriptstyle  m b}$ min | $d_{\!\scriptscriptstyle  m C}$ max | $d_{\!	ext{d}}$ min | $D_{\!\scriptscriptstyle  m a}$ max | D<br>max   | h<br>min     | r <sub>as</sub> | cylindrica<br>bore | l tapered<br>bore | cylindrica<br>bore | l tapered<br>bore |
| NN4924              | NN4924K                       | 134.5      | 154.5                        | 126.5                            | 130                                 | 133                                 | 137                 | 158.5                               | 158.5      | 156.5        | 1               | 2.75               | 2.63              | 2.63               | 2.51              |
| NN3024              | NN3024K                       |            | 165                          | 129                              | 133                                 |                                     |                     |                                     | 171        | 167          | 2               |                    |                   | 3.98               | 3.83              |
| NN4926<br>NN3026    | NN4926K<br>NN3026K            | 146        | 168<br>182                   | 138<br>139                       | 142<br>143                          | 144                                 | 148                 | 172                                 | 172<br>191 | 170<br>183   | 1.5<br>2        | 3.69               | 3.52              | 3.52<br>5.92       | 3.35<br>5.71      |
| NN4928<br>NN3028    | NN4928K<br>NN3028K            | 156        | 178<br>192                   | 148<br>149                       | 152<br>153                          | 154                                 | 158                 | 182                                 | 182<br>201 | 180<br>194   | 1.5<br>2        | 3.94               | 3.76              | 3.76<br>6.44       | 3.58<br>6.21      |
| NN4930<br>NN3030    | NN4930K<br>NN3030K            | 168.5      | 196.5<br>206                 | 159<br>161                       | 164<br>166                          | 166                                 | 171                 | 201                                 | 201<br>214 | 198.5<br>208 | 2 2             | 6.18               | 5.9               | 5.9<br>7.81        | 5.62<br>7.53      |
| NN4932<br>NN3032    | NN4932K<br>NN3032K            | 178.5      | 206.5<br>219                 | 169<br>171                       | 174<br>176                          | 176                                 | 182                 | 211                                 | 211<br>229 | 208.5<br>221 | 2 2             | 6.53               | 6.23              | 6.24<br>8.92       | 5.94<br>8.59      |
| NN4934<br>NN3034    | NN4934K<br>NN3034K            | 188.5      | 216.5<br>236                 | 179<br>181                       | 184<br>187                          | 186                                 | 192                 | 221                                 | 221<br>249 | 218.5<br>238 | 2               | 6.87               | 6.55              | 6.56<br>12.6       | 6.24<br>12.2      |
| NN4936<br>NN3036    | NN4936K<br>NN3036K            | 202        | 234<br>255                   | 189<br>191                       | 195<br>197                          | 199                                 | 205                 | 241                                 | 241<br>269 | 236<br>257   | 2<br>2          | 9.9                | 9.46              | 9.45<br>16.6       | 9.01<br>16        |
| NN4938<br>NN3038    | NN4938K<br>NN3038K            | 212        | 244<br>265                   | 199<br>201                       | 205<br>207                          | 209                                 | 215                 | 251                                 | 251<br>279 | 246<br>267   | 2<br>2          | 10.4               | 9.94              | 9.93<br>18         | 9.47<br>17.4      |
| NN4940<br>NN3040    | NN4940K<br>NN3040K            | 225        | 261<br>282                   | 211<br>211                       | 218<br>218                          | 222                                 | 228                 | 269                                 | 269<br>299 | 264<br>285   | 2<br>2          | 14.7               | 14                | 14<br>21.6         | 13.3<br>20.8      |
| NN4944<br>NN3044    | NN4944K<br>NN3044K            | 245        | 281<br>310                   | 231<br>233                       | 238<br>240                          | 242                                 | 248                 | 289                                 | 289<br>327 | 284<br>313   | 2<br>2.5        | 15.9               | 15.2              | 15.2<br>29.3       | 14.5<br>28.2      |
| NN4948<br>NN3048    | NN4948K<br>NN3048K            | 265        | 301<br>330                   | 251<br>253                       | 258<br>261                          | 262                                 | 269                 | 309                                 | 309<br>347 | 304<br>333   | 2<br>2.5        | 17.2               | 16.4              | 16.4<br>32.8       | 15.6<br>31.6      |
| NN4952<br>NN3052    | NN4952K<br>NN3052K            | 292        | 336<br>364                   | 271<br>276                       | 279<br>285                          | 288                                 | 296                 | 349                                 | 349<br>384 | 339<br>367   | 2<br>3          | 29.6               | 28.3              | 28.3<br>47.4       | 27<br>45.8        |
| NN4956<br>NN3056    | NN4956K<br>NN3056K            | 312        | 356<br>384                   | 291<br>296                       | 299<br>305                          | 308                                 | 316                 | 369                                 | 369<br>404 | 359<br>387   | 2               | 31.6               | 30.2              | 30.2<br>51.1       | 28.8<br>49.3      |

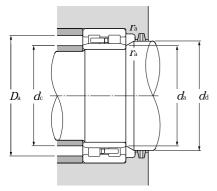


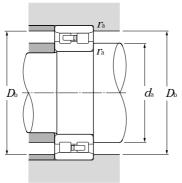


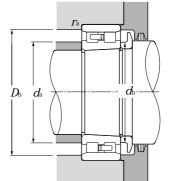
Type NNU

Cylindrical bore




d 300 ~ 500mm


| E   | Boundary   | dimensio   | ns                | dynamic        |                | ad ratings<br>dynamic | static             | Limiting       | speeds           |                         | Bearing                   |
|-----|------------|------------|-------------------|----------------|----------------|-----------------------|--------------------|----------------|------------------|-------------------------|---------------------------|
|     | m          | nm         |                   |                | :N             | •                     | gf                 | m              | in <sup>-1</sup> | <b>type</b> cylindrical | NNU tapered <sup>1)</sup> |
| d   | D          | В          | $r_{ m smin}^2$ ) | $C_{r}$        | $C_{ m or}$    | $C_{\rm r}$           | $C_{ m or}$        | grease         | oil              | bore                    | bore                      |
| 300 | 420<br>460 | 118<br>118 | 3<br>4            | 1 200<br>1 330 | 2 800<br>2 560 | 122 000<br>135 000    | 285 000<br>261 000 | 1 300<br>1 200 | 1 500<br>1 500   | NNU4960                 | NNU4960K                  |
| 320 | 440<br>480 | 118<br>121 | 3<br>4            | 1 240<br>1 350 | 2 970<br>2 670 | 126 000<br>138 000    | 305 000<br>272 000 | 1 200<br>1 100 | 1 400<br>1 300   | NNU4964                 | NNU4964K                  |
| 340 | 460<br>520 | 118<br>133 | 3<br>5            | 1 270<br>1 620 | 3 150<br>3 200 | 130 000<br>165 000    | 320 000<br>325 000 | 1 100<br>1 100 | 1 300<br>1 300   | NNU4968                 | NNU4968K                  |
| 360 | 480<br>540 | 118<br>134 | 3<br>5            | 1 270<br>1 650 | 3 250<br>3 300 | 130 000<br>169 000    | 330 000<br>340 000 | 1 100<br>1 000 | 1 300<br>1 200   | NNU4972                 | NNU4972K                  |
| 380 | 520<br>560 | 140<br>135 | 4<br>5            | 1 630<br>1 690 | 4 050<br>3 450 | 167 000<br>172 000    | 415 000<br>355 000 | 1 000<br>940   | 1 200<br>1 100   | NNU4976                 | NNU4976K                  |
| 400 | 540<br>600 | 140<br>148 | 4<br>5            | 1 690<br>2 040 | 4 300<br>4 150 | 172 000<br>208 000    | 435 000<br>420 000 | 940<br>880     | 1 100<br>1 000   | NNU4980                 | NNU4980K                  |
| 420 | 560<br>620 | 140<br>150 | 4<br>5            | 1 740<br>2 080 | 4 500<br>4 300 | 177 000<br>212 000    | 460 000<br>440 000 | 900<br>840     | 1 100<br>990     | NNU4984                 | NNU4984K                  |
| 440 | 600<br>650 | 160<br>157 | 4<br>6            | 2 150<br>2 420 | 5 550<br>5 100 | 219 000<br>247 000    | 565 000<br>520 000 | 850<br>800     | 1 000<br>940     | NNU4988                 | NNU4988K                  |
| 460 | 620<br>680 | 160<br>163 | 4<br>6            | 2 220<br>2 550 | 5 850<br>5 350 | 226 000<br>260 000    | 595 000<br>545 000 | 800<br>750     | 950<br>890       | NNU4992                 | NNU4992K                  |
| 480 | 650        | 170        | 5                 | 2 280          | 5 900          | 233 000               | 600 000            | 770            | 910              | NNU4996                 | NNU4996K                  |
| 500 | 670        | 170        | 5                 | 2 360          | 6 200          | 240 000               | 635 000            | 730            | 860              | NNU49/500               | NNU49/500K                |
|     |            |            |                   |                |                |                       |                    |                |                  |                         |                           |

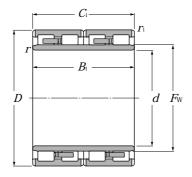











Dynamic equivalent radial load  $P_{\rm T} = F_{\rm T}$ 

Static equivalent radial load  $P_{
m or}$  =  $F_{
m r}$ 

| numbers                                             | Dimen      | sions      |            |                                     | Abut                                | ment ar             | nd fillet o                            | limensior  | ıs         |                 |                               | Mass ( |                             |                       |
|-----------------------------------------------------|------------|------------|------------|-------------------------------------|-------------------------------------|---------------------|----------------------------------------|------------|------------|-----------------|-------------------------------|--------|-----------------------------|-----------------------|
| type NN cylindrical tapered <sup>1)</sup> bore bore | $F_{ m w}$ | $E_{ m w}$ | d₄<br>min  | $d_{\!\scriptscriptstyle  m b}$ min | $d_{\!\scriptscriptstyle  m C}$ max | $d_{\!	ext{d}}$ min | $m$ m $D_{\!\scriptscriptstyle a}$ max | D<br>max   | )<br>min   | r <sub>as</sub> | type N<br>cylindrical<br>bore | INU    | type<br>cylindrical<br>bore | NN<br>tapered<br>bore |
| NN4960 NN4960K<br>NN3060 NN3060K                    | 339        | 391<br>418 | 313<br>316 | 323<br>326                          | 335                                 | 343                 | 407                                    | 407<br>444 | 394<br>421 | 2.5<br>3        | 48.6                          | 46.4   | 46.4<br>70.8                | 44.2<br>68.6          |
| NN4964 NN4964K<br>NN3064 NN3064K                    | 359        | 411<br>438 | 333<br>336 | 343<br>346                          | 355                                 | 363                 | 427                                    | 427<br>464 | 414<br>441 | 2.5<br>3        | 51.4                          | 49.1   | 49<br>76.2                  | 46.7<br>73.5          |
| NN3068 NN3068K                                      | 379        | 473        | 353<br>360 | 363<br>371                          | 375                                 | 383                 | 447                                    | 500        | 477        | 2.5<br>4        | 54.2                          | 51.7   | 102                         | 98.5                  |
| NN3072 NN3072K                                      | 398        | 493        | 373<br>380 | 383<br>391                          | 394                                 | 402                 | 467                                    | 520        | 497        | 2.5<br>4        | 57                            | 54.4   | 107                         | 103                   |
| NN3076 NN3076K                                      | 425        | 512        | 396<br>400 | 408<br>411                          | 420                                 | 430                 | 504                                    | 540        | 516        | 3<br>4          | 84.5                          | 80.6   | 113                         | 109                   |
| NN3080 NN3080K                                      | 445        | 547        | 416<br>420 | 428<br>432                          | 440                                 | 450                 | 524                                    | 580        | 551        | 3<br>4          | 88.2                          | 84.1   | 146                         | 141                   |
| NN3084 NN3084K                                      | 465        | 567        | 436<br>440 | 448<br>452                          | 460                                 | 470                 | 544                                    | 600        | 571        | 3<br>4          | 92                            | 87.7   | 154                         | 148                   |
| NN3088 NN3088K                                      | 492        | 596        | 456<br>464 | 469<br>477                          | 487                                 | 497                 | 584                                    | 626        | 601        | 3<br>5          | 127                           | 121    | 178                         | 172                   |
| NN3092 NN3092K                                      | 512        | 622        | 476<br>484 | 489<br>498                          | 507                                 | 517                 | 604                                    | 656        | 627        | 3<br>5          | 132                           | 126    | 202                         | 195                   |
|                                                     | 534        |            | 500        | 514                                 | 531                                 | 541                 | 630                                    |            |            | 4               | 156                           | 149    |                             |                       |
|                                                     | 556        |            | 520        | 534                                 | 551                                 | 561                 | 650                                    |            |            | 4               | 162                           | 155    |                             |                       |



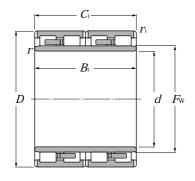


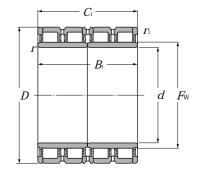
d 120 ~ 200mm

|     |            | Boundary of | dimensions       |                                |                                 |            |                | ad ratings       |                    |
|-----|------------|-------------|------------------|--------------------------------|---------------------------------|------------|----------------|------------------|--------------------|
|     |            |             |                  |                                |                                 | dynamic    | static<br>kN   | dynamic          | static             |
| d   | D          | $B_1$       | nm<br><i>C</i> ı | <i>I</i> 's min <sup>1</sup> ) | <i>I</i> 'ls min <sup>1</sup> ) | $C_{ m r}$ | $C_{ m or}$    | C <sub>r</sub>   | $c_{ m or}$        |
| 120 | 180        | 92          | 92               | 2.5                            | 2.5                             | 400        | 785            | 40 500           | 80 000             |
| 120 | 180        | 105         | 105              | 2.5                            | 2.5                             | 445        | 855            | 45 500           | 87 000             |
| 130 | 200        | 104         | 104              | 2.5                            | 2.5                             | 490        | 955            | 49 500           | 97 000             |
| 140 | 210        | 116         | 116              | 2.5                            | 2.5                             | 510        | 1 030          | 52 000           | 105 000            |
| 145 | 210        | 155         | 155              | 2.5                            | 2.5                             | 705        | 1 640          | 71 500           | 168 000            |
|     | 225        | 156         | 156              | 2.5                            | 2.5                             | 810        | 1 750          | 82 500           | 178 000            |
|     | 220        | 150         | 150              | 2.5                            | 2.5                             | 750        | 1 640          | 76 500           | 168 000            |
| 150 | 230        | 130         | 130              | 2.5                            | 2.5                             | 725        | 1 520          | 73 500           | 155 000            |
|     | 230<br>250 | 156<br>150  | 156<br>150       | 2.5<br>2.5                     | 2.5<br>2.5                      | 930<br>885 | 2 040<br>1 640 | 95 000<br>90 500 | 208 000<br>167 000 |
|     | 200        | 100         | 100              | 2.0                            | 2.0                             |            | 1 0 40         |                  | 107 000            |
|     | 220        | 180         | 180              | 2.5                            | 2.5                             | 920        | 2 490          | 93 500           | 254 000            |
| 160 | 230        | 130         | 130              | 2.5                            | 2.5                             | 665        | 1 340          | 68 000           | 136 000            |
| .00 | 230        | 168         | 168              | 2.5                            | 2.5                             | 915        | 2 170          | 93 500           | 222 000            |
|     | 240        | 170         | 170              | 2                              | 2.5                             | 980        | 2 290          | 100 000          | 234 000            |
|     | 230        | 120         | 120              | 2.5                            | 2.5                             | 620        | 1 520          | 63 000           | 155 000            |
|     | 240        | 156         | 156              | 2.5                            | 2.5                             | 905        | 2 170          | 92 500           | 222 000            |
|     | 240        | 160         | 160              | 2.5                            | 2.5                             | 905        | 2 180          | 92 000           | 222 000            |
| 170 | 250        | 168         | 168              | 2.5                            | 2.5                             | 970        | 2 220          | 99 000           | 226 000            |
|     | 255        | 180         | 180              | 2.5                            | 2.5                             | 1 100      | 2 430          | 112 000          | 247 000            |
|     | 260        | 150         | 150              | 2.5                            | 2.5                             | 835        | 1 750          | 85 000           | 179 000            |
|     | 260        | 225         | 225              | 2.5                            | 2.5                             | 1 310      | 3 150          | 134 000          | 320 000            |
|     | 250        | 156         | 156              | 2.5                            | 2.5                             | 895        | 2 180          | 91 500           | 223 000            |
| 180 | 260        | 168         | 168              | 2.5                            | 2.5                             | 1 020      | 2 400          | 104 000          | 244 000            |
|     | 265        | 180         | 180              | 2.5                            | 2.5                             | 1 090      | 2 510          | 111 000          | 256 000            |
|     | 260        | 168         | 168              | 2.5                            | 2.5                             | 980        | 2 600          | 100 000          | 265 000            |
| 190 | 270        | 170         | 170              | 2.5                            | 2.5                             | 1 090      | 2 660          | 111 000          | 272 000            |
| 190 | 270        | 200         | 200              | 2.5                            | 2.5                             | 1 260      | 3 100          | 128 000          | 315 000            |
|     | 280        | 200         | 200              | 2.5                            | 2.5                             | 1 240      | 2 910          | 126 000          | 297 000            |
|     | 270        | 170         | 170              | 2.5                            | 2.5                             | 970        | 2 610          | 99 000           | 266 000            |
| 200 | 280        | 190         | 190              | 2.5                            | 2.5                             | 1 190      | 3 150          | 121 000          | 320 000            |
|     | 280        | 200         | 200              | 2.5                            | 2.5                             | 1 310      | 3 300          | 134 000          | 335 000            |

<sup>1 )</sup> Minimal allowable dimension for chamfer dimension r or r. 2 ) An oil hole and groove are provided in the center of the outer ring. The oil groove is not provided on the side.

B-122





| H | _ | ٦ |   |
|---|---|---|---|
| Г |   |   | _ |

| Bearing<br>numbers | Dimensions | Drawing no.            | Mass      |
|--------------------|------------|------------------------|-----------|
|                    |            |                        | kg        |
|                    | $F_{ m w}$ |                        | (approx.) |
|                    | 1 W        |                        | (арргох.) |
| 4R2437             | 137        | 1                      | 8.2       |
| 4R2438             | 135        | 1                      | 9.3       |
| 4R2628             | 150        | 1                      | 12.1      |
| .=                 |            |                        |           |
| 4R2823             | 160        | 1                      | 13.9      |
| 4R2906             | 166        | 1                      | 18        |
| 4R2908             | 169        | 1                      | 23.4      |
| 4R3031             | 168        | 1                      | 19.4      |
| 4R3029             | 174        | 1                      | 20        |
| 4R3040             | 174        | 1                      | 24.5      |
| 4R3039             | 177        | 1                      | 29.6      |
| 4R3224             | 177        | 1                      | 20.2      |
| 4R3226             | 180        | 1                      | 16.6      |
| 4R3232             | 179        | 1                      | 23.4      |
| 4R3225             | 183        | 1                      | 27.8      |
| 4R3426             | 187        | 1                      | 14.2      |
| 4R3429             | 189        | 1                      | 22.2      |
| 4R3423             | 190        | 1                      | 22.8      |
| 4R3432             | 193        | 1                      | 28.2      |
| 4R3425             | 193        | 1                      | 19.3      |
| 4R3433             | 192        | 1                      | 29.5      |
| 4R3431             | 196        | 1                      | 44        |
| 4R3625             | 200        | 1                      | 23.2      |
| 4R3628             | 202        | 1                      | 29.4      |
| 4R3618             | 204        | 1                      | 34.2      |
| 4R3820             | 212        | 1                      | 26.9      |
| 4R3818             | 213        | 1                      | 31.7      |
| 4R3821             | 212        | 1                      | 37.5      |
| 4R3823             | 214        | <b>1</b> <sup>2)</sup> | 41.5      |
| 4R4039             | 222        | 1                      | 28.5      |
| 4R4026             | 223        | 1                      | 36.7      |
| 4R4037             | 222        | 1                      | 40.5      |
|                    | _          |                        | -         |

Note: **Drawing 1** represents a bearing with solid rollers and machined cage.





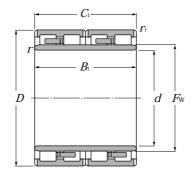


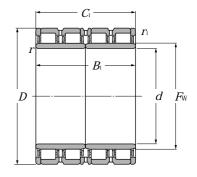
Drawing 2

d 200 ~ 300mm

| <i>u</i> 20         | 0 ~ 300r | 11111 |            |                       |                    |             |             |                                       |             |
|---------------------|----------|-------|------------|-----------------------|--------------------|-------------|-------------|---------------------------------------|-------------|
| Boundary dimensions |          |       |            |                       |                    |             | Basic lo    | ad ratings<br>dynamic                 | static      |
|                     |          | m     | nm         |                       |                    |             | kN          | ŀ                                     | gf          |
| d                   | D        | $B_1$ | <i>C</i> 1 | r <sub>s min</sub> 1) | $r_{ m lsmin}^{1}$ | $C_{\rm r}$ | $C_{ m or}$ | $C_{\!\scriptscriptstyle 	ext{ m r}}$ | $C_{ m or}$ |
| 200                 | 290      | 192   | 192        | 2.5                   | 2.5                | 1 290       | 3 150       | 132 000                               | 320 000     |
| 200                 | 320      | 216   | 216        | 3                     | 3                  | 1 750       | 3 650       | 179 000                               | 375 000     |
| 210                 | 290      | 192   | 192        | 2.5                   | 2.5                | 1 230       | 3 350       | 126 000                               | 340 000     |
|                     | 290      | 192   | 192        | 2.5                   | 2.5                | 1 190       | 3 350       | 122 000                               | 340 000     |
|                     | 300      | 160   | 160        | 2.5                   | 2.5                | 1 000       | 2 590       | 102 000                               | 264 000     |
|                     | 310      | 192   | 192        | 2.5                   | 2.5                | 1 390       | 3 400       | 141 000                               | 350 000     |
|                     | 310      | 204   | 204        | 2.5                   | 2.5                | 1 420       | 3 750       | 144 000                               | 385 000     |
| 220                 | 310      | 215   | 215        | 2.5                   | 2.5                | 1 530       | 3 750       | 156 000                               | 380 000     |
|                     | 310      | 225   | 225        | 2.5                   | 2.5                | 1 480       | 3 950       | 151 000                               | 405 000     |
|                     | 310      | 265   | 265        | 2.5                   | 2.5                | 1 630       | 4 500       | 167 000                               | 460 000     |
|                     | 320      | 160   | 160        | 3                     | 3                  | 1 190       | 2 550       | 121 000                               | 260 000     |
|                     | 320      | 210   | 210        | 2.5                   | 2.5                | 1 550       | 3 650       | 158 000                               | 370 000     |
| 220                 | 330      | 206   | 206        | 2.5                   | 2.5                | 1 520       | 3 800       | 155 000                               | 385 000     |
| 230                 | 340      | 260   | 260        | 3                     | 3                  | 2 050       | 5 100       | 209 000                               | 520 000     |
|                     | 330      | 220   | 220        | 3                     | 3                  | 1 490       | 4 150       | 152 000                               | 420 000     |
| 240                 | 340      | 220   | 220        | 3                     | 3                  | 1 670       | 4 200       | 170 000                               | 425 000     |
|                     | 360      | 220   | 220        | 2.5                   | 2.5                | 1 760       | 4 050       | 179 000                               | 415 000     |
| 250                 | 350      | 220   | 220        | 3                     | 3                  | 1 730       | 4 300       | 176 000                               | 440 000     |
| 260                 | 370      | 220   | 220        | 3                     | 3                  | 1 760       | 4 450       | 179 000                               | 455 000     |
| 200                 | 380      | 280   | 280        | 3                     | 3                  | 2 420       | 6 250       | 247 000                               | 635 000     |
| 270                 | 380      | 280   | 280        | 2.5                   | 2.5                | 2 580       | 6 850       | 263 000                               | 700 000     |
|                     | 390      | 220   | 220        | 3                     | 3                  | 1 780       | 4 650       | 181 000                               | 475 000     |
| 280                 | 390      | 275   | 275        | 2.5                   | 2.5                | 2 290       | 6 250       | 233 000                               | 635 000     |
|                     | 420      | 280   | 280        | 4                     | 4                  | 2 430       | 6 150       | 248 000                               | 630 000     |
| 290                 | 410      | 240   | 240        | 3                     | 3                  | 2 240       | 5 550       | 228 000                               | 565 000     |
|                     | 420      | 300   | 300        | 3                     | 3                  | 2 830       | 7 500       | 288 000                               | 765 000     |
|                     | 400      | 300   | 300        | 3                     | 3                  | 2 480       | 7 500       | 253 000                               | 765 000     |
| 300                 | 420      | 240   | 240        | 3                     | 3                  | 2 020       | 5 450       | 206 000                               | 555 000     |
| 300                 | 420      | 300   | 300        | 3                     | 3                  | 2 720       | 7 600       | 278 000                               | 775 000     |
|                     | 420      | 300   | 300        | 3                     | 3                  | 2 900       | 7 850       | 295 000                               | 800 000     |

<sup>1 )</sup> Minimal allowable dimension for chamfer dimension r or r. 2 ) An oil hole and groove are provided in the center of the outer ring.


3 ) An oil hole and groove are not provided on the outer ring spacer.




| H | _ | _ |
|---|---|---|
| Ľ | _ | _ |

| Bearing<br>numbers | Dimensions | Drawing no.            | Mass      |
|--------------------|------------|------------------------|-----------|
|                    |            |                        | kg        |
|                    | $F_{ m w}$ |                        | (approx.) |
|                    |            |                        |           |
| 4R4041             | 226        | 1                      | 42.5      |
| 4R4028             | 231        | 1                      | 67        |
|                    |            |                        |           |
| 4R4206             | 236        | 1                      | 39.5      |
| 4R4413             | 239        | 1                      | 33.8      |
| 4R4419             | 245        | 1                      | 32.8      |
| 4R4426             | 246        | 1                      | 46.9      |
| 4R4425             | 247        | 1                      | 49.8      |
| 4R4420             | 242        | 1                      | 51.5      |
| 4R4416             | 245        | 1                      | 54.9      |
| 4R4430             | 245        | 1                      | 63.5      |
| 4R4428             | 245        | 1                      | 46.5      |
| 4R4429             | 248        | 1                      | 60.5      |
| 4R4614             | 258        | 1                      | 58.6      |
| 4R4611             | 261        | 1                      | 82.6      |
| 4R4811             | 270        | 1 <sup>2)</sup>        | 56.8      |
| 4R4806             | 268        | 1                      | 63.6      |
| 4R4807             | 274        | 1                      | 79.6      |
| 4R5008             | 278        | 1                      | 66        |
| 4R5217             | 292        | 1                      | 76.5      |
| 4R5213             | 294        | 1                      | 109       |
| 4R5405             | 299.7      | <b>2</b> <sup>3)</sup> | 105       |
| 4R5611             | 312        | 1                      | 81.3      |
| 4R5612             | 312        | 1                      | 105       |
| 4R5605             | 323        | 1                      | 139       |
| 4R5806             | 320        | 1                      | 103       |
| 4R5805             | 327        | 1                      | 141       |
| E-4R6014           | 328        | 1                      | 104       |
| E-4R6017           | 334        | 1                      | 106       |
| E-4R6015           | 334        | 1                      | 125       |
| E-4R6020           | 332        | 2                      | 130       |
|                    |            |                        |           |

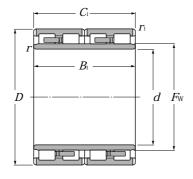


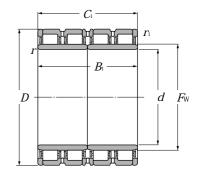




Drawing 2

d 300 ~ 460mm


| <i>u</i> 300 | 7001 |             |                            |                                |              |                                    |           |                                    |                 |
|--------------|------|-------------|----------------------------|--------------------------------|--------------|------------------------------------|-----------|------------------------------------|-----------------|
|              |      | Boundary of | dimensions                 |                                |              |                                    |           | oad ratings                        |                 |
|              |      |             |                            |                                |              | dynamic                            | static    | dynamic                            | static          |
| d            | D    | $B_{ m i}$  | nm $	extcolor{black}{C_1}$ | <i>I</i> 's min <sup>1</sup> ) | r∕ls min 1 ) | $C_{\!\scriptscriptstyle 	ext{r}}$ | kN<br>Cor | $C_{\!\scriptscriptstyle 	ext{T}}$ | kgf $C_{ m or}$ |
| u            | D    | Di          | CI                         | Is min                         | I is min     | Cr                                 | Cor       | Cr                                 | Cor             |
| 200          | 420  | 320         | 300                        | 3                              | 3            | 2 900                              | 7 850     | 295 000                            | 800 000         |
| 300          | 460  | 270         | 270                        | 3                              | 3            | 2 510                              | 5 350     | 256 000                            | 545 000         |
| 310          | 430  | 240         | 240                        | 3                              | 3            | 2 240                              | 5 950     | 228 000                            | 605 000         |
|              | 440  | 240         | 230                        | 3                              | 3            | 2 290                              | 6 050     | 234 000                            | 615 000         |
| 320          | 450  | 240         | 240                        | 3                              | 3            | 2 370                              | 6 150     | 242 000                            | 630 000         |
| 320          | 460  | 340         | 340                        | 3                              | 3            | 3 400                              | 9 450     | 345 000                            | 960 000         |
|              | 470  | 350         | 350                        | 3                              | 3            | 4 150                              | 10 900    | 425 000                            | 1 110 000       |
| 330          | 440  | 200         | 200                        | 3                              | 3            | 1 820                              | 4 850     | 186 000                            | 495 000         |
| 530          | 460  | 340         | 340                        | 4                              | 4            | 3 250                              | 8 850     | 330 000                            | 905 000         |
| 240          | 480  | 370         | 350                        | 5                              | 5            | 3 450                              | 9 650     | 350 000                            | 985 000         |
| 340          | 490  | 300         | 300                        | 4                              | 4            | 3 350                              | 8 300     | 340 000                            | 845 000         |
| 360          | 510  | 400         | 400                        | 5                              | 5            | 4 250                              | 11 500    | 435 000                            | 1 170 000       |
| 370          | 480  | 230         | 230                        | 5                              | 5            | 2 100                              | 6 250     | 214 000                            | 635 000         |
| 370          | 520  | 400         | 400                        | 5                              | 5            | 4 650                              | 13 500    | 475 000                            | 1 370 000       |
|              | 520  | 280         | 280                        | 4                              | 4            | 3 400                              | 9 150     | 350 000                            | 935 000         |
| 380          | 520  | 300         | 300                        | 4                              | 4            | 3 550                              | 9 600     | 360 000                            | 980 000         |
|              | 540  | 400         | 400                        | 4                              | 4            | 5 200                              | 15 200    | 530 000                            | 1 550 000       |
| 400          | 560  | 400         | 400                        | 5                              | 5            | 4 250                              | 11 800    | 430 000                            | 1 210 000       |
| 400          | 560  | 410         | 410                        | 4                              | 4            | 5 750                              | 17 000    | 585 000                            | 1 730 000       |
| 410          | 546  | 400         | 400                        | 5                              | 5            | 4 200                              | 12 700    | 430 000                            | 1 290 000       |
|              | 560  | 280         | 280                        | 4                              | 4            | 3 150                              | 8 750     | 320 000                            | 895 000         |
| 420          | 580  | 230         | 230                        | 4                              | 4            | 2 430                              | 6 250     | 248 000                            | 635 000         |
|              | 620  | 400         | 400                        | 5                              | 5            | 5 000                              | 13 400    | 510 000                            | 1 360 000       |
| 440          | 620  | 450         | 450                        | 5                              | 5            | 6 450                              | 18 700    | 660 000                            | 1 910 000       |
|              | 620  | 400         | 400                        | 4                              | 4            | 5 350                              | 16 700    | 545 000                            | 1 700 000       |
| 460          | 620  | 400         | 400                        | 4                              | 4            | 4 950                              | 15 000    | 505 000                            | 1 530 000       |
|              | 650  | 470         | 470                        | 5                              | 5            | 7 150                              | 20 600    | 730 000                            | 2 100 000       |


<sup>1)</sup> Minimal allowable dimension for chamfer dimension r or r. 2) Oil inlet and oil groove are in center of the outer ring; no oil groove on the side. 3) Oil inlet in space of outer ring; no oil groove. 4) One-piece inner ring.

| Г | T |
|---|---|
| C |   |

| Bearing<br>numbers | Dimensions | Drawing no.              | Mass      |
|--------------------|------------|--------------------------|-----------|
|                    |            |                          | kg        |
|                    | $F_{ m w}$ |                          | (approx.) |
|                    |            |                          |           |
| E-4R6018           | 332        | 2                        | 136       |
| E-4R6019           | 344        | 1                        | 162       |
| E-4R6202           | 344.5      | 1                        | 108       |
| E-4R6414           | 351        | 1                        | 106       |
| E-4R6411           | 358        | 1                        | 125       |
| E-4R6412           | 360        | 1                        | 178       |
| E-4R6406           | 361.7      | 2                        | 212       |
| E-4R6603           | 360        | <b>1</b> <sup>2)</sup>   | 83.6      |
| E-4R6605           | 365        | 1                        | 181       |
| E-4R6811           | 378        | 1                        | 198       |
| E-4R6804           | 377        | 1                        | 187       |
| E-4R7203           | 397        | 1 <sup>2)</sup>          | 262       |
| E-4R7405           | 400        | 1                        | 106       |
| E-4R7404           | 409        | 1                        | 273       |
| E-4R7605           | 417        | 1                        | 174       |
| E-4R7607           | 416        | <b>2</b> <sup>3)</sup>   | 210       |
| E-4R7604           | 422        | <b>2</b> <sup>3)</sup>   | 325       |
| E-4R8007           | 446        | 1                        | 303       |
| E-4R8010           | 445        | 2                        | 349       |
| E-4R8201           | 444        | 1 <sup>2)</sup>          | 256       |
| E-4R8403           | 457        | 1                        | 189       |
| E-4R8404           | 466        | 1                        | 181       |
| E-4R8401           | 478        | 1                        | 410       |
| E-4R8801           | 487        | 2                        | 437       |
| E-4R9211           | 502        | <b>2</b> <sup>3)4)</sup> | 383       |
| E-4R9209           | 502        | 1                        | 341       |
| E-4R9216           | 509        | 2                        | 540       |
|                    |            |                          |           |







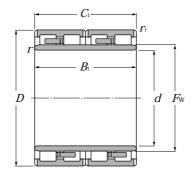
Drawing 2

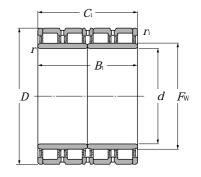
d 480 ~ 690mm

| Boundary dimensions |     |       |            |                               | Basic load ratings |            |             |            |             |
|---------------------|-----|-------|------------|-------------------------------|--------------------|------------|-------------|------------|-------------|
|                     |     |       |            |                               | dynamic            | static     | dynamic     | static     |             |
|                     |     |       | nm         |                               |                    | kN         |             | kg         |             |
| d                   | D   | $B_1$ | <i>C</i> 1 | <i>r</i> s min <sup>1</sup> ) | I'ls min 1)        | $C_{ m r}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ |
| 100                 | 650 | 420   | 420        | 5                             | 5                  | 5 950      | 18 100      | 605 000    | 1 840 000   |
| 480                 | 650 | 450   | 450        | 9.5X20°                       | 5                  | 7 100      | 21 600      | 720 000    | 2 200 000   |
|                     | 680 | 500   | 500        | 6                             | 6                  | 7 950      | 24 000      | 810 000    | 2 450 000   |
|                     | 680 | 420   | 405        | 5                             | 5                  | 7 100      | 22 900      | 725 000    | 2 340 000   |
|                     | 690 | 470   | 470        | 5                             | 5                  | 7 650      | 22 500      | 780 000    | 2 290 000   |
| 500                 | 690 | 510   | 510        | 5                             | 5                  | 7 750      | 24 600      | 790 000    | 2 500 000   |
|                     | 700 | 515   | 515        | 5                             | 5                  | 7 900      | 24 100      | 805 000    | 2 450 000   |
|                     | 710 | 480   | 480        | 6                             | 6                  | 8 650      | 24 700      | 880 000    | 2 520 000   |
|                     | 720 | 530   | 530        | 5                             | 5                  | 8 250      | 25 000      | 840 000    | 2 550 000   |
| 510                 | 670 | 320   | 320        | 5                             | 5                  | 4 550      | 13 500      | 465 000    | 1 380 000   |
| 010                 | 700 | 540   | 540        | 6                             | 6                  | 8 300      | 25 000      | 845 000    | 2 550 000   |
| 520                 | 700 | 540   | 540        | 6                             | 6                  | 8 200      | 25 500      | 835 000    | 2 600 000   |
| 520                 | 735 | 535   | 535        | 5                             | 5                  | 9 000      | 26 600      | 915 000    | 2 710 000   |
|                     | 700 | 540   | 540        | 6                             | 6                  | 7 850      | 25 400      | 800 000    | 2 590 000   |
| 530                 | 760 | 520   | 520        | 6                             | 6                  | 9 150      | 26 700      | 935 000    | 2 730 000   |
|                     | 780 | 570   | 570        | 6                             | 6                  | 10 300     | 29 100      | 1 050 000  | 2 970 000   |
| 550                 | 800 | 520   | 520        | 6                             | 6                  | 9 450      | 27 000      | 965 000    | 2 750 000   |
| 560                 | 680 | 360   | 360        | 3                             | 3                  | 4 650      | 16 500      | 475 000    | 1 680 000   |
| 570                 | 815 | 594   | 594        | 6                             | 6                  | 11 800     | 34 500      | 1 200 000  | 3 500 000   |
|                     | 820 | 575   | 575        | 12X20 °                       | 6                  | 10 000     | 31 500      | 1 020 000  | 3 200 000   |
| 600                 | 870 | 540   | 540        | 7.5                           | 7.5                | 10 600     | 29 600      | 1 090 000  | 3 000 000   |
|                     | 870 | 640   | 640        | 7.5                           | 7.5                | 13 600     | 40 500      | 1 390 000  | 4 150 000   |
| 610                 | 870 | 660   | 660        | 9.5                           | 7.5                | 12 600     | 40 000      | 1 280 000  | 4 100 000   |
| 650                 | 920 | 670   | 670        | 7.5                           | 4                  | 14 600     | 46 000      | 1 490 000  | 4 700 000   |
| 030                 | 920 | 690   | 690        | 7.5                           | 7.5                | 14 300     | 46 500      | 1 460 000  | 4 750 000   |
| 660                 | 820 | 440   | 440        | 5                             | 4                  | 7 300      | 27 800      | 745 000    | 2 840 000   |
| 690                 | 980 | 715   | 715        | 7.5                           | 7.5                | 16 800     | 54 500      | 1 720 000  | 5 550 000   |

<sup>1 )</sup> Minimal allowable dimension for chamfer dimension r or n. 2 ) Oil inlet and oil groove are in center of the outer ring; no oil groove on the side.

3 ) Oil inlet in space of outer ring; no oil groove.





| Т | 7             |
|---|---------------|
|   | $\overline{}$ |

| Bearing<br>numbers | Dimensions | Drawing no.            | Mass      |
|--------------------|------------|------------------------|-----------|
|                    |            |                        | kg        |
|                    | $F_{ m w}$ |                        | (approx.) |
|                    |            |                        |           |
| E-4R9607           | 523        | 24)                    | 369       |
| E-4R9609           | 525        | 24)                    | 395       |
| E-4R9604           | 532        | 2                      | 640       |
| E-4R10010          | 550        | <b>2</b> <sup>3)</sup> | 495       |
| E-4R10016          | 547        | 2                      | 590       |
| E-4R10006          | 552        | 2                      | 640       |
| E-4R10011          | 554        | 2                      | 680       |
| E-4R10008          | 556        | 2                      | 675       |
| E-4R10015          | 568        | 2                      | 780       |
| E-4R10201          | 554        | 24)                    | 335       |
| E-4R10202          | 558        | 2                      | 689       |
| E-4R10403          | 564        | 2                      | 658       |
| E-4R10402          | 574.5      | 2                      | 740       |
| E-4R10603          | 574        | 2                      | 626       |
| E-4R10601          | 590        | 2                      | 800       |
| E-4R10602          | 601        | 2                      | 1 010     |
| E-4R11001          | 622        | 2                      | 965       |
| E-4R11202          | 590        | 1                      | 265       |
| E-4R11402          | 628        | 2 -                    | 1 040     |
| E-4R12003          | 655        | 2                      | 980       |
| E-4R12002          | 672        |                        | 1 150     |
| E-4R12001          | 672        | 2 ′                    | 1 330     |
| E-4R12202          | 680        | <b>2</b> <sup>2)</sup> | 1 400     |
| E-4R13005          | 723        | 2                      | 1 500     |
| E-4R13003          | 723        | 2                      | 1 550     |
| E-4R13201          | 702        | 2                      | 580       |
| E-4R13802          | 767.5      | 2                      | 1 850     |

<sup>4 )</sup> One-piece inner ring. Note: **Drawing 1** represents a bearing with solid rollers and machined cage; **Drawing 2** represents a bearing with hollow rollers and pin type cage.







Drawing 2

d 700 ~ 1 200mm

| Boundary dimensions |       |            |          |                                | Basic load ratings |            |             |                  |                |
|---------------------|-------|------------|----------|--------------------------------|--------------------|------------|-------------|------------------|----------------|
|                     |       |            |          |                                |                    | dynamic    | static      | dynamic          | static         |
| d                   | D     | <i>B</i> ı | mm $C_1$ | <i>I</i> 's min <sup>1</sup> ) | r∕ls min 1 )       | $C_{ m r}$ | $C_{ m or}$ | Kṛ<br><i>C</i> r | gf $C_{ m or}$ |
| 700                 | 930   | 620        | 620      | 15X20°                         | 6                  | 12 900     | 43 000      | 1 320 000        | 4 400 000      |
| 710                 | 1 000 | 715        | 715      | 9.5                            | 6                  | 16 800     | 54 500      | 1 710 000        | 5 550 000      |
| 725                 | 1 000 | 700        | 700      | 6                              | 6                  | 15 900     | 53 500      | 1 620 000        | 5 450 000      |
| 750                 | 1 050 | 745        | 720      | 7.5                            | 7.5                | 17 600     | 58 000      | 1 790 000        | 5 900 000      |
|                     | 1 090 | 745        | 720      | 7.5                            | 7.5                | 19 100     | 60 500      | 1 950 000        | 6 150 000      |
|                     | 1 030 | 750        | 750      | 7.5                            | 7.5                | 17 300     | 59 500      | 1 760 000        | 6 050 000      |
| <b>760</b>          | 1 080 | 805        | 790      | 6                              | 6                  | 18 700     | 61 000      | 1 900 000        | 6 250 000      |
|                     | 1 100 | 745        | 720      | 7.5                            | 7.5                | 19 100     | 60 500      | 1 950 000        | 6 150 000      |
| 800                 | 1 080 | 700        | 700      | 7.5                            | 7.5                | 16 500     | 55 000      | 1 680 000        | 5 600 000      |
| 000                 | 1 080 | 750        | 750      | 6                              | 6                  | 17 300     | 59 000      | 1 760 000        | 6 000 000      |
|                     | 1 130 | 800        | 800      | 7.5                            | 7.5                | 19 600     | 66 500      | 2 000 000        | 6 800 000      |
| 820                 | 1 130 | 825        | 800      | 7.5                            | 7.5                | 19 600     | 66 500      | 2 000 000        | 6 800 000      |
|                     | 1 160 | 840        | 840      | 7.5                            | 7.5                | 21 600     | 71 000      | 2 200 000        | 7 250 000      |
| 840                 | 1 160 | 840        | 840      | 5                              | 7.5                | 21 600     | 71 000      | 2 200 000        | 7 250 000      |
|                     | 1 150 | 650        | 650      | 9.5                            | 9.5                | 15 700     | 51 000      | 1 610 000        | 5 200 000      |
| 850                 | 1 150 | 800        | 800      | 6                              | 6                  | 19 700     | 71 000      | 2 010 000        | 7 250 000      |
|                     | 1 180 | 650        | 650      | 7.5                            | 7.5                | 16 400     | 51 500      | 1 670 000        | 5 250 000      |
|                     | 1 180 | 850        | 850      | 9.5                            | 9.5                | 24 100     | 78 500      | 2 460 000        | 8 000 000      |
| 860                 | 1 160 | 735        | 710      | 6                              | 6                  | 17 800     | 62 500      | 1 810 000        | 6 400 000      |
| 900                 | 1 230 | 895        | 870      | 7.5                            | 7.5                | 24 700     | 88 000      | 2 520 000        | 9 000 000      |
| 920                 | 1 280 | 865        | 850      | 7.5                            | 7.5                | 26 200     | 88 500      | 2 670 000        | 9 000 000      |
| 1000                | 1 310 | 880        | 880      | 9.5                            | 9.5                | 23 400     | 88 500      | 2 380 000        | 9 000 000      |
| 1000                | 1 360 | 800        | 800      | 7.5                            | 7.5                | 25 000     | 85 000      | 2 550 000        | 8 650 000      |
| 1030                | 1 380 | 850        | 850      | 7.5                            | 7.5                | 24 400     | 89 000      | 2 490 000        | 9 100 000      |
| 1200                | 1 590 | 1 050      | 1 050    | 7.5                            | 7.5                | 36 000     | 133 000     | 3 650 000        | 13 600 000     |

<sup>1 )</sup> Minimal allowable dimension for chamfer dimension r or n. 2 ) Inner ring is divided into four. 3 ) The oil hole of the outer ring is provided with fitting nozzle for oil mist.



| $\overline{}$ | $\neg$ |  |
|---------------|--------|--|
| Ł             | _      |  |

| Bearing<br>numbers | Dimensions | Drawing no.            | Mass      |
|--------------------|------------|------------------------|-----------|
|                    |            |                        | kg        |
|                    | $F_{ m w}$ |                        | (approx.) |
| E-4R14003          | 763        | 2                      | 1 200     |
|                    |            |                        |           |
| E-4R14205          | 787.5      | <b>2</b> <sup>2)</sup> | 1 900     |
| E-4R14501          | 796        | 2                      | 1 730     |
| E-4R15001          | 830        | <b>2</b> <sup>3)</sup> | 2 180     |
| E-4R15002          | 845        | <b>2</b> <sup>3)</sup> | 2 530     |
| E-4R15204          | 828        | <b>2</b> <sup>3)</sup> | 2 000     |
| E-4R15207          | 845        | <b>2</b> <sup>3)</sup> | 2 550     |
| E-4R15203          | 855        | <b>2</b> <sup>3)</sup> | 2 560     |
| E-4R16004          | 870        | 2                      | 1 950     |
| E-4R16005          | 880        | 2                      | 2 090     |
| E-4R16406          | 903        | <b>2</b> <sup>3)</sup> | 2 450     |
| E-4R16405          | 903        | 2                      | 2 520     |
| E-4R16403          | 910        | 2                      | 2 930     |
| E-4R16801          | 920        | 2                      | 2 840     |
| E-4R17001          | 941        | 2                      | 1 980     |
| E-4R17003          | 930        | 2                      | 2 430     |
| E-4R17004          | 945        | 2                      | 2 270     |
| E-4R17002          | 928        | 2                      | 2 970     |
| E-4R17201          | 940        | 2                      | 2 310     |
| E-4R18001          | 985        | <b>2</b> <sup>3)</sup> | 3 250     |
| E-4R18401          | 1 015      | 2                      | 3 560     |
| E-4R20001          | 1 080      | 2                      | 3 260     |
| E-4R20002          | 1 090      | 2                      | 3 530     |
| E-4R20601          | 1 124      | 2                      | 3 800     |
| E-4R24002          | 1 295      | <b>2</b> <sup>2)</sup> | 6 220     |
|                    |            |                        |           |

Note: **Drawing 2** represents a bearing with hollow rollers and pin type cage.









Single row tapered roller bearings

Double row tapered roller bearings

Four row tapered roller bearings

### 1. Types, design features, and characteristics

Tapered roller bearings are designed so the tapered vertex of the raceway surfaces of the inner and outer rings and rollers converge at one point on the centerline of the bearing.

Due to this design feature, rollers move along the center of the raceway surfaces. The tapered rollers are guided by the compound force of the inner and outer raceway surfaces which keep them pressed up against the large rib on the inner ring. A large variety of these bearings, including single, double, and four row arrangements, are in use both in metric and inch series.

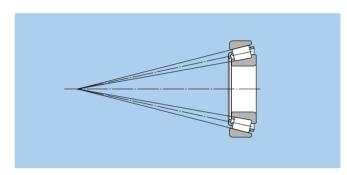



Diagram 1.

Table 1 Tapered roller bearing types and characteristics

| Туре | Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ·    | (1) There are both metric and inch series, and they have been standardized as shown in the following table.  Dimension series    Metric series                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | each dimensional standard. However, high precision grade bearings are generally not interchangeable, and these subunits must be used by assembling only subunits with identical manufacturing numbers.  Aside from any cautionary notes that may appear, the single row tapered roller bearings listed in the dimension tables have subunits standardized for both metric and inch systems (including J series). (Refer to Diagram 2)  Subunit dimensions  E: Outer ring (cup) nominal small-end diameter α: Nominal contact angle  Diagram 2.  Continued on next page |

Table 1 (continued)

| Туре                               | Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Single row tapered roller bearings | <ul> <li>(4) These bearings are constructed to have a high capacity for radial loads, axial loads, and combined loads. The larger the contact angle, the greater the axial load capacity becomes. When a pure radial load is placed on the bearings, an induced load in the axial direction is also generated, and so these bearings are generally used in pairs arranged face to face.</li> <li>(5) When used in pairs, proper internal clearances and preload can be set by adjusting the distance between the two bearings' inner and outer rings.</li> <li>(6) Single row tapered roller bearings are separable, so both the inner and outer rings can be used with tight fits.</li> <li>(7) Tapered roller bearings are also manufactured with flanges attached to the outer rings. For more details, contact NTN Engineering. (Refer to Diagram 3)</li> </ul> | Diagram 3.                           |
| Double row tapered roller bearings | <ul> <li>(1) Back-to-back arrangement (using double row outer rings) and face-to-face arrangement (using double row inner rings) are both available, and they have been adjusted so that each type's internal clearance values are fixed. Therefore, only parts with identical manufacturing numbers can be used and they must be assembled according to their code numbers. (Refer to Diagram 4)</li> <li>(2) The axial internal clearances for double and duplex bearings are listed in Table 8, 9 on pages A-58.</li> <li>(3) Pairs of duplex single row tapered roller bearings are also manufactured. For more details, contact NTN Engineering.</li> </ul>                                                                                                                                                                                                    | Face-to-face Back-to-back Diagram 4. |
| Four row tapered roller bearings   | <ul> <li>(1) As shown in <b>Diagram 5</b>, four row tapered roller bearings are constructed of two double row inner rings and two double row outer rings.</li> <li>(2) Life of large bearings is extended by using case hardened steel, hollow rollers and pin-type cages.</li> <li>(3) Used primarily where heavy load capacity is important, and in the roller necks of rolling mills.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Diagram 5.                           |

#### 2. Standard cage type

In general, pressed cages are used in tapered roller bearings.

However, for large sized bearings, machined or pin type cages are also used; and for small sized bearings, molded resin cages are also used.

### 3. Allowable misalignment

Single row and back-to-back arrangement: ......0.0005rad (1.5')
Face-to-face arrangement: .....0.001rad (3.5')

In situations where large displacement is necessary, please consult NTN Engineering.

#### 4. Precautions when using

If bearing load is light during operation, or if the ratio of axial to radial load for duplex and double row bearings exceeds the value of *e*, slipping develops between the rollers and raceway, sometimes resulting in smearing. The mass of rollers and cages particularly tends to be large for large tapered roller bearings. For details, please contact NTN Engineering.



#### 5. ECO-Top tapered roller bearings

In recent years, there has been an increasing demand for small and medium tapered roller bearings that contribute to energy savings, higher output, longer life, higher speed and more efficient assembly, particularly for automobiles. NTN Engineering is responding to this demand by providing bearings with special specifications based on 4Top tapered roller bearings, which are standard bearings.

In order to contribute to the ecology movement, in addition to enhancing existing special specifications, NTN Engineering has developed the next-generation NTN Engineering tapered roller bearing ECO-Top tapered roller bearing having improved long life, low torque, anti-seizure, easy assembly specifications. The features are as follows (compared with NTN Engineering standard bearings):

- (1) Ten times longer life using contaminated lubricant
- (2) Two times longer life using clean lubricant
- (3) At least 10% lower torque in practical rotation range
- (4) 25% better anti-seizure performance
- (5) Two times better loss-of-preload resistance
- (6) Half reduced number of revolutions to stable assembled bearing width

For details, please contact NTN Engineering.



**Eco-Top tapered roller bearings** 





| Series<br>number | Cone / cup<br>number      | Page of bearing dimension table | Series<br>number | Cone / cup<br>number     | Page of bearing dimension table | Series<br>number | Cone / cup<br>number        | Page of bearing dimension table |
|------------------|---------------------------|---------------------------------|------------------|--------------------------|---------------------------------|------------------|-----------------------------|---------------------------------|
| 335              | 336 / 332                 | B-173                           | 495              | 498 / 493                | B-191                           | 745              | 749 / 742                   | B-191                           |
| 335              | 339 / 332                 | B-169                           | 525              | 527 / 522                | B-173                           | 745              | 749A / 742                  | B-189                           |
| 335              | 344 / 332                 | B-171                           | 525              | 528 / 522                | B-175                           | 755              | 756A / 752                  | B-189                           |
| 355              | 350A / 354A               | B-171                           | 525              | 529 / 522                | B-179                           | 755              | 757 / 752                   | B-189                           |
| 355              | 355 / 354A                | B-173                           | 535              | 537 / 532X               | B-179                           | 755              | 758 / 752                   | B-191                           |
| 355              | 358 / 354A                | B-175                           | 535              | 539 / 532X               | B-179                           | 755              | 759 / 752                   | B-191                           |
| 355              | 359A / 354A               | B-175                           | 535              | 543 / 532X               | B-171                           | 755              | 760 / 752                   | B-191                           |
| 355              | 359S / 352                | B-175                           | 555              | 555 / 552A               | B-179                           | 775              | 780 / 772                   | B-193                           |
| 365              | 365 / 362A                | B-177                           | 555              | 555S / 552A              | B-181                           | 775              | 782 / 772                   | B-193                           |
| 365              | 366 / 362A                | B-177                           | 555              | 557S / 552A              | B-179                           | 795              | 799 / 792                   | B-195                           |
| 365              | 367 / 362A                | B-175                           | 555              | 558 / 552A               | B-183                           | 795              | 799A / 792                  | B-195                           |
| 365              | 368 / 362A                | B-177                           | 555              | 559 / 552A               | B-183                           | 835              | 835 / 832                   | B-185                           |
| 365              | 368A / 362                | B-177                           | 555              | 560 / 552A               | B-185                           | 835              | 842 / 832                   | B-189                           |
| 365              | 368S / 362A               | B-179                           | 555              | 560S / 552A              | B-185                           | 835              | 850 / 832                   | B-191                           |
| 365              | 369A / 362A               | B-175                           | 565              | 565 / 563                | B-183                           | 855              | 861 / 854                   | B-193                           |
| 365              | 370A / 362A               | B-177                           | 565              | 566 / 563                | B-185                           | 895              | 896 / 892                   | B-197                           |
| 385              | 385 / 382A                | B-181                           | 565              | 567 / 563                | B-187                           | 895              | 898 / 892                   | B-197                           |
| 385              | 385A / 382A               | B-181                           | 565              | 567A / 563               | B-187                           | 935              | 936 / 932                   | B-193                           |
| 385              | 386A / 382A               | B-175                           | 565              | 568 / 563                | B-187                           | 935              | 938 / 932                   | B-195                           |
| 385<br>385       | 387 / 382A<br>387A / 382A | B-181                           | 575<br>575       | 575 / 572<br>575 / 572   | B-187<br>B-187                  | 935<br>1200      | 941 / 932<br>1280 / 1220    | B-193<br>B-161                  |
| 385              | 387A / 382A               | B-181<br>B-181                  | 575              | 575S / 572<br>576 / 572  | B-187                           | 1300             | 1380 / 1328                 | B-161                           |
| 385              | 387S / 382A               | B-181                           | 575              | 577 / 572                | B-187                           | 1300             | 1380 / 1329                 | B-161                           |
| 385              | 388A / 382A               | B-181                           | 575              | 580 / 572                | B-189                           | 1700             | 1755 / 1729                 | B-161                           |
| 385              | 389 / 382A                | B-181                           | 575              | 581 / 572                | B-189                           | 1700             | 1775 / 1729                 | B-161                           |
| 385              | 389A / 382A               | B-179                           | 575              | 582 / 572                | B-189                           | 1700             | 1779 / 1729                 | B-163                           |
| 395              | 390 / 394A                | B-181                           | 595              | 593 / 592A               | B-191                           | 1700             | 1780 / 1729                 | B-163                           |
| 395              | 390A / 394A               | B-183                           | 595              | 594 / 592A               | B-193                           | 1900             | 1985 / 1930                 | B-163                           |
| 395              | 392 / 394A                | B-183                           | 595              | 594A / 592XE             |                                 | 1900             | 1985 / 1931                 | B-165                           |
| 395              | 395A / 394A               | B-185                           | 595              | 595 / 592A               | B-189                           | 1900             | 1985 / 1932                 | B-165                           |
| 395              | 396 / 394A                | B-177                           | 595              | 596 / 592A               | B-191                           | 2400             | 2474 / 2420                 | B-165                           |
| 395              | 397 / 394A                | B-183                           | 595              | 598A / 592A              | B-191                           | 2500             | 2558 / 2523                 | B-165                           |
| 395              | 399A / 394A               | B-185                           | 615              | 619 / 612                | B-179                           | 2500             | 2578 / 2523                 | B-165                           |
| 415              | 418 / 414                 | B-171                           | 615              | 621 / 612                | B-179                           | 2500             | 2580 / 2520                 | B-167                           |
| 415              | 420 / 414                 | B-171                           | 615              | 623 / 612                | B-181                           | 2500             | 2580 / 2523                 | B-167                           |
| 435              | 436 / 432                 | B-175                           | 635              | 639 / 632                | B-183                           | 2500             | 2582 / 2523                 | B-167                           |
| 435              | 438 / 432                 | B-173                           | 635              | 641 / 632                | B-185                           | 2500             | 2585 / 2523                 | B-167                           |
| 455              | 455 / 453X                | B-179                           | 635              | 641 / 633                | B-185                           | 2600             | 2682 / 2631                 | B-163                           |
| 455              | 460 / 453X                | B-173                           | 635              | 643 / 632                | B-185                           | 2600             | 2687 / 2631                 | B-163                           |
| 455              | 462 / 453X                | B-181                           | 635              | 644 / 632                | B-187                           | 2600             | 2688 / 2631                 | B-163                           |
| 455              | 463 / 453X                | B-175                           | 655              | 655 / 653                | B-185                           | 2600             | 2689 / 2631                 | B-165                           |
| 455              | 469 / 453A                | B-181                           | 655              | 659 / 653                | B-187                           | 2600             | 2690 / 2631                 | B-165                           |
| 455              | 469 / 453X                | B-181                           | 655              | 661 / 653                | B-189                           | 2700             | 2776 / 2720                 | B-171                           |
| 455              | 469 / 454                 | B-181                           | 655              | 663 / 652                | B-189                           | 2700             | 2780 / 2720                 | B-169                           |
| 475              | 477 / 472                 | B-183                           | 655              | 663 / 653                | B-189                           | 2700             | 2785 / 2720                 | B-167                           |
| 475              | 480 / 472                 | B-185                           | 655              | 665 / 653                | B-191                           | 2700             | 2788 / 2720                 | B-171                           |
| 475              | 482 / 472                 | B-185                           | 675              | 681 / 672                | B-191                           | 2700             | 2789 / 2720                 | B-171                           |
| 475              | 483 / 472                 | B-183                           | 675              | 683 / 672                | B-193                           | 2700             | 2793 / 2720                 | B-167                           |
| 475              | 484 / 472                 | B-187                           | 675              | 685 / 672                | B-193                           | 2700             | 2793 / 2729                 | B-169                           |
| 495<br>495       | 495 / 493<br>495A / 493   | B-189                           | 675<br>745       | 687 / 672<br>740 / 742   | B-193<br>B-189                  | 2700             | 2793 / 2735X<br>2878 / 2820 | B-167<br>B-167                  |
| 495              | 495A / 493<br>495AS / 493 | B-187<br>B-189                  | 745<br>745       | 740 / 742                | B-189<br>B-187                  | 2800<br>2800     | 2878 / 2820                 | B-167                           |
| 495              | 495AS / 493<br>496 / 493  | B-189                           | 745<br>745       | 744 / 742<br>745A / 742  | B-187<br>B-185                  | 2900             | 2879 / 2820                 | B-167<br>B-175                  |
| 495              | 496 / 493<br>497 / 492A   | B-191                           | 745              | 745A / 742<br>748S / 742 | B-187                           | 3100             | 3187 / 3120                 | B-175                           |
| 433              | 431 / 432A                | 181-0                           | -140             | 1400/142                 | D-10/                           | 3100             | 3101 / 3120                 | D-103                           |





| Series<br>number | Cone / cup<br>number | Page of bearing dimension table | Series<br>number | Cone / cup<br>number | Page of bearing dimension table | Series<br>number | Cone / cup<br>number | Page of bearing dimension table |
|------------------|----------------------|---------------------------------|------------------|----------------------|---------------------------------|------------------|----------------------|---------------------------------|
| 3100             | 3188 / 3120          | B-167                           | 6500             | 6576 / 6535          | B-189                           | 15000            | 15112 / 15245        | B-165                           |
| 3100             | 3193 / 3120          | B-167                           | 6500             | 6580 / 6535          | B-191                           | 15000            | 15116 / 15245        | B-165                           |
| 3100             | 3196 / 3120          | B-167                           | 02400            | 02474 / 02420        | B-165                           | 15000            | 15117 / 15245        | B-165                           |
| 3300             | 3379 / 3320          | B-169                           | 02400            | 02475 / 02420        | B-167                           | 15000            | 15118 / 15245        | B-165                           |
| 3300             | 3382 / 3321          | B-171                           | 02400            | 02476 / 02420        | B-167                           | 15000            | 15119 / 15245        | B-165                           |
| 3300             | 3382 / 3339          | B-171                           | 02800            | 02872 / 02820        | B-165                           | 15000            | 15120 / 15245        | B-165                           |
| 3300             | 3386 / 3320          | B-171                           | 02800            | 02875 / 02820        | B-167                           | 15000            | 15123 / 15245        | B-165                           |
| 3400             | 3476 / 3420          | B-167                           | 02800            | 02877 / 02820        | B-167                           | 15000            | 15125 / 15245        | B-165                           |
| 3400             | 3478 / 3420          | B-169                           | 02800            | 02878 / 02820        | B-167                           | 15000            | 15126 / 15245        | B-167                           |
| 3400             | 3479 / 3420          | B-169                           | 03000            | 03062 / 03162        | B-161                           | 15500            | 15580 / 15523        | B-163                           |
| 3400             | 3490 / 3420          | B-171                           | 05000            | 05062 / 05185        | B-161                           | 15500            | 15590 / 15520        | B-163                           |
| 3500             | 3576 / 3525          | B-173                           | 05000            | 05066 / 05185        | B-161                           | 15500            | 15590 / 15523        | B-165                           |
| 3500             | 3578 / 3520          | B-173                           | 05000            | 05075 / 05185        | B-161                           | 16000            | 16137 / 16284        | B-167                           |
| 3500             | 3578 / 3525          | B-173                           | 05000            | 05079 / 05185        | B-161                           | 17000            | 16150 / 16282        | B-169                           |
| 3500             | 3579 / 3525          | B-173                           | 07000            | 07079 / 07196        | B-161                           | 17000            | 17118 / 17244        | B-165                           |
| 3500             | 3580 / 3525          | B-171                           | 07000            | 07087 / 07196        | B-161                           | 17000            | 17119 / 17244        | B-165                           |
| 3500             | 3586 / 3525          | B-175                           | 07000            | 07093 / 07196        | B-163                           | 17500            | 17580 / 17520        | B-161                           |
| JS3500           | JS3549A / JS3        | 3510 B-169                      | 07000            | 07096 / 07196        | B-163                           | 18500            | 18590 / 18520        | B-171                           |
| 3700             | 3767 / 3720          | B-179                           | 07000            | 07097 / 07196        | B-163                           | 18600            | 18685 / 18620        | B-173                           |
| 3700             | 3775 / 3720          | B-177                           | 07000            | 07098 / 07196        | B-163                           | 18600            | 18690 / 18620        | B-175                           |
| 3700             | 3776 / 3720          | B-175                           | 07000            | 07100 / 07196        | B-163                           | 18700            | 18790 / 18720        | B-177                           |
| 3700             | 3777 / 3720          | B-175                           | 07000            | 07100 / 07204        | B-163                           | 18700            | 18790 / 18724        | B-177                           |
| 3700             | 3778 / 3720          | B-175                           | 07000            | 07100S / 0719        | 6 B-163                         | 19000            | 19150 / 19281        | B-169                           |
| 3700             | 3780 / 3720          | B-177                           | 09000            | 09062 / 09195        | B-161                           | 21000            | 21075 / 21212        | B-161                           |
| 3700             | 3780 / 3726          | B-177                           | 09000            | 09067 / 09195        | B-161                           | 22700            | 22780 / 22720        | B-173                           |
| 3700             | 3780 / 3732          | B-177                           | 09000            | 09067 / 09196        | B-161                           | 23000            | 23100 / 23256        | B-163                           |
| 3700             | 3781 / 3720          | B-177                           | 09000            | 09078 / 09195        | B-161                           | 24700            | 24780 / 24720        | B-171                           |
| 3700             | 3782 / 3720          | B-173                           | 09000            | 09081 / 09195        | B-161                           | 25500            | 25572 / 25520        | B-171                           |
| 3800             | 3872 / 3820          | B-169                           | 11000            | 11162 / 11300        | B-171                           | 25500            | 25577 / 25520        | B-173                           |
| 3800             | 3875 / 3820          | B-171                           | 11000            | 11162 / 11315        | B-171                           | 25500            | 25578 / 25520        | B-173                           |
| 3800             | 3880 / 3820          | B-173                           | 11500            | 11590 / 11520        | B-161                           | 25500            | 25580 / 25520        | B-173                           |
| 3900             | 3975 / 3920          | B-179                           | LM11700          | LM11749 / LM         | I1710 B-161                     | 25500            | 25582 / 25520        | B-173                           |
| 3900             | 3979 / 3920          | B-181                           | LM11900          | LM11949 / LM         | I1910 B-161                     | 25500            | 25584 / 25520        | B-175                           |
| 3900             | 3980 / 3920          | B-183                           | 12000            | 12175 / 12303        | B-173                           | 25500            | 25590 / 25519        | B-175                           |
| 3900             | 3982 / 3920          | B-183                           | 12500            | 12580 / 12520        | B-161                           | 25500            | 25590 / 25520        | B-175                           |
| 3900             | 3984 / 3925          | B-185                           | M12600           | M12648 / M126        | 610 B-161                       | 25500            | 25590 / 25522        | B-175                           |
| 3900             | 3994 / 3920          | B-185                           | M12600           | M12649 / M126        | 610 B-161                       | 25500            | 25590 / 25526        | B-175                           |
| A4000            | A4050 / A4138        | B-161                           | LM12700          | LM12749 / LM         | 12711 B-161                     | 25500            | 25592 / 25520        | B-175                           |
| A4000            | A4059 / A4138        | B-161                           | 13600            | 13685 / 13621        | B-169                           | 25800            | 25877 / 25820        | B-167                           |
| 4300             | 4388 / 4335          | B-173                           | 13600            | 13687 / 13621        | B-169                           | 25800            | 25877 / 25821        | B-167                           |
| 4300             | 4395 / 4335          | B-173                           | 13800            | 13889 / 13830        | B-169                           | 25800            | 25880 / 25821        | B-169                           |
| 5300             | 5395 / 5335          | B-177                           | 14000            | 14116 / 14274        | B-165                           | 26800            | 26878 / 26822        | B-171                           |
| 5500             | 5578 / 5535          | B-179                           | 14000            | 14116 / 14276        | B-165                           | 26800            | 26880 / 26822        | B-171                           |
| 5500             | 5583 / 5535          | B-183                           | 14000            | 14117A / 1427        | 6 B-165                         | 26800            | 26882 / 26823        | B-171                           |
| 5500             | 5584 / 5535          | B-183                           | 14000            | 14124 / 14276        | B-167                           | 26800            | 26882 / 26824        | B-173                           |
| 5700             | 5760 / 5735          | B-187                           | 14000            | 14125A / 1427        | 6 B-167                         | 26800            | 26883 / 26822        | B-169                           |
| A6000            | A6075 / A6157        | ' B-161                         | 14000            | 14130 / 14276        | B-167                           | 26800            | 26884 / 26822        | B-173                           |
| 6200             | 6277 / 6220          | B-175                           | 14000            | 14137A / 1427        |                                 | 26800            | 26885 / 26822        | B-171                           |
| 6300             | 6379 / 6320          | B-185                           | 14000            | 14139 / 14276        | B-169                           | 27600            | 27687 / 27620        | B-189                           |
| 6300             | 6386 / 6320          | B-185                           | 15000            | 15100 / 15245        | B-163                           | 27600            | 27689 / 27620        | B-189                           |
| 6400             | 6460 / 6420          | B-187                           | 15000            | 15101 / 15243        | B-163                           | 27600            | 27690 / 27620        | B-189                           |
| 6400             | 6461 / 6420          | B-189                           | 15000            | 15102 / 15245        | B-163                           | 27600            | 27691 / 27620        | B-189                           |
| 6400             | 6461A / 6420         | B-187                           | 15000            | 15103 / 15245        | B-163                           | 27800            | 27880 / 27820        | B-171                           |
| 6500             | 6559C / 6535         | B-189                           | 15000            | 15106 / 15245        | B-163                           | 28000            | 28150 / 28300        | B-171                           |



| Series<br>number | Cone / cup<br>number           | Page of bearing dimension table | Series<br>number | Cone / cup<br>number           | Page of bearing dimension table | Series<br>number | Cone / cup<br>number           | Page of bo | _     |
|------------------|--------------------------------|---------------------------------|------------------|--------------------------------|---------------------------------|------------------|--------------------------------|------------|-------|
| 28000            | 28150 / 28315                  | B-171                           | 44000            | 44150 / 44348                  | B-171                           | 67300            | 67390 / 67322                  |            | B-197 |
| 28000            | 28158 / 28300                  | B-171                           | 44000            | 44158 / 44348                  | B-171                           | 67300            | 67391 / 67322                  |            | B-197 |
| 28500            | 28579 / 28521                  | B-177                           | L44600           | L44640 / L446                  | 10 B-163                        | 67700            | 67790 / 67720                  | 1          | B-197 |
| 28500            | 28580 / 28521                  | B-177                           | L44600           | L44643 / L446                  | 10 B-163                        | 68000            | 68450 / 68712                  |            | B-198 |
| 28500            | 28584 / 28521                  | B-179                           | L44600           | L44649 / L446                  | 10 B-163                        | 68000            | 68462 / 68712                  |            | B-19  |
| 28600            | 28678 / 28622                  | B-177                           | 45200            | 45280 / 45220                  | B-175                           | L68100           | L68149 / L681                  | 11         | B-169 |
| 28600            | 28680 / 28622                  | B-181                           | 45200            | 45282 / 45220                  | B-177                           | L69300           | JL69349 / JL6                  | 9310       | B-169 |
| 28600            | 28682 / 28622                  | B-181                           | 45200            | 45284 / 45220                  | B-179                           | 71000            | 71453 / 71750                  |            | B-19  |
| 28900            | 28985 / 28921                  | B-183                           | 45200            | 45287 / 45220                  | B-179                           | 72000            | 72188 / 72487                  |            | B-17  |
| 28900            | 28990 / 28920                  | B-183                           | 45200            | 45289 / 45220                  | B-181                           | 72000C           | 72200C / 7248                  | 37         | B-17  |
| 28900            | 28995 / 28920                  | B-183                           | L45400           | L45449 / L454                  | 10 B-165                        | 72000C           | 72212C / 7248                  | 37         | B-17  |
| 29500            | 29585 / 29520                  | B-183                           | 46000            | 46162 / 46368                  | B-173                           | 72000C           | 72218C / 7248                  | 37         | B-18  |
| 29500            | 29585 / 29521                  | B-183                           | 46000            | 46175 / 46368                  | B-173                           | 72000C           | 72225C / 7248                  | 37         | B-18  |
| 29500            | 29586 / 29520                  | B-183                           | 46000            | 46780 / 46720                  | B-197                           | LM72800          | LM72849 / LM                   | 72810      | B-163 |
| 29500            | 29590 / 29520                  | B-185                           | 46000            | 46790 / 46720                  | B-197                           | 74000            | 74500 / 74850                  |            | B-19  |
| 29600            | 29675 / 29620                  | B-185                           | 47400            | 47487 / 47420                  | B-185                           | 74000            | 74525 / 74850                  | 1          | B-19  |
| 29600            | 29675 / 29630                  | B-185                           | 47400            | 47490 / 47420                  | B-187                           | 74000            | 74550 / 74850                  |            | B-197 |
| 29600            | 29685 / 29620                  | B-187                           | 47600            | 47678 / 47620                  | B-187                           | 78000            | 78225 / 78551                  |            | B-18  |
| 29600            | 29688 / 29620                  | B-187                           | 47600            | 47681 / 47620                  | B-189                           | 78000            | 78250 / 78551                  |            | B-183 |
| LM29700          | LM29748 / LM                   | 29710 B-169                     | 47600            | 47686 / 47620                  | B-189                           | 78000C           | 78214C / 7855                  | 51         | B-17  |
| 31500            | 31593 / 31520                  | B-169                           | 47800            | 47890 / 47820                  | B-191                           | LM78300          | LM78349 / LM                   | 78310C     | B-169 |
| 31500            | 31594 / 31520                  | B-169                           | 47800            | 47896 / 47820                  | B-193                           | LM78300          | LM78349A / L                   | M78310A    | B-169 |
| 31500            | 31597 / 31520                  | B-169                           | 48200            | 48286 / 48220                  | B-195                           | M84500           | M84548 / M84                   | 510        | B-163 |
| 33000            | 33225 / 33462                  | B-181                           | 48200            | 48290 / 48220                  | B-195                           | M86600           | M86643 / M86                   | 610        | B-163 |
| 33000            | 33275 / 33462                  | B-185                           | 48300            | 48385 / 48320                  | B-197                           | M86600           | M86647 / M86                   | 610        | B-16  |
| 33000            | 33281 / 33462                  | B-187                           | 48300            | 48393 / 48320                  | B-197                           | M86600           | M86649 / M86                   | 610        | B-165 |
| 33000            | 33287 / 33462                  | B-187                           | LM48500          | LM48548 / LM4                  | 48510 B-167                     | M88000           | M88048 / M88                   | 010        | B-167 |
| 33800            | 33885 / 33821                  | B-173                           | LM48500          | LM48548A / LN                  | M48510 B-167                    | HM88500          | JHM88540 / JI                  | HM88513    | B-16  |
| 33800            | 33889 / 33821                  | B-177                           | 48600            | 48684 / 48620                  | B-197                           | HM88500          | HM88542 / HN                   | /l88510    | B-167 |
| 33800            | 33890 / 33821                  | B-179                           | 48600            | 48685 / 48620                  | B-197                           | HM88500          | HM88542 / HN                   | /l88512    | B-16  |
| 33800            | 33895 / 33822                  | B-179                           | 49500            | 49585 / 49520                  | B-179                           | HM88500          | HM88547 / HN                   | //88510    | B-167 |
| 34000            | 34274 / 34478                  | B-185                           | 52000            | 52375 / 52618                  | B-193                           | HM88600          | HM88648 / HN                   | /l88610    | B-169 |
| 34000            | 34300 / 34478                  | B-187                           | 52000            | 52387 / 52618                  | B-193                           | HM88600          | HM88648 / HN                   | //88611AS  | B-169 |
| 34000            | 34301 / 34478                  | B-187                           | 52000            | 52393 / 52618                  | B-193                           | HM88600          | HM88649 / HN                   |            | B-167 |
| 34000            | 34306 / 34478                  |                                 | 52000            | 52400 / 52618                  | B-193                           | HM89400          | HM89440 / HN                   | //89410    | B-167 |
| 36600            | 36690 / 36620                  | B-197                           | 53000            | 53162 / 53375                  | B-173                           | HM89400          | HM89443 / HN                   |            | B-16  |
| 36900            | 36990 / 36920                  | B-197                           | 53000            | 53177 / 53375                  | B-173                           | HM89400          | HM89444 / HN                   |            | B-167 |
| 37000            | 37425 / 37625                  |                                 | 55000C           | 55175C / 5543                  |                                 | HM89400          | HM89446 / HN                   |            | B-169 |
| 37000            | 37431 / 37625                  | _                               | 55000C           | 55176C / 5543                  |                                 | HM89400          | HM89448 / HN                   |            | B-169 |
| 39500            | 39575 / 39520                  | B-179                           | 55000C           | 55187C / 5543                  |                                 | HM89400          | HM89449 / HN                   |            | B-169 |
| 39500            | 39580 / 39520                  | B-181                           | 55000C           | 55200C / 5544                  |                                 | HM89400          | HM89449 / HN                   |            | B-169 |
| 39500            | 39581 / 39520                  | B-181                           | 56000            | 56425 / 56650                  | B-193                           | 90000            | J90354 / J907                  |            | B-19  |
| 39500            | 39585 / 39520                  | B-183                           | 59000            | 59200 / 59412                  | B-179                           | 90000            | 90381 / 90744                  |            | B-19  |
| 39500            | 39590 / 39520                  | B-185                           | 64000            | 64433 / 64700                  | B-195                           | 95000            | 95475 / 95925                  |            | B-19  |
| 41000            | 41125 / 41286                  |                                 | 64000            | 64450 / 64700                  | B-195                           | 95000            | 95500 / 95905                  |            | B-19  |
|                  |                                |                                 |                  |                                |                                 |                  |                                |            |       |
| 42000<br>42000   | 42346 / 42584<br>42350 / 42584 | B-191<br>B-191                  | 65000<br>65000   | 65237 / 65500<br>65390 / 65320 | B-183<br>B-177                  | 95000<br>97000   | 95525 / 95925<br>97500 / 97900 |            | B-19  |
|                  |                                |                                 |                  |                                |                                 |                  |                                |            |       |
| 42000            | 42368 / 42584                  | B-191                           | 66000            | 66200 / 66462                  | B-179                           | 99000            | 99550 / 99100                  |            | B-19  |
| 42000            | 42375 / 42584                  | B-193                           | 66000            | 66225 / 66462                  | B-181                           | 99000            | 99575 / 99100                  |            | B-19  |
| 42000            | 42381 / 42584                  |                                 | 66000            | 66584 / 66520                  | B-179                           | LM102900         | LM102949 / LI                  |            | B-17  |
| 42600            | 42687 / 42620                  | B-187                           | 66000            | 66589 / 66520                  | B-181                           | LM104900         | JLM104948 / J                  |            |       |
| 42600            | 42690 / 42620                  | B-189                           | LM67000          | LM67048 / LM6                  |                                 | LM104900         | LM104947A /                    |            | B-17  |
| 43000            | 43131 / 43312                  |                                 | 67300            | 67388 / 67322                  | B-195                           | LM104900         | LM104949 / LI                  |            | B-17  |
| 44000            | 44143 / 44348                  | B-169                           | 67300            | 67389 / 67322                  | B-195                           | M205100          | JM205149 / JN                  | vi205110   | B-17  |



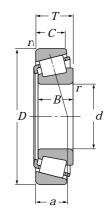
| - | Series<br>number     | Cone / cup Page of b dimension               | _              |
|---|----------------------|----------------------------------------------|----------------|
|   | M207000              | JM207049 / JM207010                          | B-181          |
|   | H211700              | JH211749 / JH211710                          | B-185          |
|   | HM212000             | HM212044 / HM212011                          | B-183          |
|   | HM212000             | HM212046 / HM212011                          | B-183          |
|   | HM212000             | HM212049 / HM21210                           | B-185          |
|   | L217800              | L217849 / L217810                            | B-191          |
|   | LL217800             | LL217849 / LL217810                          | B-191          |
|   | HM218200             | HM218248 / HM218210                          | B-191          |
|   | HH221400             | HH221430 / HH221410                          | B-189          |
|   | HH221400             | HH221431 / HH221410                          | B-189          |
|   | HH221400             | HH221440 / HH221410                          | B-193          |
|   | HH221400             | HH221449 / HH221410                          | B-193          |
|   | HH221400             | HH221449A / HH221410                         | B-193          |
| ı | HH224300             | HH224334 / HH224310                          | B-193          |
|   | HH224300             | HH224335 / HH224310                          | B-193          |
| ì | HH224300             | HH224346 / HH224310                          | B-195          |
|   | HH228300             | HH228349 / HH228310                          | B-195          |
| ı | M231600              | M231648 / M231610                            | B-197          |
|   | LM300800             | LM300849 / LM300811                          | B-171          |
| ı | H307700              | JH307749 / JH307710                          | B-181          |
|   | HM318400             | JHM318448 / JHM318410                        | B-191          |
| ı | L319200              | L319249 / L319210                            | B-193          |
|   | L327200              | L327249 / L327210                            | B-195          |
|   | H414200              | H414242 / H414210                            | B-185          |
|   | H414200              | H414245 / H414210                            | B-185          |
|   | H414200              | H414249 / H414210                            | B-187          |
|   | H415600              | JH415647 / JH415610                          | B-187          |
|   | L432300              | L432349 / L432310                            | B-197          |
|   | LM501300             | LM501349 / LM501310                          | B-171          |
|   | LM501300             | LM501349 / LM501314                          | B-171          |
|   | LM503300             | LM503349A / LM503310                         | B-175          |
|   | HH506300             | HH506348 / HH506310                          | B-177          |
|   | HH506300             | HH506349 / HH506310                          | B-177          |
|   | LM506800             | JLM506849 / JLM506810                        | B-179          |
|   | LM508700             | JLM508748 / JLM508710                        | B-181          |
|   | M511900              | JM511946 / JM511910                          | B-183          |
|   | M515600              | JM515649 / JM515610                          | B-189          |
| ì | HM516400             | HM516442 / HM516410                          | B-187          |
|   | HM516400<br>HM516800 | HM516448 / HM516410                          | B-189          |
| ì |                      | JHM516849 / JHM516810                        |                |
|   | LM522500             | LM522546 / LM522510                          | B-193          |
|   | LM522500             | LM522548 / LM522510                          | B-195          |
|   | HM522600             | JHM522649 / JHM522610                        |                |
| ĺ | HM534100             | JHM534149 / JHM534110<br>LM603049 / LM603011 |                |
|   | LM603000<br>L610500  | L610549 / L610510                            | B-175<br>B-183 |
| ĺ | M612900              | JM612949 / JM612910                          | B-103          |
|   | HM617000             | HM617049 / HM617010                          | B-103          |
| į | L630300              | L630349 / L630310                            | B-197          |
| 1 | LL639200             | LL639249 / L639210                           | B-197          |
| į | LM704600             | JLM704649 / JLM704610                        | B-137          |
|   | LM710900             | JLM710949 / JLM710910                        | B-177          |
| į | LM714100             | JLM714149 / JLM714110                        | B-187          |
|   | M714200              | JM714249 / JM714210                          | B-187          |
|   | 00                   |                                              |                |

| Series<br>number | Cone / cup<br>number | Page of be | _     |
|------------------|----------------------|------------|-------|
| H715300          | H715334 / H7         | 15311      | B-183 |
| H715300          | H715343 / H7         | 15311      | B-185 |
| H715300          | H715345 / H7         |            | B-187 |
| H715300          | H715348 / H7         |            | B-189 |
| M716600          | JM716648 / JI        |            | B-191 |
| M718100          | JM718149 / JI        |            | B-191 |
| M719100          | JM719149 / JI        |            | B-191 |
| M720200          | JM720249 / JI        |            | B-193 |
| L724300          | JL724348 / JL        |            | B-195 |
| M736100          | JM736149 / JI        |            | B-197 |
| M738200          | JM738249 / JI        |            | B-197 |
| HM801300         | HM801346 / H         |            | B-171 |
|                  |                      |            |       |
| HM801300         | HM801349 / F         |            | B-171 |
| M802000          | M802048 / M8         |            | B-173 |
| HM803100         | HM803145 / F         |            | B-173 |
| HM803100         | HM803149 / F         |            | B-173 |
| M804000          | M804048 / M8         |            | B-175 |
| M804800          | M804846 / M8         |            | B-175 |
| M804800          | M804848 / M8         |            | B-177 |
| M804800          | M804849 / M8         |            | B-177 |
| HM804800         | HM804840 / F         | IM804810   | B-173 |
| HM804800         | HM804842 / F         | IM804810   | B-173 |
| LM806600         | LM806649 / L         | M806610    | B-179 |
| HM807000         | HM807040 / F         | M807010    | B-175 |
| HM807000         | HM807044 / F         | M807010    | B-177 |
| HM807000         | HM807046 / F         | IM807010   | B-177 |
| HM807000         | HM807048 / F         | M807010    | B-179 |
| HM807000         | HM807049 / F         | IM807010   | B-179 |
| HM807000         | JHM807045 /          | JHM807012  | B-177 |
| L812100          | L812148 / L81        | 2111       | B-185 |
| LM813000         | JLM813049 /          | JLM813010  | B-185 |
| HM813800         | HM813840 / F         | M813810    | B-181 |
| HM813800         | HM813841 / F         | M813810    | B-183 |
| HM813800         | HM813842 / H         | M813810    | B-183 |
| HM813800         | HM813844 / F         | M813810    | B-185 |
| L814700          | L814749 / L81        | 4710       | B-187 |
| LM814800         | LM814849 / L         | M814810    | B-189 |
| M822000          | JM822049 / JI        | M822010    | B-195 |
| HM903200         | HM903245 / H         | HM903210   | B-173 |
| HM903200         | HM903249 / H         | HM903210   | B-173 |
| M903300          | M903345 / M9         | 03310      | B-173 |
| HM907600         | HM907643 / H         | M907614    | B-179 |
| HM911200         | HM911242 / H         | IM911210   | B-179 |
| HM911200         | HM911245 / H         | IM911210   | B-183 |
| HM911200         | HM911244 / J         | HM911211   | B-183 |
| H913800          | H913840 / H9         | 13810      | B-181 |
| H913800          | H913842 / H9         | 13810      | B-183 |
| H913800          | JH913848 / JH        | 1913811    | B-187 |
| H917800          | H917840 / H9         |            | B-189 |
| H924000          | H924045 / H9         |            | B-195 |
| HM926700         | HM926740 / H         |            | B-195 |
| HM926700         | HM926747 / H         |            | B-195 |
|                  | , 1                  |            | . 33  |



| Series<br>number | ·                                    | of bearing<br>ision table |
|------------------|--------------------------------------|---------------------------|
| 8500             | T-8576D / 8520 / 8520D               | B-219                     |
| 46700            | 46791D / 46720 / 46721D              | B-217                     |
| 48200            | T-48290D / 48220 / 48220D            | B-217                     |
| 48300            | T-48393D / 48320 / 48320D            | B-217                     |
| 48600            | T-48680D / 48620 / 48620D            | B-217                     |
| 67700            | 67791D / 67720 / 67721D              | B-217                     |
| 67800            | T-67885D / 67820 / 67820D            | B-219                     |
| 81000            | 81576D / 81962 / 81963D              | B-217                     |
| 82600            | 82681D / 82620 / 82620D              | B-217                     |
| 126000           | EE126096D / 126150 / 126151D         | B-219                     |
| 127000           | EE127097D / 127137 / 127137D         | B-219                     |
| 132000           | EE132082D / 132125 / 132126D         | B-219                     |
| 134000           | EE134102D / 134143 / 134144D         | B-221                     |
| L163100          | L163149D / L163110 / L163110D        | B-223                     |
| 170000           | EE171000D / 171450 / 17145D          | B-219                     |
| 220000           | EE221027D / 221575 / 221576D         | B-221                     |
| M224700          | M224749D / M224710 / M224710D        | B-217                     |
| M231600          | T-M231649D / M231610 / M231610D      | B-217                     |
| M238800          | M238849D / M238810 / M238810D        | B-217                     |
| M241500          | M241538D / M241510 / M241510D        | B-219                     |
| M244200          | T-M244249D / M244210 / M244210D      | B-219                     |
| LM247700         | LM247748D / LM247710 / LM247710DA    | B-219                     |
| M249700          | T-M249748D / M249710 / M249710D      | B-219                     |
| HM252300         | HM252349D / HM252310 / HM252310D     | B-221                     |
| M252300          | T-M252349D / M252310 / M252310D      | B-221                     |
| M255400          | M255449D / M255410 / M255410DA       | B-221                     |
| HM256800         | T-HM256849D / HM256810 / HM256810DG2 | B-221                     |
| M257100          | M257149D / M257110 / M257110D        | B-221                     |
| M257200          | M257248D / M257210 / M257210D        | B-223                     |
| LM258600         | LM258649D / LM258610 / LM258610D     | B-223                     |
| HM259000         | T-HM259049D / HM259010 / HM259010D   | B-223                     |
| HM261000         | HM261049D / HM261010 / HM261010DA    | B-223                     |
| M262400          | M262449D / M262410 / M262410D        | B-223                     |
| HM262700         | T-HM262749D / HM262710 / HM262710DG2 | 2 B-223                   |
| LM263100         | LM263149D / LM263110 / LM263110D     | B-223                     |
|                  |                                      |                           |

| Series<br>number | Cone / cup<br>number             | Page of I  | _     |
|------------------|----------------------------------|------------|-------|
| M263300          | M263349D / M263310 / M263310D    |            | B-223 |
| HM265000         | HM265049D / HM265010 / HM265010  | )D         | B-225 |
| HM266400         | T-HM266449D / HM266410 / HM2664  | 10DG2      | B-225 |
| M268700          | T-M268749D / M268710 / M268710D0 | <b>3</b> 2 | B-225 |
| M270700          | M270749D / M270710 / M270710DAG  | 32         | B-225 |
| LM272200         | LM272249D / LM272210 / LM272210D | OG2        | B-227 |
| M274100          | M274149D / M274110 / M274110DG2  |            | B-227 |
| LM274400         | LM274449D / LM274410 / LM274410E | )          | B-227 |
| 275000           | EE275106D / 275155 / 275156D     |            | B-221 |
| 275000           | EE275109D / 275160 / 275161D     |            | B-221 |
| M275300          | M275349D / M275310 / M275310DG2  |            | B-227 |
| M276400          | M276449D / M276410 / M276410DG2  | !          | B-227 |
| M278700          | M278749D / M278710 / M278710DAG  | 2          | B-227 |
| LM278800         | LM278849D / LM278710 / LM278710E | )          | B-229 |
| 280000           | EE280700D / 281200 / 281201D     |            | B-217 |
| M280000          | M280049D / M280010 / M280010DG2  | !          | B-229 |
| L281100          | L281149D / L281110 / L281110DG2  |            | B-229 |
| M281600          | M281649D / M281610 / M281610DG2  |            | B-229 |
| LM281800         | LM281849D / LM281810 / LM281810D | OG2        | B-229 |
| M282200          | M282249D / M282210 / M282210DG2  |            | B-229 |
| M283400          | M283449D / M283410 / M283410DG2  |            | B-229 |
| LM283600         | LM283649D / LM283610 / LM283610D | OG2        | B-229 |
| M284200          | M284249D / M284210 / M284210DG2  |            | B-229 |
| M285800          | M285848D / M285810 / M288510DG2  | !          | B-229 |
| LM286200         | LM286249D / LM286210 / LM286210E | OG2        | B-231 |
| LM287600         | LM287649D / LM2876100 / LM287610 | DG2        | B-231 |
| LM288900         | LM288949D / LM288910 / LM288910D | OG2        | B-231 |
| 290000           | EE291202D / 291750 / 291751D     |            | B-221 |
| 329000           | EE329119D / 329172 / 329173D     |            | B-221 |
| LM377400         | LM377449D / LM377410 / LM377410E | OG2        | B-227 |
| LM451300         | T-LM451349D / LM451310 / LM45131 | 0D         | B-221 |
| 526000           | EE526131D / 526190 / 52619D      |            | B-223 |
| 547000           | EE547341D / 547480 / 547481DG2   |            | B-231 |
| 640000           | T-EE640193D / 640260 / 640261DG2 |            | B-227 |
| 649000           | EE649241D / 649310 / 649311DG2   |            | B-229 |



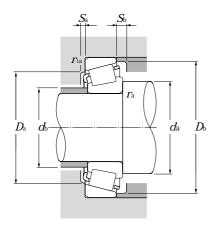

| Series<br>number |                                      | of bearing<br>sion table |
|------------------|--------------------------------------|--------------------------|
| LM654600         | T-LM654644D / LM654610 / LM654610D   | B-221                    |
| LM654600         | T-LM654648D / LM654610 / LM654610D   | B-221                    |
| 655000           | EE655271D / 655345 / 655346DG2       | B-229                    |
| LM665900         | LM665949D / LM665910 / LM665910D     | B-225                    |
| M667900          | M667947D / M667911 / M667911DG2      | B-225                    |
| 700000           | EE700090D / 700167 / 700168D         | B-219                    |
| LM742700         | T-LM742749D / LM742714 / LM742714D   | B-219                    |
| 755000           | EE755281D / 755360 / 755361DG2       | B-229                    |
| M757400          | M757448D / M757410 / M757410D        | B-221                    |
| M757400          | M757449D / M757410 / M757410D        | B-223                    |
| LM761600         | LM761648D / LM761610 / LM761610D     | B-223                    |
| LM761600         | LM761649D / LM761610 / LM761610D     | B-223                    |
| LM763400         | LM763449D / LM763410 / LM763410D     | B-223                    |
| LM765100         | LM765149D / LM765110 / LM765110D     | B-225                    |
| LM767700         | LM767745D / LM767710 / LM767710D     | B-225                    |
| LM767700         | LM767749D / LM767710 / LM767710D     | B-225                    |
| LM769300         | LM769349D / LM769310 / LM769310D     | B-225                    |
| L770800          | L770849D / L770810 / L770810DG2      | B-227                    |
| LM772700         | LM772749D / LM772710 / LM772710DA    | B-227                    |
| LM778500         | LM778549D / LM778510 / LM778510DG2   | B-229                    |
| 822000           | EE822101D / 822175 / 822176D         | B-219                    |
| 833000           | EE833161D / 833232 / 833233D         | B-225                    |
| 843000           | EE843221D / 843290 / 843291D         | B-227                    |
| LM869400         | T-LM869449D / LM869410 / LM869410DG2 | B-225                    |
| 910000           | EE911603D / 912400 / 912401D         | B-225                    |
| 920000           | EE921150D / 921875 / 921876D         | B-221                    |
| 970000           | EE971355D / 972100 / 972103D         | B-223                    |
|                  |                                      |                          |





## **Metric series**




## d 15 ~ 30mm

|    |                                                                            | Bound                                                                                  | ary dim                                                        | ensions                                                                |                                                          |                                                               | dynamic                                                                                      | static                                                                                       | oad ratings<br>dynamic                                                                                   | static                                                                                                   | Limitin                                                                                                  | g speeds                                                                                                   | Bearing<br>numbers                                                                                                                                                    |
|----|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                            |                                                                                        | mm                                                             |                                                                        |                                                          |                                                               | k                                                                                            | N                                                                                            | kgf                                                                                                      |                                                                                                          | m                                                                                                        | in <sup>-1</sup>                                                                                           |                                                                                                                                                                       |
| d  | D                                                                          | T                                                                                      | В                                                              | С                                                                      | $r_{\rm s  min}^{1}$                                     | <i>I</i> ls min <sup>1</sup> )                                | $C_{\rm r}$                                                                                  | $C_{ m or}$                                                                                  | $C_{\scriptscriptstyle \Gamma}$                                                                          | $C_{ m or}$                                                                                              | grease                                                                                                   | oil                                                                                                        |                                                                                                                                                                       |
| 15 | 42                                                                         | 14.25                                                                                  | 13                                                             | 11                                                                     | 1                                                        | 1                                                             | 23.2                                                                                         | 20.8                                                                                         | 2 370                                                                                                    | 2 120                                                                                                    | 9 900                                                                                                    | 13 000                                                                                                     | 4T-30302                                                                                                                                                              |
| 17 | 40<br>40<br>40<br>47                                                       | 13.25<br>17.25<br>17.25<br>15.25                                                       | 12<br>16<br>16<br>14                                           | 11<br>14<br>14<br>12                                                   | 1<br>1<br>1<br>1                                         | 1<br>1<br>1<br>1                                              | 20.5<br>27.3<br>26.2<br>28.9                                                                 | 20.3<br>28.3<br>28.2<br>26.3                                                                 | 2 090<br>2 790<br>2 670<br>2 940                                                                         | 2 070<br>2 880<br>2 870<br>2 680                                                                         | 9 900<br>9 900<br>9 900<br>9 000                                                                         | 13 000<br>13 000<br>13 000<br>12 000                                                                       | 4T-30203<br>4T-32203<br>4T-32203R <sup>2</sup> )<br>4T-30303                                                                                                          |
| 20 | 42<br>47<br>47<br>52<br>52<br>52                                           | 15<br>15.25<br>19.25<br>16.25<br>16.25<br>22.25                                        | 15<br>14<br>18<br>16<br>16<br>21                               | 12<br>12<br>15<br>13<br>12<br>18                                       | 0.6<br>1<br>1<br>1.5<br>1.5                              | 0.6<br>1<br>1<br>1.5<br>1.5                                   | 24.9<br>28.2<br>36.5<br>35.5<br>31.0<br>46.5                                                 | 27.9<br>28.7<br>39.5<br>34.0<br>31.0<br>48.5                                                 | 2 540<br>2 870<br>3 700<br>3 600<br>3 150<br>4 750                                                       | 2 840<br>2 930<br>4 000<br>3 450<br>3 150<br>4 950                                                       | 9 500<br>8 800<br>8 800<br>8 000<br>7 600<br>8 000                                                       | 13 000<br>12 000<br>12 000<br>11 000<br>10 000<br>11 000                                                   | 4T-32004X<br>4T-30204<br>4T-32204<br>4T-30304A<br>4T-30304CA<br>4T-32304                                                                                              |
| 22 | 44                                                                         | 15                                                                                     | 15                                                             | 11.5                                                                   | 0.6                                                      | 0.6                                                           | 27.0                                                                                         | 31.5                                                                                         | 2 760                                                                                                    | 3 250                                                                                                    | 8 900                                                                                                    | 12 000                                                                                                     | 4T-320/22X                                                                                                                                                            |
| 25 | 47<br>47<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>62<br>62<br>62<br>62 | 15<br>17<br>16.25<br>19.25<br>19.25<br>19.25<br>22<br>18.25<br>18.25<br>18.25<br>25.25 | 15<br>17<br>15<br>18<br>18<br>18<br>18<br>22<br>17<br>17<br>17 | 11.5<br>14<br>13<br>16<br>15<br>15<br>15<br>18<br>15<br>14<br>13<br>20 | 0.6<br>0.6<br>1<br>1<br>1<br>1<br>1<br>1.5<br>1.5<br>1.5 | 0.6<br>0.6<br>1<br>1<br>1<br>1<br>1<br>1<br>1.5<br>1.5<br>1.5 | 27.8<br>32.5<br>31.5<br>42.0<br>38.0<br>38.0<br>34.5<br>47.5<br>48.5<br>41.5<br>40.5<br>61.5 | 33.5<br>40.5<br>34.0<br>47.0<br>43.0<br>46.5<br>42.0<br>57.5<br>47.5<br>41.5<br>43.5<br>64.5 | 2 830<br>3 300<br>3 200<br>4 300<br>3 850<br>3 900<br>3 500<br>4 850<br>4 950<br>4 250<br>4 150<br>6 250 | 3 450<br>4 150<br>3 450<br>4 800<br>4 400<br>4 750<br>4 250<br>5 850<br>4 850<br>4 250<br>4 450<br>6 600 | 7 900<br>8 000<br>7 300<br>7 300<br>7 300<br>7 100<br>7 100<br>7 300<br>6 700<br>6 400<br>5 900<br>6 700 | 11 000<br>11 000<br>9 800<br>9 800<br>9 800<br>9 400<br>9 400<br>9 800<br>8 900<br>8 500<br>7 800<br>8 900 | 4T-32005X<br>4T-33005<br>4T-30205<br>4T-32205R <sup>2</sup> )<br>4T-32205C<br>4T-32205CR <sup>2</sup> )<br>4T-33205<br>4T-30305<br>4T-30305C<br>4T-30305D<br>4T-32305 |
| 28 | 52<br>58                                                                   | 16<br>24                                                                               | 16<br>24                                                       | 12<br>19                                                               | 1<br>1                                                   | 1<br>1                                                        | 33.0<br>58.0                                                                                 | 40.5<br>69.5                                                                                 | 3 400<br>5 950                                                                                           | 4 150<br>7 100                                                                                           | 7 300<br>6 700                                                                                           | 9 700<br>8 900                                                                                             | 4T-320/28X<br>4T-332/28                                                                                                                                               |
| 30 | 55<br>55<br>62<br>62<br>62<br>62<br>62<br>72                               | 17<br>20<br>17.25<br>21.25<br>21.25<br>25<br>20.75                                     | 17<br>20<br>16<br>20<br>20<br>25<br>19                         | 13<br>16<br>14<br>17<br>17<br>19.5<br>16                               | 1<br>1<br>1<br>1<br>1<br>1<br>1.5                        | 1<br>1<br>1<br>1<br>1<br>1<br>1.5                             | 37.5<br>42.5<br>43.5<br>54.5<br>50.0<br>65.0<br>60.0                                         | 46.0<br>54.0<br>48.0<br>64.0<br>60.0<br>77.0<br>61.0                                         | 3 800<br>4 300<br>4 450<br>5 600<br>5 100<br>6 600<br>6 100                                              | 4 700<br>5 500<br>4 900<br>6 550<br>6 100<br>7 850<br>6 200                                              | 6 900<br>6 900<br>6 300<br>6 300<br>6 100<br>6 300<br>5 700                                              | 9 200<br>9 200<br>8 400<br>8 400<br>8 100<br>8 400<br>7 600                                                | 4T-32006X<br>4T-33006<br>4T-30206<br>4T-32206<br>4T-32206C<br>4T-33206<br>4T-30306                                                                                    |

<sup>1 )</sup> Minimal allowable dimension for chamfer dimension r or n. 2 ) This bearing does not incorporate the subunit dimensions.

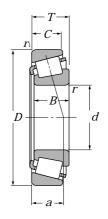






# Equivalent radial load dynamic $P_{\rm T} = XF_{\rm T} + YF_{\rm A}$

| $\frac{F_{\rm a}}{F_{ m r}}$ | e | $\frac{F_{\rm a}}{F_{\rm r}} > e$ |            |  |  |  |  |  |
|------------------------------|---|-----------------------------------|------------|--|--|--|--|--|
| X                            | Y | X                                 | Y          |  |  |  |  |  |
| 1                            | 0 | 0.4                               | <b>Y</b> 2 |  |  |  |  |  |


static  $P_{\text{or}} = 0.5F_{\text{r}} + Y_0F_{\text{a}}$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ For values of e,  $Y_2$  and  $Y_0$  see the table below.

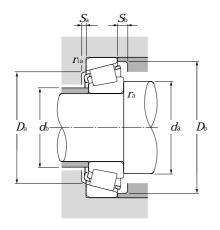
| Dimensions series to |            |                                     | Abu  |      |                               | ensions    |             | Abutment and fillet dimensions |              |      |      |       |            |           |  |  |  |  |  |
|----------------------|------------|-------------------------------------|------|------|-------------------------------|------------|-------------|--------------------------------|--------------|------|------|-------|------------|-----------|--|--|--|--|--|
| ISO                  | ,          | ,                                   | _    |      | mm                            | ~          | ~           |                                |              | mm   |      |       |            | kg        |  |  |  |  |  |
|                      | <b>d</b> a | $d_{\scriptscriptstyle \mathrm{b}}$ | L    |      | $D_{\scriptscriptstyle  m b}$ | <b>S</b> a | $S_{\rm b}$ | <b>r</b> as                    | <b>P</b> 1as |      |      | $Y_2$ | $Y_{0}$    | ,         |  |  |  |  |  |
|                      | min        | max                                 | max  | min  | min                           | min        | min         | max                            | max          | а    | e    | 12    | <b>I</b> 0 | (approx.) |  |  |  |  |  |
| 2FB                  | 20.5       | 22                                  | 36.5 | 35   | 38                            | 2          | 3           | 1                              | 1            | 9.5  | 0.29 | 2.11  | 1.16       | 0.098     |  |  |  |  |  |
| 2DB                  | 22.5       | 23                                  | 34.5 | 33   | 37                            | 2          | 2           | 1                              | 1            | 9.5  | 0.35 | 1.74  | 0.96       | 0.08      |  |  |  |  |  |
| 2DD                  | 22.5       | 23                                  | 34.5 | 33   | 37                            | 2          | 3           | 1                              | 1            | 11.5 | 0.31 | 1.92  | 1.06       | 0.102     |  |  |  |  |  |
|                      | 22.5       | 22                                  | 34.5 | 33   | 36.5                          | 2          | 3           | 1                              | 1            | 11   | 0.35 | 1.74  | 0.96       | 0.104     |  |  |  |  |  |
| 2FB                  | 22.5       | 24                                  | 41.5 | 40   | 42                            | 3          | 3.5         | 1                              | 1            | 10.5 | 0.29 | 2.11  | 1.16       | 0.134     |  |  |  |  |  |
| 3CC                  | 24.5       | 25                                  | 37.5 | 36   | 39                            | 3          | 3           | 0.6                            | 0.6          | 10.5 | 0.37 | 1.60  | 0.88       | 0.097     |  |  |  |  |  |
| 2DB                  | 25.5       | 27                                  | 41.5 | 40   | 44                            | 2          | 3           | 1                              | 1            | 11.5 | 0.35 | 1.74  | 0.96       | 0.127     |  |  |  |  |  |
| 2DD                  | 25.5       | 26                                  | 41.5 | 39   | 43                            | 2          | 4           | 1                              | 1            | 12.5 | 0.33 | 1.81  | 1.00       | 0.16      |  |  |  |  |  |
| 2FB                  | 28.5       | 28                                  | 43.5 | 42.5 | 47.5                          | 3          | 3           | 1.5                            | 1.5          | 10.5 | 0.30 | 2.00  | 1.10       | 0.176     |  |  |  |  |  |
|                      | 28.5       | 27.5                                | 43.5 | 39.5 | 48                            | 3          | 4           | 1.5                            | 1.5          | 13.5 | 0.55 | 1.10  | 0.60       | 0.17      |  |  |  |  |  |
| 2FD                  | 28.5       | 27                                  | 43.5 | 43   | 47                            | 3          | 4           | 1.5                            | 1.5          | 14   | 0.30 | 2.00  | 1.10       | 0.245     |  |  |  |  |  |
| 3CC                  | 26.5       | 27                                  | 39.5 | 38   | 41                            | 3          | 3.5         | 0.6                            | 0.6          | 11   | 0.40 | 1.51  | 0.83       | 0.106     |  |  |  |  |  |
| 4CC                  | 29.5       | 30                                  | 42.5 | 40   | 44                            | 3          | 3.5         | 0.6                            | 0.6          | 12   | 0.43 | 1.39  | 0.77       | 0.114     |  |  |  |  |  |
| 2CE                  | 29.5       | 29                                  | 42.5 | 40   | 43.5                          | 3          | 3           | 0.6                            | 0.6          | 11   | 0.29 | 2.07  | 1.14       | 0.13      |  |  |  |  |  |
| 3CC                  | 30.5       | 31                                  | 46.5 | 44   | 48                            | 2          | 3           | 1                              | 1            | 12.5 | 0.37 | 1.60  | 0.88       | 0.154     |  |  |  |  |  |
| 2CD                  | 30.5       | 31                                  | 46.5 | 43   | 48                            | 2          | 4           | 1                              | 1            | 14   | 0.36 | 1.67  | 0.92       | 0.187     |  |  |  |  |  |
|                      | 30.5       | 31                                  | 46.5 | 43   | 48                            | 2          | 4           | 1                              | 1            | 13.5 | 0.37 | 1.60  | 0.88       | 0.181     |  |  |  |  |  |
| 5CD                  | 30.5       | 30                                  | 46.5 | 42   | 49                            | 2          | 4           | 1                              | 1            | 16   | 0.58 | 1.03  | 0.57       | 0.19      |  |  |  |  |  |
|                      | 30.5       | 30                                  | 46.5 | 42   | 49                            | 2          | 4           | 1                              | 1            | 16   | 0.55 | 1.10  | 0.60       | 0.19      |  |  |  |  |  |
| 2DE                  | 30.5       | 30                                  | 46.5 | 43   | 49                            | 4          | 4           | 1                              | 1            | 14   | 0.35 | 1.71  | 0.94       | 0.217     |  |  |  |  |  |
| 2FB                  | 33.5       | 34                                  | 53.5 | 52   | 57                            | 3          | 3           | 1.5                            | 1.5          | 13   | 0.30 | 2.00  | 1.10       | 0.272     |  |  |  |  |  |
|                      | 33.5       | 34                                  | 53.5 | 48   | 58                            | 3          | 4           | 1.5                            | 1.5          | 16   | 0.55 | 1.10  | 0.60       | 0.264     |  |  |  |  |  |
| 7FB                  | 33.5       | 34                                  | 53.5 | 45.5 | 58.5                          | 3          | 5           | 1.5                            | 1.5          | 20   | 0.83 | 0.73  | 0.40       | 0.284     |  |  |  |  |  |
| 2FD                  | 33.5       | 32                                  | 53.5 | 52   | 57                            | 3          | 5           | 1.5                            | 1.5          | 16   | 0.30 | 2.00  | 1.10       | 0.381     |  |  |  |  |  |
| 4CC                  | 33.5       | 33                                  | 46.5 | 45   | 49                            | 3          | 4           | 1                              | 1            | 12.5 | 0.43 | 1.39  | 0.77       | 0.146     |  |  |  |  |  |
| 2DE                  | 33.5       | 34                                  | 52.5 | 49   | 55                            | 5          | 5           | 1                              | 1            | 15.5 | 0.34 | 1.77  | 0.97       | 0.293     |  |  |  |  |  |
| 4CC                  | 35.5       | 35                                  | 49.5 | 48   | 52                            | 3          | 4           | 1                              | 1            | 13.5 | 0.43 | 1.39  | 0.77       | 0.166     |  |  |  |  |  |
| 2CE                  | 35.5       | 35.5                                | 49.5 | 46.5 | 52                            | 3          | 4           | 1                              | 1            | 13   | 0.29 | 2.06  | 1.13       | 0.201     |  |  |  |  |  |
| 3DB                  | 35.5       | 37                                  | 56.5 | 53   | 57                            | 2          | 3           | 1                              | 1            | 13.5 | 0.37 | 1.60  | 0.88       | 0.241     |  |  |  |  |  |
| 3DC                  | 35.5       | 37                                  | 56.5 | 52   | 58                            | 2.5        | 4           | 1                              | 1            | 15.5 | 0.37 | 1.60  | 0.88       | 0.301     |  |  |  |  |  |
| 5DC                  | 35.5       | 35                                  | 56.5 | 49   | 59.5                          | 2          | 5           | 1                              | 1            | 18.5 | 0.56 | 1.07  | 0.59       | 0.294     |  |  |  |  |  |
| 2DE                  | 35.5       | 36                                  | 56.5 | 53   | 59                            | 5          | 5.5         | 1                              | 1            | 16   | 0.34 | 1.76  | 0.97       | 0.344     |  |  |  |  |  |
| 2FB                  | 38.5       | 40                                  | 63.5 | 62   | 66                            | 3          | 4.5         | 1.5                            | 1.5          | 15   | 0.31 | 1.90  | 1.05       | 0.408     |  |  |  |  |  |





#### **Metric series**




## d 30 ~ 45mm

|          |    | Bound          | ary dime | ensions |                      |              | Basic load ratings dynamic static dynamic static |             |             |                          | Limiting | Bearing<br>numbers |                           |
|----------|----|----------------|----------|---------|----------------------|--------------|--------------------------------------------------|-------------|-------------|--------------------------|----------|--------------------|---------------------------|
|          | mm |                |          |         |                      | kN kgf       |                                                  |             |             | mi                       | Humbers  |                    |                           |
| d        | D  | T              | В        | С       | $r_{\rm s  min}^{1}$ | r∕ls min 1 ) | $C_{ m r}$                                       | $C_{ m or}$ | $C_{\rm r}$ | $\mathcal{C}_{	ext{or}}$ | grease   | oil                |                           |
| u        | D  | I              | D        | C       | I s min              | I is min     | Cr                                               | Cor         | Cr          | Cor                      | grease   | Oii                |                           |
|          | 72 | 20.75          | 19       | 15      | 1.5                  | 1.5          | 58.5                                             | 58.5        | 6 000       | 5 950                    | 5 500    | 7 300              | 4T-30306CA                |
|          | 72 | 20.75          | 19       | 14      | 1.5                  | 1.5          | 48.5                                             | 51.5        | 4 950       | 5 250                    | 5 000    | 6 700              | 4T-30306D                 |
| 30       | 72 | 28.75          | 27       | 23      | 1.5                  | 1.5          | 81.0                                             | 90.0        | 8 250       | 9 150                    | 5 700    | 7 600              | 4T-32306                  |
| 00       | 72 | 28.75          | 27       | 23      | 1.5                  | 1.5          | 79.0                                             | 94.0        | 8 050       | 9 550                    | 5 500    | 7 300              | * 4T-32306C               |
|          | 72 | 28.75          | 27       | 23      | 1.5                  | 1.5          | 70.0                                             | 88.5        | 7 150       | 9 050                    | 5 500    | 7 300              | 4T-32306CR <sup>2</sup> ) |
|          | 58 | 17             | 17       | 13      | 1                    | 1            | 37.0                                             | 46.5        | 3 750       | 4 750                    | 6 600    | 8 700              | 4T-320/32X                |
| 32       | 65 | 26             | 26       | 20.5    | 1                    | 1            | 70.5                                             | 85.0        | 7 200       | 8 650                    | 6 000    | 8 000              | 4T-332/32                 |
| <b>-</b> | 75 | 29.75          | 28       | 23      | 1.5                  | 1.5          | 84.0                                             | 102         | 8 600       | 10 400                   | 5 200    | 6 900              | 4T-323/32C                |
|          |    |                |          |         |                      |              |                                                  |             |             |                          |          |                    |                           |
|          | 55 | 14             | 14       | 11.5    | 0.6                  | 0.6          | 27.4                                             | 37.5        | 2 790       | 3 850                    | 6 800    | 9 000              | 32907XU                   |
|          | 62 | 18             | 18       | 14      | 1                    | 1            | 41.5                                             | 52.5        | 4 250       | 5 350                    | 6 100    | 8 100              | 4T-32007X                 |
|          | 62 | 21             | 21       | 17      | 1                    | 1            | 50.5                                             | 66.5        | 5 150       | 6 800                    | 6 100    | 8 100              | 4T-33007                  |
|          | 72 | 18.25          | 17       | 15      | 1.5                  | 1.5          | 55.5                                             | 61.5        | 5 650       | 6 250                    | 5 500    | 7 400              | 4T-30207                  |
|          | 72 | 24.25          | 23       | 19      | 1.5                  | 1.5          | 72.5                                             | 87.0        | 7 400       | 8 900                    | 5 500    | 7 400              | 4T-32207                  |
|          | 72 | 24.25          | 23       | 19      | 1.5                  | 1.5          | 68.0                                             | 85.5        | 6 950       | 8 750                    | 5 300    | 7 100              | 4T-32207C                 |
| 35       | 72 | 24.25          | 23       | 18      | 1.5                  | 1.5          | 62.0                                             | 78.5        | 6 300       | 8 000                    | 5 300    | 7 100              | 4T-32207CR <sup>2</sup> ) |
|          | 72 | 28             | 28       | 22      | 1.5                  | 1.5          | 87.5                                             | 109         | 8 900       | 11 200                   | 5 500    | 7 400              | 4T-33207                  |
|          | 80 | 22.75          | 21       | 18      | 2                    | 1.5          | 75.0                                             | 77.0        | 7 650       | 7 900                    | 5 000    | 6 600              | 4T-30307                  |
|          | 80 | 22.75          | 21       | 17      | 2                    | 1.5          | 66.5                                             | 68.5        | 6 750       | 7 000                    | 4 800    | 6 400              | 4T-30307C                 |
|          | 80 | 22.75          | 21       | 15      | 2                    | 1.5          | 63.5                                             | 70.0        | 6 450       | 7 100                    | 4 400    | 5 800              | 4T-30307D                 |
|          | 80 | 32.75<br>32.75 | 31       | 25      | 2                    | 1.5          | 101                                              | 115         | 10 300      | 11 700                   | 5 000    | 6 600              | 4T-32307                  |
|          | 80 | 32.75          | 31       | 25      | 2                    | 1.5          | 93.0                                             | 117         | 9 500       | 12 000                   | 4 800    | 6 400              | 4T-32307C                 |
|          | 62 | 15             | 15       | 12      | 0.6                  | 0.6          | 32.5                                             | 48.0        | 3 350       | 4 900                    | 5 900    | 7 800              | 32908XU                   |
|          | 68 | 19             | 19       | 14.5    | 1                    | 1            | 50.0                                             | 65.5        | 5 100       | 6 650                    | 5 300    | 7 100              | 4T-32008X                 |
|          | 68 | 22             | 22       | 18      | 1                    | 1            | 59.5                                             | 82.5        | 6 050       | 8 400                    | 5 300    | 7 100              | 4T-33008                  |
|          | 75 | 26             | 26       | 20.5    | 1.5                  | 1.5          | 79.5                                             | 103         | 8 100       | 10 500                   | 5 200    | 6 900              | 4T-33108                  |
|          | 80 | 19.75          | 18       | 16      | 1.5                  | 1.5          | 61.0                                             | 67.0        | 6 250       | 6 850                    | 4 900    | 6 600              | 4T-30208                  |
|          | 80 | 24.75          | 23       | 19      | 1.5                  | 1.5          | 79.5                                             | 93.5        | 8 100       | 9 550                    | 4 900    | 6 600              | 4T-32208                  |
| 40       | 80 | 32             | 32       | 25      | 1.5                  | 1.5          | 103                                              | 132         | 10 500      | 13 400                   | 4 900    | 6 600              | 4T-33208                  |
|          | 85 | 33             | 32.5     | 28      | 2.5                  | 2            | 118                                              | 144         | 12 000      | 14 700                   | 4 600    | 6 200              | 4T-T2EE040                |
|          | 90 | 25.25          | 23       | 20      | 2                    | 1.5          | 91.5                                             | 102         | 9 350       | 10 400                   | 4 400    | 5 900              | 4T-30308                  |
|          | 90 | 25.25          | 23       | 19      | 2                    | 1.5          | 83.0                                             | 87.0        | 8 450       | 8 900                    | 4 200    | 5 600              | 4T-30308C                 |
|          | 90 | 25.25          | 23       | 17      | 2                    | 1.5          | 77.0                                             | 85.5        | 7 850       | 8 700                    | 3 900    | 5 200              | 4T-30308D                 |
|          | 90 | 35.25          | 33       | 27      | 2                    | 1.5          | 122                                              | 150         | 12 500      | 15 300                   | 4 400    | 5 900              | 32308U                    |
|          | 90 | 35.25          | 33       | 27      | 2                    | 1.5          | 110                                              | 140         | 11 300      | 14 300                   | 4 200    | 5 600              | 4T-32308C                 |
| 45       | 68 | 15             | 15       | 12      | 0.6                  | 0.6          | 33.5                                             | 51.5        | 3 450       | 5 250                    | 5 300    | 7 000              | * 32909XU                 |

<sup>1)</sup> Minimal allowable dimension for chamfer dimension r or n. 2) This bearing does not incorporate the subunit dimensions. Note: When selecting bearings with bearing numbers marked with "  $\star$  ", please consult NTN Engineering.

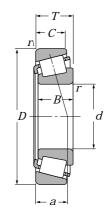






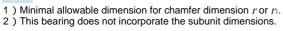
# Equivalent radial load dynamic Pr = XFr + YFa

| $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | e | $\frac{F}{F}$ | $\frac{\overline{r_a}}{\overline{r_r}} > e$ |  |  |  |  |
|-----------------------------------------|---|---------------|---------------------------------------------|--|--|--|--|
| X                                       | Y | X             | Y                                           |  |  |  |  |
| 1                                       | 0 | 0.4           | <b>Y</b> 2                                  |  |  |  |  |


static  $P_{\text{Or}} = 0.5F_{\text{r}} + Y_0F_{\text{a}}$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ For values of e,  $Y_2$  and  $Y_0$  see the table below.

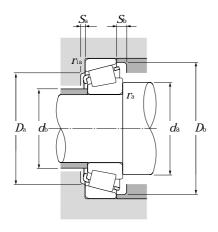
| Dimension series |                                       |                                     | Abu  | tment and |                                    | center            | Constant                              | Ax<br>load fa   | Mass                 |      |      |       |         |           |
|------------------|---------------------------------------|-------------------------------------|------|-----------|------------------------------------|-------------------|---------------------------------------|-----------------|----------------------|------|------|-------|---------|-----------|
| ISO              | $d_{\!\scriptscriptstyle \mathrm{a}}$ | $d_{\scriptscriptstyle \mathrm{b}}$ | L    |           | mm $D_{\!\scriptscriptstyle  m b}$ | $S_{\rm a}$       | $S_{\!\scriptscriptstyle \mathrm{b}}$ |                 |                      | mm   |      |       |         | kg        |
|                  | <i>u</i> a<br>min                     | <i>α</i> ₅<br>max                   | max  | ∕a<br>min | <i>D</i> ₅<br>min                  | <i>S</i> a<br>min | <i>S</i> b<br>min                     | r <sub>as</sub> | <i>I</i> ¹las<br>max | а    | e    | $Y_2$ | $Y_{0}$ | (approx.) |
|                  |                                       |                                     |      |           |                                    |                   |                                       |                 |                      |      |      |       |         |           |
|                  | 38.5                                  | 39.5                                | 63.5 | 57        | 67                                 | 3                 | 5.5                                   | 1.5             | 1.5                  | 17.5 | 0.47 | 1.27  | 0.70    | 0.398     |
| 7FB              | 38.5                                  | 39                                  | 63.5 | 55        | 68                                 | 3                 | 6.5                                   | 1.5             | 1.5                  | 23.5 | 0.83 | 0.73  | 0.40    | 0.398     |
| 2FD              | 38.5                                  | 38                                  | 63.5 | 59        | 66                                 | 3                 | 5.5                                   | 1.5             | 1.5                  | 18.5 | 0.31 | 1.90  | 1.05    | 0.583     |
| 5FD              | 38.5                                  | 37                                  | 63.5 | 57        | 68                                 | 2                 | 5.5                                   | 1.5             | 1.5                  | 23   | 0.55 | 1.10  | 0.60    | 0.592     |
|                  | 38.5                                  | 37                                  | 63.5 | 57        | 67.5                               | 2                 | 5.5                                   | 1.5             | 1.5                  | 23   | 0.61 | 0.99  | 0.54    | 0.594     |
| 4CC              | 37.5                                  | 38                                  | 52.5 | 50        | 55                                 | 3                 | 4                                     | 1               | 1                    | 14.5 | 0.45 | 1.32  | 0.73    | 0.181     |
| 2DE              | 37.5                                  | 38                                  | 59.5 | 55        | 62                                 | 5                 | 5.5                                   | 1               | 1                    | 17.5 | 0.45 | 1.73  | 0.75    | 0.395     |
| 5FD              | 40.5                                  | 39                                  | 66.5 | 61        | 71                                 | 3                 | 6.5                                   | 1.5             | 1.5                  | 23   | 0.55 | 1.10  | 0.60    | 0.659     |
|                  | 40.0                                  |                                     | 00.0 |           | 7 1                                |                   | 0.0                                   | 1.0             | 1.0                  | 20   | 0.00 | 1.10  | 0.00    | 0.000     |
| 2BD              | 39.5                                  | 40                                  | 50.5 | 48        | 52.5                               | 2.5               | 2.5                                   | 0.6             | 0.6                  | 10.5 | 0.29 | 2.06  | 1.13    | 0.121     |
| 4CC              | 40.5                                  | 40                                  | 56.5 | 54        | 59                                 | 4                 | 4                                     | 1               | 1                    | 15.5 | 0.45 | 1.32  | 0.73    | 0.224     |
| 2CE              | 40.5                                  | 40.5                                | 56.5 | 52        | 59                                 | 3                 | 4                                     | 1               | 1                    | 14   | 0.31 | 1.97  | 1.08    | 0.263     |
| 3DB              | 43.5                                  | 44                                  | 63.5 | 62        | 67                                 | 3                 | 3                                     | 1.5             | 1.5                  | 15   | 0.37 | 1.60  | 0.88    | 0.344     |
| 3DC              | 43.5                                  | 43                                  | 63.5 | 61        | 67                                 | 3                 | 5                                     | 1.5             | 1.5                  | 17.5 | 0.37 | 1.60  | 0.88    | 0.457     |
| 5DC              | 43.5                                  | 42                                  | 63.5 | 59        | 68                                 | 3                 | 6                                     | 1.5             | 1.5                  | 21.5 | 0.58 | 1.03  | 0.57    | 0.461     |
|                  | 43.5                                  | 42                                  | 63.5 | 59        | 68                                 | 3                 | 6                                     | 1.5             | 1.5                  | 20.5 | 0.55 | 1.10  | 0.60    | 0.461     |
| 2DE              | 43.5                                  | 42                                  | 63.5 | 61        | 68                                 | 5                 | 6                                     | 1.5             | 1.5                  | 18.5 | 0.35 | 1.70  | 0.93    | 0.531     |
| 2FB              | 45                                    | 45                                  | 71.5 | 70        | 74                                 | 3                 | 4.5                                   | 2               | 1.5                  | 17   | 0.31 | 1.90  | 1.05    | 0.540     |
|                  | 45                                    | 44                                  | 71.5 | 63.5      | 75.5                               | 3                 | 5.5                                   | 2               | 1.5                  | 20.5 | 0.55 | 1.10  | 0.60    | 0.517     |
| 7FB              | 45                                    | 44                                  | 71.5 | 62        | 76.5                               | 3                 | 7.5                                   | 2               | 1.5                  | 26   | 0.83 | 0.73  | 0.40    | 0.530     |
| 2FE              | 45                                    | 43                                  | 71.5 | 66        | 74                                 | 3                 | 7.5                                   | 2               | 1.5                  | 20.5 | 0.31 | 1.90  | 1.05    | 0.787     |
| 5FE              | 45                                    | 43                                  | 71.5 | 66        | 76                                 | 3                 | 7.5                                   | 2               | 1.5                  | 25   | 0.55 | 1.10  | 0.60    | 0.797     |
| 2BC              | 44.5                                  | 45.5                                | 57.5 | 54        | 58.5                               | 3                 | 3                                     | 0.6             | 0.6                  | 11.5 | 0.29 | 2.07  | 1.14    | 0.161     |
| 3CD              | 45.5                                  | 46                                  | 62.5 | 60        | 65                                 | 4                 | 4.5                                   | 1               | 1                    | 15   | 0.38 | 1.58  | 0.87    | 0.273     |
| 2BE              | 45.5                                  | 46                                  | 62.5 | 60        | 64                                 | 2.5               | 4                                     | 1               | 1                    | 15   | 0.28 | 2.12  | 1.17    | 0.312     |
| 2CE              | 48.5                                  | 47                                  | 66.5 | 65        | 71                                 | 4                 | 5.5                                   | 1.5             | 1.5                  | 18   | 0.36 | 1.69  | 0.93    | 0.494     |
| 3DB              | 48.5                                  | 49                                  | 71.5 | 69        | 75                                 | 3                 | 3.5                                   | 1.5             | 1.5                  | 16.5 | 0.37 | 1.60  | 0.88    | 0.435     |
| 3DC              | 48.5                                  | 48                                  | 71.5 | 68        | 75                                 | 3                 | 5.5                                   | 1.5             | 1.5                  | 19   | 0.37 | 1.60  | 0.88    | 0.558     |
| 2DE              | 48.5                                  | 47                                  | 71.5 | 67        | 76                                 | 5                 | 7                                     | 1.5             | 1.5                  | 21   | 0.36 | 1.68  | 0.92    | 0.728     |
| 2EE              | 52                                    | 48                                  | 75   | 70        | 80                                 | 5                 | 5                                     | 2               | 2                    | 22.5 | 0.34 | 1.74  | 0.96    | 0.907     |
| 2FB              | 50                                    | 52                                  | 81.5 | 77        | 82                                 | 3                 | 5                                     | 2               | 1.5                  | 19.5 | 0.35 | 1.74  | 0.96    | 0.769     |
|                  | 50                                    | 50                                  | 80   | 72        | 85.5                               | 3.5               | 6                                     | 2               | 1.5                  | 23   | 0.55 | 1.10  | 0.60    | 0.728     |
| 7FB              | 50                                    | 50                                  | 81.5 | 71        | 86.5                               | 3                 | 8                                     | 2               | 1.5                  | 29.5 | 0.83 | 0.73  | 0.40    | 0.738     |
| 2FD              | 50                                    | 50                                  | 81.5 | 73        | 82                                 | 3                 | 8                                     | 2               | 1.5                  | 23   | 0.35 | 1.74  | 0.96    | 1.08      |
| 5FD              | 50                                    | 48                                  | 81.5 | 72        | 84                                 | 3                 | 8                                     | 2               | 1.5                  | 27.5 | 0.55 | 1.10  | 0.60    | 1.1       |
| 2BC              | 50                                    | 50                                  | 63.5 | 59.5      | 64.5                               | 3                 | 3                                     | 0.6             | 0.6                  | 12   | 0.32 | 1.88  | 1.04    | 0.188     |






## **Metric series**




## d 45 ~ 60mm

| Boundary dimensions |    |          |       |    |            |                      | dynamic            | Basic load ratings dynamic static dynamic |             | s<br>static | Limiting    | Bearing<br>numbers |       |                             |
|---------------------|----|----------|-------|----|------------|----------------------|--------------------|-------------------------------------------|-------------|-------------|-------------|--------------------|-------|-----------------------------|
|                     |    |          |       | mm |            |                      |                    | k                                         | κN          | k           | gf          | mi                 | n-1   |                             |
|                     | d  | D        | T     | В  | С          | $r_{\rm s  min}^{1}$ | $n_{ m s min}^{1}$ | $C_{\rm r}$                               | $C_{ m or}$ | $C_{r}$     | $C_{ m or}$ | grease             | oil   |                             |
|                     |    | 75       | 20    | 20 | 15.5       | 1                    | 1                  | 57.5                                      | 76.5        | 5 850       | 7 800       | 4 800              | 6 400 | 4T-32009X                   |
|                     |    | 75       | 24    | 24 | 19         | 1                    | 1                  | 66.0                                      | 93.5        | 6 750       | 9 550       | 4 800              | 6 400 | 4T-33009                    |
|                     |    | 80       | 26    | 26 | 20.5       | 1.5                  | 1.5                | 84.5                                      | 115         | 8 650       | 11 700      | 4 700              | 6 200 | 4T-33109                    |
|                     |    | 85       | 20.75 | 19 | 16         | 1.5                  | 1.5                | 67.5                                      | 78.5        | 6 900       | 8 000       | 4 400              | 5 900 | 4T-30209                    |
|                     | 45 | 85       | 24.75 | 23 | 19         | 1.5                  | 1.5                | 82.0                                      | 100         | 8 350       | 10 200      | 4 400              | 5 900 | 4T-32209                    |
|                     |    | 85       | 32    | 32 | 25         | 1.5                  | 1.5                | 107                                       | 141         | 10 900      | 14 400      | 4 400              | 5 900 | 4T-33209                    |
|                     |    | 100      | 27.25 | 25 | 22         | 2                    | 1.5                | 111                                       | 126         | 11 300      | 12 800      | 4 000              | 5 300 | 4T-30309                    |
|                     |    | 100      | 27.25 | 25 | 18         | 2                    | 1.5                | 96.0                                      | 109         | 9 800       | 11 100      | 3 500              | 4 600 | 4T-30309D                   |
|                     |    | 100      | 38.25 | 36 | 30         | 2                    | 1.5                | 154                                       | 191         | 15 700      | 19 500      | 4 000              | 5 300 | 32309U                      |
|                     |    |          |       |    |            |                      |                    |                                           |             |             |             |                    |       |                             |
|                     |    | 72       | 15    | 15 | 12         | 0.6                  | 0.6                | 35.5                                      | 57.0        | 3 650       | 5 800       | 4 700              | 6 300 | * 32910XU                   |
|                     |    | 72       | 15    | 14 | 12         | 0.6                  | 0.6                | 31.5                                      | 50.5        | 3 200       | 5 150       | 4 700              | 6 300 | <b>32910</b> <sup>2</sup> ) |
|                     |    | 80       | 20    | 20 | 15.5       | 1                    | 1                  | 62.5                                      | 88.0        | 6 400       | 9 000       | 4 400              | 5 800 | 4T-32010X                   |
|                     |    | 80       | 24    | 24 | 19         | 1                    | 1                  | 69.5                                      | 103         | 7 100       | 10 500      | 4 400              | 5 800 | 4T-33010                    |
|                     |    | 85       | 26    | 26 | 20         | 1.5                  | 1.5                | 86.5                                      | 121         | 8 850       | 12 400      | 4 200              | 5 600 | 4T-33110                    |
|                     |    | 90       | 21.75 | 20 | 17         | 1.5                  | 1.5                | 77.0                                      | 93.0        | 7 850       | 9 450       | 4 000              | 5 300 | 4T-30210                    |
|                     | 50 | 90       | 24.75 | 23 | 19         | 1.5                  | 1.5                | 87.5                                      | 109         | 8 900       | 11 100      | 4 000              | 5 300 | 4T-32210                    |
|                     |    | 90       | 32    | 32 | 24.5       | 1.5                  | 1.5                | 115                                       | 158         | 11 700      | 16 100      | 4 000              | 5 300 | 4T-33210                    |
|                     |    | 100      | 36    | 35 | 30         | 2.5                  | 2.5                | 151                                       | 190         | 15 400      | 19 400      | 3 800              | 5 100 | 4T-T2ED050                  |
|                     |    | 105      | 32    | 29 | 22         | 3                    | 3                  | 107                                       | 132         | 10 900      | 13 500      | 3 400              | 4 500 | 4T-T7FC050                  |
|                     |    | 110      | 29.25 | 27 | 23         | 2.5                  | 2                  | 133                                       | 152         | 13 500      | 15 500      | 3 600              | 4 800 | 4T-30310                    |
|                     |    | 110      | 29.25 | 27 | 19         | 2.5                  | 2                  | 113                                       | 130         | 11 600      | 13 300      | 3 200              | 4 200 | 4T-30310D                   |
|                     |    | 110      | 42.25 | 40 | 33         | 2.5                  | 2                  | 184                                       | 232         | 18 700      | 23 600      | 3 600              | 4 800 | 32310U                      |
|                     |    | 80       | 17    | 17 | 14         | 1                    | 1                  | 44.5                                      | 73.5        | 4 550       | 7 500       | 4 300              | 5 700 | 32911XU                     |
|                     |    | 90       | 23    | 23 | 17.5       | 1.5                  | 1.5                | 80.5                                      | 118         | 8 200       | 12 000      | 4 000              | 5 400 | 4T-32011X                   |
|                     |    | 90       | 27    | 27 | 21         | 1.5                  | 1.5                | 91.5                                      | 138         | 9 350       | 14 100      | 4 000              | 5 400 | 4T-33011                    |
|                     |    | 95       | 30    | 30 | 23         | 1.5                  | 1.5                | 111                                       | 155         | 11 300      | 15 800      | 3 900              | 5 200 | 4T-33111                    |
|                     |    | 100      | 22.75 | 21 | 18         | 2                    | 1.5                | 93.0                                      | 111         | 9 500       | 11 300      | 3 600              | 4 900 | 4T-30211                    |
|                     | 55 | 100      | 26.75 | 25 | 21         | 2                    | 1.5                | 108                                       | 134         | 11 000      | 13 700      | 3 600              | 4 900 | 4T-32211                    |
|                     |    | 100      | 35    | 35 | 27         | 2                    | 1.5                | 138                                       | 188         | 14 100      | 19 100      | 3 600              | 4 900 | 4T-33211                    |
|                     |    | 120      | 31.5  | 29 | 25         | 2.5                  | 2                  | 155                                       | 179         | 15 800      | 18 300      | 3 300              | 4 400 | 4T-30311                    |
|                     |    | 120      | 31.5  | 29 | 21         | 2.5                  | 2                  | 132                                       | 154         | 13 500      | 15 700      | 2 900              | 3 800 | 4T-30311D                   |
|                     |    | 120      | 45.5  | 43 | 35         | 2.5                  | 2                  | 215                                       | 275         | 21 900      | 28 000      | 3 300              | 4 400 | 32311U                      |
| ı                   |    | 0.5      | 47    | 47 | 4.4        | 4                    | 4                  | <b>54.0</b>                               | 00.0        | F 200       | 0.450       | 4.000              | F 200 | 22012VA-                    |
|                     |    | 85<br>05 | 17    | 17 | 14<br>17 5 | 1                    | 1                  | 51.0                                      | 83.0        | 5 200       | 8 450       | 4 000              | 5 300 | 32912XA <sup>2</sup> )      |
|                     | 60 | 95<br>05 | 23    | 23 | 17.5       | 1.5                  | 1.5                | 82.0                                      | 123         | 8 350       | 12 500      | 3 700              | 4 900 | 4T-32012X                   |
|                     |    | 95       | 27    | 27 | 21         | 1.5                  | 1.5                | 93.5                                      | 145         | 9 550       | 14 700      | 3 700              | 4 900 | 4T-33012                    |
|                     |    | 100      | 30    | 30 | 23         | 1.5                  | 1.5                | 113                                       | 164         | 11 600      | 16 700      | 3 600              | 4 700 | 4T-33112                    |





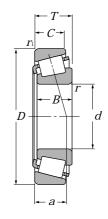




 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 

| $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | e | $\frac{F}{F}$ | $\frac{\overline{r_a}}{\overline{r_r}} > e$ |
|-----------------------------------------|---|---------------|---------------------------------------------|
| X                                       | Y | X             | Y                                           |
| 1                                       | 0 | 0.4           | <b>Y</b> 2                                  |

static  $P_{\text{Or}} = 0.5F_{\text{r}} + Y_0F_{\text{a}}$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ For values of e,  $Y_2$  and  $Y_0$  see the table below.

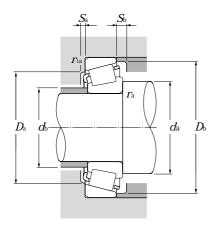

| Dimension series |                                       |                                     | Abı  | utment and     | d fillet dime                 | ensions           |                   |             |              | Load<br>center<br>mm | Constant | Ax<br>load fa |             | <b>Mass</b><br>kg |
|------------------|---------------------------------------|-------------------------------------|------|----------------|-------------------------------|-------------------|-------------------|-------------|--------------|----------------------|----------|---------------|-------------|-------------------|
| 130              | $d_{\!\scriptscriptstyle \mathrm{a}}$ | $d_{\scriptscriptstyle \mathrm{b}}$ |      | $D_{a}$        | $D_{\scriptscriptstyle  m b}$ | $S_{a}$           | $S_{\rm b}$       | $r_{ m as}$ | <b>r</b> 1as | 111111               |          |               |             | ĸg                |
|                  | min                                   | max                                 | max  | <i>D</i> a min | <i>D</i> <sub>b</sub> min     | <i>S</i> a<br>min | <i>S</i> ₅<br>min | max max     | max max      | а                    | e        | $Y_2$         | $Y_{\rm o}$ | (approx.)         |
| 3CC              | 50.5                                  | 51                                  | 69.5 | 67             | 72                            | 4                 | 4.5               | 1           | 1            | 16.5                 | 0.39     | 1.53          | 0.84        | 0.346             |
| 2CE              | 50.5                                  | 51                                  | 69.5 | 67             | 71                            | 4                 | 5                 | 1           | 1            | 16                   | 0.29     | 2.04          | 1.12        | 0.398             |
| 3CE              | 53.5                                  | 52                                  | 71.5 | 69             | 77                            | 4                 | 5.5               | 1.5         | 1.5          | 19.5                 | 0.38     | 1.57          | 0.86        | 0.542             |
| 3DB              | 53.5                                  | 54                                  | 76.5 | 74             | 80                            | 3                 | 4.5               | 1.5         | 1.5          | 18                   | 0.40     | 1.48          | 0.81        | 0.495             |
| 3DC              | 53.5                                  | 53                                  | 76.5 | 73             | 81                            | 3                 | 5.5               | 1.5         | 1.5          | 20                   | 0.40     | 1.48          | 0.81        | 0.607             |
| 3DE              | 53.5                                  | 52                                  | 76.5 | 72             | 81                            | 5                 | 7                 | 1.5         | 1.5          | 22                   | 0.39     | 1.56          | 0.86        | 0.783             |
| 2FB              | 55                                    | 59                                  | 91.5 | 86             | 93                            | 3                 | 5                 | 2           | 1.5          | 21                   | 0.35     | 1.74          | 0.96        | 1.01              |
| 7FB              | 55                                    | 56                                  | 91.5 | 79             | 96                            | 3                 | 9                 | 2           | 1.5          | 32.5                 | 0.83     | 0.73          | 0.40        | 0.958             |
| 2FD              | 55                                    | 56                                  | 91.5 | 82             | 93                            | 3                 | 8                 | 2           | 1.5          | 25.5                 | 0.35     | 1.74          | 0.96        | 1.46              |
| 2BC              | 54.5                                  | 55                                  | 67.5 | 63.5           | 69                            | 3                 | 3                 | 0.6         | 0.6          | 13.5                 | 0.34     | 1.76          | 0.97        | 0.191             |
|                  | 54.5                                  | 55                                  | 67.5 | 63.5           | 69.5                          | 3                 | 3                 | 0.6         | 0.6          | 14.5                 | 0.36     | 1.67          | 0.92        | 0.192             |
| 3CC              | 55.5                                  | 56                                  | 74.5 | 72             | 77                            | 4                 | 4.5               | 1           | 1            | 17.5                 | 0.42     | 1.42          | 0.78        | 0.366             |
| 2CE              | 55.5                                  | 56                                  | 74.5 | 72             | 76                            | 4                 | 5                 | 1           | 1            | 17.5                 | 0.32     | 1.90          | 1.04        | 0.433             |
| 3CE              | 58.5                                  | 56                                  | 76.5 | 74             | 82                            | 4                 | 6                 | 1.5         | 1.5          | 20.5                 | 0.41     | 1.46          | 0.80        | 0.58              |
| 3DB              | 58.5                                  | 58                                  | 81.5 | 79             | 85                            | 3                 | 4.5               | 1.5         | 1.5          | 19.5                 | 0.42     | 1.43          | 0.79        | 0.563             |
| 3DC              | 58.5                                  | 58                                  | 81.5 | 78             | 85                            | 3                 | 5.5               | 1.5         | 1.5          | 21                   | 0.42     | 1.43          | 0.79        | 0.648             |
| 3DE              | 58.5                                  | 57                                  | 81.5 | 77             | 87                            | 5                 | 7.5               | 1.5         | 1.5          | 23.5                 | 0.41     | 1.45          | 0.80        | 0.852             |
| 2ED              | 62                                    | 59                                  | 88   | 84             | 94                            | 6                 | 6                 | 2           | 2            | 25.5                 | 0.34     | 1.75          | 0.96        | 1.31              |
| 7FC              | 64                                    | 60                                  | 91   | 78             | 100                           | 4                 | 10                | 2.5         | 2.5          | 36.5                 | 0.87     | 0.69          | 0.38        | 1.23              |
| 2FB              | 62                                    | 65                                  | 100  | 95             | 102                           | 3                 | 6                 | 2           | 2            | 23                   | 0.35     | 1.74          | 0.96        | 1.31              |
| 7FB              | 62                                    | 62                                  | 100  | 87             | 105                           | 3                 | 10                | 2           | 2            | 35                   | 0.83     | 0.73          | 0.40        | 1.25              |
| 2FD              | 62                                    | 62                                  | 100  | 90             | 102                           | 3                 | 9                 | 2           | 2            | 28.5                 | 0.35     | 1.74          | 0.96        | 1.92              |
| 2BC              | 60.5                                  | 60.5                                | 74.5 | 70.5           | 76.5                          | 3                 | 3                 | 1           | 1            | 14.5                 | 0.31     | 1.94          | 1.07        | 0.274             |
| 3CC              | 63.5                                  | 63                                  | 81.5 | 81             | 86                            | 4                 | 5.5               | 1.5         | 1.5          | 20                   | 0.41     | 1.48          | 0.81        | 0.563             |
| 2CE              | 63.5                                  | 63                                  | 81.5 | 81             | 86                            | 5                 | 6                 | 1.5         | 1.5          | 19.5                 | 0.31     | 1.92          | 1.06        | 0.643             |
| 3CE              | 63.5                                  | 62                                  | 86.5 | 83             | 91                            | 5                 | 7                 | 1.5         | 1.5          | 22                   | 0.37     | 1.60          | 0.88        | 0.846             |
| 3DB              | 65                                    | 64                                  | 91.5 | 88             | 94                            | 4                 | 4.5               | 2           | 1.5          | 21                   | 0.40     | 1.48          | 0.81        | 0.74              |
| 3DC              | 65                                    | 63                                  | 91.5 | 87             | 95                            | 4                 | 5.5               | 2           | 1.5          | 22.5                 | 0.40     | 1.48          | 0.81        | 0.876             |
| 3DE              | 65                                    | 62                                  | 91.5 | 85             | 96                            | 6                 | 8                 | 2           | 1.5          | 25.5                 | 0.40     | 1.50          | 0.83        | 1.15              |
| 2FB              | 67                                    | 71                                  | 110  | 104            | 111                           | 4                 | 6.5               | 2           | 2            | 24.5                 | 0.35     | 1.74          | 0.96        | 1.66              |
| 7FB              | 67                                    | 68                                  | 110  | 94             | 113                           | 4                 | 10.5              | 2           | 2            | 38                   | 0.83     | 0.73          | 0.40        | 1.59              |
| 2FD              | 67                                    | 68                                  | 110  | 99             | 111                           | 4                 | 10.5              | 2           | 2            | 30.5                 | 0.35     | 1.74          | 0.96        | 2.44              |
|                  | 65.5                                  | 65.5                                | 79.5 | 76.5           | 82                            | 3                 | 3                 | 1           | 1            | 15.5                 | 0.33     | 1.80          | 0.99        | 0.296             |
| 4CC              | 68.5                                  | 67                                  | 86.5 | 85             | 91                            | 4                 | 5.5               | 1.5         | 1.5          | 21                   | 0.43     | 1.39          | 0.77        | 0.576             |
| 2CE              | 68.5                                  | 67                                  | 86.5 | 85             | 90                            | 5                 | 6                 | 1.5         | 1.5          | 20.5                 | 0.33     | 1.83          | 1.01        | 0.684             |
| 3CE              | 68.5                                  | 67                                  | 91.5 | 88             | 96                            | 5                 | 7                 | 1.5         | 1.5          | 23.5                 | 0.40     | 1.51          | 0.83        | 0.912             |

Note: When selecting bearings with bearing numbers marked with " \* ", please consult NTN Engineering.





#### **Metric series**




d 60 ~ 75mm

| 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |     | Bound | ary dime | ensions |                           |                             |             | Basic I     | oad ratings | <b>;</b>    | Limiting | gspeeds         | Bearing    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-------|----------|---------|---------------------------|-----------------------------|-------------|-------------|-------------|-------------|----------|-----------------|------------|
| 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |     |       |          |         |                           |                             | dynamic     | static      | ,           |             |          |                 | numbers    |
| 60  110  23.75  22  19  2  1.5  105  125  10700  12700  3 400  4500  47-3021  47-3021  60  110  29.75  28  24  2  1.5  105  105  125  10700  12700  3 400  4500  3221  321  110  38  38  29  2  1.5  161  223  16 400  22700  3 400  4 500  3221  321  115  40  39  33  2.5  2.5  188  249  19 200  25 400  3 200  3 200  47-172EI  47-176  130  33.5  33.5  26  3  3  145  186  14 800  18 900  27 00  3 600  47-3021  47-177EI  303  33.5  31  26  32.5  180  210  18 300  21 400  3000  4000  3031  130  33.5  31  22  3  2.5  150  176  15 300  179  00  2700  3 600  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021  47-3021 |    |     |       | mm       |         |                           |                             | ŀ           | kΝ          |             | gf          | mi       | n <sup>-1</sup> |            |
| 60   110   29.75   28   24   2   1.5   130   164   13 200   16 800   3 400   4 500   3221   110   38   38   29   2   1.5   161   223   16 400   22 700   3 400   4 500   3321   125   37   33.5   26   3   3   145   186   14 800   18 900   2 800   3 700   4 17.77E   130   33.5   31   26   3   2.5   180   210   18 300   21 400   3 000   4 000   3031   130   38.5   31   22   3   2.5   150   176   15 300   17 900   2 700   3 600   4 7.301   130   48.5   46   37   3   2.5   244   315   24 900   32 000   3 000   4 000   3231   130   48.5   46   37   3   2.5   244   315   24 900   32 000   3 000   4 000   3231   100   27   27   21   1.5   1.5   83.0   128   8 450   13 000   3 400   4 600   47-3201   100   27   27   21   1.5   1.5   97.5   156   9 950   16 000   3 400   4 600   47-3301   100   27   27   21   1.5   1.5   1.5   123   148   12 500   15 000   3 100   4 200   47-3201   120   32.75   31   27   2   1.5   159   206   16 200   21 000   3 100   4 200   3221   140   36   33   23   3   2.5   273   350   27 800   36 000   2 800   3 700   3 303   140   36   33   23   3   2.5   273   350   27 800   36 000   2 800   3 700   3 303   140   51   48   39   3   2.5   273   350   27 800   36 000   2 800   3 700   3 303   140   51   48   39   3   2.5   273   350   27 800   36 000   2 800   3 700   3 323   140   39   35.5   27   3 3   177   2   1.5   166   220   16 900   2 800   3 200   4 200   47-3201   100   20   20   16   1   1   68.5   110   7 000   11 200   3 400   4 600   3 201   125   33.25   31   27   2   1.5   155   157   204   12 900   2 800   3 200   4 200   47-3201   125   33.25   31   27   2   1.5   155   157   204   12 900   2 800   3 200   4 200   47-3201   125   33.25   31   27   2   1.5   155   157   204   12 900   2 800   3 200   4 200   47-3201   125   33.25   31   27   2   1.5   166   220   16 900   2 800   3 200   4 7-3201   150   38   35   25   39   2.5   273   33   272   23 400   27 800   28 00   3 900   3 320   150   38   35   25   39   2.5   310   405   31 500   41 000   2 600   3 500   3 301   150   38 | d  | D   | T     | В        | С       | $\Gamma_{\rm s  min}^{1}$ | $I \sim 10^{1}$ min $1^{1}$ | $C_{\rm r}$ | $C_{ m or}$ | $C_{\rm r}$ | $C_{ m or}$ | grease   | oil             |            |
| 60   110   29.75   28   24   2   1.5   130   164   13 200   16 800   3 400   4 500   3221   110   38   38   29   2   1.5   161   223   16 400   22 700   3 400   4 500   3321   125   37   33.5   26   3   3   145   186   14 800   18 900   2 800   3 700   4 17.77E1   125   37   33.5   26   3   3   145   186   14 800   18 900   2 800   3 700   4 17.77E1   130   33.5   31   22   3   2.5   180   210   18 300   21 400   3 000   4 000   3031   130   48.5   46   37   3   2.5   244   315   24 900   32 000   3 000   4 000   3231   130   48.5   46   37   3   2.5   244   315   24 900   32 000   3 000   4 000   3231   100   27   27   21   1.5   1.5   83.0   128   8 450   13 000   3 400   4 600   47-3201   100   27   27   21   1.5   1.5   97.5   156   9 950   16 000   3 400   4 600   47-3301   100   27   27   21   1.5   1.5   1.5   123   148   12 500   15 000   3 100   4 200   47-3201   120   32.75   31   27   2   1.5   159   206   16 200   21 000   3 100   4 200   3221   140   36   33   23   3   2.5   273   350   27 800   36 000   2 800   3 700   3 303   140   36   33   23   3   2.5   273   350   27 800   36 000   2 800   3 700   3 303   140   51   48   39   3   2.5   273   350   27 800   36 000   2 800   3 700   3 303   140   36   33   23   3   2.5   273   350   27 800   2 800   3 200   3 900   3 223   140   39   35.5   27   3 3   17   2 2   1.5   166   220   2 100   3 400   4 600   3 223   3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   2 3   |    | 110 | 23.75 | 22       | 10      | 2                         | 1.5                         | 105         | 125         | 10.700      | 12 700      | 3.400    | 4 500           | /T_30212   |
| 60 110 38 38 29 2 1.5 161 223 16400 22700 3400 4500 3321 115 40 39 33 2.5 2.5 188 249 19200 25400 3200 4300 47-7726 125 37 33.5 26 3 3 145 186 14800 18900 2800 3700 47-7726 130 33.5 31 26 3 2.5 180 210 18300 21400 3000 4000 3031 130 33.5 31 22 3 2.5 150 176 15300 17900 2700 3600 47-3021 130 48.5 46 37 3 2.5 244 315 24900 32000 3000 4000 3231 130 48.5 46 37 3 2.5 244 315 24900 32000 3000 4000 3231 130 48.5 46 37 3 2.5 244 315 24900 32000 3000 4000 3231 130 48.5 46 37 3 2.5 244 315 24900 32000 3000 4000 3231 100 23 23 17.5 1.5 1.5 1.5 83.0 128 8450 13000 3400 4600 47-3201 110 34 34 26.5 1.5 1.5 1.5 144 211 14700 21500 3300 4400 4600 47-3301 110 34 34 26.5 1.5 1.5 123 148 12500 15000 3100 4200 47-3021 120 24.75 23 20 2 1.5 123 148 12500 15000 3100 4200 4200 47-3021 120 32.75 31 27 2 1.5 159 206 16200 21000 3100 4200 3221 120 41 41 32 2 1.5 159 206 16200 27 100 3100 4200 3221 120 41 41 32 2 1.5 159 206 16200 27 100 3100 4200 3221 120 41 41 32 2 1.5 159 206 16200 27 100 3100 4200 3221 140 36 33 28 3 2.5 203 238 20700 24300 2800 3700 3031 140 36 33 23 3 2.5 173 204 17700 20900 2500 3000 47-3021 140 36 33 23 3 2.5 173 204 17700 20900 2500 3000 47-3021 140 36 33 23 3 2.5 173 204 17700 20900 2500 3000 47-3021 125 26.25 24 21 2 1.5 150 160 10700 16400 3200 4200 47-3201 110 31 31 25.5 1.5 1.5 1.5 105 160 10700 16400 3200 4200 47-3201 125 33.25 31 27 2 1.5 150 166 220 16900 22400 2900 3900 3000 3221 125 41 41 32 2 1.5 15 105 166 220 16900 22400 2900 3900 3200 47-3021 125 33.25 31 27 2 1.5 166 220 16900 22400 2900 3900 3000 47-3021 125 33.25 31 27 2 1.5 166 220 16900 22400 2900 3900 3000 47-3021 150 38 35 25 39 2.5 193 229 19600 23300 2400 3200 47-3021 150 38 35 25 3 2.5 193 229 19600 23300 2300 3000 47-3021 150 38 35 25 39 2.5 193 229 19600 23300 2300 3000 47-3021 150 38 35 25 39 2.5 193 229 19600 23300 2300 3000 47-3021 155 31 31 25.5 1.5 1.5 1.5 111 186 11300 19000 3000 4000 3300 47500 3300 47500 3300 47500 3300 47500 3300 47500 3300 47500 3300 47500 3300 47500 3300 47500 3300 47500 3300 47500 3300 47500 3300 47500 3300  |    |     |       |          |         |                           |                             |             |             |             |             |          |                 | 32212U     |
| 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |     |       |          |         |                           |                             |             |             |             |             |          |                 | 33212U     |
| 125   37   33.5   26   3   3   145   186   14 800   18 900   2 800   3 700   3031   33.5   31   26   3   2.5   180   210   18 300   21 400   3000   4 000   3031   130   33.5   31   22   3   2.5   150   176   15 300   17 900   2 700   3 600   4 71-3031   130   48.5   46   37   3   2.5   244   315   24 900   32 000   3 000   4 000   3231   3231   323   323   17.5   1.5   1.5   1.5   83.0   128   8 450   13 000   3 400   4 600   47-3201   100   27   27   21   1.5   1.5   97.5   156   9 950   16 000   3 400   4 600   47-3301   110   34   34   26.5   1.5   1.5   144   211   14 700   21 500   3 300   4 400   47-3301   110   34   34   26.5   1.5   1.5   159   206   16 200   21 000   3 100   4 200   3221   120   24.75   23   20   2   1.5   159   206   16 200   21 000   3 100   4 200   3221   120   41   41   32   2   1.5   195   265   19 900   27 100   3 100   4 200   3321   140   36   33   28   3   2.5   273   350   27 800   36 000   2 800   3 700   3031   140   36   33   28   3   2.5   273   350   27 800   36 000   2 800   3 700   3231   140   31   31   25.5   1.5   1.5   1.5   166   220   16 900   22 400   2 900   3 900   3221   125   33.25   31   27   2   1.5   166   220   16 900   22 400   2 900   3 900   3221   125   33.25   31   27   2   1.5   166   220   16 900   22 400   2 900   3 900   3221   125   33.25   31   27   2   1.5   166   220   16 900   22 400   2 900   3 900   3221   125   33.25   31   27   2   1.5   166   220   16 900   22 400   2 900   3 900   3221   125   33.25   31   27   2   1.5   166   220   16 900   22 400   2 900   3 900   3221   125   33.25   31   27   2   1.5   166   220   16 900   22 400   2 900   3 900   3221   125   33.25   31   27   2   1.5   166   220   16 900   22 400   2 900   3 900   3221   125   33.25   31   27   2   1.5   166   220   16 900   22 400   2 900   3 900   3221   150   38   35   35   30   3   2.5   230   272   23 400   27 800   2600   3 500   3031   150   38   35   25   39   2.5   300   272   3000   2700   3 000   47-3031   150   38   35   25   39   2.5   300   272     |    |     |       |          |         |                           |                             |             |             |             |             |          |                 | 4T-T2EE060 |
| 130   33.5   31   26   3   2.5   180   210   18 300   21 400   3 000   4 000   3031   130   33.5   31   22   3   2.5   150   176   15 300   17 900   2 700   3 600   47.3031   130   48.5   46   37   3   2.5   244   315   24 900   32 000   3 000   4 000   3231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60 |     |       |          |         |                           |                             |             |             |             |             |          |                 | 4T-T7FC060 |
| 130   33.5   31   22   3   2.5   150   176   15 300   17 900   2 700   3 600   47-3031   300   48.5   46   37   3   2.5   244   315   24 900   32 000   3 000   4 000   3231   300   4 000   3231   300   4 000   3 231   300   3 000   4 000   3 231   300   23   23   17.5   1.5   1.5   1.5   83.0   128   8 450   13 000   3 400   4 600   47-3201   100   27   27   21   1.5   1.5   97.5   156   9 950   16 000   3 400   4 600   47-3301   110   34   34   26.5   1.5   1.5   144   211   14 700   21 500   3 300   4 400   47-3301   110   34   34   26.5   1.5   1.5   123   148   12 500   15 000   3 100   4 200   47-3301   120   32.75   31   27   2   1.5   159   206   16 200   21 000   3 100   4 200   3221   120   41   41   32   2   1.5   195   265   19 900   27 100   3 100   4 200   3321   140   36   33   28   3   2.5   203   238   20 700   24 300   2 800   3 700   3031   140   36   33   23   3   2.5   203   238   20 700   24 300   2 800   3 700   3031   140   51   48   39   3   2.5   273   350   27 800   36 000   2 800   3 700   3321   140   51   48   39   3   2.5   273   350   27 800   36 000   2 800   3 700   3321   125   26.25   24   21   2   1.5   131   162   13 400   16 500   2 900   3 900   47-3021   125   33.25   31   27   2   1.5   166   220   16 900   2 400   2 900   3 900   3 221   125   33.25   31   27   2   1.5   166   220   16 900   2 2 400   2 900   3 900   3 221   140   39   35.5   27   3   3   173   231   17 600   23 500   2 400   3 200   4 7-3021   150   38   35   30   3   2.5   230   272   23 400   27 800   2 600   3 500   3031   150   38   35   25   3   2.5   193   229   19 600   23 300   2 300   4 7-3021   150   38   35   25   3   2.5   310   405   31 500   41 000   2 600   3 500   3231   150   38   35   25   3   2.5   193   229   19 600   23 300   2 300   4 000   3 201   155   31   31   25.5   1.5   1.5   111   186   11 300   19 000   3 000   4 000   3 201   115   31   31   25.5   1.5   1.5   1.5   111   186   11 300   19 000   3 000   4 000   3 201   115   31   31   25.5   1.5   1.5   1.5   1.5   111   |    |     |       |          |         |                           |                             |             |             |             |             |          |                 | 30312U     |
| 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |     |       |          |         |                           |                             |             |             |             |             |          |                 | 4T-30312D  |
| 100   23   23   17.5   1.5   1.5   83.0   128   8 450   13 000   3 400   4 600   4T-3201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |     |       | _        |         |                           |                             |             |             |             |             |          |                 | 32312U     |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | 90  | 17    | 17       | 14      | 1                         | 1                           | 48.5        | 85.0        | 4 900       | 8 700       | 3 700    | 4 900           | 32913XU    |
| 65         100         27         27         21         1.5         1.5         97.5         156         9 950         16 000         3 400         4 600         4T-3301           110         34         34         26.5         1.5         1.5         144         211         14 700         21 500         3 300         4 400         4T-3311           120         24.75         23         20         2         1.5         159         206         16 200         21 000         3 100         4 200         4T-3021           120         32.75         31         27         2         1.5         159         206         16 200         21 000         3 100         4 200         3221           120         41         41         32         2         1.5         159         206         16 200         21 000         3 100         4 200         3221           140         36         33         28         3         2.5         203         238         20 700         24 300         2800         3 700         3031           140         36         33         23         3         2.5         273         350         27 800         36 000 </td <td></td> <td>4T-32013X</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |     |       |          |         |                           |                             |             |             |             |             |          |                 | 4T-32013X  |
| 110   34   34   26.5   1.5   1.5   1.5   1.44   211   14.700   21.500   3.300   4.400   4T-3311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |     |       |          |         |                           |                             |             |             |             |             |          |                 |            |
| 65         120         24.75         23         20         2         1.5         123         148         12 500         15 000         3 100         4 200         4T-3021           120         32.75         31         27         2         1.5         159         206         16 200         21 000         3 100         4 200         3221           120         41         41         32         2         1.5         195         265         19 900         27 100         3 100         4 200         3321           140         36         33         28         3         2.5         203         238         20 700         24 300         2 800         3 700         3031           140         36         33         23         3         2.5         173         204         17 700         20 900         2 500         3 300         4T-3031           140         51         48         39         3         2.5         273         350         27 800         36 000         2 800         3 700         3231           100         20         20         16         1         1         68.5         110         7 000         11 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |     |       |          |         |                           |                             |             |             |             |             |          |                 | 4T-33113   |
| 120 32.75 31 27 2 1.5 159 206 16 200 21 000 3 100 4 200 3221 120 41 41 32 2 1.5 195 265 19 900 27 100 3 100 4 200 3321 140 36 33 28 3 2.5 203 238 20 700 24 300 2 800 3 700 3031 140 36 33 23 3 2.5 173 204 17 700 20 900 2 500 3 300 4T-3031 140 51 48 39 3 2.5 273 350 27 800 36 000 2 800 3 700 3231 140 51 48 39 3 2.5 273 350 27 800 36 000 2 800 3 700 3231 140 25 25 25 19 1.5 1.5 105 160 10 700 16 400 3 200 4 200 4T-3201 110 31 31 25.5 1.5 1.5 127 204 12 900 20 800 3 200 4 200 4T-3201 110 31 31 25.5 1.5 1.5 127 204 12 900 20 800 3 200 4 200 4T-3201 125 26.25 24 21 2 1.5 131 162 13 400 16 500 2 900 3 900 4T-3021 125 41 41 32 2 1.5 201 282 20 500 28 700 2 900 3 900 3221 140 39 35.5 27 3 3 173 231 17 600 23 500 2 400 3 200 4T-3031 150 38 35 25 3 2.5 193 229 19 600 23 300 2 300 3 000 4T-3031 150 54 51 42 3 2.5 1.5 1.5 106 167 10 800 17 000 2 600 3 500 3231 150 54 51 42 3 2.5 1.5 1.5 106 167 10 800 17 000 3 000 4 000 3201 115 31 31 25.5 1.5 1.5 1.5 106 167 10 800 17 000 3 000 4 000 3201 115 31 31 25.5 1.5 1.5 1.5 111 186 11 300 19 000 3 000 4 000 3301 150 27.25 25 22 2 1.5 139 175 14 200 17 900 2 700 3 600 4T-3021 125 130 27.25 25 22 2 1.5 139 175 14 200 17 900 2 700 3 600 4T-3021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |     |       |          |         |                           |                             |             |             |             |             |          |                 | 4T-30213   |
| 120       41       41       32       2       1.5       195       265       19 900       27 100       3 100       4 200       3321         140       36       33       28       3       2.5       203       238       20 700       24 300       2 800       3 700       3031         140       36       33       23       3       2.5       173       204       17 700       20 900       2 500       3 300       4T-3031         140       51       48       39       3       2.5       273       350       27 800       36 000       2 800       3 700       3231         100       20       20       16       1       1       68.5       110       7 000       11 200       3 400       4 600       3291         110       25       25       19       1.5       1.5       105       160       10 700       16 400       3 200       4 200       4T-3021         110       31       31       25.5       1.5       1.5       105       160       10 700       16 400       3 200       4 200       4T-3301         125       26.25       24       21       2       1.5 </td <td>65</td> <td></td> <td>32213U</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65 |     |       |          |         |                           |                             |             |             |             |             |          |                 | 32213U     |
| 140       36       33       28       3       2.5       203       238       20 700       24 300       2 800       3 700       3031         140       36       33       23       3       2.5       173       204       17 700       20 900       2 500       3 300       4T-3031         140       51       48       39       3       2.5       273       350       27 800       36 000       2 800       3 700       3231         100       20       20       16       1       1       68.5       110       7 000       11 200       3 400       4 600       3291         110       25       25       19       1.5       1.5       105       160       10 700       16 400       3 200       4 200       4T-3201         110       31       31       25.5       1.5       1.5       127       204       12 900       20 800       3 200       4 200       4T-3201         125       26.25       24       21       2       1.5       131       162       13 400       16 500       2 900       3 900       3221         125       31.25       31       27       2       1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |     |       |          |         |                           |                             |             |             |             |             |          |                 | 33213U     |
| 140       36       33       23       3       2.5       173       204       17 700       20 900       2 500       3 300       4T-3031         140       51       48       39       3       2.5       273       350       27 800       36 000       2 800       3 700       3231         100       20       20       16       1       1       68.5       110       7 000       11 200       3 400       4 600       3291         110       25       25       19       1.5       1.5       105       160       10 700       16 400       3 200       4 200       4T-3201         110       31       31       25.5       1.5       1.5       127       204       12 900       20 800       3 200       4 200       4T-3201         125       26.25       24       21       2       1.5       131       162       13 400       16 500       2 900       3 900       3221         125       33.25       31       27       2       1.5       166       220       16 900       22 400       2 900       3 900       3221         125       41       41       32       2       1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |     |       |          |         |                           |                             |             |             |             |             |          |                 | 30313U     |
| 70       140       51       48       39       3       2.5       273       350       27 800       36 000       2 800       3 700       3231         100       20       20       16       1       1       68.5       110       7 000       11 200       3 400       4 600       3291         110       25       25       19       1.5       1.5       105       160       10 700       16 400       3 200       4 200       4T-3201         110       31       31       25.5       1.5       1.5       127       204       12 900       20 800       3 200       4 200       4T-3201         125       26.25       24       21       2       1.5       131       162       13 400       16 500       2 900       3 900       4T-3021         125       33.25       31       27       2       1.5       166       220       16 900       22 400       2 900       3 900       3221         125       41       41       32       2       1.5       201       282       20 500       28 700       2 900       3 900       3321         140       39       35.5       27 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4T-30313D</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |     |       |          |         |                           |                             |             |             |             |             |          |                 | 4T-30313D  |
| 70  110  25  25  19  1.5  1.5  1.5  105  160  10 700  16 400  3 200  4 200  4T-3201  110  31  31  25.5  1.5  1.5  1.5  127  204  12 900  20 800  3 200  4 200  4T-3301  125  26.25  24  21  2  1.5  131  162  13 400  16 500  2 900  3 900  4T-3021  125  33.25  31  27  2  1.5  166  220  16 900  22 400  2 900  3 900  3 221  125  41  41  32  2  1.5  201  282  20 500  28 700  2 900  3 900  3 321  140  39  35.5  27  3  3  173  231  17 600  23 500  2 400  3 200  4T-T7FC  150  38  35  30  3  2.5  230  272  23 400  27 800  2 600  3 500  3031  150  38  35  25  3  2.5  193  229  19 600  23 300  2 300  3 200  4 300  3291  115  25  25  19  1.5  1.5  1.6  106  107 10 800  17 000  3 000  4 000  3 201  115  31  31  25.5  1.5  1.5  1.5  1.5  1.5  111  186  11 300  19 000  3 000  4 000  3 301  4T-3021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |     |       |          |         |                           |                             |             |             |             |             |          |                 | 32313U     |
| 70       110       31       31       25.5       1.5       1.5       127       204       12 900       20 800       3 200       4 200       4T-3301         125       26.25       24       21       2       1.5       131       162       13 400       16 500       2 900       3 900       4T-3021         125       33.25       31       27       2       1.5       166       220       16 900       22 400       2 900       3 900       3221         125       41       41       32       2       1.5       201       282       20 500       28 700       2 900       3 900       3221         140       39       35.5       27       3       3       173       231       17 600       23 500       2 400       3 200       4T-TFC         150       38       35       30       3       2.5       230       272       23 400       27 800       2 600       3 500       3031         150       38       35       25       3       2.5       193       229       19 600       23 300       2 300       3 000       4T-3031         150       54       51       42 <td< td=""><td></td><td>100</td><td>20</td><td>20</td><td>16</td><td>1</td><td>1</td><td>68.5</td><td>110</td><td>7 000</td><td>11 200</td><td>3 400</td><td>4 600</td><td>32914XU</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | 100 | 20    | 20       | 16      | 1                         | 1                           | 68.5        | 110         | 7 000       | 11 200      | 3 400    | 4 600           | 32914XU    |
| 70       125       26.25       24       21       2       1.5       131       162       13 400       16 500       2 900       3 900       4T-3021         125       33.25       31       27       2       1.5       166       220       16 900       22 400       2 900       3 900       3221         125       41       41       32       2       1.5       201       282       20 500       28 700       2 900       3 900       3321         140       39       35.5       27       3       3       173       231       17 600       23 500       2 400       3 200       4T-TFC         150       38       35       30       3       2.5       230       272       23 400       27 800       2 600       3 500       3031         150       38       35       25       3       2.5       193       229       19 600       23 300       2 300       3 000       4T-3031         150       54       51       42       3       2.5       310       405       31 500       41 000       2 600       3 500       3231         105       20       20       16       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | 110 | 25    | 25       | 19      | 1.5                       | 1.5                         | 105         | 160         | 10 700      | 16 400      | 3 200    | 4 200           | 4T-32014X  |
| 70         125         33.25         31         27         2         1.5         166         220         16 900         22 400         2 900         3 900         3221           125         41         41         32         2         1.5         201         282         20 500         28 700         2 900         3 900         3321           140         39         35.5         27         3         3         173         231         17 600         23 500         2 400         3 200         4T-TFC           150         38         35         30         3         2.5         230         272         23 400         27 800         2 600         3 500         3031           150         38         35         25         3         2.5         193         229         19 600         23 300         2 300         3 000         4T-3031           150         54         51         42         3         2.5         310         405         31 500         41 000         2 600         3 500         3231           105         20         20         16         1         1         69.5         114         7 100         11 600 <t< td=""><td></td><td>110</td><td>31</td><td>31</td><td>25.5</td><td>1.5</td><td>1.5</td><td>127</td><td>204</td><td>12 900</td><td>20 800</td><td>3 200</td><td>4 200</td><td>4T-33014</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | 110 | 31    | 31       | 25.5    | 1.5                       | 1.5                         | 127         | 204         | 12 900      | 20 800      | 3 200    | 4 200           | 4T-33014   |
| 125 41 41 32 2 1.5 201 282 20 500 28 700 2 900 3 900 3321 140 39 35.5 27 3 3 173 231 17 600 23 500 2 400 3 200 4T-T7FO 150 38 35 30 3 2.5 230 272 23 400 27 800 2 600 3 500 3031 150 38 35 25 3 2.5 193 229 19 600 23 300 2 300 3 000 4T-3031 150 54 51 42 3 2.5 310 405 31 500 41 000 2 600 3 500 3231 150 20 20 16 1 1 69.5 114 7 100 11 600 3 200 4 300 3291 115 25 25 19 1.5 1.5 106 167 10 800 17 000 3 000 4 000 3201 115 31 31 25.5 1.5 1.5 111 186 11 300 19 000 3 000 4 000 3301 130 27.25 25 22 2 1.5 139 175 14 200 17 900 2 700 3 600 4T-3021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | 125 | 26.25 | 24       | 21      | 2                         | 1.5                         | 131         | 162         | 13 400      | 16 500      | 2 900    | 3 900           | 4T-30214   |
| 125 41 41 32 2 1.5 201 262 20 300 28 700 2 900 3 900 3321 140 39 35.5 27 3 3 173 231 17 600 23 500 2 400 3 200 4T-T7FC 150 38 35 30 3 2.5 230 272 23 400 27 800 2 600 3 500 3031 150 38 35 25 3 2.5 193 229 19 600 23 300 2 300 3 000 4T-3031 150 54 51 42 3 2.5 310 405 31 500 41 000 2 600 3 500 3231 150 20 20 16 1 1 69.5 114 7 100 11 600 3 200 4 300 3291 115 25 25 19 1.5 1.5 106 167 10 800 17 000 3 000 4 000 3201 115 31 31 25.5 1.5 1.5 111 186 11 300 19 000 3 000 4 000 3301 130 27.25 25 22 2 1.5 139 175 14 200 17 900 2 700 3 600 4T-3021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70 | 125 | 33.25 | 31       | 27      | 2                         | 1.5                         | 166         | 220         | 16 900      | 22 400      | 2 900    | 3 900           | 32214U     |
| 150 38 35 30 3 2.5 230 272 23 400 27 800 2 600 3 500 3031 150 38 35 25 3 2.5 193 229 19 600 23 300 2 300 3 000 4T-3031 150 54 51 42 3 2.5 310 405 31 500 41 000 2 600 3 500 3231 150 20 20 16 1 1 69.5 114 7 100 11 600 3 200 4 300 3291 115 25 25 19 1.5 1.5 106 167 10 800 17 000 3 000 4 000 3201 115 31 31 25.5 1.5 1.5 111 186 11 300 19 000 3 000 4 000 3301 115 31 31 27.25 25 22 2 1.5 139 175 14 200 17 900 2 700 3 600 4T-3021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 | 125 |       | 41       |         |                           | 1.5                         |             | 282         | 20 500      | 28 700      | 2 900    | 3 900           | 33214U     |
| 150 38 35 25 3 2.5 193 229 19 600 23 300 2 300 3 000 4T-3031 150 54 51 42 3 2.5 310 405 31 500 41 000 2 600 3 500 3231 150 150 20 20 16 1 1 69.5 114 7 100 11 600 3 200 4 300 3291 115 25 25 19 1.5 1.5 106 167 10 800 17 000 3 000 4 000 3201 115 31 31 25.5 1.5 1.5 111 186 11 300 19 000 3 000 4 000 3301 115 31 31 27.25 25 22 2 1.5 139 175 14 200 17 900 2 700 3 600 4T-3021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |     |       |          |         |                           | _                           |             |             | 17 600      |             |          |                 | 4T-T7FC070 |
| 150 54 51 42 3 2.5 310 405 31 500 41 000 2 600 3 500 3231  105 20 20 16 1 1 69.5 114 7 100 11 600 3 200 4 300 3291  115 25 25 19 1.5 1.5 106 167 10 800 17 000 3 000 4 000 3201  115 31 31 25.5 1.5 1.5 111 186 11 300 19 000 3 000 4 000 3301  130 27.25 25 22 2 1.5 139 175 14 200 17 900 2 700 3 600 4T-3021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 150 |       |          |         | 3                         |                             |             |             |             |             |          |                 | 30314U     |
| 105 20 20 16 1 1 69.5 114 7 100 11 600 3 200 4 300 3291 115 25 25 19 1.5 1.5 106 167 10 800 17 000 3 000 4 000 3201 115 31 31 25.5 1.5 1.5 111 186 11 300 19 000 3 000 4 000 3301 130 27.25 25 22 2 1.5 139 175 14 200 17 900 2 700 3 600 4T-3021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | 150 | 38    | 35       |         | 3                         | 2.5                         | 193         | 229         | 19 600      | 23 300      | 2 300    | 3 000           | 4T-30314D  |
| 115 25 25 19 1.5 1.5 106 167 10 800 17 000 3 000 4 000 3201 115 31 31 25.5 1.5 1.5 111 186 11 300 19 000 3 000 4 000 3301 130 27.25 25 22 2 1.5 139 175 14 200 17 900 2 700 3 600 4T-3021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | 150 | 54    | 51       | 42      | 3                         | 2.5                         | 310         | 405         | 31 500      | 41 000      | 2 600    | 3 500           | 32314U     |
| 115 31 31 25.5 1.5 1.5 111 186 11 300 19 000 3 000 4 000 3301 130 27.25 25 22 2 1.5 139 175 14 200 17 900 2 700 3 600 4T-3021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |     |       |          |         |                           |                             | 69.5        |             |             |             |          |                 | 32915XU    |
| 130 27.25 25 22 2 1.5 139 175 14 200 17 900 2 700 3 600 <b>4T-3021</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |     |       |          |         |                           |                             |             |             |             |             |          |                 | 32015XU    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |     |       |          |         |                           |                             |             |             |             |             |          |                 | 33015U     |
| 130 33.25 31 27 2 1.5 168 224 17 100 22 800 2 700 3 600 <b>322</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75 |     |       |          |         |                           |                             |             |             |             |             |          |                 | 4T-30215   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73 | 130 |       | 31       |         |                           | 1.5                         | 168         | 224         |             | 22 800      | 2 700    | 3 600           | 32215U     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 130 |       | 41       |         |                           |                             |             |             | 21 200      | 30 500      |          |                 | 33215U     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |     |       |          |         |                           |                             |             |             |             |             |          |                 | 30315U     |
| 160 40 37 26 3 2.5 215 256 21 900 26 100 2 100 2 800 <b>303</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |     | -     | -        |         | -                         |                             | 215         | 256         | 21 900      | 26 100      | 2 100    | 2 800           | 30315DU    |

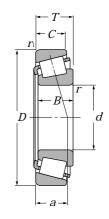
<sup>1 )</sup> Minimal allowable dimension for chamfer dimension r or r1.





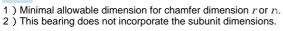
# Equivalent radial load dynamic $P_1 = XF_1 + YF_2$

| $\frac{F_{\rm a}}{F_{\rm r}}$ | e | $\frac{F}{F}$ | $\frac{\vec{r_{\rm a}}}{\vec{r_{\rm r}}} > e$ |
|-------------------------------|---|---------------|-----------------------------------------------|
| X                             | Y | X             | Y                                             |
| 1                             | 0 | 0.4           | <i>Y</i> 2                                    |


static  $P_{\text{or}} = 0.5F_{\text{r}} + Y_0F_{\text{a}}$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ For values of e,  $Y_2$  and  $Y_0$  see the table below.

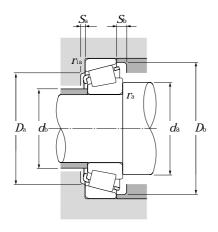
| Dimension series t |                                 |                                     | Abı   | utment ar  | nd fillet dime                      | ensions |                                 |                |            | Load center | Constant | Ax<br>load fa |             | Mass      |
|--------------------|---------------------------------|-------------------------------------|-------|------------|-------------------------------------|---------|---------------------------------|----------------|------------|-------------|----------|---------------|-------------|-----------|
| ISO                |                                 |                                     |       |            | mm                                  |         |                                 |                |            | mm          |          |               |             | kg        |
|                    | $d_{\!\scriptscriptstyle  m a}$ | $d_{\scriptscriptstyle \mathrm{b}}$ | Ì     | <b>D</b> a | $D_{\scriptscriptstyle \mathrm{D}}$ | $S_{a}$ | $S_{\!\scriptscriptstyle  m b}$ | $m{r}_{ m as}$ | $m{r}$ las |             |          |               |             |           |
|                    | min                             | max                                 | max   | min        | min                                 | min     | min                             | max            | max        | а           | e        | $Y_2$         | $Y_{\rm o}$ | (approx.) |
| 3EB                | 70                              | 70                                  | 101.5 | 96         | 103                                 | 4       | 4.5                             | 2              | 1.5        | 22          | 0.40     | 1.48          | 0.81        | 0.949     |
| 3EC                | 70                              | 69                                  | 101.5 | 95         | 104                                 | 4       | 5.5                             | 2              | 1.5        | 25          | 0.40     | 1.48          | 0.81        | 1.18      |
| 3EE                | 70                              | 69                                  | 101.5 | 93         | 105                                 | 6       | 9                               | 2              | 1.5        | 27.5        | 0.40     | 1.48          | 0.82        | 1.55      |
| 2EE                | 72                              | 70                                  | 103   | 98         | 109                                 | 6       | 7                               | 2              | 2          | 28.5        | 0.33     | 1.80          | 0.99        | 1.86      |
| 7FC                | 74                              | 72                                  | 111   | 94         | 119                                 | 4       | 11                              | 2.5            | 2.5        | 42          | 0.82     | 0.73          | 0.40        | 2         |
| 2FB                | 74                              | 77                                  | 118   | 112        | 120                                 | 4       | 7.5                             | 2.5            | 2          | 26.5        | 0.35     | 1.74          | 0.96        | 2.06      |
| 7FB                | 74                              | 73                                  | 118   | 103        | 124                                 | 4       | 11.5                            | 2.5            | 2          | 40.5        | 0.83     | 0.73          | 0.40        | 1.97      |
| 2FD                | 74                              | 74                                  | 118   | 107        | 120                                 | 4       | 11.5                            | 2.5            | 2          | 32          | 0.35     | 1.74          | 0.96        | 3.02      |
| 2BC                | 70.5                            | 70                                  | 84.5  | 80         | 86.5                                | 3       | 3                               | 1              | 1          | 16.5        | 0.35     | 1.70          | 0.93        | 0.315     |
| 4CC                | 73.5                            | 72                                  | 91.5  | 90         | 97                                  | 4       | 5.5                             | 1.5            | 1.5        | 22.5        | 0.46     | 1.31          | 0.72        | 0.63      |
| 2CE                | 73.5                            | 72                                  | 91.5  | 89         | 96                                  | 5       | 6                               | 1.5            | 1.5        | 21.5        | 0.35     | 1.72          | 0.95        | 0.732     |
| 3DE                | 73.5                            | 73                                  | 101.5 | 96         | 106                                 | 6       | 7.5                             | 1.5            | 1.5        | 26          | 0.39     | 1.55          | 0.85        | 1.28      |
| 3EB                | 75                              | 77                                  | 111.5 | 106        | 113                                 | 4       | 4.5                             | 2              | 1.5        | 23.5        | 0.40     | 1.48          | 0.81        | 1.18      |
| 3EC                | 75                              | 75                                  | 111.5 | 104        | 115                                 | 4       | 5.5                             | 2              | 1.5        | 27          | 0.40     | 1.48          | 0.81        | 1.58      |
| 3EE                | 75                              | 74                                  | 111.5 | 102        | 115                                 | 7       | 9                               | 2              | 1.5        | 29.5        | 0.39     | 1.54          | 0.85        | 1.98      |
| 2GB                | 79                              | 83                                  | 128   | 122        | 130                                 | 4       | 8                               | 2.5            | 2          | 28.5        | 0.35     | 1.74          | 0.96        | 2.55      |
| 7GB                | 79                              | 79                                  | 128   | 111        | 133                                 | 4       | 13                              | 2.5            | 2          | 44          | 0.83     | 0.73          | 0.40        | 2.42      |
| 2GD                | 79                              | 80                                  | 128   | 117        | 130                                 | 4       | 12                              | 2.5            | 2          | 34.5        | 0.35     | 1.74          | 0.96        | 3.66      |
| 2BC                | 75.5                            | 75                                  | 94.5  | 90         | 96                                  | 4       | 4                               | 1              | 1          | 18          | 0.32     | 1.90          | 1.05        | 0.487     |
| 4CC                | 78.5                            | 78                                  | 101.5 | 98         | 105                                 | 5       | 6                               | 1.5            | 1.5        | 24          | 0.43     | 1.38          | 0.76        | 0.848     |
| 2CE                | 78.5                            | 79                                  | 101.5 | 99         | 105                                 | 5       | 5.5                             | 1.5            | 1.5        | 22.5        | 0.28     | 2.11          | 1.16        | 1.07      |
| 3EB                | 80                              | 81                                  | 116.5 | 110        | 118                                 | 4       | 5                               | 2              | 1.5        | 25.5        | 0.42     | 1.43          | 0.79        | 1.26      |
| 3EC                | 80                              | 80                                  | 116.5 | 108        | 119                                 | 4       | 6                               | 2              | 1.5        | 28.5        | 0.42     | 1.43          | 0.79        | 1.68      |
| 3EE                | 80                              | 79                                  | 116.5 | 107        | 120                                 | 7       | 9                               | 2              | 1.5        | 31          | 0.41     | 1.47          | 0.81        | 2.1       |
| 7FC                | 84                              | 82                                  | 126   | 106        | 135                                 | 5       | 12                              | 2.5            | 2.5        | 47.5        | 0.87     | 0.69          | 0.38        | 2.61      |
| 2GB                | 84                              | 89                                  | 138   | 130        | 140                                 | 4       | 8                               | 2.5            | 2          | 30          | 0.35     | 1.74          | 0.96        | 3.06      |
| 7GB                | 84                              | 84                                  | 138   | 118        | 142                                 | 4       | 13                              | 2.5            | 2          | 47          | 0.83     | 0.73          | 0.40        | 2.92      |
| 2GD                | 84                              | 86                                  | 138   | 125        | 140                                 | 4       | 12                              | 2.5            | 2          | 36.5        | 0.35     | 1.74          | 0.96        | 4.46      |
| 2BC                | 80.5                            | 80                                  | 99.5  | 94         | 101.5                               | 4       | 4                               | 1              | 1          | 19          | 0.33     | 1.80          | 0.99        | 0.511     |
| 4CC                | 83.5                            | 83                                  | 106.5 | 103        | 110                                 | 5       | 6                               | 1.5            | 1.5        | 25.5        | 0.46     | 1.31          | 0.72        | 0.909     |
| 2CE                | 83.5                            | 85                                  | 106.5 | 101        | 110.5                               | 6       | 5.5                             | 1.5            | 1.5        | 23          | 0.30     | 2.01          | 1.11        | 1.11      |
| 4DB                | 85                              | 85                                  | 121.5 | 115        | 124                                 | 4       | 5                               | 2              | 1.5        | 27          | 0.44     | 1.38          | 0.76        | 1.41      |
| 4DC                | 85                              | 85                                  | 121.5 | 114        | 125                                 | 4       | 6                               | 2              | 1.5        | 30          | 0.44     | 1.38          | 0.76        | 1.74      |
| 3EE                | 85                              | 83                                  | 121.5 | 111        | 125                                 | 7       | 10                              | 2              | 1.5        | 32          | 0.43     | 1.40          | 0.77        | 2.2       |
| 2GB                | 89                              | 95                                  | 148   | 139        | 149                                 | 4       | 9                               | 2.5            | 2          | 32          | 0.35     | 1.74          | 0.96        | 3.57      |
| 7GB                | 89                              | 91                                  | 148   | 127        | 151                                 | 6       | 14                              | 2.5            | 2          | 50          | 0.83     | 0.73          | 0.40        | 3.47      |






#### **Metric series**




### d 75 ~ 95mm

|    |                                                      | Bound                                                          | ary dim                                            | ensions                                              |                                                  |                                                     | dynamic                                                      |                                                             | oad ratings<br>dynamic                                                                | s<br>static                                                                            | Limiting                                                                      | j speeds                                                                      | Bearing<br>numbers                                                                            |
|----|------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|    |                                                      |                                                                | mm                                                 |                                                      |                                                  |                                                     | k                                                            | κN                                                          | k                                                                                     |                                                                                        | mi                                                                            | n <sup>-1</sup>                                                               |                                                                                               |
| d  | D                                                    | T                                                              | В                                                  | С                                                    | $r_{\rm s  min}^{1}$                             | $n_{ m ls  min}^{1}$                                | $C_{\rm r}$                                                  | $C_{ m or}$                                                 | $C_{r}$                                                                               | $C_{ m or}$                                                                            | grease                                                                        | oil                                                                           |                                                                                               |
| 75 | 160                                                  | 58                                                             | 55                                                 | 45                                                   | 3                                                | 2.5                                                 | 355                                                          | 470                                                         | 36 000                                                                                | 47 500                                                                                 | 2 400                                                                         | 3 200                                                                         | 32315U                                                                                        |
| 80 | 110<br>125<br>125<br>140<br>140<br>140<br>170<br>170 | 20<br>29<br>36<br>28.25<br>35.25<br>46<br>42.5<br>42.5<br>61.5 | 20<br>29<br>36<br>26<br>33<br>46<br>39<br>39<br>58 | 16<br>22<br>29.5<br>22<br>28<br>35<br>33<br>27<br>48 | 1<br>1.5<br>1.5<br>2.5<br>2.5<br>2.5<br>3<br>3   | 1<br>1.5<br>1.5<br>2<br>2<br>2<br>2.5<br>2.5<br>2.5 | 72.0<br>139<br>173<br>160<br>199<br>250<br>291<br>236<br>395 | 121<br>216<br>284<br>200<br>265<br>365<br>350<br>283<br>525 | 7 350<br>14 200<br>17 600<br>16 300<br>20 300<br>25 500<br>29 700<br>24 100<br>40 500 | 12 400<br>22 000<br>29 000<br>20 400<br>27 000<br>37 500<br>36 000<br>28 900<br>53 500 | 3 000<br>2 800<br>2 800<br>2 500<br>2 500<br>2 500<br>2 300<br>2 000<br>2 300 | 4 000<br>3 700<br>3 700<br>3 400<br>3 400<br>3 400<br>3 000<br>2 700<br>3 000 | 32916XU<br>32016XU<br>33016U<br>30216U<br>32216U<br>33216U<br>30316U<br>30316DU<br>32316U     |
| 85 | 120<br>130<br>130<br>150<br>150<br>150<br>180<br>180 | 23<br>29<br>36<br>30.5<br>38.5<br>49<br>44.5<br>44.5           | 23<br>29<br>36<br>28<br>36<br>49<br>41<br>41<br>60 | 18<br>22<br>29.5<br>24<br>30<br>37<br>34<br>28<br>49 | 1.5<br>1.5<br>1.5<br>2.5<br>2.5<br>2.5<br>4<br>4 | 1.5<br>1.5<br>1.5<br>2<br>2<br>2<br>3<br>3          | 94.0<br>142<br>176<br>183<br>224<br>284<br>305<br>247<br>405 | 157<br>224<br>296<br>232<br>300<br>420<br>365<br>293<br>525 | 9 600<br>14 400<br>18 000<br>18 600<br>22 900<br>29 000<br>31 000<br>25 200<br>41 000 | 16 100<br>22 900<br>30 000<br>23 600<br>30 500<br>43 000<br>37 000<br>29 900<br>53 500 | 2 800<br>2 600<br>2 600<br>2 400<br>2 400<br>2 400<br>2 100<br>1 900<br>2 100 | 3 800<br>3 500<br>3 500<br>3 200<br>3 200<br>3 200<br>2 900<br>2 500<br>2 900 | 32917XU<br>32017XU<br>33017U<br>30217U<br>32217U<br>33217U<br>30317U<br>30317DU<br>32317U     |
| 90 | 125<br>140<br>140<br>160<br>160<br>190<br>190        | 23<br>32<br>39<br>32.5<br>42.5<br>46.5<br>46.5<br>67.5         | 23<br>32<br>39<br>30<br>40<br>43<br>43<br>64       | 18<br>24<br>32.5<br>26<br>34<br>36<br>30<br>53       | 1.5<br>2<br>2<br>2.5<br>2.5<br>4<br>4            | 1.5<br>1.5<br>1.5<br>2<br>2<br>3<br>3               | 97.5<br>168<br>215<br>208<br>262<br>335<br>270<br>450        | 168<br>270<br>360<br>267<br>360<br>405<br>320<br>595        | 9 950<br>17 200<br>21 900<br>21 200<br>26 700<br>34 500<br>27 600<br>46 000           | 17 100<br>27 600<br>36 500<br>27 200<br>36 500<br>41 500<br>33 000<br>60 500           | 2 700<br>2 500<br>2 500<br>2 200<br>2 200<br>2 200<br>1 800<br>2 000          | 3 600<br>3 300<br>3 300<br>3 000<br>3 000<br>2 700<br>2 400<br>2 700          | 32918XU<br>32018XU<br>33018U<br>30218U<br>32218U<br>30318U<br>30318DU<br>32318U               |
| 95 | 130<br>145<br>145<br>170<br>170<br>200<br>200<br>200 | 23<br>32<br>39<br>34.5<br>45.5<br>49.5<br>49.5                 | 23<br>32<br>39<br>32<br>43<br>45<br>45             | 18<br>24<br>32.5<br>27<br>37<br>38<br>38<br>38       | 1.5<br>2<br>2<br>3<br>3<br>4<br>3<br>4           | 1.5<br>1.5<br>1.5<br>2.5<br>2.5<br>3<br>3           | 101<br>171<br>219<br>226<br>299<br>365<br>315<br>296         | 178<br>280<br>375<br>290<br>415<br>445<br>365<br>355        | 10 300<br>17 500<br>22 400<br>23 000<br>30 500<br>37 500<br>32 500<br>30 000          | 18 200<br>28 600<br>38 000<br>29 600<br>42 500<br>45 500<br>37 500<br>36 500           | 2 500<br>2 300<br>2 300<br>2 100<br>2 100<br>1 900<br>1 900<br>1 700          | 3 400<br>3 100<br>3 100<br>2 800<br>2 800<br>2 500<br>2 500<br>2 200          | 32919XU<br>32019XU<br>33019U<br>30219U<br>32219U<br>30319U<br>30319 <sup>2</sup> )<br>30319DU |





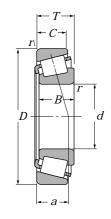




# Equivalent radial load dynamic Pr = XFr + YFa

| $\frac{F_{\rm a}}{F_{\rm r}}$ | e | $\frac{F}{F}$ | $\frac{\vec{r_{\rm a}}}{\vec{r_{\rm r}}} > e$ |
|-------------------------------|---|---------------|-----------------------------------------------|
| X                             | Y | X             | Y                                             |
| 1                             | 0 | 0.4           | <i>Y</i> 2                                    |

static  $P_{\text{Or}} = 0.5F_{\text{r}} + Y_0F_{\text{a}}$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ For values of e,  $Y_2$  and  $Y_0$  see the table below.


| Dimensi<br>series | to      |             | Abı   | utment and     | d fillet dim                       | ensions |                                 |                                   |            | Load center | Constant | Ax<br>load fa |                  | Mass      |
|-------------------|---------|-------------|-------|----------------|------------------------------------|---------|---------------------------------|-----------------------------------|------------|-------------|----------|---------------|------------------|-----------|
| ISO               |         |             |       |                | mm _                               |         |                                 |                                   |            | mm          |          |               |                  | kg        |
|                   | $d_{a}$ | $d_{\rm b}$ |       | D <sub>a</sub> | $D_{\hspace{-0.05cm}	ext{	iny D}}$ | $S_{a}$ | $S_{\!\scriptscriptstyle  m b}$ | $\boldsymbol{\mathit{\Gamma}}$ as | $m{r}$ las |             |          | 17            | 17               |           |
|                   | min     | max         | max   | min            | min                                | min     | min                             | max                               | max        | а           | e        | $Y_2$         | $Y_{\mathrm{o}}$ | (approx.) |
| 2GD               | 89      | 91          | 148   | 133            | 149                                | 4       | 13                              | 2.5                               | 2          | 39          | 0.35     | 1.74          | 0.96             | 5.35      |
| 2BC               | 85.5    | 85          | 104.5 | 99             | 106.5                              | 4       | 4                               | 1                                 | 1          | 20          | 0.35     | 1.71          | 0.94             | 0.54      |
| 3CC               | 88.5    | 89          | 116.5 | 112            | 120                                | 6       | 7                               | 1.5                               | 1.5        | 27          | 0.42     | 1.42          | 0.78             | 1.28      |
| 2CE               | 88.5    | 89          | 116.5 | 112            | 119                                | 6       | 6.5                             | 1.5                               | 1.5        | 25          | 0.28     | 2.16          | 1.19             | 1.6       |
| 3EB               | 92      | 91          | 130   | 124            | 132                                | 4       | 6                               | 2                                 | 2          | 27.5        | 0.42     | 1.43          | 0.79             | 1.72      |
| 3EC               | 92      | 90          | 130   | 122            | 134                                | 4       | 7                               | 2                                 | 2          | 31          | 0.42     | 1.43          | 0.79             | 2.18      |
| 3EE               | 92      | 89          | 130   | 119            | 135                                | 7       | 11                              | 2                                 | 2          | 35          | 0.43     | 1.41          | 0.78             | 2.92      |
| 2GB               | 94      | 102         | 158   | 148            | 159                                | 4       | 9.5                             | 2.5                               | 2          | 34          | 0.35     | 1.74          | 0.96             | 4.41      |
| 7GB               | 94      | 97          | 158   | 134            | 159                                | 6       | 15.5                            | 2.5                               | 2          | 53.5        | 0.83     | 0.73          | 0.40             | 4.11      |
| 2GD               | 94      | 98          | 158   | 142            | 159                                | 4       | 13.5                            | 2.5                               | 2          | 41.5        | 0.35     | 1.74          | 0.96             | 6.41      |
| 2BC               | 93.5    | 92          | 111.5 | 111            | 115                                | 4       | 5                               | 1.5                               | 1.5        | 21          | 0.33     | 1.83          | 1.01             | 0.773     |
| 4CC               | 93.5    | 94          | 121.5 | 117            | 125                                | 6       | 7                               | 1.5                               | 1.5        | 28.5        | 0.44     | 1.36          | 0.75             | 1.35      |
| 2CE               | 93.5    | 94          | 121.5 | 118            | 125                                | 6       | 6.5                             | 1.5                               | 1.5        | 26          | 0.29     | 2.06          | 1.13             | 1.7       |
| 3EB               | 97      | 97          | 140   | 132            | 141                                | 5       | 6.5                             | 2                                 | 2          | 30          | 0.42     | 1.43          | 0.79             | 2.14      |
| 3EC               | 97      | 96          | 140   | 130            | 142                                | 5       | 8.5                             | 2                                 | 2          | 33.5        | 0.42     | 1.43          | 0.79             | 2.75      |
| 3EE               | 97      | 95          | 140   | 128            | 144                                | 7       | 12                              | 2                                 | 2          | 37.5        | 0.42     | 1.43          | 0.79             | 3.58      |
| 2GB               | 103     | 107         | 166   | 156            | 167                                | 5       | 10.5                            | 3                                 | 2.5        | 35.5        | 0.35     | 1.74          | 0.96             | 5.2       |
| 7GB               | 103     | 103         | 166   | 143            | 169                                | 6       | 16.5                            | 3                                 | 2.5        | 56          | 0.83     | 0.73          | 0.40             | 4.85      |
| 2GD               | 103     | 102         | 166   | 150            | 167                                | 5       | 14.5                            | 3                                 | 2.5        | 43          | 0.35     | 1.74          | 0.96             | 7.15      |
| 2BC               | 98.5    | 96          | 116.5 | 112.5          | 120.5                              | 4       | 5                               | 1.5                               | 1.5        | 22          | 0.34     | 1.75          | 0.96             | 0.817     |
| 3CC               | 100     | 100         | 131.5 | 125            | 134                                | 6       | 8                               | 2                                 | 1.5        | 30          | 0.42     | 1.42          | 0.78             | 1.79      |
| 2CE               | 100     | 100         | 131.5 | 127            | 135                                | 7       | 6.5                             | 2                                 | 1.5        | 28          | 0.27     | 2.23          | 1.23             | 2.18      |
| 3FB               | 102     | 103         | 150   | 140            | 150                                | 5       | 6.5                             | 2                                 | 2          | 32          | 0.42     | 1.43          | 0.79             | 2.66      |
| 3FC               | 102     | 102         | 150   | 138            | 152                                | 5       | 8.5                             | 2                                 | 2          | 36          | 0.42     | 1.43          | 0.79             | 3.49      |
| 2GB               | 108     | 113         | 176   | 165            | 177                                | 5       | 10.5                            | 3                                 | 2.5        | 37.5        | 0.35     | 1.74          | 0.96             | 6.03      |
| 7GB               | 108     | 109         | 176   | 151            | 179                                | 6       | 16.5                            | 3                                 | 2.5        | 59          | 0.83     | 0.73          | 0.40             | 5.66      |
| 2GD               | 108     | 108         | 176   | 157            | 177                                | 5       | 14.5                            | 3                                 | 2.5        | 45.5        | 0.35     | 1.74          | 0.96             | 8.57      |
| 2BC               | 103.5   | 101         | 121.5 | 117            | 125.5                              | 4       | 5                               | 1.5                               | 1.5        | 23.5        | 0.36     | 1.68          | 0.92             | 0.851     |
| 4CC               | 105     | 105         | 136.5 | 130            | 140                                | 6       | 8                               | 2                                 | 1.5        | 31.5        | 0.44     | 1.36          | 0.75             | 1.83      |
| 2CE               | 105     | 104         | 136.5 | 131            | 139                                | 7       | 6.5                             | 2                                 | 1.5        | 28.5        | 0.28     | 2.16          | 1.19             | 2.27      |
| 3FB               | 109     | 110         | 158   | 149            | 159                                | 5       | 7.5                             | 2.5                               | 2          | 34          | 0.42     | 1.43          | 0.79             | 3.07      |
| 3FC               | 109     | 108         | 158   | 145            | 161                                | 5       | 8.5                             | 2.5                               | 2          | 39          | 0.42     | 1.43          | 0.79             | 4.3       |
| 2GB               | 113     | 118         | 186   | 172            | 186                                | 5       | 11.5                            | 3                                 | 2.5        | 40          | 0.35     | 1.74          | 0.96             | 6.98      |
|                   | 113     | 118         | 186   | 172            | 186                                | 5       | 11.5                            | 3                                 | 2.5        | 40          | 0.35     | 1.73          | 0.95             | 6.58      |
| 7GB               | 113     | 114         | 186   | 154            | 187                                | 6       | 17.5                            | 3                                 | 2.5        | 62.5        | 0.83     | 0.73          | 0.40             | 6.47      |
| , 00              |         |             | .00   | 107            | 101                                | 9       |                                 | •                                 | 2.0        | 02.0        | 0.00     | 0.70          | 0.40             | O. T1     |

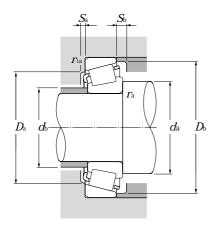
Note: When selecting bearings with bearing numbers marked with "  $\star$  ", please consult NTN Engineering.





#### **Metric series**




#### d 95 ~ 120mm

|     |                                                                           | Bound                                                            | dary dime                                                        | nsions                                                             |                                                    |                                                       | dynamic                                                                    |                                                                           | oad ratings<br>dynamic                                                                                    | static                                                                                                     | Limiting                                                                               | g speeds                                                                               | Bearing<br>numbers                                                                                                                                   |
|-----|---------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                           |                                                                  | mm                                                               |                                                                    |                                                    |                                                       | ŀ                                                                          | κN                                                                        | k                                                                                                         | gf                                                                                                         | mi                                                                                     | n <sup>-1</sup>                                                                        |                                                                                                                                                      |
| d   | D                                                                         | T                                                                | В                                                                | С                                                                  | $r_{\rm s  min}^{1}$                               | $n_{ m s min}^{1}$                                    | $C_{\rm r}$                                                                | $C_{ m or}$                                                               | $C_{\rm r}$                                                                                               | $C_{ m or}$                                                                                                | grease                                                                                 | oil                                                                                    |                                                                                                                                                      |
| 95  | 200                                                                       | 71.5                                                             | 67                                                               | 55                                                                 | 4                                                  | 3                                                     | 505                                                                        | 670                                                                       | 51 500                                                                                                    | 68 500                                                                                                     | 1 900                                                                                  | 2 500                                                                                  | 32319U                                                                                                                                               |
| 100 | 140<br>140<br>145<br>150<br>150<br>180<br>180<br>215<br>215<br>215<br>215 | 25<br>25<br>24<br>32<br>39<br>37<br>49<br>51.5<br>56.5<br>77.5   | 25<br>24<br>22.5<br>32<br>39<br>34<br>46<br>47<br>47<br>51<br>73 | 20<br>20<br>17.5<br>24<br>32.5<br>29<br>39<br>39<br>39<br>35<br>60 | 1.5<br>1.5<br>3<br>2<br>2<br>3<br>3<br>4<br>3<br>4 | 1.5<br>1.5<br>3<br>1.5<br>1.5<br>2.5<br>2.5<br>3<br>3 | 121<br>97.5<br>107<br>170<br>224<br>258<br>330<br>410<br>345<br>355<br>570 | 206<br>162<br>153<br>281<br>390<br>335<br>465<br>500<br>400<br>435<br>770 | 12 300<br>9 950<br>10 900<br>17 300<br>22 800<br>26 300<br>33 500<br>41 500<br>35 000<br>36 000<br>58 500 | 21 000<br>16 500<br>15 600<br>28 600<br>39 500<br>34 500<br>47 500<br>51 000<br>40 500<br>44 000<br>78 500 | 2 400<br>2 400<br>1 800<br>2 200<br>2 200<br>2 000<br>2 000<br>1 800<br>1 800<br>1 800 | 3 200<br>3 200<br>2 400<br>3 000<br>3 000<br>2 700<br>2 400<br>2 400<br>2 400<br>2 400 | * 32920XU<br>32920 <sup>2</sup> )<br>4T-T4CB100<br>32020XU<br>33020U<br>30220U<br>30220U<br>30320U<br>30320 <sup>2</sup> )<br>31320XU<br>32320U      |
| 105 | 145<br>160<br>160<br>190<br>190<br>225<br>225<br>225<br>225               | 25<br>35<br>43<br>39<br>53<br>53.5<br>53.5<br>58<br>81.5         | 25<br>35<br>43<br>36<br>50<br>49<br>49<br>53<br>77               | 20<br>26<br>34<br>30<br>43<br>41<br>41<br>36<br>63                 | 1.5<br>2.5<br>2.5<br>3<br>3<br>4<br>3<br>4         | 1.5<br>2<br>2<br>2.5<br>2.5<br>3<br>3<br>3            | 126<br>201<br>245<br>287<br>380<br>435<br>365<br>380<br>610                | 219<br>335<br>420<br>380<br>540<br>530<br>420<br>470<br>825               | 12 800<br>20 500<br>25 000<br>29 300<br>38 500<br>44 500<br>37 000<br>39 000<br>62 500                    | 22 400<br>34 000<br>43 000<br>38 500<br>55 500<br>54 500<br>43 000<br>47 500<br>84 500                     | 2 300<br>2 100<br>2 100<br>1 900<br>1 900<br>1 700<br>1 700<br>1 700<br>1 700          | 3 000<br>2 800<br>2 800<br>2 500<br>2 500<br>2 300<br>2 300<br>2 300<br>2 300          | 32921XA <sup>2</sup> )<br>32021XU<br>33021U<br>30221U<br>32221U<br>* 30321U<br>30321 <sup>2</sup> )<br>* 31321XU<br>32321U                           |
| 110 | 150<br>170<br>170<br>200<br>200<br>240<br>240<br>240<br>240<br>240        | 25<br>38<br>47<br>41<br>56<br>54.5<br>54.5<br>63<br>84.5<br>84.5 | 25<br>38<br>47<br>38<br>53<br>50<br>50<br>57<br>80               | 20<br>29<br>37<br>32<br>46<br>42<br>42<br>38<br>65<br>65           | 1.5<br>2.5<br>2.5<br>3<br>4<br>3<br>4<br>4<br>3    | 1.5<br>2<br>2<br>2.5<br>2.5<br>3<br>3<br>3<br>3       | 127<br>236<br>288<br>325<br>420<br>480<br>400<br>430<br>705<br>620         | 226<br>390<br>500<br>435<br>605<br>590<br>465<br>535<br>970<br>830        | 13 000<br>24 000<br>29 400<br>33 000<br>43 000<br>49 000<br>40 500<br>44 000<br>72 000<br>63 500          | 23 100<br>39 500<br>51 000<br>44 000<br>62 000<br>60 000<br>47 000<br>54 500<br>98 500<br>84 500           | 2 200<br>2 000<br>2 000<br>1 800<br>1 800<br>1 600<br>1 600<br>1 600<br>1 600          | 2 900<br>2 700<br>2 700<br>2 400<br>2 400<br>2 200<br>2 200<br>2 200<br>2 200<br>2 200 | 32922XA <sup>2</sup> )<br>32022XU<br>33022U<br>30222U<br>* 30322U<br>* 30322U<br>30322 <sup>2</sup> )<br>31322XU<br>* 32322U<br>32322 <sup>2</sup> ) |
| 120 | 165<br>165<br>180<br>215                                                  | 29<br>29<br>38<br>43.5                                           | 29<br>27<br>38<br>40                                             | 23<br>23<br>29<br>34                                               | 1.5<br>1.5<br>2.5<br>3                             | 1.5<br>1.5<br>2<br>2.5                                | 162<br>118<br>245<br>345                                                   | 294<br>205<br>420<br>470                                                  | 16 500<br>12 000<br>25 000<br>35 500                                                                      | 30 000<br>20 900<br>43 000<br>48 000                                                                       | 2 000<br>2 000<br>1 800<br>1 700                                                       | 2 600<br>2 600<br>2 500<br>2 200                                                       | * 32924XU<br>32924 <sup>2</sup> )<br>32024XU<br>30224U                                                                                               |

<sup>1 )</sup> Minimal allowable dimension for chamfer dimension r or n. 2 ) This bearing does not incorporate the subunit dimensions.



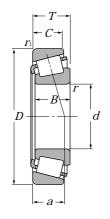




# Equivalent radial load dynamic Pr = XFr + YFa

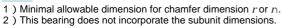
| $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | e | $\frac{F}{F}$ | $\frac{7a}{7r} > e$ |  |
|-----------------------------------------|---|---------------|---------------------|--|
| X                                       | Y | X             | Y                   |  |
| 1                                       | 0 | 0.4           | <b>Y</b> 2          |  |

static  $P_{\text{Or}} = 0.5F_{\text{r}} + Y_0F_{\text{a}}$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ For values of e,  $Y_2$  and  $Y_0$  see the table below.


| Dimensi<br>series |                                  |                                     | Abı   | utment and            | d fillet dime                       | ensions                             |                                     |                 |                      | center | Constant | Ax<br>load fa |         | Mass      |
|-------------------|----------------------------------|-------------------------------------|-------|-----------------------|-------------------------------------|-------------------------------------|-------------------------------------|-----------------|----------------------|--------|----------|---------------|---------|-----------|
| ISO               | ,                                | ,                                   | ,     | D                     | mm                                  | C                                   | C                                   |                 |                      | mm     |          |               |         | kg        |
|                   | $d_{\!\scriptscriptstyle a}$ min | $d_{\!\scriptscriptstyle  m b}$ max | max   | D <sub>a</sub><br>min | $D_{\!\scriptscriptstyle  m b}$ min | $S_{\!\scriptscriptstyle  m a}$ min | $S_{\!\scriptscriptstyle  m b}$ min | r <sub>as</sub> | <i>I</i> ¹las<br>max | а      | e        | $Y_2$         | $Y_{0}$ | (approx.) |
| 2GD               | 113                              | 113                                 | 186   | 166                   | 186                                 | 5                                   | 16.5                                | 3               | 2.5                  | 49     | 0.35     | 1.74          | 0.96    | 10.1      |
| 2CC               | 108.5                            | 107.5                               | 131.5 | 127.5                 | 135.5                               | 4                                   | 5                                   | 1.5             | 1.5                  | 24.5   | 0.33     | 1.82          | 1.00    | 1.14      |
|                   | 108.5                            | 107.5                               | 131.5 | 127.5                 | 135.5                               | 4                                   | 5                                   | 1.5             | 1.5                  | 25     | 0.35     | 1.73          | 0.95    | 1.08      |
| 4CB               | 114                              | 109                                 | 131   | 130                   | 140                                 | 4                                   | 6.5                                 | 2.5             | 2.5                  | 30     | 0.47     | 1.27          | 0.70    | 1.15      |
| 4CC               | 110                              | 109                                 | 141.5 | 134                   | 144                                 | 6                                   | 8                                   | 2               | 1.5                  | 32.5   | 0.46     | 1.31          | 0.72    | 1.91      |
| 2CE               | 110                              | 108                                 | 141.5 | 135                   | 143                                 | 7                                   | 6.5                                 | 2               | 1.5                  | 29.5   | 0.29     | 2.09          | 1.15    | 2.37      |
| 3FB               | 114                              | 116                                 | 168   | 157                   | 168                                 | 5                                   | 8                                   | 2.5             | 2                    | 36     | 0.42     | 1.43          | 0.79    | 3.78      |
| 3FC               | 114                              | 114                                 | 168   | 154                   | 171                                 | 5                                   | 10                                  | 2.5             | 2                    | 41.5   | 0.42     | 1.43          | 0.79    | 5.12      |
| 2GB               | 118                              | 127                                 | 201   | 184                   | 200                                 | 5                                   | 12.5                                | 3               | 2.5                  | 41.5   | 0.35     | 1.74          | 0.96    | 8.56      |
|                   | 118                              | 127                                 | 201   | 184                   | 200                                 | 5                                   | 12.5                                | 3               | 2.5                  | 42     | 0.35     | 1.73          | 0.95    | 7.72      |
| 7GB               | 118                              | 121                                 | 201   | 168                   | 202                                 | 7                                   | 21.5                                | 3               | 2.5                  | 69     | 0.83     | 0.73          | 0.40    | 8.67      |
| 2GD               | 118                              | 121                                 | 201   | 177                   | 200                                 | 5                                   | 17.5                                | 3               | 2.5                  | 53     | 0.35     | 1.74          | 0.96    | 12.7      |
|                   | 113.5                            | 113.5                               | 136.5 | 131.5                 | 140.5                               | 5                                   | 5                                   | 1.5             | 1.5                  | 25     | 0.34     | 1.76          | 0.97    | 1.20      |
| 4DC               | 117                              | 116                                 | 150   | 143                   | 154                                 | 6                                   | 9                                   | 2               | 2                    | 34.5   | 0.44     | 1.35          | 0.74    | 2.42      |
| 2DE               | 117                              | 116                                 | 150   | 145                   | 153                                 | 7                                   | 9                                   | 2               | 2                    | 31     | 0.28     | 2.12          | 1.17    | 3.00      |
| 3FB               | 119                              | 122                                 | 178   | 165                   | 178                                 | 6                                   | 9                                   | 2.5             | 2                    | 38     | 0.42     | 1.43          | 0.79    | 4.39      |
| 3FC               | 119                              | 119                                 | 178   | 161                   | 180                                 | 6                                   | 10                                  | 2.5             | 2                    | 44     | 0.42     | 1.43          | 0.79    | 6.25      |
| 2GB               | 123                              | 132                                 | 211   | 193                   | 209                                 | 6                                   | 12.5                                | 3               | 2.5                  | 43.5   | 0.35     | 1.74          | 0.96    | 9.79      |
|                   | 123                              | 132                                 | 211   | 193                   | 209                                 | 6                                   | 12.5                                | 3               | 2.5                  | 43.5   | 0.35     | 1.73          | 0.95    | 8.93      |
| 7GB               | 123                              | 126                                 | 211   | 176                   | 211                                 | 7                                   | 22                                  | 3               | 2.5                  | 71.5   | 0.83     | 0.73          | 0.40    | 9.68      |
| 2GD               | 123                              | 128                                 | 211   | 185                   | 209                                 | 6                                   | 18.5                                | 3               | 2.5                  | 55     | 0.35     | 1.74          | 0.96    | 14.5      |
|                   | 118.5                            | 117.5                               | 141.5 | 137                   | 145.5                               | 5                                   | 5                                   | 1.5             | 1.5                  | 26.5   | 0.36     | 1.69          | 0.93    | 1.23      |
| 4DC               | 122                              | 122                                 | 160   | 152                   | 163                                 | 7                                   | 9                                   | 2               | 2                    | 36.5   | 0.43     | 1.39          | 0.77    | 3.07      |
| 2DE               | 122                              | 121                                 | 160   | 152                   | 161                                 | 7                                   | 10                                  | 2               | 2                    | 33.5   | 0.29     | 2.09          | 1.15    | 3.80      |
| 3FB               | 124                              | 129                                 | 188   | 174                   | 188                                 | 6                                   | 9                                   | 2.5             | 2                    | 40     | 0.42     | 1.43          | 0.79    | 5.18      |
| 3FC               | 124                              | 126                                 | 188   | 170                   | 190                                 | 6                                   | 10                                  | 2.5             | 2                    | 47     | 0.42     | 1.43          | 0.79    | 7.43      |
| 2GB               | 128                              | 141                                 | 226   | 206                   | 222                                 | 6                                   | 12.5                                | 3               | 2.5                  | 45.5   | 0.35     | 1.74          | 0.96    | 11.4      |
|                   | 128                              | 141                                 | 226   | 206                   | 222                                 | 6                                   | 12.5                                | 3               | 2.5                  | 44     | 0.35     | 1.73          | 0.95    | 10.5      |
| 7GB               | 128                              | 135                                 | 226   | 188                   | 224                                 | 7                                   | 25                                  | 3               | 2.5                  | 76     | 0.83     | 0.73          | 0.40    | 11.9      |
| 2GD               | 128                              | 135                                 | 226   | 198                   | 222                                 | 6                                   | 19.5                                | 3               | 2.5                  | 57.5   | 0.35     | 1.74          | 0.96    | 18.0      |
|                   | 128                              | 135                                 | 226   | 198                   | 222                                 | 6.5                                 | 19.5                                | 3               | 2.5                  | 56     | 0.35     | 1.73          | 0.95    | 16.9      |
| 2CC               | 128.5                            | 128.5                               | 156.5 | 150                   | 160                                 | 6                                   | 6                                   | 1.5             | 1.5                  | 29.5   | 0.35     | 1.72          | 0.95    | 1.77      |
| 45.0              | 128.5                            | 130.5                               | 156.5 | 147.5                 | 159.5                               | 6                                   | 6                                   | 1.5             | 1.5                  | 31     | 0.37     | 1.60          | 0.88    | 1.63      |
| 4DC               | 132                              | 131                                 | 170   | 161                   | 173                                 | 7                                   | 9                                   | 2               | 2                    | 39     | 0.46     | 1.31          | 0.72    | 3.25      |
| 4FB               | 134                              | 140                                 | 203   | 187                   | 203                                 | 6                                   | 9.5                                 | 2.5             | 2                    | 44     | 0.44     | 1.38          | 0.76    | 6.23      |

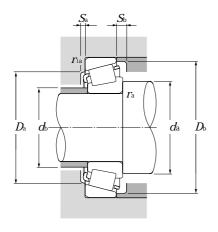
Note: When selecting bearings with bearing numbers marked with "  $\star$  ", please consult NTN Engineering.






#### **Metric series**




#### d 120 ~ 170mm

|    |            | Bound    | ary dim  | ensions  |                    |                      | dynamic     |                | ad ratings<br>dynamic | static            | Limiting       | speeds         | Bearing<br>numbers   |
|----|------------|----------|----------|----------|--------------------|----------------------|-------------|----------------|-----------------------|-------------------|----------------|----------------|----------------------|
|    |            |          | mm       |          |                    |                      | •           | :N             | •                     | gf                | mi             | n-1            | numbers              |
| d  | D          | T        | В        | С        | $r_{\rm smin}^{1}$ | <i>I</i> 1 s min 1 ) | $C_{\rm r}$ | $C_{ m or}$    | $C_{ m r}$            | $C_{ m or}$       | grease         | oil            |                      |
|    | 215        | 61.5     | 58       | 50       | 3                  | 2.5                  | 460         | 680            | 47 000                | 69 500            | 1 700          | 2 200          | 32224U               |
|    | 260        | 59.5     | 55       | 46       | 4                  | 3                    | 560         | 695            | 57 000                | 71 000            | 1 500          | 2 000          | 30324U               |
| 20 | 260        | 59.5     | 55       | 46       | 3                  | 3                    | 465         | 550            | 47 500                | 56 000            | 1 500          | 2 000          | 303242)              |
|    | 260        | 68       | 62       | 42       | 4                  | 3                    | 515         | 655            | 52 500                | 67 000            | 1 500          | 2 000          | 31324XU              |
|    | 260        | 90.5     | 86       | 69       | 4                  | 3                    | 815         | 1 130          | 83 000                | 116 000           | 1 500          | 2 000          | 32324U               |
|    | 180        | 32       | 32       | 25       | 2                  | 1.5                  | 194         | 350            | 19 800                | 36 000            | 1 800          | 2 400          | * 32926XL            |
|    | 180        | 32       | 30       | 26       | 2                  | 2                    | 142         | 252            | 14 500                | 25 700            | 1 800          | 2 400          | 329262)              |
|    | 200        | 45       | 45       | 34       | 2.5                | 2                    | 320         | 545            | 32 500                | 55 500            | 1 700          | 2 200          | 32026XU              |
| 30 | 230        | 43.75    | 40       | 34       | 4                  | 3                    | 375         | 505            | 38 000                | 51 500            | 1 500          | 2 000          | 30226U               |
|    | 230        | 67.75    | 64       | 54       | 4                  | 3                    | 530         | 815            | 54 000                | 83 000            | 1 500          | 2 000          | 32226U               |
|    | 280        | 63.75    | 58       | 49       | 5                  | 4                    | 650         | 830            | 66 000                | 84 500            | 1 400          | 1 800          | 30326U               |
|    | 280        | 72       | 66       | 44       | 5                  | 4                    | 600         | 780            | 61 500                | 79 500            | 1 400          | 1 800          | 31326XU              |
|    | 190        | 32       | 32       | 25       | 2                  | 1.5                  | 200         | 375            | 20 400                | 38 000            | 1 700          | 2 200          | 32928XU              |
|    | 210        | 45       | 45       | 34       | 2.5                | 2                    | 330         | 580            | 33 500                | 59 500            | 1 600          | 2 100          | 32028XL              |
|    | 250        | 45.75    | 42       | 36       | 4                  | 3                    | 420         | 570            | 43 000                | 58 500            | 1 400          | 1 900          | * 30228U             |
| 40 | 250        | 45.75    | 42       | 36       | 3                  | 3                    | 375         | 485            | 38 000                | 49 500            | 1 400          | 1 900          | 302282)              |
|    | 250        | 71.75    | 68       | 58       | 4                  | 3                    | 610         | 920            | 62 500                | 94 000            | 1 400          | 1 900          | 32228U               |
|    | 300        | 67.75    | 62       | 53       | 5                  | 4                    | 735         | 950            | 75 000                | 97 000            | 1 300          | 1 700          | * 30328U             |
|    | 300        | 67.75    | 62       | 53       | 4                  | 4                    | 640         | 780            | 65 000                | 80 000            | 1 300          | 1 700          | 303282)              |
|    | 300        | 77       | 70       | 47       | 5                  | 4                    | 685         | 905            | 70 000                | 92 500            | 1 300          | 1 700          | 31328XU              |
|    | 210        | 38       | 38       | 30       | 2.5                | 2                    | 268         | 490            | 27 300                | 50 000            | 1 600          | 2 100          | 32930XU              |
|    | 225        | 48       | 48       | 36       | 3                  | 2.5                  | 370         | 655            | 37 500                | 67 000            | 1 400          | 1 900          | 32030XL              |
|    | 270        | 49       | 45       | 38       | 4                  | 3                    | 450         | 605            | 46 000                | 61 500            | 1 300          | 1 700          | 30230U               |
| 50 | 270        | 77<br>70 | 73       | 60       | 4                  | 3                    | 700         | 1070           | 71 500                | 109 000           | 1 300          | 1 700          | 32230U               |
|    | 320        | 72<br>72 | 65<br>65 | 55<br>55 | 5                  | 4                    | 825         | 1070           | 84 000                | 109 000           | 1 200          | 1 600          | * 30330U             |
|    | 320<br>320 | 72<br>82 | 65<br>75 | 55<br>50 | 4<br>5             | 4<br>4               | 680<br>775  | 875<br>1 030   | 69 500                | 89 000            | 1 200<br>1 200 | 1 600<br>1 600 | 30330 <sup>2</sup> ) |
|    | 320        | 02       | 75       | 50       | 5                  | 4                    | 775         | 1 030          | 79 000                | 105 000           | 1 200          | 1 600          | 31330XL              |
|    | 220        | 38       | 38       | 30       | 2.5                | 2                    | 276         | 520            | 28 200                | 53 000            | 1 500          | 1 900          | 32932XL              |
|    | 240        | 51<br>52 | 51       | 38       | 3                  | 2.5                  | 435<br>535  | 790            | 44 500                | 80 500            | 1 400          | 1 800          | 32032XL              |
| 60 | 290        | 52<br>94 | 48       | 40<br>67 | 4<br>4             | 3                    | 525         | 720            | 53 500                | 73 500            | 1 200          | 1 600          | 30232U               |
|    | 290<br>340 | 84<br>75 | 80<br>68 | 67<br>58 | 4<br>5             | 3<br>4               | 890<br>015  | 1 420<br>1 200 | 90 500                | 145 000           | 1 200<br>1 100 | 1 600<br>1 500 | 32232U<br>* 30332U   |
|    | 340        | 75<br>75 | 68       | 58       | 5<br>4             | 4                    | 915<br>755  | 975            | 93 500<br>77 000      | 122 000<br>99 500 | 1 100          | 1 500          | 303320               |
| 70 | 230        | 38       | 38       | 30       | 2.5                | 2                    | 286         | 560            | 29 200                | 57 000            | 1 400          | 1 800          | 32934XU              |





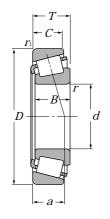




 $P_{\Gamma} = XF_{\Gamma} + YF_{\alpha}$ 

| $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | e | $\frac{F}{F}$ | $\frac{7_{\rm a}}{7_{\rm r}} > e$ |
|-----------------------------------------|---|---------------|-----------------------------------|
| X                                       | Y | X             | Y                                 |
| 1                                       | 0 | 0.4           | <b>Y</b> 2                        |

static  $P_{\text{Or}} = 0.5F_{\text{r}} + Y_0F_{\text{a}}$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ For values of e,  $Y_2$  and  $Y_0$  see the table below.

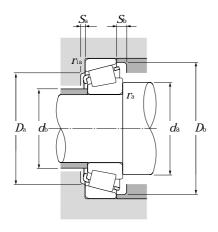

| Dimensions Abutment and fillet dimensions series to |            |                               |            |                |            |         |             |                |              | Load Constant center |              | Axial load factors |              | Mass         |
|-----------------------------------------------------|------------|-------------------------------|------------|----------------|------------|---------|-------------|----------------|--------------|----------------------|--------------|--------------------|--------------|--------------|
| ISO                                                 |            |                               |            |                | mm         |         |             |                |              | mm                   |              |                    |              | kg           |
|                                                     | $d_{a}$    | $d_{\hspace{-0.05cm}	ext{b}}$ |            | D <sub>a</sub> | $D_{ m b}$ | $S_{a}$ | $S_{\rm b}$ | $m{r}_{ m as}$ | <b>P</b> 1as |                      |              | 17                 | 17           |              |
|                                                     | min        | max                           | max        | min            | min        | min     | min         | max            | max          | а                    | e            | $Y_2$              | $Y_{0}$      | (approx.)    |
| 4FD                                                 | 134        | 136                           | 203        | 181            | 204        | 6       | 11.5        | 2.5            | 2            | 51.5                 | 0.44         | 1.38               | 0.76         | 9.08         |
| 2GB                                                 | 138        | 152                           | 246        | 221            | 239        | 6       | 13.5        | 3              | 2.5          | 49                   | 0.35         | 1.74               | 0.96         | 14.2         |
|                                                     | 138        | 152                           | 246        | 221            | 239        | 6       | 13.5        | 3              | 2.5          | 48.5                 | 0.35         | 1.73               | 0.95         | 13.2         |
| 7GB                                                 | 138        | 145                           | 246        | 203            | 244        | 9       | 26          | 3              | 2.5          | 82.5                 | 0.83         | 0.73               | 0.40         | 15.4         |
| 2GD                                                 | 138        | 145                           | 246        | 213            | 239        | 6       | 21.5        | 3              | 2.5          | 61.5                 | 0.35         | 1.74               | 0.96         | 22.4         |
| 2CC                                                 | 140        | 139                           | 171.5      | 163.5          | 174        | 6       | 7           | 2              | 1.5          | 31.5                 | 0.34         | 1.77               | 0.97         | 2.36         |
|                                                     | 140        | 139                           | 170        | 163.5          | 174        | 6       | 6           | 2              | 2            | 34                   | 0.37         | 1.60               | 0.88         | 2.22         |
| 4EC                                                 | 142        | 144                           | 190        | 178            | 192        | 8       | 11          | 2              | 2            | 43.5                 | 0.43         | 1.38               | 0.76         | 4.96         |
| 4FB                                                 | 148        | 152                           | 216        | 203            | 218        | 7       | 9.5         | 3              | 2.5          | 45.5                 | 0.44         | 1.38               | 0.76         | 7.25         |
| 4FD                                                 | 148        | 146                           | 216        | 193            | 219        | 7       | 13.5        | 3              | 2.5          | 57                   | 0.44         | 1.38               | 0.76         | 11.2         |
| 2GB                                                 | 152        | 164                           | 262        | 239            | 255        | 8       | 14.5        | 4              | 3            | 53.5                 | 0.35         | 1.74               | 0.96         | 17.4         |
| 7GB                                                 | 152        | 152                           | 262        | 218            | 261        | 9       | 28          | 4              | 3            | 87.5                 | 0.83         | 0.73               | 0.40         | 19<br>       |
| 2CC                                                 | 150        | 150                           | 181.5      | 177            | 184        | 6       | 6           | 2              | 1.5          | 34                   | 0.36         | 1.67               | 0.92         | 2.51         |
| 4DC                                                 | 152        | 153                           | 200        | 187            | 202        | 8       | 11          | 2              | 2            | 46                   | 0.46         | 1.31               | 0.72         | 5.28         |
| 4FB                                                 | 158        | 163                           | 236        | 219            | 237        | 7       | 9.5         | 3              | 2.5          | 48.5                 | 0.44         | 1.38               | 0.76         | 9.26         |
|                                                     | 158        | 163                           | 236        | 219            | 237        | 7       | 9.5         | 2.5            | 2.5          | 47.5                 | 0.43         | 1.39               | 0.77         | 8.37         |
| 4FD                                                 | 158        | 158                           | 236        | 210            | 238        | 9       | 13.5        | 3              | 2.5          | 61                   | 0.44         | 1.38               | 0.76         | 14.1         |
| 2GB                                                 | 162        | 179                           | 282        | 251            | 273        | 9       | 14.5        | 4              | 3            | 56.5                 | 0.35         | 1.74               | 0.96         | 21.2         |
| 700                                                 | 162        | 179                           | 282        | 252            | 273        | 9       | 14.5        | 4              | 3            | 57                   | 0.35         | 1.73               | 0.95         | 20.4         |
| 7GB                                                 | 162        | 165                           | 282        | 234            | 280        | 9       | 30          | 4              | 3            | 94                   | 0.83         | 0.73               | 0.40         | 23           |
| 2DC                                                 | 162        | 162                           | 200        | 192            | 202        | 7       | 8           | 2              | 2            | 36.5                 | 0.33         | 1.83               | 1.01         | 3.92         |
| 4EC                                                 | 164        | 164                           | 213        | 200            | 216        | 8       | 12          | 2.5            | 2            | 49.5                 | 0.46         | 1.31               | 0.72         | 6.37         |
| 4GB                                                 | 168        | 175                           | 256        | 234            | 255        | 7       | 11          | 3              | 2.5          | 51.5                 | 0.44         | 1.38               | 0.76         | 11.2         |
| 4GD                                                 | 168        | 170                           | 256        | 226            | 254        | 8       | 17          | 3              | 2.5          | 64.5                 | 0.44         | 1.38               | 0.76         | 18.2         |
| 2GB                                                 | 172        | 193                           | 302        | 269            | 292        | 8       | 17          | 4              | 3            | 61<br>62.5           | 0.35         | 1.74               | 0.96         | 25.5         |
| 7GB                                                 | 172<br>172 | 193<br>176                    | 302<br>302 | 269<br>250     | 292<br>302 | 8<br>9  | 17<br>32    | 4<br>4         | 3<br>3       | 62.5<br>100.5        | 0.37<br>0.83 | 1.60<br>0.73       | 0.88<br>0.40 | 24.7<br>27.7 |
|                                                     |            |                               |            |                |            |         |             |                |              |                      |              |                    |              |              |
| 2DC                                                 | 172        | 170.5                         | 210        | 199            | 213.5      | 7       | 8           | 2              | 2            | 38.5                 | 0.35         | 1.73               | 0.95         | 4.15         |
| 4EC                                                 | 174        | 175                           | 228        | 213            | 231        | 8       | 13          | 2.5            | 2            | 52.5                 | 0.46         | 1.31               | 0.72         | 7.8          |
| 4GB                                                 | 178        | 189                           | 276        | 252            | 272        | 8       | 12          | 3              | 2.5          | 55.5                 | 0.44         | 1.38               | 0.76         | 12.9         |
| 4GD                                                 | 178        | 182                           | 276        | 242            | 275        | 10      | 17          | 3              | 2.5          | 70                   | 0.44         | 1.38               | 0.76         | 23.5         |
| 2GB                                                 | 182        | 205                           | 322        | 286            | 310        | 10      | 17          | 4              | 3            | 64<br>65 5           | 0.35         | 1.74               | 0.96         | 29.9         |
|                                                     | 182        | 205                           | 322        | 286            | 311        | 10      | 17          | 4              | 3            | 65.5                 | 0.37         | 1.60               | 0.88         | 29.2         |
| 3DC                                                 | 182        | 183                           | 220        | 213            | 222        | 7       | 8           | 2              | 2            | 42.5                 | 0.38         | 1.57               | 0.86         | 4.4          |

Note: When selecting bearings with bearing numbers marked with "  $\star$  ", please consult NTN Engineering.





#### **Metric series**




#### d 170 ~ 300mm

| 180       80       72       62       4       4       845       1 100       86 000       113 000       1 000       1 400         180       250       45       45       34       2.5       2       350       700       36 000       71 500       1 300       1 700         280       64       64       48       3       2.5       645       1 170       66 000       119 000       1 200       1 600         320       57       52       43       5       4       630       890       64 000       91 000       1 100       1 400         320       91       86       71       5       4       1 030       1 690       105 000       172 000       1 100       1 400         260       45       45       34       2.5       2       355       710       36 000       72 000       1 200       1 600       *         260       45       45       34       2.5       2       355       710       36 000       72 000       1 200       1 600       *         260       45       42       36       2.5       2.5       280       525       28 600       53 500 <td< th=""><th>numbers</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | numbers                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| d         D         T         B         C         rsmin <sup>1</sup> )         rsmin <sup>1</sup> )         C         Cor         C         Cor         grease         oil           170         310         57         57         43         3         2.5         500         895         51 000         91 000         1 300         1 700           310         57         52         43         5         4         610         845         62 000         86 500         1 100         1 500           360         80         72         62         5         4         1 010         1 320         103 000         135 000         1 000         1 400         *           360         80         72         62         5         4         1 010         1 320         103 000         135 000         1 000         1 400         *           250         45         45         34         2.5         2         350         700         36 000         71 500         1 300         1 700           180         280         64         64         48         3         2.5         645         1 170         66 000         119 000         1 200         1 600 <t< th=""><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |
| 170 310 57 52 43 5 4 610 845 62 000 86 500 1 100 1 500 310 91 86 71 5 4 1 000 1 600 102 000 163 000 1 100 1 500 360 80 72 62 5 4 1 010 1 320 103 000 135 000 1 000 1 400 400 360 80 72 62 4 4 845 1 100 86 000 113 000 1 000 1 400 400 400 400 400 400 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| 170 310 57 52 43 5 4 610 845 62 000 86 500 1 100 1 500 310 91 86 71 5 4 1 000 1 600 102 000 163 000 1 100 1 500 360 80 72 62 5 4 1 010 1 320 103 000 135 000 1 000 1 400 400 360 80 72 62 4 4 845 1 100 86 000 113 000 1 000 1 400 400 400 400 400 400 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| 170       310       91       86       71       5       4       1 000       1 600       102 000       163 000       1 100       1 500         360       80       72       62       5       4       1 010       1 320       103 000       135 000       1 000       1 400       *         360       80       72       62       4       4       845       1 100       86 000       113 000       1 000       1 400       *         180       250       45       45       34       2.5       2       350       700       36 000       71 500       1 300       1 700         280       64       64       48       3       2.5       645       1 170       66 000       119 000       1 200       1 600         320       57       52       43       5       4       630       890       64 000       91 000       1 100       1 400         320       91       86       71       5       4       1 030       1 690       105 000       172 000       1 100       1 400         4       260       45       45       34       2.5       2       355       710       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32034XU                     |
| 180       80       72       62       5       4       1 010       1 320       103 000       135 000       1 000       1 400       *         360       80       72       62       4       4       845       1 100       86 000       113 000       1 000       1 400       *         180       250       45       45       34       2.5       2       350       700       36 000       71 500       1 300       1 700         280       64       64       48       3       2.5       645       1 170       66 000       119 000       1 200       1 600         320       57       52       43       5       4       630       890       64 000       91 000       1 100       1 400         320       91       86       71       5       4       1 030       1 690       105 000       172 000       1 100       1 400         260       45       45       34       2.5       2       355       710       36 000       72 000       1 200       1 600         290       64       64       48       3       2.5       2.5       2.8       600       53 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30234U                      |
| 180       80       72       62       4       4       845       1 100       86 000       113 000       1 000       1 400         180       250       45       45       34       2.5       2       350       700       36 000       71 500       1 300       1 700         280       64       64       48       3       2.5       645       1 170       66 000       119 000       1 200       1 600         320       57       52       43       5       4       630       890       64 000       91 000       1 100       1 400         320       91       86       71       5       4       1 030       1 690       105 000       172 000       1 100       1 400         260       45       45       34       2.5       2       355       710       36 000       72 000       1 200       1 600       *         260       45       45       34       2.5       2       355       710       36 000       72 000       1 200       1 600       *         290       64       64       48       3       2.5       655       1 210       67 000       124 000 <t< th=""><th>32234U</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32234U                      |
| 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | * 30334U                    |
| 180       280       64       64       48       3       2.5       645       1 170       66 000       119 000       1 200       1 600         320       57       52       43       5       4       630       890       64 000       91 000       1 100       1 400         320       91       86       71       5       4       1 030       1 690       105 000       172 000       1 100       1 400         260       45       45       34       2.5       2       355       710       36 000       72 000       1 200       1 600       *         260       45       42       36       2.5       2.5       280       525       28 600       53 500       1 200       1 600       *         290       64       64       48       3       2.5       655       1 210       67 000       124 000       1 100       1 500         340       97       92       75       5       4       1 150       1 850       117 000       189 000       1 000       1 300         340       97       92       75       4       4       1 000       1 670       102 000       171 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 303342)                     |
| 180       280       64       64       48       3       2.5       645       1 170       66 000       119 000       1 200       1 600         320       57       52       43       5       4       630       890       64 000       91 000       1 100       1 400         320       91       86       71       5       4       1 030       1 690       105 000       172 000       1 100       1 400         260       45       45       34       2.5       2       355       710       36 000       72 000       1 200       1 600       *         260       45       42       36       2.5       2.5       280       525       28 600       53 500       1 200       1 600       *         290       64       64       48       3       2.5       655       1 210       67 000       124 000       1 100       1 500         340       97       92       75       5       4       1 150       1 850       117 000       189 000       1 000       1 300         340       97       92       75       4       4       1 000       1 670       102 000       171 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32936XU                     |
| 190   320   57   52   43   5   4   630   890   64 000   91 000   1 100   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400   1 400 | 32036XUE1                   |
| 190 260 45 45 34 2.5 2 355 710 36 000 72 000 1 200 1 600 * 260 45 42 36 2.5 2.5 280 525 28 600 53 500 1 200 1 600 290 64 64 48 3 2.5 655 1 210 67 000 124 000 1 100 1 500 340 60 55 46 5 4 715 1 000 73 000 102 000 1 000 1 300 340 97 92 75 5 4 1 150 1 850 117 000 189 000 1 000 1 300 * 340 97 92 75 4 4 1 000 1 670 102 000 171 000 1 000 1 300 * 280 51 51 39 3 2.5 485 895 49 000 91 000 1 100 1 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30236U                      |
| 190     260     45     42     36     2.5     2.5     280     525     28 600     53 500     1 200     1 600       290     64     64     48     3     2.5     655     1 210     67 000     124 000     1 100     1 500       340     60     55     46     5     4     715     1 000     73 000     102 000     1 000     1 300       340     97     92     75     5     4     1 150     1 850     117 000     189 000     1 000     1 300       340     97     92     75     4     4     1 000     1 670     102 000     171 000     1 000     1 300       280     51     51     39     3     2.5     485     895     49 000     91 000     1 100     1 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32236U                      |
| 190     260     45     42     36     2.5     2.5     280     525     28 600     53 500     1 200     1 600       290     64     64     48     3     2.5     655     1 210     67 000     124 000     1 100     1 500       340     60     55     46     5     4     715     1 000     73 000     102 000     1 000     1 300       340     97     92     75     5     4     1 150     1 850     117 000     189 000     1 000     1 300       340     97     92     75     4     4     1 000     1 670     102 000     171 000     1 000     1 300       280     51     51     39     3     2.5     485     895     49 000     91 000     1 100     1 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | * 32938XU                   |
| 190       290       64       64       48       3       2.5       655       1 210       67 000       124 000       1 100       1 500         340       60       55       46       5       4       715       1 000       73 000       102 000       1 000       1 300         340       97       92       75       5       4       1 150       1 850       117 000       189 000       1 000       1 300         340       97       92       75       4       4       1 000       1 670       102 000       171 000       1 000       1 300         280       51       51       39       3       2.5       485       895       49 000       91 000       1 100       1 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>32938</b> <sup>2</sup> ) |
| 340     60     55     46     5     4     715     1 000     73 000     102 000     1 000     1 300       340     97     92     75     5     4     1 150     1 850     117 000     189 000     1 000     1 300     *       340     97     92     75     4     4     1 000     1 670     102 000     171 000     1 000     1 300       280     51     51     39     3     2.5     485     895     49 000     91 000     1 100     1 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32038XUE1                   |
| 340     97     92     75     4     4     1 000     1 670     102 000     171 000     1 000     1 300       280     51     51     39     3     2.5     485     895     49 000     91 000     1 100     1 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30238U                      |
| 280 51 51 39 3 2.5 485 895 49 000 91 000 1 100 1 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | * 32238U                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>32238</b> <sup>2</sup> ) |
| 310 70 70 53 3 2.5 800 1 470 81 500 149 000 1 100 1 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32940XUE1                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32040XUE1                   |
| <b>200</b> 360 64 58 48 5 4 785 1 110 80 000 113 000 950 1 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30240U                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * 32240U                    |
| 360 104 98 82 4 4 1 150 1 970 118 000 201 000 950 1 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 322402)                     |
| 300 51 51 39 3 2.5 480 950 49 000 97 000 1 000 1 400 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | * 32944XUE1                 |
| <b>220</b> 300 51 48 41 2.5 2.5 345 670 35 500 68 500 1 000 1 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32944E1 <sup>2</sup> )      |
| 340     76     76     57     4     3     920     1 690     94 000     173 000     960     1 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32044XU                     |
| 320 51 51 39 3 2.5 490 1000 50000 102000 940 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32948XUE1                   |
| <b>240</b> 360 76 76 57 4 3 930 1 760 95 000 179 000 870 1 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32048XU                     |
| 360 63.5 63.5 48 3 2.5 705 1 430 72 000 146 000 860 1 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32952XUE1                   |
| <b>260</b> 400 87 87 65 5 4 1 200 2 270 123 000 231 000 800 1 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32052XU                     |
| 380 63.5 63.5 48 3 2.5 725 1 520 74 000 155 000 790 1 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32956XUE1                   |
| <b>280</b> 420 87 87 65 5 4 1 220 2 350 125 000 240 000 740 980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32056XU                     |
| 420 76 76 57 4 3 1010 2090 103000 213000 720 970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32960XUE1                   |
| <b>300</b> 460 100 100 74 5 4 1490 2830 152000 289000 680 910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32060XU                     |

<sup>1 )</sup> Minimal allowable dimension for chamfer dimension r or n. 2 ) This bearing does not incorporate the subunit dimensions.

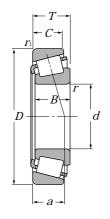




 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 

| 11 11                    | , |
|--------------------------|---|
| $X \mid Y \mid X \mid Y$ |   |
| 1 0 0.4 <i>Y</i> 2       |   |

static  $P_{\text{Or}} = 0.5F_{\text{r}} + Y_0F_{\text{a}}$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ For values of e,  $Y_2$  and  $Y_0$  see the table below.


| Dimensi<br>series<br>ISO | to      |                                     | Ab  | outment ar | nd fillet din                 | nensions |                                  |             |      | Load<br>center<br>mm | Constant |       | Axial load factors |           |  |  |
|--------------------------|---------|-------------------------------------|-----|------------|-------------------------------|----------|----------------------------------|-------------|------|----------------------|----------|-------|--------------------|-----------|--|--|
| 100                      | $d_{a}$ | $d_{\scriptscriptstyle \mathrm{b}}$ |     | $D_{a}$    | $D_{\scriptscriptstyle  m b}$ | $S_{a}$  | $S_{\!\scriptscriptstyle{ m b}}$ | <i>r</i> as | rlas |                      |          |       |                    | kg        |  |  |
|                          | min     | max                                 | max | min        | min                           | min      | min                              | max         | max  | a                    | e        | $Y_2$ | $Y_{0}$            | (approx.) |  |  |
| 4EC                      | 184     | 187                                 | 248 | 230        | 249                           | 10       | 14                               | 2.5         | 2    | 56                   | 0.44     | 1.35  | 0.74               | 10.5      |  |  |
| 4GB                      | 192     | 203                                 | 292 | 266        | 288                           | 8        | 14                               | 4           | 3    | 60.5                 | 0.44     | 1.38  | 0.76               | 17        |  |  |
| 4GD                      | 192     | 201                                 | 292 | 258        | 293                           | 10       | 20                               | 4           | 3    | 75                   | 0.44     | 1.38  | 0.76               | 28.7      |  |  |
| 2GB                      | 192     | 221                                 | 342 | 303        | 329                           | 10       | 18                               | 4           | 3    | 68                   | 0.35     | 1.74  | 0.96               | 35.3      |  |  |
|                          | 192     | 215.5                               | 342 | 297        | 327                           | 10       | 18                               | 4           | 3    | 69.5                 | 0.37     | 1.60  | 0.88               | 34.8      |  |  |
| 4DC                      | 192     | 193                                 | 240 | 225        | 241                           | 8        | 11                               | 2           | 2    | 54                   | 0.48     | 1.25  | 0.69               | 6.54      |  |  |
| 3FD                      | 194     | 197.5                               | 268 | 243        | 269                           | 10       | 16                               | 2.5         | 2    | 59.5                 | 0.42     | 1.42  | 0.78               | 14.5      |  |  |
| 4GB                      | 202     | 211                                 | 302 | 274        | 297                           | 9        | 14                               | 4           | 3    | 63                   | 0.45     | 1.33  | 0.73               | 17.7      |  |  |
| 4GD                      | 202     | 204                                 | 302 | 267        | 305                           | 10       | 20                               | 4           | 3    | 77.5                 | 0.45     | 1.33  | 0.73               | 30.7      |  |  |
| 4DC                      | 202     | 204                                 | 250 | 235        | 251                           | 8        | 11                               | 2           | 2    | 55                   | 0.48     | 1.26  | 0.69               | 6.77      |  |  |
|                          | 202     | 204                                 | 248 | 235        | 251                           | 8        | 9                                | 2           | 2    | 48.5                 | 0.37     | 1.60  | 0.88               | 6.43      |  |  |
| 4FD                      | 204     | 209                                 | 278 | 257        | 279                           | 10       | 16                               | 2.5         | 2    | 62.5                 | 0.44     | 1.36  | 0.75               | 15.1      |  |  |
| 4GB                      | 212     | 228                                 | 322 | 295        | 316                           | 9        | 14                               | 4           | 3    | 64                   | 0.44     | 1.38  | 0.76               | 20.8      |  |  |
| 4GD                      | 212     | 216                                 | 322 | 282        | 323                           | 11       | 22                               | 4           | 3    | 82                   | 0.44     | 1.38  | 0.76               | 36.1      |  |  |
|                          | 212     | 216                                 | 322 | 286        | 323                           | 11       | 22                               | 4           | 3    | 87.5                 | 0.49     | 1.23  | 0.68               | 33.3      |  |  |
| 3EC                      | 214     | 214                                 | 268 | 254        | 271                           | 9        | 12                               | 2.5         | 2    | 53.5                 | 0.39     | 1.52  | 0.84               | 8.88      |  |  |
| 4FD                      | 214     | 221                                 | 298 | 273        | 297                           | 11       | 17                               | 2.5         | 2    | 66.5                 | 0.43     | 1.39  | 0.77               | 19.3      |  |  |
| 4GB                      | 222     | 242                                 | 342 | 311        | 336                           | 10       | 16                               | 4           | 3    | 70                   | 0.44     | 1.38  | 0.76               | 25.4      |  |  |
| 3GD                      | 222     | 230                                 | 342 | 298        | 340                           | 11       | 22                               | 4           | 3    | 85                   | 0.41     | 1.48  | 0.81               | 43.6      |  |  |
|                          | 222     | 230                                 | 342 | 302        | 344                           | 11       | 22                               | 4           | 3    | 91.5                 | 0.49     | 1.23  | 0.68               | 43.6      |  |  |
| 3EC                      | 234     | 234                                 | 288 | 271        | 290                           | 10       | 12                               | 2.5         | 2    | 59.5                 | 0.43     | 1.41  | 0.78               | 10.2      |  |  |
|                          | 234     | 235                                 | 288 | 274        | 290                           | 10       | 10                               | 2.5         | 2    | 57                   | 0.39     | 1.55  | 0.85               | 9.63      |  |  |
| 4FD                      | 238     | 243                                 | 326 | 300        | 326                           | 12       | 19                               | 3           | 2.5  | 72.5                 | 0.43     | 1.39  | 0.77               | 25        |  |  |
| 4EC                      | 254     | 254                                 | 308 | 290        | 311                           | 10       | 12                               | 2.5         | 2    | 65.5                 | 0.46     | 1.31  | 0.72               | 10.9      |  |  |
| 4FD                      | 258     | 261                                 | 346 | 318        | 346                           | 12       | 19                               | 3           | 2.5  | 78                   | 0.46     | 1.31  | 0.72               | 26.8      |  |  |
| 3EC                      | 274     | 279                                 | 348 | 325        | 347                           | 11       | 15                               | 2.5         | 2    | 69.5                 | 0.41     | 1.48  | 0.81               | 18.8      |  |  |
| 4FC                      | 282     | 287                                 | 382 | 352        | 383                           | 14       | 22                               | 4           | 3    | 85.5                 | 0.43     | 1.38  | 0.76               | 39.4      |  |  |
| 4EC                      | 294     | 298                                 | 368 | 344        | 368                           | 11       | 15                               | 2.5         | 2    | 75                   | 0.43     | 1.39  | 0.76               | 20        |  |  |
| 4FC                      | 302     | 305                                 | 402 | 370        | 402                           | 14       | 22                               | 4           | 3    | 90.5                 | 0.46     | 1.31  | 0.72               | 41.8      |  |  |
| 3FD                      | 318     | 324                                 | 406 | 379        | 405                           | 13       | 19                               | 3           | 2.5  | 80                   | 0.39     | 1.52  | 0.84               | 31.4      |  |  |
| 4GD                      | 322     | 329                                 | 442 | 404        | 439                           | 15       | 26                               | 4           | 3    | 98                   | 0.43     | 1.38  | 0.76               | 59.6      |  |  |

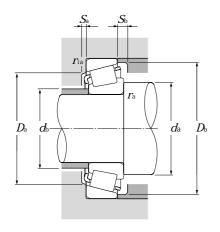
Note: When selecting bearings with bearing numbers marked with "  $\star$  ", please consult NTN Engineering.





#### **Metric series**




#### d 320 ~ 360mm

|     |     | Boun | dary dim | ensions |                     |                    | Basic load ratings dynamic static dynamic static |             |         |             | Limiting          | speeds | Bearing<br>numbers     |
|-----|-----|------|----------|---------|---------------------|--------------------|--------------------------------------------------|-------------|---------|-------------|-------------------|--------|------------------------|
|     |     |      | mm       |         |                     |                    | k                                                | N           | k       | gf          | min <sup>-1</sup> |        |                        |
| d   | D   | T    | B        | С       | $r_{ m s  min}^{1}$ | $n_{ m s min}^{1}$ | $C_{\Gamma}$                                     | $C_{ m or}$ | $C_{r}$ | $C_{ m or}$ | grease            | oil    |                        |
|     |     |      |          |         |                     |                    |                                                  |             |         |             |                   |        |                        |
|     | 440 | 76   | 76       | 57      | 4                   | 3                  | 1 010                                            | 2 150       | 103 000 | 219 000     | 670               | 900    | * 32964XUE1            |
| 320 | 440 | 76   | 72       | 63      | 3                   | 3                  | 865                                              | 1 880       | 88 000  | 192 000     | 670               | 900    | 32964E1 <sup>2</sup> ) |
|     | 480 | 100  | 100      | 74      | 5                   | 4                  | 1 520                                            | 2 940       | 155 000 | 300 000     | 630               | 840    | 32064XU                |
|     | 460 | 76   | 76       | 57      | 4                   | 3                  | 1 040                                            | 2 270       | 106 000 | 232 000     | 630               | 840    | * 32968XUE1            |
| 340 | 460 | 76   | 72       | 63      | 3                   | 3                  | 910                                              | 1 980       | 93 000  | 201 000     | 630               | 900    | 32968E1 <sup>2</sup> ) |
| 360 | 480 | 76   | 76       | 57      | 4                   | 3                  | 1 050                                            | 2 330       | 107 000 | 238 000     | 590               | 780    | 32972XUE1              |



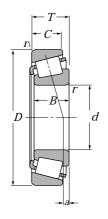
<sup>1 )</sup> Minimal allowable dimension for chamfer dimension r or r1. 2 ) This bearing does not incorporate the subunit dimensions.





# Equivalent radial load dynamic Pr = XFr + YFa

| $\frac{F_{\rm a}}{F_{\rm r}}$ | e | $\frac{F}{F}$ | $\frac{\vec{r_{\rm a}}}{\vec{r_{\rm r}}} > e$ |
|-------------------------------|---|---------------|-----------------------------------------------|
| X                             | Y | X             | Y                                             |
| 1                             | 0 | 0.4           | <i>Y</i> 2                                    |


static  $P_{\text{Or}} = 0.5F_{\text{r}} + Y_0F_{\text{a}}$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ For values of e,  $Y_2$  and  $Y_0$  see the table below.

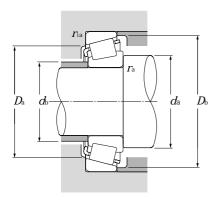
| Dimensions Abutment and fillet dimensions series to |         |                                     |     |         |                                 |       |                                        |             |            | Load center |           |       | Axial load factors |           |
|-----------------------------------------------------|---------|-------------------------------------|-----|---------|---------------------------------|-------|----------------------------------------|-------------|------------|-------------|-----------|-------|--------------------|-----------|
| ISC                                                 | כ       |                                     |     |         | mm                              |       |                                        |             |            | mm          |           |       |                    | kg        |
|                                                     | $d_{a}$ | $d_{\scriptscriptstyle \mathrm{b}}$ |     | $D_{a}$ | $D_{\!\scriptscriptstyle  m D}$ | $S_a$ | $S_{\!\scriptscriptstyle{\mathrm{b}}}$ | $r_{ m as}$ | $m{r}$ las |             |           |       |                    |           |
|                                                     | min     | max                                 | max | min     | min                             | min   | min                                    | max         | max        | а           | e         | $Y_2$ | $Y_{\rm o}$        | (approx.) |
|                                                     |         |                                     |     |         |                                 |       |                                        |             |            |             |           |       |                    |           |
| 3FD                                                 | 338     | 344                                 | 426 | 398     | 426                             | 13    | 19                                     | 3           | 2.5        | 85          | 0.42      | 1.44  | 0.79               | 33.1      |
|                                                     | 338     | 344                                 | 426 | 398     | 425                             | 13    | 13                                     | 3           | 2.5        | 85          | 0.39      | 1.55  | 0.85               | 31.7      |
| 4GD                                                 | 342     | 344.5                               | 462 | 418.5   | 463                             | 15    | 26                                     | 4           | 3          | 104         | 0.46      | 1.31  | 0.72               | 60.2      |
| 4FD                                                 | 358     | 362                                 | 446 | 417     | 446                             | 13    | 19                                     | 3           | 2.5        | 90.5        | 0.44      | 1.37  | 0.75               | 34.9      |
| 41 0                                                |         |                                     |     |         |                                 | -     |                                        | -           |            |             | • • • • • |       |                    |           |
|                                                     | 358     | 362                                 | 446 | 414     | 445.5                           | 13    | 13                                     | 3           | 2.5        | 87          | 0.39      | 1.55  | 0.85               | 36.0      |
| 4FD                                                 | 378     | 381                                 | 466 | 436     | 466                             | 13    | 19                                     | 3           | 2.5        | 96.5        | 0.46      | 1.31  | 0.72               | 36.6      |



### NTN

#### Inch series




### d 12.700~22.225mm

|        | Boundary dimensions |        |        |        | dunamia                           |             | ad ratings     | Limiting speeds static |        |                 |  |
|--------|---------------------|--------|--------|--------|-----------------------------------|-------------|----------------|------------------------|--------|-----------------|--|
|        |                     | mm     |        |        | dynamic<br>kN                     | static      | dynamic<br>kgf | Static                 | mii    | n <sup>-1</sup> |  |
| d      | D                   | T      | В      | С      | $C_{\!\scriptscriptstyle \Gamma}$ | $C_{ m or}$ | $C_{ m r}$     | $C_{ m or}$            | grease | oil             |  |
| 12.700 | 34.988              | 10.998 | 10.988 | 8.730  | 12.3                              | 11.6        | 1 260          | 1 180                  | 12 000 | 16 000          |  |
| 14.989 | 34.988              | 10.998 | 10.988 | 8.730  | 12.3                              | 11.6        | 1 260          | 1 180                  | 12 000 | 16 000          |  |
|        | 41.275              | 14.288 | 14.681 | 11.112 | 20.3                              | 18.7        | 2 070          | 1 910                  | 10 000 | 13 000          |  |
| 45.000 | 42.862              | 14.288 | 14.288 | 9.525  | 17.6                              | 17.5        | 1 800          | 1 790                  | 8 700  | 12 000          |  |
| 15.875 | 42.862              | 16.670 | 16.670 | 13.495 | 26.7                              | 26.0        | 2 720          | 2 650                  | 9 800  | 13 000          |  |
|        | 47.000              | 14.381 | 14.381 | 11.112 | 24.0                              | 24.2        | 2 440          | 2 460                  | 8 600  | 11 000          |  |
|        | 49.225              | 19.845 | 21.539 | 14.288 | 38.5                              | 39.0        | 3 900          | 3 950                  | 8 500  | 11 000          |  |
| 16.993 | 47.000              | 14.381 | 14.381 | 11.112 | 24.0                              | 24.2        | 2 440          | 2 460                  | 8 600  | 11 000          |  |
| 17.462 | 39.878              | 13.843 | 14.605 | 10.668 | 23.8                              | 24.2        | 2 420          | 2 470                  | 10 000 | 13 000          |  |
|        | 39.992              | 12.014 | 11.153 | 9.525  | 12.8                              | 12.8        | 1 310          | 1 300                  | 10 000 | 13 000          |  |
|        | 45.237              | 15.494 | 16.637 | 12.065 | 28.3                              | 28.6        | 2 880          | 2 920                  | 8 900  | 12 000          |  |
|        | 47.000              | 14.381 | 14.381 | 11.112 | 24.0                              | 24.2        | 2 440          | 2 460                  | 8 600  | 11 000          |  |
| 19.050 | 49.225              | 18.034 | 19.050 | 14.288 | 38.5                              | 39.0        | 3 900          | 3 950                  | 8 500  | 11 000          |  |
| 19.050 | 49.225              | 19.845 | 21.539 | 14.288 | 38.5                              | 39.0        | 3 900          | 3 950                  | 8 500  | 11 000          |  |
|        | 49.225              | 21.209 | 19.050 | 17.462 | 38.5                              | 39.0        | 3 900          | 3 950                  | 8 500  | 11 000          |  |
|        | 53.975              | 22.225 | 21.839 | 15.875 | 40.0                              | 39.0        | 4 100          | 3 950                  | 8 000  | 11 000          |  |
|        | 56.896              | 19.368 | 19.837 | 15.875 | 42.5                              | 46.5        | 4 350          | 4 750                  | 7 200  | 9 600           |  |
| 19.987 | 47.000              | 14.381 | 14.381 | 11.112 | 24.0                              | 24.2        | 2 440          | 2 460                  | 8 600  | 11 000          |  |
| 20.000 | 50.005              | 13.495 | 14.260 | 9.525  | 26.0                              | 27.9        | 2 650          | 2 850                  | 7 500  | 10 000          |  |
| 20.625 | 49.225              | 19.845 | 21.539 | 14.288 | 38.5                              | 39.0        | 3 900          | 3 950                  | 8 500  | 11 000          |  |
| 20.638 | 49.225              | 19.845 | 19.845 | 15.875 | 37.5                              | 39.0        | 3 800          | 3 950                  | 8 200  | 11 000          |  |
| 21.430 | 50.005              | 17.526 | 18.288 | 13.970 | 38.0                              | 39.0        | 3 850          | 3 950                  | 8 000  | 11 000          |  |
| 21.986 | 45.974              | 15.494 | 16.637 | 12.065 | 29.6                              | 34.0        | 3 000          | 3 450                  | 8 400  | 11 000          |  |
|        | 50.005              | 13.495 | 14.260 | 9.525  | 26.0                              | 27.9        | 2 650          | 2 850                  | 7 500  | 10 000          |  |
| 22.225 | 50.005              | 17.526 | 18.288 | 13.970 | 38.0                              | 39.0        | 3 850          | 3 950                  | 8 000  | 11 000          |  |
| LL.LLJ | 52.388              | 19.368 | 20.168 | 14.288 | 40.5                              | 43.0        | 4 150          | 4 350                  | 7 600  | 10 000          |  |
|        | 53.975              | 19.368 | 20.168 | 14.288 | 40.5                              | 43.0        | 4 150          | 4 350                  | 7 600  | 10 000          |  |

Note: 1. Chamfer dimensions on the back face of the inner and outer rings of the bearing are larger than maximum values for installation dimensions  $r_{as}$  and  $r_{as}$ . 2. As for the maximum value for inner and outer ring diameters of bearings whose bearing numbers are marked with "†" (inner ring) and "††" (outer ring), the precision class is an integer for class 4 and class 2 bearings only.

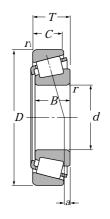






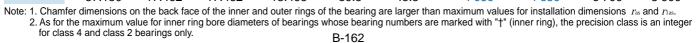
# Equivalent radial load dynamic Pr = XFr + YFa

| $\frac{F_{\rm a}}{F_{\rm r}}$ | e | $\frac{F}{F}$ | $\frac{\overline{r_a}}{\overline{r_r}} > e$ |
|-------------------------------|---|---------------|---------------------------------------------|
| $\overline{X}$                | Y | X             | Y                                           |
| 1                             | 0 | 0.4           | <b>Y</b> 2                                  |


static  $P_{\text{Or}} = 0.5 F_{\text{r}} + Y_0 F_{\text{a}}$  When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$  For values of  $P_{\text{or}} < F_{\text{o}}$  and  $P_{\text{o}} < F_{\text{o}}$  see the table below.

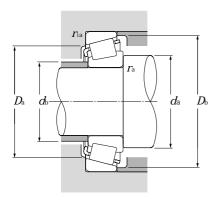
| Bearing numbers                                                      | Abutment and fillet dimensions |                               |                        |                        |                          |                        |                          | Constant                     | t Axial load factors         |                              | Mass                          |  |
|----------------------------------------------------------------------|--------------------------------|-------------------------------|------------------------|------------------------|--------------------------|------------------------|--------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|--|
|                                                                      |                                |                               | mr                     | n .                    | $arGamma_{ m as}$        | <i>P</i> 1as           | mm                       |                              |                              |                              | kg                            |  |
|                                                                      | $d_{\rm a}$                    | $d_{\scriptscriptstyle  m b}$ | $D_{\mathrm{a}}$       | $D_{ m b}$             | max                      | max                    | а                        | e                            | $Y_2$                        | $Y_{\rm o}$                  | (approx.)                     |  |
| 4T-A4050/A4138                                                       | 18.5                           | 17                            | 29                     | 32                     | 1.3                      | 1.3                    | 2.5                      | 0.45                         | 1.32                         | 0.73                         | 0.053                         |  |
| 4T-A4059†/A4138                                                      | 19.5                           | 19                            | 29                     | 32                     | 0.8                      | 1.3                    | 2.5                      | 0.45                         | 1.32                         | 0.73                         | 0.049                         |  |
| 4T-03062/03162<br>4T-11590/11520                                     | 21.5<br>24.5                   | 20<br>22.5                    | 34<br>34.5             | 37.5<br>39.5           | 1.3<br>1.5               | 2<br>1.5               | 5.4<br>1.2               | 0.31<br>0.70                 | 1.93<br>0.85                 | 1.06<br>0.47                 | 0.092<br>0.103                |  |
| 4T-17580/17520                                                       | 24.5                           | 22.5                          | 36.5                   | 39.5<br>39             | 1.5                      | 1.5                    | 5.8                      | 0.70                         | 1.81                         | 1.00                         | 0.103                         |  |
| 4T-05062/05185                                                       | 23.5                           | 21                            | 40.5                   | 42.5                   | 1.5                      | 1.3                    | 4.2                      | 0.36                         | 1.68                         | 0.92                         | 0.122                         |  |
| 4T-09062/09195                                                       | 22                             | 21.5                          | 42                     | 44.5                   | 0.8                      | 1.3                    | 9.4                      | 0.27                         | 2.26                         | 1.24                         | 0.203                         |  |
| 4T-05066/05185                                                       | 24.5                           | 22                            | 40.5                   | 42.5                   | 1.5                      | 1.3                    | 4.2                      | 0.36                         | 1.68                         | 0.92                         | 0.127                         |  |
| 4T-LM11749/LM11710                                                   | 23                             | 21.5                          | 34                     | 37                     | 1.3                      | 1.3                    | 5.3                      | 0.29                         | 2.10                         | 1.15                         | 0.084                         |  |
| 4T-A6075/A6157                                                       | 24                             | 23                            | 34                     | 37                     | 1                        | 1.3                    | 1.5                      | 0.53                         | 1.14                         | 0.63                         | 0.065                         |  |
| 4T-LM11949/LM11910                                                   | 28                             | 23.5                          | 39.5                   | 41.5                   | 1.3                      | 1.3                    | 5.6                      | 0.30                         | 2.00                         | 1.10                         | 0.122                         |  |
| 4T-05075/05185                                                       | 25                             | 23.5                          | 40.5                   | 42.5                   | 1.3                      | 1.3                    | 4.2                      | 0.36                         | 1.68                         | 0.92                         | 0.121                         |  |
| 4T-09067/09195                                                       | 25.5                           | 24                            | 42                     | 44.5                   | 1.3                      | 1.3                    | 7.6                      | 0.27                         | 2.26                         | 1.24                         | 0.179                         |  |
| 4T-09078/09195                                                       | 25.5                           | 24                            | 42                     | 44.5                   | 1.3                      | 1.3                    | 9.4                      | 0.27                         | 2.26                         | 1.24                         | 0.188                         |  |
| 4T-09067/09196                                                       | 25.5                           | 24                            | 41.5                   | 44.5                   | 1.3                      | 1.5                    | 7.6                      | 0.27                         | 2.26                         | 1.24                         | 0.198                         |  |
| 4T-21075/21212††<br>4T-1775/1729                                     | 31.5<br>27                     | 26<br>25                      | 43<br>49               | 50<br>51               | 1.5<br>1.5               | 2.3<br>1.3             | 5.6<br>6.5               | 0.59<br>0.31                 | 1.02<br>1.95                 | 0.56<br>1.07                 | 0.248<br>0.272                |  |
| 4T-05079†/05185                                                      | 26.5                           | 24                            | 40.5                   | 42.5                   | 1.5                      | 1.3                    | 4.2                      | 0.36                         | 1.68                         | 0.92                         | 0.117                         |  |
| 4T-07079/07196                                                       | 27.5                           | 26                            | 44.5                   | 47                     | 1.5                      | 1                      | 3.0                      | 0.40                         | 1.49                         | 0.82                         | 0.138                         |  |
| 4T-09081/09195                                                       | 27.5                           | 25.5                          | 42                     | 44.5                   | 1.5                      | 1.3                    | 9.4                      | 0.27                         | 2.26                         | 1.24                         | 0.179                         |  |
| 4T-12580/12520                                                       | 28.5                           | 26                            | 42.5                   | 45.5                   | 1.5                      | 1.5                    | 7.1                      | 0.32                         | 1.86                         | 1.02                         | 0.182                         |  |
| 4T-M12649/M12610                                                     | 29                             | 25.5                          | 44                     | 46                     | 1.3                      | 1.3                    | 6.4                      | 0.28                         | 2.16                         | 1.19                         | 0.169                         |  |
| 4T-LM12749†/LM12711††                                                | 27.5                           | 26                            | 40                     | 42.5                   | 1.3                      | 1.3                    | 5.4                      | 0.31                         | 1.96                         | 1.08                         | 0.123                         |  |
| 4T-07087/07196<br>4T-M12648/M12610<br>4T-1380/1328<br>4T-1380/1329†† | 28.5<br>28.5<br>29.5<br>29.5   | 27<br>26.5<br>27<br>27        | 44.5<br>44<br>45<br>46 | 47<br>46<br>48.5<br>49 | 1.3<br>1.3<br>1.5<br>1.5 | 1<br>1.3<br>1.5<br>1.5 | 3.0<br>6.4<br>7.4<br>7.4 | 0.40<br>0.28<br>0.29<br>0.29 | 1.49<br>2.16<br>2.05<br>2.05 | 0.82<br>1.19<br>1.13<br>1.13 | 0.13<br>0.165<br>0.2<br>0.215 |  |






#### Inch series




#### d 22.225~28.575mm

|        | Boundary dimensions                                                                                                  |                                                                                                                      |                                                                                                                      |                                                                                                                    |                                                                                              |                                                                                              | ad ratings                                                                                               | _4_4;_                                                                                          | Limiting speeds                                                                                 |                                                                                                    |  |
|--------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|
|        |                                                                                                                      | mm                                                                                                                   |                                                                                                                      |                                                                                                                    | dynamic<br>kN                                                                                | static                                                                                       | dynamic<br>kgf                                                                                           | static                                                                                          | mir                                                                                             | 1 <sup>-1</sup>                                                                                    |  |
| d      | D                                                                                                                    | T                                                                                                                    | В                                                                                                                    | С                                                                                                                  | $C_{ m r}$                                                                                   | $C_{ m or}$                                                                                  | $C_{\Gamma}$                                                                                             | $C_{ m or}$                                                                                     | grease                                                                                          | oil                                                                                                |  |
| 22.225 | 56.896<br>57.150                                                                                                     | 19.368<br>22.225                                                                                                     | 19.837<br>22.225                                                                                                     | 15.875<br>17.462                                                                                                   | 42.5<br>47.0                                                                                 | 46.5<br>49.5                                                                                 | 4 350<br>4 800                                                                                           | 4 750<br>5 050                                                                                  | 7 200<br>7 100                                                                                  | 9 600<br>9 500                                                                                     |  |
| 22.606 | 47.000                                                                                                               | 15.500                                                                                                               | 15.500                                                                                                               | 12.000                                                                                                             | 27.5                                                                                         | 32.5                                                                                         | 2 800                                                                                                    | 3 300                                                                                           | 8 200                                                                                           | 11 000                                                                                             |  |
| 23.812 | 50.005<br>50.292<br>56.896                                                                                           | 13.495<br>14.224<br>19.368                                                                                           | 14.260<br>14.732<br>19.837                                                                                           | 9.525<br>10.668<br>15.875                                                                                          | 26.0<br>28.8<br>42.5                                                                         | 27.9<br>34.0<br>46.5                                                                         | 2 650<br>2 940<br>4 350                                                                                  | 2 850<br>3 450<br>4 750                                                                         | 7 500<br>7 400<br>7 200                                                                         | 10 000<br>9 900<br>9 600                                                                           |  |
| 24.981 | 50.005                                                                                                               | 13.495                                                                                                               | 14.260                                                                                                               | 9.525                                                                                                              | 26.0                                                                                         | 27.9                                                                                         | 2 650                                                                                                    | 2 850                                                                                           | 7 500                                                                                           | 10 000                                                                                             |  |
| 25.000 | 50.005                                                                                                               | 13.495                                                                                                               | 14.260                                                                                                               | 9.525                                                                                                              | 26.0                                                                                         | 27.9                                                                                         | 2 650                                                                                                    | 2 850                                                                                           | 7 500                                                                                           | 10 000                                                                                             |  |
| 25.159 | 50.005                                                                                                               | 13.495                                                                                                               | 14.260                                                                                                               | 9.525                                                                                                              | 26.0                                                                                         | 27.9                                                                                         | 2 650                                                                                                    | 2 850                                                                                           | 7 500                                                                                           | 10 000                                                                                             |  |
| 25.400 | 50.005<br>50.005<br>50.292<br>51.994<br>56.896<br>57.150<br>61.912<br>62.000<br>62.000<br>64.292<br>65.088<br>66.421 | 13.495<br>13.495<br>14.224<br>15.011<br>19.368<br>19.431<br>19.050<br>19.050<br>19.050<br>21.433<br>22.225<br>23.812 | 14.260<br>14.260<br>14.732<br>14.260<br>19.837<br>19.431<br>20.638<br>20.638<br>20.638<br>21.433<br>21.463<br>25.433 | 9.525<br>9.525<br>10.668<br>12.700<br>15.875<br>14.732<br>14.288<br>14.288<br>14.288<br>16.670<br>15.875<br>19.050 | 26.0<br>26.0<br>28.8<br>26.0<br>42.5<br>42.0<br>46.5<br>46.5<br>46.5<br>51.5<br>47.0<br>64.5 | 27.9<br>27.9<br>34.0<br>27.9<br>46.5<br>48.5<br>54.0<br>54.0<br>54.0<br>64.5<br>50.5<br>72.5 | 2 650<br>2 650<br>2 940<br>2 650<br>4 350<br>4 300<br>4 750<br>4 750<br>4 750<br>5 250<br>4 800<br>6 550 | 2 850<br>2 850<br>3 450<br>2 850<br>4 750<br>4 950<br>5 500<br>5 500<br>6 600<br>5 150<br>7 400 | 7 500<br>7 500<br>7 400<br>7 500<br>7 200<br>6 900<br>6 100<br>6 100<br>6 100<br>5 700<br>6 200 | 10 000<br>10 000<br>9 900<br>10 000<br>9 600<br>9 200<br>8 200<br>8 200<br>8 100<br>7 600<br>8 200 |  |
| 26.157 | 62.000                                                                                                               | 19.050                                                                                                               | 20.638                                                                                                               | 14.288                                                                                                             | 46.5                                                                                         | 54.0                                                                                         | 4 750                                                                                                    | 5 500                                                                                           | 6 100                                                                                           | 8 200                                                                                              |  |
| 26.162 | 66.421                                                                                                               | 23.812                                                                                                               | 25.433                                                                                                               | 19.050                                                                                                             | 64.5                                                                                         | 72.5                                                                                         | 6 550                                                                                                    | 7 400                                                                                           | 6 200                                                                                           | 8 200                                                                                              |  |
| 26.988 | 50.292<br>60.325<br>62.000<br>66.421                                                                                 | 14.224<br>19.842<br>19.050<br>23.812                                                                                 | 14.732<br>17.462<br>20.638<br>25.433                                                                                 | 10.668<br>15.875<br>14.288<br>19.050                                                                               | 28.8<br>39.5<br>46.5<br>64.5                                                                 | 34.0<br>45.5<br>54.0<br>72.5                                                                 | 2 940<br>4 050<br>4 750<br>6 550                                                                         | 3 450<br>4 650<br>5 500<br>7 400                                                                | 7 400<br>6 700<br>6 100<br>6 200                                                                | 9 900<br>8 900<br>8 200<br>8 200                                                                   |  |
| 28.575 | 56.896<br>57.150                                                                                                     | 19.845<br>17.462                                                                                                     | 19.355<br>17.462                                                                                                     | 15.875<br>13.495                                                                                                   | 40.5<br>39.5                                                                                 | 44.5<br>45.5                                                                                 | 4 150<br>4 050                                                                                           | 4 550<br>4 650                                                                                  | 6 700<br>6 700                                                                                  | 8 900<br>8 900                                                                                     |  |





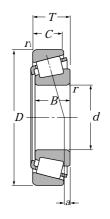




# Equivalent radial load dynamic Pr = XFr + YFa

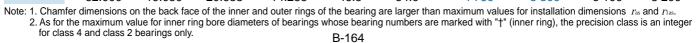
| $\frac{F_{\rm a}}{F_{\rm r}}$ | e | $\frac{F}{F}$ | $\frac{\overline{r_a}}{\overline{r_r}} > e$ |
|-------------------------------|---|---------------|---------------------------------------------|
| X                             | Y | X             | Y                                           |
| 1                             | 0 | 0.4           | <b>Y</b> 2                                  |

static  $P_{\text{Or}} = 0.5 F_{\text{r}} + Y_0 F_{\text{a}}$  When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$  For values of  $P_{\text{or}} < F_{\text{o}}$  and  $P_{\text{o}} < F_{\text{o}}$  see the table below.


| Bearing numbers                    |            | Abutm                         | ent and fil          | let dime   | nsions                 |                      | Load center | Constant     | Axi<br>load fa |              | Mass         |
|------------------------------------|------------|-------------------------------|----------------------|------------|------------------------|----------------------|-------------|--------------|----------------|--------------|--------------|
|                                    |            |                               | mr                   | n          |                        |                      | mm          |              |                |              | kg           |
|                                    | $d_{a}$    | $d_{\scriptscriptstyle  m b}$ | $D_{\mathrm{a}}$     | $D_{ m b}$ | r <sub>as</sub><br>max | <i>I</i> ¹1as<br>max | а           | e            | $Y_2$          | $Y_{\circ}$  | (approx.)    |
| 4T-1755/1729                       | 29         | 27.5                          | 49                   | 51         | 1.3                    | 1.3                  | 6.5         | 0.31         | 1.95           | 1.07         | 0.256        |
| 4T-1280/1220                       | 29.5       | 29                            | 49                   | 52         | 8.0                    | 1.5                  | 7.1         | 0.35         | 1.73           | 0.95         | 0.286        |
| 4T-LM72849/LM72810                 | 30         | 28                            | 40.5                 | 44         | 1.5                    | 1                    | 3.0         | 0.47         | 1.27           | 0.70         | 0.125        |
| 4T-07093/07196                     | 30.5       | 28.5                          | 44.5                 | 47         | 1.5                    | 1                    | 3.0         | 0.40         | 1.49           | 0.82         | 0.123        |
| 4T-L44640/L44610                   | 30.5       | 28.5                          | 44.5                 | 47         | 1.5                    | 1.3                  | 3.4         | 0.37         | 1.60           | 0.88         | 0.137        |
| 4T-1779/1729                       | 29.5       | 28.5                          | 49                   | 51         | 0.8                    | 1.3                  | 6.5         | 0.31         | 1.95           | 1.07         | 0.247        |
| 4T-07098/07196                     | 31         | 29                            | 44.5                 | 47         | 1.5                    | 1                    | 3.0         | 0.40         | 1.49           | 0.82         | 0.118        |
| 4T-07097/07196                     | 31         | 29                            | 44.5                 | 47         | 1.5                    | 1                    | 3.0         | 0.40         | 1.49           | 0.82         | 0.118        |
| 4T-07096/07196                     | 31.5       | 29.5                          | 44.5                 | 47         | 1.5                    | 1                    | 3.0         | 0.40         | 1.49           | 0.82         | 0.117        |
| 4T-07100/07196                     | 30.5       | 29.5                          | 44.5                 | 47         | 1                      | 1                    | 3.0         | 0.40         | 1.49           | 0.82         | 0.117        |
| 4T-07100S/07196                    | 31.5       | 29.5                          | 44.5                 | 47         | 1.5                    | 1                    | 3.0         | 0.40         | 1.49           | 0.82         | 0.116        |
| 4T-L44643/L44610                   | 31.5       | 29.5                          | 44.5                 | 47         | 1.3                    | 1.3                  | 3.4         | 0.37         | 1.60           | 0.88         | 0.13         |
| 4T-07100/07204                     | 30.5       | 29.5                          | 45                   | 48         | 1                      | 1.3                  | 3.0         | 0.40         | 1.49           | 0.82         | 0.144        |
| 4T-1780/1729                       | 30.5       | 30                            | 49                   | 51         | 0.8                    | 1.3                  | 6.5         | 0.31         | 1.95           | 1.07         | 0.238        |
| 4T-M84548/M84510<br>4T-15101/15243 | 36<br>32.5 | 33<br>31.5                    | 48.5<br>54           | 54<br>58   | 1.5<br>0.8             | 1.5<br>2             | 3.4<br>6.0  | 0.55<br>0.35 | 1.10<br>1.71   | 0.60<br>0.94 | 0.241<br>0.3 |
| 4T-15101/15245                     | 32.5<br>38 | 31.5<br>31.5                  | 5 <del>4</del><br>55 | 56<br>58   | 3.5                    | 2<br>1.3             | 6.0         | 0.35         | 1.71           | 0.94         | 0.3<br>0.299 |
| 4T-15100/15245                     | 34         | 31.5                          | 55                   | 58         | 1.5                    | 1.3                  | 6.0         | 0.35         | 1.71           | 0.94         | 0.299        |
| 4T-M86643/M86610                   | 38         | 36.5                          | 54                   | 61         | 1.5                    | 1.5                  | 3.3         | 0.55         | 1.10           | 0.60         | 0.371        |
| 4T-23100/23256                     | 39         | 34.5                          | 53                   | 63         | 1.5                    | 1.5                  | 2.0         | 0.73         | 0.82           | 0.45         | 0.36         |
| 4T-2687/2631                       | 33.5       | 31.5                          | 58                   | 60         | 1.3                    | 1.3                  | 9.3         | 0.25         | 2.36           | 1.30         | 0.442        |
| 4T-15103/15245                     | 33         | 32.5                          | 55                   | 58         | 0.8                    | 1.3                  | 6.0         | 0.35         | 1.71           | 0.94         | 0.296        |
| 4T-2682/2631                       | 34.5       | 32                            | 58                   | 60         | 1.5                    | 1.3                  | 9.3         | 0.25         | 2.36           | 1.30         | 0.436        |
| 4T-L44649†/L44610                  | 37.5       | 31                            | 44.5                 | 47         | 3.5                    | 1.3                  | 3.4         | 0.37         | 1.60           | 0.88         | 0.12         |
| 4T-15580†/15523                    | 38.5       | 32                            | 51                   | 54         | 3.5                    | 1.5                  | 5.0         | 0.35         | 1.73           | 0.95         | 0.26         |
| 4T-15106†/15245                    | 33.5       | 33                            | 55                   | 58         | 8.0                    | 1.3                  | 6.0         | 0.35         | 1.71           | 0.94         | 0.291        |
| 4T-2688†/2631                      | 35         | 33                            | 58                   | 60         | 1.5                    | 1.3                  | 9.3         | 0.25         | 2.36           | 1.30         | 0.429        |
| 4T-1985/1930                       | 34         | 33.5                          | 51                   | 54         | 0.8                    | 0.8                  | 6.7         | 0.33         | 1.82           | 1.00         | 0.217        |
| 4T-15590/15520                     | 39.5       | 33.5                          | 51                   | 53         | 3.5                    | 1.5                  | 5.0         | 0.35         | 1.73           | 0.95         | 0.196        |

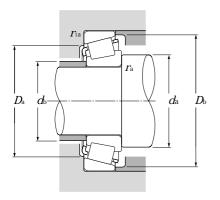


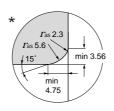
### **Tapered Roller Bearings**




## Inch series J series




### d 28.575~31.750mm


|        | Boundary dimensions |        |        | dynamic | Basic loa                       | ad ratings  | Limiting speeds |             |        |       |
|--------|---------------------|--------|--------|---------|---------------------------------|-------------|-----------------|-------------|--------|-------|
|        |                     | mm     |        |         | dynamic<br>kN                   | static      | dynamic<br>kgf  | static      | min    | -1    |
| d      | D                   | T      | В      | С       | $C_{\scriptscriptstyle \Gamma}$ | $C_{ m or}$ | $C_{\Gamma}$    | $C_{ m or}$ | grease | oil   |
|        | 58.738              | 19.050 | 19.355 | 15.080  | 40.5                            | 44.5        | 4 150           | 4 550       | 6 700  | 8 900 |
|        | 60.325              | 19.842 | 17.462 | 15.875  | 39.5                            | 45.5        | 4 050           | 4 650       | 6 700  | 8 900 |
|        | 60.325              | 19.845 | 19.355 | 15.875  | 40.5                            | 44.5        | 4 150           | 4 550       | 6 700  | 8 900 |
|        | 62.000              | 19.050 | 20.638 | 14.288  | 46.5                            | 54.0        | 4 750           | 5 500       | 6 100  | 8 200 |
|        | 64.292              | 21.433 | 21.433 | 16.670  | 51.5                            | 64.5        | 5 250           | 6 600       | 6 100  | 8 100 |
| 28.575 | 66.421              | 23.812 | 25.433 | 19.050  | 64.5                            | 72.5        | 6 550           | 7 400       | 6 200  | 8 200 |
|        | 68.262              | 22.225 | 22.225 | 17.462  | 57.0                            | 67.0        | 5 800           | 6 850       | 5 800  | 7 700 |
|        | 68.262              | 22.225 | 23.812 | 17.462  | 57.5                            | 65.5        | 5 850           | 6 700       | 5 700  | 7 700 |
|        | 69.850              | 23.812 | 25.357 | 19.050  | 69.0                            | 81.5        | 7 050           | 8 300       | 5 700  | 7 600 |
|        | 72.626              | 24.608 | 24.257 | 17.462  | 58.0                            | 55.5        | 5 900           | 5 700       | 5 800  | 7 700 |
|        | 73.025              | 22.225 | 22.225 | 17.462  | 56.5                            | 68.0        | 5 750           | 6 900       | 5 300  | 7 000 |
| 29.000 | 50.292              | 14.224 | 14.732 | 10.668  | 28.0                            | 35.5        | 2 860           | 3 600       | 7 200  | 9 600 |
| 29.367 | 66.421              | 23.812 | 25.433 | 19.050  | 64.5                            | 72.5        | 6 550           | 7 400       | 6 200  | 8 200 |
| 29.987 | 62.000              | 16.002 | 16.566 | 14.288  | 39.0                            | 42.0        | 3 950           | 4 300       | 6 300  | 8 400 |
| 29.901 | 62.000              | 19.050 | 20.638 | 14.288  | 46.5                            | 54.0        | 4 750           | 5 500       | 6 100  | 8 200 |
| 30.000 | 69.012              | 19.845 | 19.583 | 15.875  | 48.5                            | 58.0        | 4 900           | 5 900       | 5 600  | 7 400 |
| 30.000 | 72.000              | 29.370 | 27.783 | 23.020  | 72.0                            | 97.0        | 7 350           | 9 850       | 5 400  | 7 100 |
| 30.112 | 62.000              | 19.050 | 20.638 | 14.288  | 46.5                            | 54.0        | 4 750           | 5 500       | 6 100  | 8 200 |
|        | 62.000              | 16.002 | 16.566 | 14.288  | 39.0                            | 42.0        | 3 950           | 4 300       | 6 300  | 8 400 |
| 30.162 | 64.292              | 21.433 | 21.433 | 16.670  | 51.5                            | 64.5        | 5 250           | 6 600       | 6 100  | 8 100 |
| 30.102 | 69.850              | 23.812 | 25.357 | 19.050  | 69.0                            | 81.5        | 7 050           | 8 300       | 5 700  | 7 600 |
|        | 72.626              | 30.162 | 29.997 | 23.812  | 84.5                            | 98.0        | 8 600           | 9 950       | 5 500  | 7 300 |
|        | 62.000              | 19.050 | 20.638 | 14.288  | 46.5                            | 54.0        | 4 750           | 5 500       | 6 100  | 8 200 |
| 30.213 | 62.000              | 19.050 | 20.638 | 14.288  | 46.5                            | 54.0        | 4 750           | 5 500       | 6 100  | 8 200 |
|        | 62.000              | 19.050 | 20.638 | 14.288  | 46.5                            | 54.0        | 4 750           | 5 500       | 6 100  | 8 200 |
| 20.226 | 69.012              | 19.845 | 19.583 | 15.875  | 48.5                            | 58.0        | 4 900           | 5 900       | 5 600  | 7 400 |
| 30.226 | 69.012              | 19.845 | 19.583 | 15.875  | 48.5                            | 58.0        | 4 900           | 5 900       | 5 600  | 7 400 |
|        | 59.131              | 15.875 | 16.764 | 11.811  | 34.5                            | 41.0        | 3 500           | 4 150       | 6 300  | 8 400 |
| 31.750 | 62.000              | 18.161 | 19.050 | 14.288  | 46.5                            | 54.0        | 4 750           | 5 500       | 6 100  | 8 200 |
|        | 62.000              | 19.050 | 20.638 | 14.288  | 46.5                            | 54.0        | 4 750           | 5 500       | 6 100  | 8 200 |







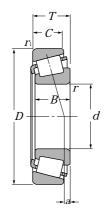




 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 

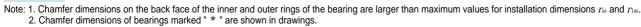
**static**  $P_{\text{or}} = 0.5F_{\text{r}} + Y_{\text{o}}F_{\text{a}}$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ For values of e,  $Y_2$  and  $Y_0$ see the table below.

| Bearing numbers        |                                     | Abutm                         | nsions           |            | Load center     | Constant         | Axi<br>load fa |      | Mass  |             |           |
|------------------------|-------------------------------------|-------------------------------|------------------|------------|-----------------|------------------|----------------|------|-------|-------------|-----------|
|                        |                                     |                               | mr               | n          |                 |                  | mm             |      |       |             | kg        |
|                        | $d_{\scriptscriptstyle \mathrm{a}}$ | $d_{\scriptscriptstyle  m b}$ | $D_{\mathrm{a}}$ | $D_{ m b}$ | r <sub>as</sub> | r <sub>1as</sub> | a              | e    | $Y_2$ | $Y_{\rm o}$ | (approx.) |
|                        |                                     |                               |                  |            |                 |                  |                |      |       |             |           |
| 4T-1985/1932           | 34                                  | 33.5                          | 52               | 54         | 8.0             | 1.3              | 5.9            | 0.33 | 1.82  | 1.00        | 0.23      |
| 4T-15590/15523         | 39.5                                | 33.5                          | 51               | 54         | 3.5             | 1.5              | 5.0            | 0.35 | 1.73  | 0.95        | 0.25      |
| 4T-1985/1931           | 34                                  | 33.5                          | 52               | 55         | 0.8             | 1.3              | 5.9            | 0.33 | 1.82  | 1.00        | 0.255     |
| 4T-15112/15245         | 40                                  | 34                            | 55               | 58         | 3.5             | 1.3              | 6.0            | 0.35 | 1.71  | 0.94        | 0.277     |
| 4T-M86647/M86610       | 40                                  | 38                            | 54               | 61         | 1.5             | 1.5              | 3.3            | 0.55 | 1.10  | 0.60        | 0.348     |
| 4T-2689/2631           | 36                                  | 34                            | 58               | 60         | 1.3             | 1.3              | 9.3            | 0.25 | 2.36  | 1.30        | 0.416     |
| 4T-02474/02420         | 36.5                                | 36                            | 59               | 63         | 0.8             | 1.5              | 5.2            | 0.42 | 1.44  | 0.79        | 0.409     |
| 4T-2474/2420           | 36                                  | 35                            | 60               | 63         | 0.8             | 1.5              | 6.5            | 0.34 | 1.77  | 0.97        | 0.41      |
| 4T-2578/2523           | 39                                  | 35                            | 61               | 64         | 2.3             | 1.3              | 9.1            | 0.27 | 2.19  | 1.21        | 0.483     |
| 4T-41125/41286         | 48                                  | 36.5                          | 61               | 68         | 4.8             | 1.5              | 3.7            | 0.60 | 1.00  | 0.55        | 0.477     |
| 4T-02872/02820         | 37.5                                | 37                            | 62               | 68         | 8.0             | 3.3              | 3.9            | 0.45 | 1.32  | 0.73        | 0.48      |
| 4T-L45449/L45410       | 39.5                                | 33                            | 44.5             | 48         | 3.5             | 1.3              | 3.5            | 0.37 | 1.62  | 0.89        | 0.113     |
| 4T-2690/2631           | 41                                  | 35                            | 58               | 60         | 3.5             | 1.3              | 9.3            | 0.25 | 2.36  | 1.30        | 0.406     |
| 4T-17118†/17244        | 37                                  | 34.5                          | 54               | 57         | 1.5             | 1.5              | 3.3            | 0.38 | 1.57  | 0.86        | 0.228     |
| 4T-15117†/15245        | 36.5                                | 35                            | 55               | 58         | 1.3             | 1.3              | 6.0            | 0.35 | 1.71  | 0.94        | 0.269     |
| 4T-14117A/14276        | 42.5                                | 39.5                          | 60               | 63         | 3.5             | 1.3              | 4.1            | 0.38 | 1.57  | 0.86        | 0.369     |
| # 4T-JHM88540/JHM88513 | 44.5                                | 42.5                          | 58               | 69         | 1.3             | 3.3              | 6.0            | 0.55 | 1.10  | 0.60        | 0.619     |
| 4T-15116/15245         | 36                                  | 35.5                          | 55               | 58         | 0.8             | 1.3              | 6.0            | 0.35 | 1.71  | 0.94        | 0.268     |
| 4T-17119/17244         | 37                                  | 34.5                          | 54               | 57         | 1.5             | 1.5              | 3.3            | 0.38 | 1.57  | 0.86        | 0.226     |
| 4T-M86649/M86610       | 41                                  | 38                            | 54               | 61         | 1.5             | 1.5              | 3.3            | 0.55 | 1.10  | 0.60        | 0.336     |
| 4T-2558/2523           | 40                                  | 36.5                          | 61               | 64         | 2.3             | 1.3              | 9.1            | 0.27 | 2.19  | 1.21        | 0.468     |
| 4T-3187/3120           | 39                                  | 38.5                          | 61               | 67         | 8.0             | 3.3              | 9.9            | 0.33 | 1.80  | 0.99        | 0.621     |
| 4T-15118/15245         | 41.5                                | 35.5                          | 55               | 58         | 3.5             | 1.3              | 6.0            | 0.35 | 1.71  | 0.94        | 0.265     |
| 4T-15119/15245         | 37.5                                | 35.5                          | 55               | 58         | 1.5             | 1.3              | 6.0            | 0.35 | 1.71  | 0.94        | 0.267     |
| 4T-15120/15245         | 36                                  | 35.5                          | 55               | 58         | 8.0             | 1.3              | 6.0            | 0.35 | 1.71  | 0.94        | 0.267     |
| 4T-14116/14274         | 37                                  | 36.5                          | 59               | 63         | 0.8             | 3.3              | 4.1            | 0.38 | 1.57  | 0.86        | 0.366     |
| 4T-14116/14276         | 37                                  | 36.5                          | 60               | 63         | 0.8             | 1.3              | 4.1            | 0.38 | 1.57  | 0.86        | 0.37      |
| 4T-LM67048/LM67010     | 42.5                                | 36                            | 52               | 56         | *               | 1.3              | 2.8            | 0.41 | 1.46  | 0.80        | 0.182     |
| 4T-15123/15245         | 42.5                                | 36.5                          | 55               | 58         | *               | 1.3              | 5.1            | 0.35 | 1.71  | 0.94        | 0.244     |
| 4T-15125/15245         | 42.5                                | 36.5                          | 55               | 58         | 3.5             | 1.3              | 6.0            | 0.35 | 1.71  | 0.94        | 0.253     |


Note: 3. Bearing numbers marked " # " designate **J-series** bearings. The tolerances of these bearings is listed in **Table 6.6** on **page A-42**. 4. Chamfer dimensions of bearings marked " \* " are shown in drawings.

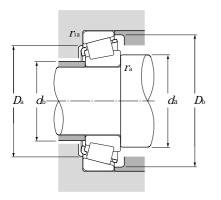


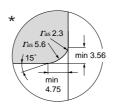





#### Inch series J series




### d31.750~34.925mm


|        | Boundary dimensions |                  |                  | dunamia          |               | ad ratings   | ototio                          | Limiting speeds |                |                 |
|--------|---------------------|------------------|------------------|------------------|---------------|--------------|---------------------------------|-----------------|----------------|-----------------|
|        |                     | mm               |                  |                  | dynamic<br>kN | static       | dynamic<br>kgf                  | static          | min            | <sub>1</sub> -1 |
| d      | D                   | T                | В                | С                | $C_{\rm r}$   | $C_{ m or}$  | $C_{\scriptscriptstyle \Gamma}$ | $C_{ m or}$     | grease         | oil             |
|        | 62.000<br>66.421    | 19.050<br>25.400 | 20.638<br>25.357 | 14.288<br>20.638 | 46.5<br>69.0  | 54.0<br>81.5 | 4 750<br>7 050                  | 5 500<br>8 300  | 6 100<br>5 700 | 8 200<br>7 600  |
|        | 68.262              | 22.225           | 22.225           | 17.462           | 57.0          | 67.0         | 5 800                           | 6 850           | 5 800          | 7 700           |
|        | 68.262              | 22.225           | 22.225           | 17.462           | 57.0          | 67.0         | 5 800                           | 6 850           | 5 800          | 7 700           |
|        | 69.012              | 19.845           | 19.583           | 15.875           | 48.5          | 58.0         | 4 900                           | 5 900           | 5 600          | 7 400           |
|        | 69.012              | 19.845           | 19.583           | 15.875           | 48.5          | 58.0         | 4 900                           | 5 900           | 5 600          | 7 400           |
|        | 69.850              | 23.812           | 25.357           | 19.050           | 69.0          | 81.5         | 7 050                           | 8 300           | 5 700          | 7 600           |
| 31.750 | 69.850              | 23.812           | 25.357           | 19.050           | 69.0          | 81.5         | 7 050                           | 8 300           | 5 700          | 7 600           |
|        | 72.626              | 30.162           | 29.997           | 23.812           | 84.5          | 98.0         | 8 600                           | 9 950           | 5 500          | 7 300           |
|        | 72.626              | 30.162<br>22.225 | 29.997<br>22.225 | 23.812           | 84.5          | 98.0         | 8 600<br>5 <b>7</b> 50          | 9 950           | 5 500          | 7 300           |
|        | 73.025<br>73.025    | 22.225<br>22.225 | 22.225           | 17.462<br>17.462 | 56.5<br>62.5  | 68.0<br>75.5 | 5 750<br>6 400                  | 6 900<br>7 700  | 5 300<br>5 200 | 7 000<br>7 000  |
|        | 73.025              | 29.370           | 27.783           | 23.020           | 72.0          | 97.0         | 7 350                           | 9 850           | 5 400          | 7 100           |
|        | 73.812              | 29.370           | 27.783           | 23.020           | 72.0<br>72.0  | 97.0         | 7 350                           | 9 850           | 5 400          | 7 100           |
|        | 76.200              | 29.370           | 28.575           | 23.020           | 78.0          | 105          | 7 950<br>7 950                  | 10 700          | 5 100          | 6 800           |
|        | 79.375              | 29.370           | 29.771           | 23.812           | 93.0          | 114          | 9 450                           | 11 600          | 4 900          | 6 600           |
|        | 68.262              | 22.225           | 22.225           | 17.462           | 56.5          | 71.0         | 5 750                           | 7 250           | 5 700          | 7 500           |
|        | 69.012              | 19.845           | 19.583           | 15.875           | 48.5          | 58.0         | 4 900                           | 5 900           | 5 600          | 7 400           |
|        | 69.850              | 23.812           | 25.357           | 19.050           | 69.0          | 81.5         | 7 050                           | 8 300           | 5 700          | 7 600           |
|        | 72.626              | 30.162           | 29.997           | 23.812           | 84.5          | 98.0         | 8 600                           | 9 950           | 5 500          | 7 300           |
| 33.338 | 73.025              | 29.370           | 27.783           | 23.020           | 72.0          | 97.0         | 7 350                           | 9 850           | 5 400          | 7 100           |
|        | 76.200              | 23.812           | 25.654           | 19.050           | 73.0          | 90.5         | 7 450                           | 9 200           | 5 100          | 6 800           |
|        | 76.200              | 29.370           | 28.575           | 23.020           | 78.0          | 105          | 7 950                           | 10 700          | 5 100          | 6 800           |
|        | 76.200              | 29.370           | 28.575           | 23.020           | 78.0          | 105          | 7 950                           | 10 700          | 5 100          | 6 800           |
|        | 79.375              | 25.400           | 24.074           | 17.462           | 65.5          | 67.0         | 6 650                           | 6 800           | 5 200          | 6 900           |
|        | 65.088              | 18.034           | 18.288           | 13.970           | 46.5          | 56.0         | 4 750                           | 5 700           | 5 700          | 7 600           |
|        | 65.088              | 18.034           | 18.288           | 13.970           | 46.5          | 56.0         | 4 750                           | 5 700           | 5 700          | 7 600           |
|        | 69.012              | 19.845           | 19.583           | 15.875           | 48.5          | 58.0         | 4 900                           | 5 900           | 5 600          | 7 400           |
|        | 72.233              | 25.400           | 25.400           | 19.842           | 65.0          | 84.5         | 6 600                           | 8 600           | 5 400          | 7 200           |
|        | 72.238              | 20.638           | 20.638           | 15.875           | 48.0          | 58.5         | 4 900                           | 5 950           | 5 300          | 7 000           |
| 34.925 | 73.025              | 22.225           | 22.225           | 17.462           | 56.5          | 68.0         | 5 750                           | 6 900           | 5 300          | 7 000           |
|        | 73.025              | 22.225           | 22.225           | 17.462           | 56.5          | 68.0         | 5 750                           | 6 900           | 5 300          | 7 000           |
|        | 73.025              | 22.225           | 23.812           | 17.462           | 62.5          | 75.5         | 6 400                           | 7 700           | 5 200          | 7 000           |
|        | 73.025              | 23.812           | 24.608           | 19.050           | 71.0          | 85.0         | 7 200                           | 8 700           | 5 300          | 7 100           |
|        | 73.025              | 23.812           | 24.608           | 19.050           | 71.0          | 85.0         | 7 200                           | 8 700           | 5 300          | 7 100           |
|        | 73.025              | 23.812           | 25.654           | 19.050           | 73.0          | 90.5         | 7 450                           | 9 200           | 5 100<br>5 100 | 6 800           |
|        | 76.200              | 23.812           | 25.654           | 19.050           | 73.0          | 90.5         | 7 450                           | 9 200           | 5 100          | 6 800           |







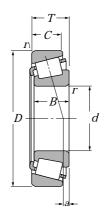




### Equivalent radial load dynamic Pr = XFr + YFa

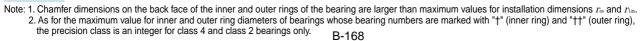
 $P_{r} = XF_{r} + YF_{a}$   $\frac{F_{a}}{F_{r}} \quad e \quad \frac{F_{a}}{F_{r}} > e$   $X \quad Y \quad X \quad Y$ 

static  $P_{\text{Or}} = 0.5F_{\text{r}} + Y_0F_{\text{a}}$  When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$  For values of e,  $Y_2$  and  $Y_0$  see the table below.


| Bearing numbers                  | Abutment and fillet dimensions |                               |                  |            |                |            | Load<br>center | Constant     | Axi<br>load fa |              | Mass      |
|----------------------------------|--------------------------------|-------------------------------|------------------|------------|----------------|------------|----------------|--------------|----------------|--------------|-----------|
|                                  |                                |                               | m                | nm         |                |            | mm             |              | ioau ia        | Oloi 3       | kg        |
|                                  |                                |                               |                  |            | $m{r}_{ m as}$ | $m{r}$ las |                |              |                |              |           |
|                                  | $d_{\scriptscriptstyle  m a}$  | $d_{\scriptscriptstyle  m b}$ | $D_{\mathrm{a}}$ | $D_{ m b}$ | max            | max        | а              | e            | $Y_2$          | $Y_{0}$      | (approx.) |
| 4T-15126/15245                   | 37                             | 36.5                          | 55               | 58         | 0.0            | 1.3        | 6.0            | 0.25         | 1.71           | 0.04         | 0.255     |
| 4T-2580/2520                     | 38.5                           | 36.5<br>37.5                  | 55<br>57         | 62         | 0.8<br>0.8     | 3.3        | 6.0<br>9.1     | 0.35<br>0.27 | 2.19           | 0.94<br>1.21 | 0.255     |
| 4T-02475/02420                   | 36.5<br>44.5                   | 38.5                          | 59               | 63         | 3.5            | 3.3<br>1.5 | 5.2            | 0.42         | 1.44           | 0.79         | 0.409     |
| 4T-02475/02420<br>4T-02476/02420 | 39                             | 38.5                          | 59               | 63         | 0.8            | 1.5        | 5.2            | 0.42         | 1.44           | 0.79         | 0.383     |
| 4T-14124/14276                   | 38.5                           | 37.5                          | 60               | 63         | 0.8            | 1.3        | 4.1            | 0.38         | 1.57           | 0.75         | 0.359     |
| 4T-14125A/14276                  | 44                             | 37.5                          | 60               | 63         | 3.5            | 1.3        | 4.1            | 0.38         | 1.57           | 0.86         | 0.356     |
| 4T-2580/2523                     | 38.5                           | 37.5                          | 61               | 64         | 0.8            | 1.3        | 9.1            | 0.27         | 2.19           | 1.21         | 0.454     |
| 4T-2582/2523                     | 44                             | 37.5                          | 61               | 64         | 3.5            | 1.3        | 9.1            | 0.27         | 2.19           | 1.21         | 0.451     |
| 4T-3188/3120                     | 40                             | 39.5                          | 61               | 67         | 0.8            | 3.3        | 9.9            | 0.33         | 1.80           | 0.99         | 0.603     |
| 4T-3193/3120                     | 45.5                           | 39.5                          | 61               | 67         | 3.5            | 3.3        | 9.9            | 0.33         | 1.80           | 0.99         | 0.601     |
| 4T-02875/02820                   | 45.5                           | 39.5                          | 62               | 68         | 3.5            | 3.3        | 3.9            | 0.45         | 1.32           | 0.73         | 0.451     |
| 4T-2879/2820                     | 39.5                           | 38.5                          | 63               | 68         | 0.8            | 3.3        | 5.5            | 0.37         | 1.63           | 0.90         | 0.465     |
| 4T-HM88542/HM88510               | 45.5                           | 42.5                          | 59               | 70         | 1.3            | 3.3        | 6.0            | 0.55         | 1.10           | 0.60         | 0.622     |
| 4T-HM88542/HM88512               | 45.5                           | 42.5                          | 60               | 70         | 1.3            | 3.3        | 6.0            | 0.55         | 1.10           | 0.60         | 0.638     |
| 4T-HM89440/HM89410               | 45.5                           | 44.5                          | 62               | 73         | 8.0            | 3.3        | 5.8            | 0.55         | 1.10           | 0.60         | 0.686     |
| 4T-3476/3420                     | 43                             | 41                            | 67               | 74         | 1.3            | 3.3        | 8.7            | 0.37         | 1.64           | 0.90         | 0.767     |
| 4T-M88048/M88010                 | 42.5                           | 41                            | 58               | 65         | 0.8            | 1.5        | 2.9            | 0.55         | 1.10           | 0.60         | 0.378     |
| 4T-14130/14276                   | 45                             | 38.5                          | 60               | 63         | 3.5            | 1.3        | 4.1            | 0.38         | 1.57           | 0.86         | 0.344     |
| 4T-2585/2523                     | 45                             | 39                            | 61               | 64         | 3.5            | 1.3        | 9.1            | 0.27         | 2.19           | 1.21         | 0.435     |
| 4T-3196/3120                     | 47                             | 40.5                          | 61               | 67         | 3.5            | 3.3        | 9.9            | 0.33         | 1.80           | 0.99         | 0.581     |
| 4T-HM88547/HM88510               | 45.5                           | 42.5                          | 59               | 70         | 8.0            | 3.3        | 6.0            | 0.55         | 1.10           | 0.60         | 0.604     |
| 4T-2785/2720                     | 46                             | 40                            | 66               | 70         | 3.5            | 3.3        | 7.8            | 0.30         | 1.98           | 1.09         | 0.551     |
| 4T-HM89443/HM89410               | 46.5                           | 44.5                          | 62               | 73         | 0.8            | 3.3        | 5.8            | 0.55         | 1.10           | 0.60         | 0.668     |
| 4T-HM89444/HM89410               | 53                             | 44.5                          | 62               | 73         | 3.8            | 3.3        | 5.8            | 0.55         | 1.10           | 0.60         | 0.665     |
| 4T-43131/43312                   | 51                             | 42                            | 67               | 74         | 3.5            | 1.5        | 1.4            | 0.67         | 0.90           | 0.49         | 0.568     |
| 4T-LM48548/LM48510               | 46                             | 40                            | 58               | 61         | *              | 1.3        | 3.7            | 0.38         | 1.59           | 0.88         | 0.249     |
| 4T-LM48548A/LM48510              | 40.5                           | 42                            | 58               | 61         | 8.0            | 1.3        | 3.7            | 0.38         | 1.59           | 0.88         | 0.252     |
| 4T-14137A/14276                  | 42                             | 40                            | 60               | 63         | 1.5            | 1.3        | 4.1            | 0.38         | 1.57           | 0.86         | 0.333     |
| 4T-HM88649/HM88610               | 48.5                           | 42.5                          | 60               | 69         | 2.3            | 2.3        | 4.6            | 0.55         | 1.10           | 0.60         | 0.489     |
| 4T-16137/16284                   | 47                             | 40.5                          | 63               | 67         | 3.5            | 1.3        | 4.2            | 0.40         | 1.49           | 0.82         | 0.385     |
| 4T-02877/02820                   | 48.5                           | 42                            | 62               | 68         | 3.5            | 3.3        | 3.9            | 0.45         | 1.32           | 0.73         | 0.422     |
| 4T-02878/02820                   | 42.5                           | 42                            | 62               | 68         | 0.8            | 3.3        | 3.9            | 0.45         | 1.32           | 0.73         | 0.425     |
| 4T-2878/2820                     | 42                             | 41                            | 63               | 68         | 0.8            | 3.3        | 5.5            | 0.37         | 1.63           | 0.90         | 0.434     |
| 4T-25877/25820                   | 43                             | 40.5                          | 64               | 68         | 1.5            | 2.3        | 8.1            | 0.29         | 2.07           | 1.14         | 0.471     |
| 4T-25877/25821                   | 43                             | 40.5                          | 65<br>66         | 68         | 1.5            | 0.8        | 8.1            | 0.29         | 2.07           | 1.14         | 0.474     |
| 4T-2793/2735X                    | 42<br>42                       | 41<br>41                      | 66<br>66         | 69<br>70   | 0.8            | 0.8        | 7.8            | 0.30         | 1.98           | 1.09         | 0.485     |
| 4T-2793/2720                     | 42                             | 41                            | 66               | 70         | 8.0            | 3.3        | 7.8            | 0.30         | 1.98           | 1.09         | 0.536     |

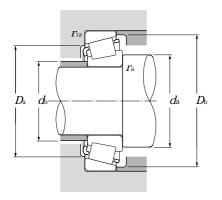


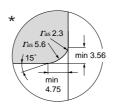
### **Tapered Roller Bearings**




## Inch series J series




d34.925~38.100mm


|        | Boundary dimensions |        |        |        | dunamia       |             | ad ratings                         | atatia      | Limiting speeds |       |
|--------|---------------------|--------|--------|--------|---------------|-------------|------------------------------------|-------------|-----------------|-------|
|        |                     | mm     |        |        | dynamic<br>kN | static      | dynamic<br>kg                      | static<br>f | min             | ı-1   |
| d      | D                   | T      | В      | С      | $C_{\Gamma}$  | $C_{ m or}$ | $C_{\scriptscriptstyle 	extsf{F}}$ | $C_{ m or}$ | grease          | oil   |
|        | 76.200              | 23.812 | 25.654 | 19.050 | 73.0          | 90.5        | 7 450                              | 9 200       | 5 100           | 6 800 |
|        | 76.200              | 29.370 | 28.575 | 23.020 | 78.0          | 105         | 7 950                              | 10 700      | 5 100           | 6 800 |
| 34.925 | 76.200              | 29.370 | 28.575 | 23.812 | 80.5          | 97.0        | 8 200                              | 9 900       | 5 100           | 6 800 |
|        | 76.200              | 29.370 | 28.575 | 23.812 | 80.5          | 97.0        | 8 200                              | 9 900       | 5 100           | 6 800 |
|        | 79.375              | 29.370 | 29.771 | 23.812 | 93.0          | 114         | 9 450                              | 11 600      | 4 900           | 6 600 |
|        | 80.167              | 29.370 | 30.391 | 23.812 | 95.0          | 112         | 9 700                              | 11 400      | 4 800           | 6 400 |
|        | 85.725              | 30.162 | 30.162 | 23.812 | 105           | 132         | 10 700                             | 13 400      | 4 500           | 6 000 |
| 34.976 | 69.012              | 19.845 | 19.583 | 15.875 | 48.5          | 58.0        | 4 900                              | 5 900       | 5 600           | 7 400 |
| 34.988 | 59.974              | 15.875 | 16.764 | 11.938 | 35.5          | 47.5        | 3 600                              | 4 850       | 6 100           | 8 100 |
|        | 61.973              | 16.700 | 17.000 | 13.600 | 37.0          | 48.0        | 3 800                              | 4 900       | 5 900           | 7 900 |
|        | 61.973              | 18.000 | 17.000 | 15.000 | 37.0          | 48.0        | 3 800                              | 4 900       | 5 900           | 7 900 |
| 35.000 | 70.000              | 24.000 | 23.500 | 19.000 | 62.0          | 78.0        | 6 350                              | 7 950       | 5 500           | 7 300 |
|        | 79.375              | 23.812 | 25.400 | 19.050 | 76.5          | 97.5        | 7 800                              | 9 950       | 4 800           | 6 400 |
|        | 80.000              | 21.000 | 22.403 | 17.826 | 68.0          | 75.0        | 6 950                              | 7 650       | 4 700           | 6 300 |
| 35.717 | 72.233              | 25.400 | 25.400 | 19.842 | 65.0          | 84.5        | 6 600                              | 8 600       | 5 400           | 7 200 |
|        | 72.626              | 25.400 | 25.400 | 19.842 | 65.0          | 84.5        | 6 600                              | 8 600       | 5 400           | 7 200 |
| 36.487 | 73.025              | 23.812 | 24.608 | 19.050 | 71.0          | 85.0        | 7 200                              | 8 700       | 5 300           | 7 100 |
|        | 76.200              | 23.812 | 25.654 | 19.050 | 73.0          | 90.5        | 7 450                              | 9 200       | 5 100           | 6 800 |
| 36.512 | 76.200              | 29.370 | 28.575 | 23.020 | 78.0          | 105         | 7 950                              | 10 700      | 5 100           | 6 800 |
|        | 76.200              | 29.370 | 28.575 | 23.020 | 78.0          | 105         | 7 950                              | 10 700      | 5 100           | 6 800 |
|        | 76.200              | 29.370 | 28.575 | 23.812 | 80.5          | 97.0        | 8 200                              | 9 900       | 5 100           | 6 800 |
|        | 79.375              | 29.370 | 28.829 | 22.664 | 86.5          | 104         | 8 800                              | 10 600      | 5 000           | 6 600 |
|        | 79.375              | 29.370 | 29.771 | 23.812 | 93.0          | 114         | 9 450                              | 11 600      | 4 900           | 6 600 |
|        | 88.500              | 25.400 | 23.698 | 17.462 | 70.5          | 78.0        | 7 200                              | 7 950       | 4 000           | 5 300 |
| 38.000 | 63.000              | 17.000 | 17.000 | 13.500 | 38.5          | 52.5        | 3 950                              | 5 350       | 5 700           | 7 600 |
| 38.100 | 63.500              | 12.700 | 11.908 | 9.525  | 25.9          | 33.5        | 2 640                              | 3 400       | 5 500           | 7 300 |
|        | 65.088              | 18.034 | 18.288 | 13.970 | 43.5          | 57.0        | 4 400                              | 5 800       | 5 500           | 7 400 |
|        | 69.012              | 19.050 | 19.050 | 15.083 | 47.5          | 59.5        | 4 850                              | 6 050       | 5 300           | 7 100 |
|        | 69.012              | 19.050 | 19.050 | 15.083 | 47.5          | 59.5        | 4 850                              | 6 050       | 5 300           | 7 100 |
|        | 71.438              | 15.875 | 16.520 | 11.908 | 43.5          | 51.0        | 4 400                              | 5 200       | 5 400           | 7 200 |
|        | 72.000              | 19.000 | 20.638 | 14.237 | 48.0          | 58.5        | 4 900                              | 5 950       | 5 300           | 7 000 |







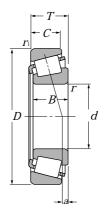




 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 

**static**  $P_{\text{or}} = 0.5F_{\text{r}} + Y_{\text{o}}F_{\text{a}}$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ For values of e,  $Y_2$  and  $Y_0$ see the table below.

| Bearing numbers         |             | Abutm                         | nsions           |            | Load center     | Constant         | Axi<br>load fa |      | Mass  |             |           |
|-------------------------|-------------|-------------------------------|------------------|------------|-----------------|------------------|----------------|------|-------|-------------|-----------|
|                         |             |                               | m                | m          |                 |                  | mm             |      |       |             | kg        |
|                         | $d_{\rm a}$ | $d_{\scriptscriptstyle  m b}$ | $D_{\mathrm{a}}$ | $D_{ m b}$ | r <sub>as</sub> | r <sub>1as</sub> | a              | e    | $Y_2$ | $Y_{\rm o}$ | (approx.) |
|                         |             |                               |                  |            |                 |                  |                |      |       |             |           |
| 4T-2793/2729            | 42          | 41                            | 68               | 70<br>70   | 0.8             | 0.8              | 7.8            | 0.30 | 1.98  | 1.09        | 0.541     |
| 4T-HM89446/HM89410      | 53          | 44.5                          | 62               | 73         | 3.5             | 3.3              | 5.8            | 0.55 | 1.10  | 0.60        | 0.646     |
| 4T-31593/31520          | 50          | 43.5                          | 64               | 72<br>70   | 3.5             | 3.3              | 7.8            | 0.40 | 1.49  | 0.82        | 0.625     |
| 4T-31594/31520          | 46<br>50    | 43.5                          | 64               | 72         | 1.5             | 3.3              | 7.8            | 0.40 | 1.49  | 0.82        | 0.627     |
| 4T-3478/3420            | 50          | 43.5                          | 67               | 74<br>75   | 3.5             | 3.3              | 8.7            | 0.37 | 1.64  | 0.90        | 0.725     |
| 4T-3379/3320            | 48          | 41.5                          | 70<br>70         | 75<br>04   | 3.5             | 3.3              | 11.2           | 0.27 | 2.20  | 1.21        | 0.732     |
| 4T-3872/3820            | 53          | 46                            | 73               | 81         | 3.5             | 3.3              | 8.1            | 0.40 | 1.49  | 0.82        | 0.897     |
| 4T-14139/14276          | 41.5        | 40                            | 60               | 63         | 1.3             | 1.3              | 4.1            | 0.38 | 1.57  | 0.86        | 0.333     |
| 4T-L68149†/L68111††     | 45.5        | 39                            | 53               | 56         | *               | 1.3              | 2.5            | 0.42 | 1.44  | 0.79        | 0.179     |
| 4T-LM78349A†/LM78310A†† | 42          | 39.5                          | 54               | 59         | 1.5             | 1.5              | 2.4            | 0.44 | 1.35  | 0.74        | 0.209     |
| 4T-LM78349†/LM78310C††  | 46          | 40                            | 56               | 59         | *               | 1.5              | 2.4            | 0.44 | 1.35  | 0.74        | 0.218     |
| # 4T-JS3549A/JS3510     | 47          | 42                            | 60               | 67         | 2               | 1.5              | 3.6            | 0.55 | 1.10  | 0.60        | 0.42      |
| 4T-26883/26822          | 42.5        | 42                            | 71               | 74         | 0.8             | 0.8              | 7.4            | 0.32 | 1.88  | 1.04        | 0.61      |
| 4T-339/332              | 42.5        | 41.5                          | 73               | 75         | 0.8             | 1.3              | 6.6            | 0.27 | 2.20  | 1.21        | 0.534     |
| 4T-HM88648/HM88610      | 52          | 43                            | 60               | 69         | 3.5             | 2.3              | 4.6            | 0.55 | 1.10  | 0.60        | 0.478     |
| 4T-HM88648/HM88611AS    | 52          | 43                            | 59               | 69         | 3.5             | 3.3              | 3.0            | 0.55 | 1.10  | 0.60        | 0.482     |
| 4T-25880/25821          | 44          | 42                            | 65               | 68         | 1.5             | 0.8              | 8.1            | 0.29 | 2.07  | 1.14        | 0.457     |
| 4T-2780/2720            | 44.5        | 42.5                          | 66               | 70         | 1.5             | 3.3              | 7.8            | 0.30 | 1.98  | 1.09        | 0.518     |
| 4T-HM89448/HM89410      | 48.5        | 44.5                          | 62               | 73         | 0.8             | 3.3              | 5.8            | 0.55 | 1.10  | 0.60        | 0.629     |
| 4T-HM89449/HM89411      | 54          | 44.5                          | 65               | 73         | 3.5             | 0.8              | 5.8            | 0.55 | 1.10  | 0.60        | 0.631     |
| 4T-31597/31520          | 51          | 44.5                          | 64               | 72         | 3.5             | 3.3              | 7.8            | 0.40 | 1.49  | 0.82        | 0.605     |
| 4T-HM89249/HM89210      | 55          | 44                            | 66               | 75         | 3.5             | 3.3              | 5.8            | 0.55 | 1.10  | 0.60        | 0.686     |
| 4T-3479/3420            | 45.5        | 44.5                          | 67               | 74         | 8.0             | 3.3              | 8.7            | 0.37 | 1.64  | 0.90        | 0.707     |
| 4T-44143/44348          | 54          | 50                            | 75               | 84         | 2.3             | 1.5              | -2.9           | 0.78 | 0.77  | 0.42        | 0.729     |
| # 4T-JL69349/JL69310    | 49          | 42.5                          | 56               | 60         | *               | 1.3              | 2.3            | 0.42 | 1.44  | 0.79        | 0.198     |
| 4T-13889/13830          | 45          | 42.5                          | 59               | 60         | 1.5             | 0.8              | 0.8            | 0.35 | 1.73  | 0.95        | 0.147     |
| 4T-LM29748/LM29710      | 49          | 42.5                          | 59               | 62         | *               | 1.3              | 4.3            | 0.33 | 1.80  | 0.99        | 0.233     |
| 4T-13685/13621          | 49.5        | 43                            | 61               | 65         | 3.5             | 2.3              | 3.0            | 0.40 | 1.49  | 0.82        | 0.293     |
| 4T-13687/13621          | 46.5        | 43                            | 61               | 65         | 2               | 2.3              | 3.0            | 0.40 | 1.49  | 0.82        | 0.296     |
| 4T-19150/19281          | 45          | 43                            | 63               | 66         | 1.5             | 1                | 1.4            | 0.44 | 1.35  | 0.74        | 0.273     |
| 4T-16150/16282          | 49.5        | 43                            | 63               | 67         | 3.5             | 1.5              | 4.2            | 0.40 | 1.49  | 0.82        | 0.331     |


Note: 3. Bearing numbers marked " # " designate **J-series** bearings. The tolerances of these bearings is listed in **Table 6.6** on **page A-42**. 4. Chamfer dimensions of bearings marked " \* " are shown in drawings.



### **Tapered Roller Bearings**

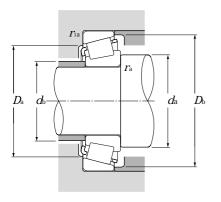
### NTN

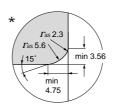
#### Inch series



d38.100~41.275mm

|        | Воц                                                                          | undary dime                                                                  | nsions                                                                       |                                                                              | ali ua a ser l'e                                             |                                                              | oad ratings                                                          | -t-1'-                                                               | Limiting s                                                           | peeds                                                                |
|--------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
|        |                                                                              | mm                                                                           |                                                                              |                                                                              | dynamic<br>kN                                                | static                                                       | dynamic<br>kgf                                                       | static                                                               | min                                                                  | -1                                                                   |
| d      | D                                                                            | T                                                                            | В                                                                            | С                                                                            | $C_{\Gamma}$                                                 | $C_{ m or}$                                                  | $C_{\Gamma}$                                                         | $C_{ m or}$                                                          | grease                                                               | oil                                                                  |
|        | 76.200<br>76.200                                                             | 20.638                                                                       | 20.940<br>25.654                                                             | 15.507<br>19.050                                                             | 55.5<br>73.0                                                 | 63.0<br>90.5                                                 | 5 650<br>7 450                                                       | 6 450<br>9 200                                                       | 5 000<br>5 100                                                       | 6 700<br>6 800                                                       |
|        | 76.200<br>79.375<br>79.375                                                   | 23.812<br>23.812<br>29.370                                                   | 25.654<br>25.400<br>29.771                                                   | 19.050<br>19.050<br>23.812<br>15.875                                         | 73.0<br>76.5<br>93.0                                         | 90.5<br>97.5<br>114<br>63.0                                  |                                                                      | 9 200<br>9 950<br>11 600                                             | 5 100<br>4 800<br>4 900<br>5 000                                     | 6 800<br>6 400<br>6 600                                              |
| 38.100 | 80.000<br>80.035<br>82.550<br>82.931                                         | 21.006<br>24.608<br>29.370<br>23.812                                         | 20.940<br>23.698<br>28.575<br>25.400                                         | 18.512<br>23.020<br>19.050                                                   | 55.5<br>67.0<br>87.0<br>76.0                                 | 82.5<br>117<br>98.0                                          |                                                                      | 6 450<br>8 400<br>11 900<br>10 000                                   | 4 800<br>4 700<br>4 500                                              | 6 700<br>6 400<br>6 200<br>6 000                                     |
|        | 85.725<br>87.312<br>88.500<br>88.500                                         | 30.162<br>30.162<br>25.400<br>26.988                                         | 30.162<br>30.886<br>23.698<br>29.083                                         | 23.812<br>23.812<br>17.462<br>22.225                                         | 105<br>94.0<br>70.5<br>95.5                                  | 132<br>117<br>78.0<br>107                                    | 10 700<br>9 600<br>7 200                                             | 13 400<br>12 000<br>7 950<br>10 900                                  | 4 500<br>4 400<br>4 000<br>4 600                                     | 6 000<br>5 900<br>5 300<br>6 100                                     |
| 39.688 | 76.200<br>77.534<br>79.375<br>80.035<br>80.167<br>88.500                     | 23.812<br>29.370<br>23.812<br>29.370<br>29.370<br>25.400                     | 25.654<br>30.391<br>25.400<br>30.391<br>30.391<br>23.698                     | 19.050<br>23.812<br>19.050<br>23.812<br>23.812<br>17.462                     | 73.0<br>95.0<br>76.5<br>95.0<br>95.0<br>70.5                 | 90.5<br>112<br>97.5<br>112<br>112<br>78.0                    | 7 450<br>9 700<br>7 800<br>9 700                                     | 9 200<br>11 400<br>9 950<br>11 400<br>11 400<br>7 950                | 5 100<br>4 800<br>4 800<br>4 800<br>4 800<br>4 800<br>4 000          | 6 800<br>6 400<br>6 400<br>6 400<br>6 400<br>5 300                   |
| 40.000 | 76.200<br>80.000<br>85.000<br>88.500<br>107.950                              | 20.638<br>21.000<br>20.638<br>26.988<br>36.512                               | 20.940<br>22.403<br>21.692<br>29.083<br>36.957                               | 15.507<br>17.826<br>17.462<br>22.225<br>28.575                               | 55.5<br>68.0<br>69.5<br>95.5<br>141                          | 63.0<br>75.0<br>79.5<br>107<br>177                           |                                                                      | 6 450<br>7 650<br>8 100<br>10 900<br>18 100                          | 5 000<br>4 700<br>4 400<br>4 600<br>3 600                            | 6 700<br>6 300<br>5 800<br>6 100<br>4 800                            |
| 40.483 | 82.550                                                                       | 29.370                                                                       | 28.575                                                                       | 23.020                                                                       | 87.0                                                         | 117                                                          | 8 850                                                                | 11 900                                                               | 4 700                                                                | 6 200                                                                |
| 40.988 | 67.975                                                                       | 17.500                                                                       | 18.000                                                                       | 13.500                                                                       | 46.0                                                         | 62.5                                                         | 4 700                                                                | 6 400                                                                | 5 300                                                                | 7 000                                                                |
| 41.275 | 73.025<br>73.431<br>73.431<br>76.200<br>76.200<br>76.200<br>79.375<br>80.000 | 16.667<br>19.558<br>21.430<br>18.009<br>22.225<br>25.400<br>23.812<br>18.009 | 17.462<br>19.812<br>19.812<br>17.384<br>23.020<br>25.400<br>25.400<br>17.384 | 12.700<br>14.732<br>16.604<br>14.288<br>17.462<br>20.638<br>19.050<br>14.288 | 46.0<br>56.0<br>56.0<br>42.5<br>65.0<br>76.5<br>76.5<br>42.5 | 55.5<br>69.5<br>69.5<br>51.5<br>80.5<br>97.5<br>97.5<br>51.5 | 4 700<br>5 700<br>5 700<br>4 350<br>6 600<br>7 800<br>7 800<br>4 350 | 5 700<br>7 100<br>7 100<br>5 250<br>8 200<br>9 950<br>9 950<br>5 250 | 5 000<br>5 000<br>5 000<br>4 900<br>4 900<br>4 800<br>4 800<br>4 900 | 6 600<br>6 600<br>6 600<br>6 500<br>6 500<br>6 400<br>6 400<br>6 500 |

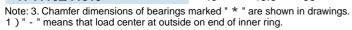

Note: 1. Chamfer dimensions on the back face of the inner and outer rings of the bearing are larger than maximum values for installation dimensions r<sub>is</sub> and r<sub>is</sub>.

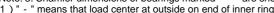

2. As for the maximum value for inner and outer ring diameters of bearings whose bearing numbers are marked with "†" (inner ring) and "††" (outer ring), the precision class is an integer for class 4 and class 2 bearings only.

B-170





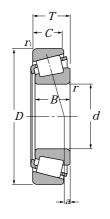



 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 

**static**  $P_{\text{or}} = 0.5F_{\text{r}} + Y_{\text{o}}F_{\text{a}}$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ For values of e,  $Y_2$  and  $Y_0$ see the table below.

| Bearing numbers                | Abutment and fillet dimensions      |                     |                  |            |                 |                  | Load center       | Constant | Axi<br>load fa |             | Mass      |
|--------------------------------|-------------------------------------|---------------------|------------------|------------|-----------------|------------------|-------------------|----------|----------------|-------------|-----------|
|                                |                                     |                     | n                | nm         |                 |                  | mm                |          |                |             | kg        |
|                                | $d_{\scriptscriptstyle \mathrm{a}}$ | $d_{^{\mathrm{b}}}$ | $D_{\mathrm{a}}$ | $D_{ m b}$ | r <sub>as</sub> | r <sub>1as</sub> | a                 | e        | $Y_2$          | $Y_{\rm o}$ | (approx.) |
| 4T-28150/28300                 | 45.5                                | 43.5                | 68               | 71         | 1.5             | 1.3              | 4.8               | 0.40     | 1.49           | 0.82        | 0.405     |
| 4T-2776/2720                   | 52                                  | 43.5                | 66               | 71         | 4.3             | 3.3              | 7.8               | 0.40     | 1.49           | 1.09        | 0.405     |
| 4T-2776/2720<br>4T-2788/2720   | 52<br>50                            | 43.5                | 66               | 70<br>70   | 3.5             | 3.3              | 7.8               | 0.30     | 1.98           | 1.09        | 0.493     |
| 4T-26878/26822                 | 45                                  | 43.5<br>44.5        | 71               | 70<br>74   | 0.8             | 3.3<br>0.8       | 7.6<br>7.4        | 0.30     | 1.88           | 1.09        | 0.497     |
| 4T-3490/3420                   | <del>4</del> 5<br>52                | 44.5<br>45.5        | 67               | 74<br>74   | 3.5             | 3.3              | 8.7               | 0.32     | 1.64           | 0.90        | 0.683     |
| 4T-28150/28315                 | 45.5                                | 43.5                | 69               | 74<br>73   | 1.5             | 3.3<br>1.5       | 4.8               | 0.37     | 1.49           | 0.82        | 0.663     |
| 4T-27880/27820                 | 48                                  | 43.3<br>47          | 68               | 75<br>75   | 0.8             | 1.5              | 2.5               | 0.56     | 1.49           | 0.52        | 0.562     |
| 4T-HM801346/HM801310           | 51                                  | 49                  | 68               | 78         | 0.8             | 3.3              | 4.7               | 0.55     | 1.10           | 0.60        | 0.767     |
| 4T-25572/25520                 | 46                                  | 46                  | 74               | 70<br>77   | 0.8             | 0.8              | 6.2               | 0.33     | 1.79           | 0.00        | 0.767     |
| 4T-23372/23320<br>4T-3875/3820 | 49.5                                | 48.5                | 73               | 81         | 0.8             | 3.3              | 8.1               | 0.33     | 1.49           | 0.89        | 0.857     |
| 4T-3580/3525                   | 48                                  | 45.5                | 75               | 81         | 1.5             | 3.3              | 10.0              | 0.40     | 1.96           | 1.08        | 0.881     |
| 4T-44150/44348                 | 55                                  | <del>4</del> 3.3    | 75<br>75         | 84         | 2.3             | 1.5              | -2.9 <sup>1</sup> |          | 0.77           | 0.42        | 0.711     |
| 4T-418/414                     | 51                                  | 44.5                | 73<br>77         | 80         | 3.5             | 1.5              | 9.1               | 0.76     | 2.28           | 1.25        | 0.711     |
| 41-410/414                     | 31                                  | 44.5                | 11               | 00         | 3.5             | 1.5              | 9.1               | 0.20     | 2.20           | 1.20        | 0.04      |
| 4T-2789/2720                   | 52                                  | 45                  | 66               | 70         | 3.5             | 3.3              | 7.8               | 0.30     | 1.98           | 1.09        | 0.477     |
| 4T-3382/3321                   | 52                                  | 45.5                | 68               | 75         | 3.5             | 3.3              | 11.2              | 0.27     | 2.20           | 1.21        | 0.669     |
| 4T-26880/26822                 | 48                                  | 45.5                | 71               | 74         | 1.5             | 0.8              | 7.4               | 0.32     | 1.88           | 1.04        | 0.554     |
| 4T-3382/3339                   | 52                                  | 45.5                | 71               | 75         | 3.5             | 1.5              | 11.2              | 0.27     | 2.20           | 1.21        | 0.666     |
| 4T-3386/3320                   | 46.5                                | 45.5                | 70               | 75         | 8.0             | 3.3              | 11.2              | 0.27     | 2.20           | 1.21        | 0.668     |
| 4T-44158/44348                 | 58                                  | 51                  | 75               | 84         | 3.5             | 1.5              | <b>-2.9</b> 13    | 0.78     | 0.77           | 0.42        | 0.691     |
| 4T-28158/28300                 | 47.5                                | 45                  | 68               | 71         | 1.5             | 1.3              | 4.8               | 0.40     | 1.49           | 0.82        | 0.386     |
| 4T-344/332                     | 52                                  | 45.5                | 73               | 75         | 3.5             | 1.3              | 6.6               | 0.27     | 2.20           | 1.21        | 0.479     |
| 4T-350A/354A                   | 47.5                                | 46.5                | 77               | 80         | 8.0             | 1.3              | 5.1               | 0.31     | 1.96           | 1.08        | 0.562     |
| 4T-420/414                     | 52                                  | 46                  | 77               | 80         | 3.5             | 1.5              | 9.1               | 0.26     | 2.28           | 1.25        | 0.813     |
| 4T-543/532X                    | 57                                  | 50                  | 94               | 100        | 3.5             | 3.3              | 12.3              | 0.30     | 2.02           | 1.11        | 1.77      |
| 4T-HM801349/HM801310           | 58                                  | 49                  | 68               | 78         | 3.5             | 3.3              | 4.7               | 0.55     | 1.10           | 0.60        | 0.731     |
| 4T-LM300849†/LM300811††        | 52                                  | 45                  | 61               | 65         | *               | 1.5              | 3.6               | 0.35     | 1.72           | 0.95        | 0.239     |
| 4T-18590/18520                 | 53                                  | 46                  | 66               | 69         | 3.5             | 1.5              | 2.9               | 0.35     | 1.71           | 0.94        | 0.281     |
| 4T-LM501349/LM501310           | 53                                  | 46.5                | 67               | 70         | 3.5             | 0.8              | 3.3               | 0.40     | 1.50           | 0.83        | 0.335     |
| 4T-LM501349/LM501314           | 53                                  | 46.5                | 66               | 70         | 3.5             | 0.8              | 3.3               | 0.40     | 1.50           | 0.83        | 0.355     |
| 4T-11162/11300                 | 49                                  | 46.5                | 67               | 71         | 1.5             | 1.5              | 0.7               | 0.49     | 1.23           | 0.68        | 0.337     |
| 4T-24780/24720                 | 54                                  | 47                  | 68               | 72         | 3.5             | 0.8              | 4.5               | 0.39     | 1.53           | 0.84        | 0.432     |
| 4T-26882/26823                 | 54                                  | 47                  | 69               | 73         | 3.5             | 1.5              | 7.4               | 0.32     | 1.88           | 1.04        | 0.488     |
| 4T-26885/26822                 | 48                                  | 47                  | 71               | 74         | 0.8             | 0.8              | 7.4               | 0.32     | 1.88           | 1.04        | 0.535     |
| 4T-11162/11315                 | 49                                  | 46.5                | 69               | 73         | 1.5             | 1.5              | 0.7               | 0.49     | 1.23           | 0.68        | 0.389     |



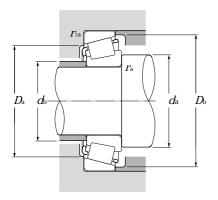







#### Inch series



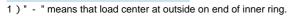

d 41.275~44.450mm

| dynamic static dynamic static  mm kN kgf mi                                                                                | n <sup>-1</sup><br>oil |
|----------------------------------------------------------------------------------------------------------------------------|------------------------|
|                                                                                                                            |                        |
|                                                                                                                            | oil                    |
| $d$ $D$ $T$ $B$ $C$ $C_{ m r}$ $C_{ m or}$ $C_{ m r}$ $C_{ m or}$ grease                                                   |                        |
| 80.000 21.000 22.403 17.826 68.0 75.0 6 950 7 650 4 700                                                                    | 6 300                  |
| 80.000 23.812 25.400 19.050 76.5 97.5 7800 9950 4800                                                                       | 6 400                  |
| 82.550 26.543 25.654 20.193 80.5 104 8 200 10 600 4 600                                                                    | 6 100                  |
| 85.725 30.162 30.162 23.812 105 132 10.700 13.400 4.500                                                                    | 6 000                  |
| 87.312 30.162 30.886 23.812 94.0 117 9 600 12 000 4 400                                                                    | 5 900                  |
| <b>41.275</b> 88.900 30.162 29.370 23.020 93.5 125 9 550 12 700 4 300                                                      | 5 800                  |
| 90.488 39.688 40.386 33.338 136 175 13.900 17.900 4.300                                                                    | 5 800                  |
| 92.075 26.195 23.812 16.670 72.5 81.5 7 400 8 300 3 800                                                                    | 5 000                  |
| 93.662 31.750 31.750 26.195 104 131 10.600 13.400 4.100                                                                    | 5 500                  |
| 95.250 30.162 29.370 23.020 109 147 11 100 15 000 4 000                                                                    | 5 300                  |
| 95.250 30.958 28.300 20.638 82.5 92.0 8 400 9 350 3 700                                                                    | 5 000                  |
| 95.250 30.958 28.575 22.225 96.0 116 9 800 11 800 3 700                                                                    | 4 900                  |
| <b>42.070</b> 90.488 39.688 40.386 33.338 136 175 13 900 17 900 4 300                                                      | 5 800                  |
| 82.550 26.195 26.988 20.638 75.5 97.0 7700 9900 4600                                                                       | 6 100                  |
| <b>42.862</b> 82.931 23.812 25.400 19.050 76.0 98.0 7750 10 000 4 500                                                      | 6 000                  |
| 87.312     30.162     30.886     23.812     94.0     117     9 600     12 000     4 400                                    | 5 900                  |
| <b>79.375 23.812 25.400 19.050 76.5 97.5 7800 9950 4800</b>                                                                | 6 400                  |
| <b>42.875</b> 79.375 23.812 25.400 19.050 76.5 97.5 7800 9950 4800 82.931 23.812 25.400 19.050 76.0 98.0 7750 10 000 4 500 | 6 000                  |
| 76.992 17.462 17.145 11.908 44.0 54.0 4 450 5 550 4 700                                                                    | 6 300                  |
| 79.375 17.462 17.462 13.495 45.5 56.0 4600 5700 4600                                                                       | 6 200                  |
| 82.931 23.812 25.400 19.050 76.0 98.0 7750 10 000 4 500                                                                    | 6 000                  |
| 82.931 23.812 25.400 19.050 76.0 98.0 7750 10 000 4 500                                                                    | 6 000                  |
| 84.138 30.162 30.886 23.812 94.0 117 9 600 12 000 4 400                                                                    | 5 900                  |
| 85.000 20.638 21.692 17.462 69.5 79.5 7100 8100 4400                                                                       | 5 800                  |
| 87.312 30.162 30.886 23.812 94.0 117 9 600 12 000 4 400                                                                    | 5 900                  |
| 88.900 30.162 29.370 23.020 93.5 125 9 550 12 700 4 300                                                                    | 5 800                  |
| <b>44.450</b> 93.264 30.162 30.302 23.812 102 134 10 400 13 700 4 000                                                      | 5 300                  |
| 93.662 31.750 31.750 26.195 103 131 10.600 13.400 4.100                                                                    | 5 500                  |
| 95.250 27.783 28.575 22.225 107 139 10 900 14 200 3 900                                                                    | 5 200                  |
| 95.250 27.783 29.900 22.225 108 129 11 000 13 200 4 200                                                                    | 5 600                  |
| 95.250 30.162 29.370 23.020 109 147 11 100 15 000 4 000                                                                    | 5 300                  |
| 95.250 30.958 28.300 20.638 82.5 92.0 8 400 9 350 3 700                                                                    | 5 000                  |
| 95.250 30.958 28.575 22.225 96.0 116 9 800 11 800 3 700                                                                    | 4 900                  |
| 101.600 34.925 36.068 26.988 135 165 13.800 16.800 3.800                                                                   | 5 000                  |
| 104.775 30.162 29.317 24.605 115 148 11.700 15.000 3.500                                                                   | 4 700                  |

Note: 1. Chamfer dimensions on the back face of the inner and outer rings of the bearing are larger than maximum values for installation dimensions rs and rs.





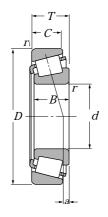



### Equivalent radial load dynamic Pr = XFr + YFa

 $P_{r} = XF_{r} + YF_{a}$   $\frac{F_{a}}{F_{r}} \quad e \quad \frac{F_{a}}{F_{r}} > e$   $X \quad Y \quad X \quad Y$ 

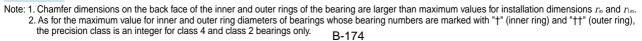
static  $P_{\text{Or}} = 0.5F_{\text{r}} + Y_0F_{\text{a}}$  When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$  For values of e,  $Y_2$  and  $Y_0$  see the table below.

| Bearing numbers      | Abutment and fillet dimensions |             |             |            |                 |                      | center                      | Constant | Axi<br>load fa |             | Mass      |
|----------------------|--------------------------------|-------------|-------------|------------|-----------------|----------------------|-----------------------------|----------|----------------|-------------|-----------|
|                      |                                |             | m           | m          |                 |                      | mm                          |          |                |             | kg        |
|                      | $d_{a}$                        | $d_{\rm b}$ | $D_{\rm a}$ | $D_{ m b}$ | r <sub>as</sub> | <i>I</i> ¹1as<br>max | а                           | e        | $Y_2$          | $Y_{\rm o}$ | (approx.) |
|                      |                                |             |             |            |                 |                      |                             |          |                |             |           |
| 4T-336/332           | 47                             | 46          | 73          | 75         | 8.0             | 1.3                  | 6.6                         | 0.27     | 2.20           | 1.21        | 0.468     |
| 4T-26882/26824       | 54                             | 47          | 70          | 74         | 3.5             | 1.3                  | 7.4                         | 0.32     | 1.88           | 1.04        | 0.542     |
| 4T-M802048/M802011   | 57                             | 51          | 70          | 79         | 3.5             | 3.3                  | 3.2                         | 0.55     | 1.10           | 0.60        | 0.642     |
| 4T-3880/3820         | 52                             | 50          | 73          | 81         | 8.0             | 3.3                  | 8.1                         | 0.40     | 1.49           | 0.82        | 0.81      |
| 4T-3576/3525         | 49                             | 48          | 75          | 81         | 8.0             | 3.3                  | 10.0                        | 0.31     | 1.96           | 1.08        | 0.834     |
| 4T-HM803145/HM803110 | 54                             | 53          | 74          | 85         | 8.0             | 3.3                  | 4.6                         | 0.55     | 1.10           | 0.60        | 0.901     |
| 4T-4388/4335         | 57                             | 51          | 77          | 85         | 3.5             | 3.3                  | 15.0                        | 0.28     | 2.11           | 1.16        | 1.25      |
| 4T-M903345/M903310   | 60                             | 54          | 78          | 88         | 3.5             | 1.5                  | <b>-</b> 3.6 <sup>1</sup> ) | 0.83     | 0.72           | 0.40        | 0.758     |
| 4T-46162/46368       | 52                             | 51          | 79          | 87         | 8.0             | 3.3                  | 7.1                         | 0.40     | 1.49           | 0.82        | 1.09      |
| 4T-HM804840/HM804810 | 61                             | 54          | 81          | 91         | 3.5             | 3.3                  | 3.7                         | 0.55     | 1.10           | 0.60        | 1.08      |
| 4T-53162/53375       | 57                             | 53          | 81          | 89         | 1.5             | 8.0                  | 0.5                         | 0.74     | 0.81           | 0.45        | 0.975     |
| 4T-HM903245/HM903210 | 63                             | 54          | 81          | 91         | 3.5             | 8.0                  | <b>-</b> 0.4 <sub>1</sub> ) | 0.74     | 0.81           | 0.45        | 1.05      |
| 4T-4395/4335         | 58                             | 51          | 77          | 85         | 3.5             | 3.3                  | 15.0                        | 0.28     | 2.11           | 1.16        | 1.24      |
| 4T-22780/22720       | 56                             | 50          | 71          | 77         | 3.5             | 3.3                  | 6.4                         | 0.40     | 1.49           | 0.82        | 0.617     |
| 4T-25578/25520       | 53                             | 49.5        | 74          | 77         | 2.3             | 0.8                  | 6.2                         | 0.33     | 1.79           | 0.99        | 0.584     |
| 4T-3579/3525         | 56                             | 49.5        | 75          | 81         | 3.5             | 3.3                  | 10.0                        | 0.31     | 1.96           | 1.08        | 0.805     |
| 4T-26884/26822       | 55                             | 48.5        | 71          | 74         | 3.5             | 0.8                  | 7.4                         | 0.32     | 1.88           | 1.04        | 0.51      |
| 4T-25577/25520       | 55                             | 49          | 74          | 77         | 3.5             | 8.0                  | 6.2                         | 0.33     | 1.79           | 0.99        | 0.581     |
| 4T-12175/12303       | 52                             | 49.5        | 68          | 73         | 1.5             | 1.5                  | <b>-</b> 0.2 <sup>1</sup> ) | 0.51     | 1.19           | 0.65        | 0.308     |
| 4T-18685/18620       | 54                             | 49.5        | 71          | 74         | 2.8             | 1.5                  | 2.2                         | 0.37     | 1.60           | 0.88        | 0.345     |
| 4T-25580/25520       | 57                             | 50          | 74          | 77         | 3.5             | 0.8                  | 6.2                         | 0.33     | 1.79           | 0.99        | 0.56      |
| 4T-25582/25520       | 60                             | 50          | 74          | 77         | 5               | 0.8                  | 6.2                         | 0.33     | 1.79           | 0.99        | 0.556     |
| 4T-3578/3520         | 57                             | 51          | 74          | 80         | 3.5             | 3.3                  | 10.0                        | 0.31     | 1.96           | 1.08        | 0.699     |
| 4T-355/354A          | 54                             | 50          | 77          | 80         | 2.3             | 1.3                  | 5.1                         | 0.31     | 1.96           | 1.08        | 0.511     |
| 4T-3578/3525         | 57                             | 51          | 75          | 81         | 3.5             | 3.3                  | 10.0                        | 0.31     | 1.96           | 1.08        | 0.779     |
| 4T-HM803149/HM803110 | 62                             | 53          | 74          | 85         | 3.5             | 3.3                  | 4.6                         | 0.55     | 1.10           | 0.60        | 0.849     |
| 4T-3782/3720         | 58                             | 52          | 82          | 88         | 3.5             | 3.3                  | 8.3                         | 0.34     | 1.77           | 0.97        | 0.961     |
| 4T-46175/46368       | 55                             | 54          | 79          | 87         | 0.8             | 3.3                  | 7.1                         | 0.40     | 1.49           | 0.82        | 1.04      |
| 4T-33885/33821       | 53                             | 53          | 85          | 90         | 0.8             | 2.3                  | 8.0                         | 0.33     | 1.82           | 1.00        | 0.987     |
| 4T-438/432           | 57                             | 51          | 83          | 87         | 3.5             | 2.3                  | 9.2                         | 0.28     | 2.11           | 1.16        | 0.953     |
| 4T-HM804842/HM804810 | 57                             | 57          | 81          | 91         | 0.8             | 3.3                  | 3.7                         | 0.55     | 1.10           | 0.60        | 1.04      |
| 4T-53177/53375       | 63                             | 53          | 81          | 89         | 3.5             | 0.8                  | 0.5                         | 0.74     | 0.81           | 0.45        | 0.925     |
| 4T-HM903249/HM903210 | 65                             | 54          | 81          | 91         | 3.5             | 0.8                  | - 0.41)                     | 0.74     | 0.81           | 0.45        | 1         |
| 4T-527/522           | 59                             | 53          | 89          | 95         | 3.5             | 3.3                  | 12.9                        | 0.29     | 2.10           | 1.16        | 1.37      |
| 4T-460/453X          | 60                             | 54          | 92          | 98         | 3.5             | 3.3                  | 7.1                         | 0.34     | 1.79           | 0.98        | 1.29      |



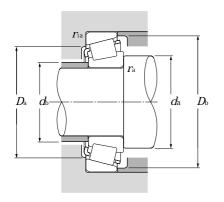


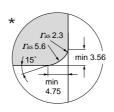

### **Tapered Roller Bearings**




#### Inch series




#### d 44.450~47.625mm

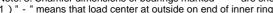

|       | Во                 | undary dime      | nsions           |                  |            |              | ad ratings       |                  | Limiting s     | speeds         |
|-------|--------------------|------------------|------------------|------------------|------------|--------------|------------------|------------------|----------------|----------------|
|       |                    | mm               |                  |                  | dynamic    | static<br>:N | dynamic          | static           | mir            | v-1            |
|       |                    | mm               |                  |                  | K          | in           | kį               | gr               | mir            | 1 '            |
| d     | D                  | T                | В                | C                | $C_{ m r}$ | $C_{ m or}$  | $C_{ m r}$       | $C_{ m or}$      | grease         | oil            |
|       | 404 775            | 00.400           | 00.050           | 00.040           | 400        | 400          | 40.000           | 47.000           | 0.500          | 4.700          |
|       | 104.775<br>104.775 | 30.162<br>36.512 | 30.958<br>36.512 | 23.812<br>28.575 | 130<br>138 | 169          | 13 200           | 17 300<br>19 300 | 3 500          | 4 700          |
| 44.45 |                    | 30.162           | 26.909           | 20.638           | 104        | 189<br>136   | 14 000<br>10 600 | 13 900           | 3 600<br>3 200 | 4 800<br>4 200 |
| 44.40 | 111.125            | 30.162           | 26.909           | 20.638           | 104        | 136          | 10 600           | 13 900           | 3 200          | 4 200          |
|       | 127.000            | 50.800           | 52.388           | 41.275           | 250        | 320          | 25 500           | 33 000           | 3 200          | 4 300          |
|       | 82.931             | 23.812           | 25.400           | 19.050           | 76.0       | 98.0         | 7 750            | 10 000           | 4 500          | 6 000          |
| 44.98 | 93.264             | 30.162           | 30.302           | 23.812           | 102        | 134          | 10 400           | 13 700           | 4 000          | 5 300          |
|       | 33.204             | 30.102           | 30.302           | 20.012           | 102        | 104          | 10 400           | 13 7 00          | + 000          | <del></del>    |
| 45.00 | 85.000             | 20.638           | 21.692           | 17.462           | 69.5       | 79.5         | 7 100            | 8 100            | 4 400          | 5 800          |
| 45.00 | 88.900             | 20.638           | 22.225           | 16.513           | 76.5       | 90.5         | 7 800            | 9 250            | 4 100          | 5 500          |
| 45.23 | <b>37</b> 87.312   | 30.162           | 30.886           | 23.812           | 94.0       | 117          | 9 600            | 12 000           | 4 400          | 5 900          |
| 45.0  | 73.431             | 19.558           | 19.812           | 15.748           | 54.0       | 76.0         | 5 550            | 7 750            | 4 800          | 6 400          |
| 45.24 | 77.788             | 19.842           | 19.842           | 15.080           | 57.5       | 73.5         | 5 850            | 7 500            | 4 600          | 6 200          |
|       | 82.550             | 23.812           | 25.400           | 19.050           | 76.0       | 98.0         | 7 750            | 10 000           | 4 500          | 6 000          |
| 45.61 | 82.931             | 23.812           | 25.400           | 19.050           | 76.0       | 98.0         | 7 750            | 10 000           | 4 500          | 6 000          |
| 43.0  | 83.058             | 23.876           | 25.400           | 19.114           | 76.0       | 98.0         | 7 750            | 10 000           | 4 500          | 6 000          |
|       | 85.000             | 23.812           | 25.400           | 19.050           | 76.0       | 98.0         | 7 750            | 10 000           | 4 500          | 6 000          |
| 45.98 | <b>37</b> 74.976   | 18.000           | 18.000           | 14.000           | 51.0       | 71.0         | 5 200            | 7 250            | 4 700          | 6 300          |
|       | 79.375             | 17.462           | 17.462           | 13.495           | 45.5       | 56.0         | 4 600            | 5 700            | 4 600          | 6 200          |
|       | 82.931             | 23.812           | 25.400           | 19.050           | 76.0       | 98.0         | 7 750            | 10 000           | 4 500          | 6 000          |
|       | 85.000             | 20.638           | 21.692           | 17.462           | 69.5       | 79.5         | 7 100            | 8 100            | 4 400          | 5 800          |
| 46.03 |                    | 25.400           | 25.608           | 20.638           | 79.0       | 104          | 8 050            | 10 600           | 4 400          | 5 800          |
|       | 90.119             | 23.000           | 21.692           | 21.808           | 69.5       | 79.5         | 7 100            | 8 100            | 4 400          | 5 800          |
|       | 93.264             | 30.162           | 30.302           | 23.812           | 102        | 134          | 10 400           | 13 700           | 4 000          | 5 300          |
|       | 95.250             | 27.783           | 29.900           | 22.225           | 108        | 129          | 11 000           | 13 200           | 4 200          | 5 600          |
|       | 88.900             | 20.638           | 22.225           | 16.513           | 76.5       | 90.5         | 7 800            | 9 250            | 4 100          | 5 500          |
|       | 88.900             | 25.400           | 25.400           | 19.050           | 82.0       | 101          | 8 350            | 10 300           | 4 200          | 5 600          |
|       | 93.264             | 30.162           | 30.302           | 23.812           | 102        | 134          | 10 400           | 13 700           | 4 000          | 5 300          |
| 47.62 |                    | 30.162           | 29.370           | 23.020           | 109        | 147          | 11 100           | 15 000           | 4 000          | 5 300          |
|       | 96.838             | 21.000           | 21.946           | 15.875           | 78.0       | 96.5         | 7 950            | 9 850            | 3 700          | 5 000          |
|       | 101.600            | 34.925           | 36.068           | 26.988           | 135        | 165          | 13 800           | 16 800           | 3 800          | 5 000          |
|       | 104.775            | 30.162           | 29.317           | 24.605           | 115        | 148          | 11 700           | 15 000           | 3 500          | 4 700          |












 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 

**static**  $P_{\text{or}} = 0.5F_{\text{r}} + Y_{\text{o}}F_{\text{a}}$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ For values of e,  $Y_2$  and  $Y_0$ see the table below.

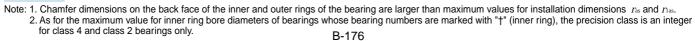
| Bearing numbers          | Abutment and fillet dimensions |             |                  |            |                        |                  | center             | center load factors |       |             | Mass      |
|--------------------------|--------------------------------|-------------|------------------|------------|------------------------|------------------|--------------------|---------------------|-------|-------------|-----------|
|                          |                                |             | n                | nm         |                        |                  | mm                 |                     |       |             | kg        |
|                          | $d_{\rm a}$                    | $d_{\rm b}$ | $D_{\mathrm{a}}$ | $D_{ m b}$ | r <sub>as</sub><br>max | r <sub>1as</sub> | а                  | e                   | $Y_2$ | $Y_{\rm o}$ | (approx.) |
| 4T-45280/45220           |                                | <i></i>     | 00               | 00         | 0.0                    | 2.2              | 7.0                | 0.00                | 4.00  | 0.00        | 4.05      |
|                          | 55<br>66                       | 54<br>50    | 93               | 99         | 0.8                    | 3.3              | 7.9                | 0.33                | 1.80  | 0.99        | 1.35      |
| 4T-HM807040/HM807010     | 66                             | 59          | 89               | 100        | 3.5                    | 3.3              | 7.4                | 0.49                | 1.23  | 0.68        | 1.62      |
| 4T-55175C/55437          | 70                             | 64          | 92               | 105        | 3.5                    | 3.3              | -7.4 <sup>1)</sup> | 0.88                | 0.68  | 0.37        | 1.45      |
| 4T-55176C/55437          | 65                             | 65          | 92               | 105        | 0.8                    | 3.3              | -7.4 <sup>1)</sup> | 0.88                | 0.68  | 0.37        | 1.09      |
| 4T-6277/6220             | 67                             | 60          | 108              | 117        | 3.5                    | 3.3              | 19.5               | 0.30                | 2.01  | 1.11        | 3.58      |
| 4T-25584/25520           | 53                             | 51          | 74               | 77         | 1.5                    | 0.8              | 6.2                | 0.33                | 1.79  | 0.99        | 0.555     |
| 4T-3776/3720             | 59                             | 53          | 82               | 88         | 3.5                    | 3.3              | 8.3                | 0.34                | 1.77  | 0.97        | 0.952     |
| 4T-358/354A              | 53                             | 50          | 77               | 80         | 1.5                    | 1.3              | 5.1                | 0.31                | 1.96  | 1.08        | 0.505     |
| 4T-367/362A              | 55                             | 51          | 81               | 84         | 2                      | 1.3              | 4.0                | 0.32                | 1.88  | 1.03        | 0.595     |
| 4T-3586/3525             | 58                             | 52          | 75               | 81         | 3.5                    | 3.3              | 10.0               | 0.31                | 1.96  | 1.08        | 0.765     |
| 4T-LM102949/LM102910     | 56                             | 50          | 68               | 70         | 3.5                    | 0.8              | 4.7                | 0.31                | 1.97  | 1.08        | 0.307     |
| 4T-LM603049/LM603011     | 57                             | 50          | 71               | 74         | 3.5                    | 0.8              | 2.2                | 0.43                | 1.41  | 0.77        | 0.372     |
| 4T-25590/25519           | 58                             | 51          | 73               | 77         | 3.5                    | 2                | 6.2                | 0.33                | 1.79  | 0.99        | 0.534     |
| 4T-25590/25520           | 58                             | 51          | 74               | 77         | 3.5                    | 0.8              | 6.2                | 0.33                | 1.79  | 0.99        | 0.543     |
| 4T-25590/25522           | 58                             | 51          | 73               | 77         | 3.5                    | 2                | 6.2                | 0.33                | 1.79  | 0.99        | 0.545     |
| 4T-25590/25526           | 58                             | 51          | 74               | 78         | 3.5                    | 2.3              | 6.2                | 0.33                | 1.79  | 0.99        | 0.581     |
| 4T-LM503349A†/LM503310†† | 57                             | 51          | 67               | 71         | *                      | 1.5              | 1.9                | 0.40                | 1.49  | 0.82        | 0.296     |
| 4T-18690/18620           | 56                             | 51          | 71               | 74         | 2.8                    | 1.5              | 2.2                | 0.37                | 1.60  | 0.88        | 0.329     |
| 4T-25592/25520           | 58                             | 52          | 74               | 77         | 3.5                    | 0.8              | 6.2                | 0.33                | 1.79  | 0.99        | 0.538     |
| 4T-359A/354A             | 57                             | 51          | 77               | 80         | 3.5                    | 1.3              | 5.1                | 0.31                | 1.96  | 1.08        | 0.489     |
| 4T-2984/2924             | 58                             | 52          | 76               | 80         | 3.5                    | 1.3              | 6.4                | 0.35                | 1.73  | 0.95        | 0.615     |
| 4T-359S/352              | 55                             | 51          | 78               | 82         | 2.3                    | 2.3              | 5.1                | 0.31                | 1.96  | 1.08        | 0.651     |
| 4T-3777/3720             | 60                             | 53          | 82               | 88         | 3.5                    | 3.3              | 8.3                | 0.34                | 1.77  | 0.97        | 0.934     |
| 4T-436/432               | 59                             | 52          | 83               | 87         | 3.5                    | 2.3              | 9.2                | 0.28                | 2.11  | 1.16        | 0.927     |
| 4T-369A/362A             | 60                             | 53          | 81               | 84         | 3.5                    | 1.3              | 4.0                | 0.32                | 1.88  | 1.03        | 0.559     |
| 4T-M804048/M804010       | 57                             | 56          | 77               | 85         | 0.8                    | 3.3              | 1.7                | 0.55                | 1.10  | 0.60        | 0.662     |
| 4T-3778/3720             | 67                             | 55          | 82               | 88         | 6.4                    | 3.3              | 8.3                | 0.34                | 1.77  | 0.97        | 0.898     |
| 4T-HM804846/HM804810     | 66                             | 57          | 81               | 91         | 3.5                    | 3.3              | 3.7                | 0.55                | 1.10  | 0.60        | 0.978     |
| 4T-386A/382A             | 56                             | 55          | 89               | 92         | 0.8                    | 0.8              | 3.1                | 0.35                | 1.69  | 0.93        | 0.72      |
| 4T-528/522               | 62                             | 55          | 89               | 95         | 3.5                    | 3.3              | 12.9               | 0.29                | 2.10  | 1.16        | 1.3       |
| 4T-463/453X              | 65                             | 56          | 92               | 98         | 4.8                    | 3.3              | 7.1                | 0.34                | 1.79  | 0.98        | 1.24      |

Note: 3. Chamfer dimensions of bearings marked " \* " are shown in drawings. 1 ) " - " means that load center at outside on end of inner ring.



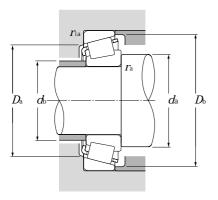



### **Tapered Roller Bearings**




## Inch series J series




### d 47.625~50.800mm

|        | Boundary dimensions                                                                                                  |                                                                                                                                |                                                                                                                                          |                                                                                                                                | Basic load ratings dynamic static dynamic                                                       |                                                                                        |                                                                                                                                 | Limiting speeds                                                                                                |                                                                                                                            |                                                                                                                            |
|--------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|        |                                                                                                                      | mm                                                                                                                             |                                                                                                                                          |                                                                                                                                | dynamic<br>kN                                                                                   | Static                                                                                 | dynamic<br>kgf                                                                                                                  | static                                                                                                         | min                                                                                                                        | <sub>-</sub> -1                                                                                                            |
| d      | D                                                                                                                    | T                                                                                                                              | В                                                                                                                                        | С                                                                                                                              | $C_{\rm r}$                                                                                     | $C_{ m or}$                                                                            | $C_{\Gamma}$                                                                                                                    | $C_{ m or}$                                                                                                    | grease                                                                                                                     | oil                                                                                                                        |
| 47.625 | 104.775<br>111.125<br>123.825                                                                                        | 30.162<br>30.162<br>36.512                                                                                                     | 30.958<br>26.909<br>32.791                                                                                                               | 23.812<br>20.638<br>25.400                                                                                                     | 130<br>104<br>154                                                                               | 169<br>136<br>188                                                                      | 13 200<br>10 600<br>15 700                                                                                                      | 17 300<br>13 900<br>19 200                                                                                     | 3 500<br>3 200<br>2 900                                                                                                    | 4 700<br>4 200<br>3 900                                                                                                    |
| 48.412 | 95.250<br>95.250                                                                                                     | 30.162<br>30.162                                                                                                               | 29.370<br>29.370                                                                                                                         | 23.020<br>23.020                                                                                                               | 109<br>109                                                                                      | 147<br>147                                                                             | 11 100<br>11 100                                                                                                                | 15 000<br>15 000                                                                                               | 4 000<br>4 000                                                                                                             | 5 300<br>5 300                                                                                                             |
| 49.212 | 93.264<br>103.188<br>104.775<br>114.300<br>114.300                                                                   | 30.162<br>43.658<br>36.512<br>44.450<br>44.450                                                                                 | 30.302<br>44.475<br>36.512<br>44.450<br>44.450                                                                                           | 23.812<br>36.512<br>28.575<br>34.925<br>36.068                                                                                 | 102<br>174<br>138<br>186<br>203                                                                 | 134<br>232<br>189<br>225<br>261                                                        | 10 400<br>17 700<br>14 000<br>19 000<br>20 700                                                                                  | 13 700<br>23 600<br>19 300<br>23 000<br>26 600                                                                 | 4 000<br>3 800<br>3 600<br>3 600<br>3 500                                                                                  | 5 300<br>5 000<br>4 800<br>4 800<br>4 700                                                                                  |
| 49.987 | 82.550<br>92.075<br>114.300                                                                                          | 21.590<br>24.608<br>44.450                                                                                                     | 22.225<br>25.400<br>44.450                                                                                                               | 16.510<br>19.845<br>36.068                                                                                                     | 69.5<br>83.5<br>203                                                                             | 94.0<br>116<br>261                                                                     | 7 100<br>8 550<br>20 700                                                                                                        | 9 600<br>11 800<br>26 600                                                                                      | 4 300<br>4 000<br>3 500                                                                                                    | 5 700<br>5 300<br>4 700                                                                                                    |
| 50.000 | 82.000<br>84.000<br>88.900<br>88.900<br>90.000<br>105.000<br>110.000                                                 | 21.500<br>22.000<br>20.638<br>20.638<br>28.000<br>37.000<br>22.000                                                             | 21.500<br>22.000<br>22.225<br>22.225<br>28.000<br>36.000<br>21.996                                                                       | 17.000<br>17.500<br>16.513<br>16.513<br>23.000<br>29.000<br>18.824                                                             | 69.5<br>69.5<br>76.5<br>76.5<br>106<br>138<br>89.5                                              | 94.0<br>94.5<br>90.5<br>90.5<br>141<br>189<br>120                                      | 7 100<br>7 100<br>7 800<br>7 800<br>10 800<br>14 000<br>9 150                                                                   | 9 600<br>9 600<br>9 250<br>9 250<br>14 400<br>19 300<br>12 300                                                 | 4 300<br>4 300<br>4 100<br>4 100<br>4 100<br>3 600<br>3 200                                                                | 5 700<br>5 700<br>5 500<br>5 500<br>5 400<br>4 800<br>4 300                                                                |
| 50.800 | 82.550<br>85.000<br>88.900<br>88.900<br>90.000<br>92.075<br>93.264<br>93.264<br>95.250<br>96.838<br>97.630<br>98.425 | 21.590<br>17.462<br>17.462<br>20.638<br>20.638<br>20.000<br>24.608<br>30.162<br>27.783<br>30.162<br>21.000<br>24.608<br>30.162 | 22.225<br>17.462<br>17.462<br>22.225<br>22.225<br>22.225<br>25.400<br>30.302<br>30.302<br>28.575<br>30.302<br>21.946<br>24.608<br>30.302 | 16.510<br>13.495<br>13.495<br>16.513<br>16.513<br>15.875<br>19.845<br>23.812<br>22.225<br>23.812<br>15.875<br>19.446<br>23.812 | 69.5<br>49.5<br>49.5<br>76.5<br>76.5<br>83.5<br>102<br>102<br>107<br>102<br>78.0<br>88.5<br>102 | 94.0<br>65.0<br>65.0<br>90.5<br>90.5<br>116<br>134<br>134<br>139<br>134<br>96.5<br>128 | 7 100<br>5 050<br>5 050<br>7 800<br>7 800<br>7 800<br>8 550<br>10 400<br>10 400<br>10 900<br>10 400<br>7 950<br>9 000<br>10 400 | 9 600<br>6 600<br>9 250<br>9 250<br>9 250<br>11 800<br>13 700<br>14 200<br>13 700<br>9 850<br>13 000<br>13 700 | 4 300<br>4 200<br>4 200<br>4 100<br>4 100<br>4 100<br>4 000<br>4 000<br>4 000<br>3 900<br>4 000<br>3 700<br>3 700<br>4 000 | 5 700<br>5 600<br>5 600<br>5 500<br>5 500<br>5 500<br>5 300<br>5 300<br>5 300<br>5 300<br>5 300<br>5 900<br>4 900<br>5 300 |





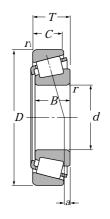




 $P_{\Gamma} = XF_{\Gamma} + YF_{\alpha}$ 

| $\frac{F_{\rm a}}{F_{\rm r}}$ | e | $\frac{F_{\rm a}}{F_{\rm r}} > e$ |            |  |  |  |  |
|-------------------------------|---|-----------------------------------|------------|--|--|--|--|
| $\overline{X}$                | Y | X                                 | Y          |  |  |  |  |
| 1                             | 0 | 0.4                               | <b>Y</b> 2 |  |  |  |  |

static  $P_{\text{or}} = 0.5F_{\text{r}} + Y_{\text{o}}F_{\text{a}}$  When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$  For values of e,  $Y_{\text{2}}$  and  $Y_{\text{o}}$  see the table below.


| Bearing numbers                      |          | Abutment and fillet dimensions |                  |            |                |            | Load center    | Constant     | Axi<br>load fa |              | Mass         |
|--------------------------------------|----------|--------------------------------|------------------|------------|----------------|------------|----------------|--------------|----------------|--------------|--------------|
|                                      |          |                                | n                | nm         |                |            | mm             |              | iouu iu        | 0.0.5        | kg           |
|                                      |          |                                |                  |            | $m{r}_{ m as}$ | $m{r}$ 1as |                |              |                |              | Ū            |
|                                      | $d_{a}$  | $d_{\rm b}$                    | $D_{\mathrm{a}}$ | $D_{ m b}$ | max            | max        | а              | e            | $Y_2$          | $Y_{\rm o}$  | (approx.)    |
|                                      |          |                                |                  |            |                |            |                |              |                |              |              |
| 4T-45282/45220                       | 63       | 57                             | 93               | 99         | 3.5            | 3.3        | 7.9            | 0.33         | 1.80           | 0.99         | 1.29         |
| 4T-55187C/55437                      | 69       | 62                             | 92               | 105        | 3.5            | 3.3        | <b>-7.4</b> 1) |              | 0.68           | 0.37         | 1.4          |
| 4T-72188C/72487                      | 69       | 67                             | 102              | 116        | 8.0            | 3.3        | <b>-1.5</b> 1) | 0.74         | 0.81           | 0.45         | 2.16         |
| 4T-HM804848/HM804810                 | 63       | 57                             | 81               | 91         | 2.3            | 3.3        | 3.7            | 0.55         | 1.10           | 0.60         | 0.967        |
| 4T-HM804849/HM804810                 | 66       | 57                             | 81               | 91         | 3.5            | 3.3        | 3.7            | 0.55         | 1.10           | 0.60         | 0.964        |
| 4T-3781/3720                         | 60       | F.C.                           | 82               | 88         | 2.5            | 2.0        | 0.0            | 0.34         | 1 77           | 0.07         | 0.077        |
|                                      | 62       | 56<br>60                       | _                |            | 3.5            | 3.3        | 8.3            |              | 1.77           | 0.97         | 0.877        |
| 4T-5395/5335<br>4T-HM807044/HM807010 | 66<br>69 | 60<br>63                       | 89<br>89         | 97<br>100  | 3.5<br>3.5     | 3.3<br>3.3 | 16.1<br>7.4    | 0.30<br>0.49 | 2.02<br>1.23   | 1.11<br>0.68 | 1.75<br>1.52 |
| 4T-65390/65320                       | 70       | 60                             | 97               | 100        | 3.5            | 3.3        | 12.5           | 0.49         | 1.39           | 0.00         | 2.23         |
| 4T-HH506348/HH506310                 | 70<br>71 | 61                             | 97               | 107        | 3.5            | 3.3        | 13.3           | 0.40         | 1.49           | 0.77         | 2.23         |
| 411111300340/1111300310              | , ,      | 01                             |                  | 107        | 0.0            | 0.0        | 10.0           | 0.40         | 1.40           | 0.02         | 2.00         |
| 4T-LM104947A†/LM104911               | 55       | 55                             | 75               | 78         | 0.5            | 1.3        | 5.8            | 0.31         | 1.97           | 1.08         | 0.434        |
| 4T-28579†/28521                      | 60       | 56                             | 83               | 87         | 2.3            | 8.0        | 4.6            | 0.38         | 1.59           | 0.87         | 0.718        |
| 4T-HH506349†/HH506310                | 72       | 61                             | 97               | 107        | 3.5            | 3.3        | 13.3           | 0.40         | 1.49           | 0.82         | 2.27         |
| # 4T-JLM104948/JLM104910             | 60       | 55                             | 76               | 78         | 3              | 0.5        | 5.4            | 0.31         | 1.97           | 1.08         | 0.42         |
| # 4T-JLM704649/JLM704610             | 62       | 56                             | 76               | 80         | 3.5            | 1.5        | 2.3            | 0.44         | 1.37           | 0.75         | 0.466        |
| 4T-365/362A                          | 58       | 55                             | 81               | 84         | 2              | 1.3        | 4.0            | 0.32         | 1.88           | 1.03         | 0.53         |
| 4T-366/362A                          | 59       | 55                             | 81               | 84         | 2.3            | 1.3        | 4.0            | 0.32         | 1.88           | 1.03         | 0.529        |
| # 4T-JM205149/JM205110               | 62       | 57                             | 80               | 85         | 3              | 2.5        | 7.4            | 0.33         | 1.82           | 1.00         | 0.752        |
| # 4T-JHM807045/JHM807012             | 69       | 63                             | 90               | 100        | 3              | 2.5        | 7.5            | 0.49         | 1.23           | 0.68         | 1.52         |
| 4T-396/394A                          | 61       | 60                             | 101              | 104        | 8.0            | 1.3        | 0.7            | 0.40         | 1.49           | 0.82         | 1.06         |
| 4T-LM104949/LM104911                 | 62       | 55                             | 75               | 78         | 3.5            | 1.3        | 5.8            | 0.31         | 1.97           | 1.08         | 0.419        |
| 4T-18790/18720                       | 62       | 56                             | 77               | 80         | 3.5            | 1.5        | 0.8            | 0.41         | 1.48           | 0.81         | 0.374        |
| 4T-18790/18724                       | 62       | 56                             | 78               | 82         | 3.5            | 1.3        | 0.8            | 0.41         | 1.48           | 0.81         | 0.431        |
| 4T-368/362A                          | 58       | 56                             | 81               | 84         | 1.5            | 1.3        | 4.0            | 0.32         | 1.88           | 1.03         | 0.519        |
| 4T-370A/362A                         | 65       | 56                             | 81               | 84         | 5              | 1.3        | 4.0            | 0.32         | 1.88           | 1.03         | 0.511        |
| 4T-368A/362                          | 62       | 56                             | 81               | 84         | 3.5            | 2          | 4.0            | 0.32         | 1.88           | 1.03         | 0.525        |
| 4T-28580/28521                       | 63       | 57                             | 83               | 87         | 3.5            | 0.8        | 4.6            | 0.38         | 1.59           | 0.87         | 0.703        |
| 4T-3775/3720                         | 58       | 58                             | 82               | 88         | 8.0            | 3.3        | 8.3            | 0.34         | 1.77           | 0.97         | 0.852        |
| 4T-3780/3720                         | 64       | 58                             | 82               | 88         | 3.5            | 3.3        | 8.3            | 0.34         | 1.77           | 0.97         | 0.848        |
| 4T-33889/33821                       | 64       | 58                             | 85               | 90         | 3.5            | 2.3        | 8.0            | 0.33         | 1.82           | 1.00         | 0.876        |
| 4T-3780/3726                         | 64       | 58                             | 83               | 89         | 3.5            | 3.3        | 8.3            | 0.34         | 1.77           | 0.97         | 0.903        |
| 4T-385A/382A                         | 61       | 60                             | 89               | 92         | 2.3            | 0.8        | 3.1            | 0.35         | 1.69           | 0.93         | 0.676        |
| 4T-28678/28622                       | 65       | 58                             | 88               | 92         | 3.5            | 8.0        | 3.3            | 0.40         | 1.49           | 0.82         | 0.852        |
| 4T-3780/3732                         | 64       | 58                             | 84               | 90         | 3.5            | 3.3        | 8.3            | 0.34         | 1.77           | 0.97         | 0.993        |

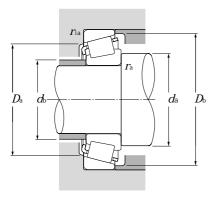
Note: 3. Bearing numbers marked " # " designate **J-series** bearings. The tolerances of these bearings is listed in **Table 6.6** on **page A-42**. 1 ) " - " means that load center at outside on end of inner ring.





#### Inch series J series




#### d 50.800 ~ 55.000mm

|        | Воц     | ındary dime | nsions |        | di a          | Basic load  | _             | -4-4:-       | Limiting s | speeds          |
|--------|---------|-------------|--------|--------|---------------|-------------|---------------|--------------|------------|-----------------|
|        |         | mm          |        |        | dynamic<br>kN | static      | dynamic<br>kı | static<br>gf | mir        | n <sup>-1</sup> |
| d      | D       | T           | В      | С      | $C_{ m r}$    | $C_{ m or}$ | $C_{\rm r}$   | $C_{ m or}$  | grease     | oil             |
|        | 101.600 | 31.750      | 31.750 | 25.400 | 110           | 136         | 11 200        | 13 900       | 3 700      | 5 000           |
|        | 101.600 | 34.925      | 36.068 | 26.988 | 135           | 165         | 13 800        | 16 800       | 3 800      | 5 000           |
|        | 104.775 | 30.162      | 29.317 | 24.605 | 115           | 148         | 11 700        | 15 000       | 3 500      | 4 700           |
|        | 104.775 | 30.162      | 30.958 | 23.812 | 130           | 169         | 13 200        | 17 300       | 3 500      | 4 700           |
|        | 104.775 | 36.512      | 36.512 | 28.575 | 138           | 189         | 14 000        | 19 300       | 3 600      | 4 800           |
|        | 104.775 | 36.512      | 36.512 | 28.575 | 143           | 178         | 14 500        | 18 100       | 3 700      | 4 900           |
|        | 107.950 | 36.512      | 36.957 | 28.575 | 141           | 177         | 14 400        | 18 100       | 3 600      | 4 800           |
| 50.800 | 111.125 | 30.162      | 28.575 | 20.638 | 104           | 136         | 10 600        | 13 900       | 3 200      | 4 200           |
|        | 112.712 | 30.162      | 26.909 | 20.638 | 104           | 136         | 10 600        | 13 900       | 3 200      | 4 200           |
|        | 112.712 | 30.162      | 30.048 | 23.812 | 119           | 174         | 12 200        | 17 800       | 3 200      | 4 300           |
|        | 112.712 | 30.162      | 30.162 | 23.812 | 138           | 195         | 14 100        | 19 800       | 3 200      | 4 200           |
|        | 117.475 | 33.338      | 31.750 | 23.812 | 130           | 153         | 13 200        | 15 600       | 3 300      | 4 400           |
|        | 120.650 | 41.275      | 41.275 | 31.750 | 172           | 213         | 17 500        | 21 700       | 3 300      | 4 400           |
|        | 123.825 | 36.512      | 32.791 | 25.400 | 154           | 188         | 15 700        | 19 200       | 2 900      | 3 900           |
|        | 123.825 | 38.100      | 36.678 | 30.162 | 158           | 216         | 16 100        | 22 000       | 3 000      | 4 100           |
| 51.592 | 88.900  | 20.638      | 22.225 | 16.513 | 76.5          | 90.5        | 7 800         | 9 250        | 4 100      | 5 500           |
|        | 92.075  | 24.608      | 25.400 | 19.845 | 83.5          | 116         | 8 550         | 11 800       | 4 000      | 5 300           |
| 52.388 | 93.264  | 30.162      | 30.302 | 23.812 | 102           | 134         | 10 400        | 13 700       | 4 000      | 5 300           |
|        | 95.250  | 27.783      | 28.575 | 22.225 | 107           | 139         | 10 900        | 14 200       | 3 900      | 5 200           |
|        | 88.900  | 19.050      | 19.050 | 13.492 | 61.0          | 82.5        | 6 200         | 8 450        | 4 000      | 5 300           |
|        | 95.250  | 27.783      | 28.575 | 22.225 | 107           | 139         | 10 900        | 14 200       | 3 900      | 5 200           |
|        | 96.838  | 21.000      | 21.946 | 15.875 | 78.0          | 96.5        | 7 950         | 9 850        | 3 700      | 5 000           |
|        | 104.775 | 30.162      | 30.958 | 23.812 | 130           | 169         | 13 200        | 17 300       | 3 500      | 4 700           |
|        | 104.775 | 36.512      | 36.512 | 28.575 | 138           | 189         | 14 000        | 19 300       | 3 600      | 4 800           |
|        | 107.950 | 36.512      | 36.957 | 28.575 | 141           | 177         | 14 400        | 18 100       | 3 600      | 4 800           |
| 53.975 | 120.650 | 41.275      | 41.275 | 31.750 | 172           | 213         | 17 500        | 21 700       | 3 300      | 4 400           |
|        | 122.238 | 33.338      | 31.750 | 23.812 | 134           | 163         | 13 700        | 16 600       | 3 100      | 4 200           |
|        | 122.238 | 43.658      | 43.764 | 36.512 | 194           | 283         | 19 700        | 28 900       | 3 100      | 4 100           |
|        | 123.825 | 36.512      | 32.791 | 25.400 | 154           | 188         | 15 700        | 19 200       | 2 900      | 3 900           |
|        | 123.825 | 38.100      | 36.678 | 30.162 | 158           | 216         | 16 100        | 22 000       | 3 000      | 4 100           |
|        | 130.175 | 36.512      | 33.338 | 23.812 | 156           | 186         | 15 900        | 19 000       | 2 700      | 3 600           |
|        | 140.030 | 36.512      | 33.236 | 23.520 | 171           | 212         | 17 400        | 21 600       | 2 600      | 3 400           |
| 54.488 | 104.775 | 36.512      | 36.512 | 28.575 | 138           | 189         | 14 000        | 19 300       | 3 600      | 4 800           |
| 55.000 | 90.000  | 23.000      | 23.000 | 18.500 | 77.5          | 109         | 7 900         | 11 100       | 3 900      | 5 300           |

Note: 1. With regard to the chamfer dimensions on the back face of the inner and outer rings, installation dimensions  $r_{as}$  and  $r_{as}$  are larger than the maximum value. 2. Bearing numbers marked " # " designate **J-series** bearings. The accuracy of these bearings is listed in **Table 6.6** on **page A-42**.





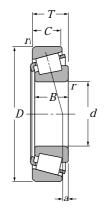


 $P_{\Gamma} = XF_{\Gamma} + YF_{\alpha}$ 

| $\frac{F_{\rm a}}{F_{\rm r}}$ | e | $\frac{F}{F}$ | $\frac{\overline{r_a}}{\overline{r_r}} > e$ |
|-------------------------------|---|---------------|---------------------------------------------|
| X                             | Y | X             | Y                                           |
| 1                             | 0 | 0.4           | <b>Y</b> 2                                  |

static  $P_{\text{Or}} = 0.5 F_{\text{r}} + Y_0 F_{\text{a}}$  When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$  For values of  $P_{\text{or}} < F_{\text{o}}$  and  $P_{\text{o}} < F_{\text{o}}$  see the table below.

| Bearing numbers          | Abutment and fillet dimensions Load Constant Axial center load factors |             |                  |                               |                |            | Mass                |      |       |             |           |
|--------------------------|------------------------------------------------------------------------|-------------|------------------|-------------------------------|----------------|------------|---------------------|------|-------|-------------|-----------|
|                          |                                                                        |             | m                | ım                            |                |            | mm                  |      |       |             | kg        |
|                          |                                                                        |             |                  |                               | $m{r}_{ m as}$ | $m{r}$ las |                     |      |       |             |           |
|                          | $d_{a}$                                                                | $d_{\rm b}$ | $D_{\mathrm{a}}$ | $D_{\scriptscriptstyle  m b}$ | max            | max        | а                   | e    | $Y_2$ | $Y_{\rm o}$ | (approx.) |
|                          |                                                                        |             |                  |                               |                |            |                     |      |       |             |           |
| 4T-49585/49520           | 66                                                                     | 59          | 88               | 96                            | 3.5            | 3.3        | 7.1                 | 0.40 | 1.50  | 0.82        | 1.13      |
| 4T-529/522               | 59                                                                     | 58          | 89               | 95                            | 8.0            | 3.3        | 12.9                | 0.29 | 2.10  | 1.16        | 1.24      |
| 4T-455/453X              | 60                                                                     | 59          | 92               | 98                            | 8.0            | 3.3        | 7.1                 | 0.34 | 1.79  | 0.98        | 1.19      |
| 4T-45284/45220           | 71                                                                     | 59          | 93               | 99                            | 6.4            | 3.3        | 7.9                 | 0.33 | 1.80  | 0.99        | 1.22      |
| 4T-HM807046/HM807010     | 70                                                                     | 63          | 89               | 100                           | 3.5            | 3.3        | 7.4                 | 0.49 | 1.23  | 0.68        | 1.49      |
| 4T-59200/59412           | 68                                                                     | 61          | 92               | 99                            | 3.5            | 3.3        | 9.6                 | 0.40 | 1.49  | 0.82        | 1.44      |
| 4T-537/532X              | 65                                                                     | 59          | 94               | 100                           | 3.5            | 3.3        | 12.3                | 0.30 | 2.02  | 1.11        | 1.55      |
| 4T-HM907643/HM907614     | 74                                                                     | 65          | 91               | 105                           | 3.5            | 3.3        | <b>-7.2</b> 13      |      | 0.68  | 0.37        | 1.36      |
| 4T-55200C/55443          | 71                                                                     | 65          | 92               | 106                           | 3.5            | 3.3        | <b>-7.4</b> 13      | 0.88 | 0.68  | 0.37        | 1.34      |
| 4T-3975/3920             | 68                                                                     | 61          | 99               | 106                           | 3.5            | 3.3        | 4.5                 | 0.40 | 1.49  | 0.82        | 1.53      |
| 4T-39575/39520           | 68                                                                     | 61          | 101              | 107                           | 3.5            | 3.3        | 6.6                 | 0.34 | 1.77  | 0.97        | 1.54      |
| 4T-66200/66462           | 71                                                                     | 65          | 100              | 111                           | 3.5            | 3.3        | 0.4                 | 0.63 | 0.96  | 0.53        | 1.67      |
| 4T-619/612               | 67                                                                     | 61          | 105              | 110                           | 3.5            | 3.3        | 14.4                | 0.31 | 1.91  | 1.05        | 2.3       |
| 4T-72200C/72487          | 77                                                                     | 67          | 102              | 116                           | 3.5            | 3.3        | <b>−1.5</b> 13      | 0.74 | 0.81  | 0.45        | 2.1       |
| 4T-555/552A              | 66                                                                     | 62          | 109              | 116                           | 2.3            | 3.3        | 9.4                 | 0.35 | 1.73  | 0.95        | 2.34      |
| 4T-368S/362A             | 59                                                                     | 56          | 81               | 84                            | 2              | 1.3        | 4.0                 | 0.32 | 1.88  | 1.03        | 0.507     |
| 4T-28584/28521           | 65                                                                     | 58          | 83               | 87                            | 3.5            | 0.8        | 4.6                 | 0.38 | 1.59  | 0.87        | 0.677     |
| 4T-3767/3720             | 63                                                                     | 59          | 82               | 88                            | 2.3            | 3.3        | 8.3                 | 0.34 | 1.77  | 0.97        | 0.819     |
| 4T-33890/33821           | 61                                                                     | 59          | 85               | 90                            | 1.5            | 2.3        | 8.0                 | 0.33 | 1.82  | 1.00        | 0.851     |
| 4T-LM806649/LM806610     | 63                                                                     | 60          | 80               | 85                            | 2.3            | 2          | -2.213              | 0.55 | 1.10  | 0.60        | 0.437     |
| 4T-33895/33822           | 63                                                                     | 60          | 86               | 90                            | 1.5            | 0.8        | 8.0                 | 0.33 | 1.82  | 1.00        | 0.824     |
| 4T-389A/382A             | 61                                                                     | 60          | 89               | 92                            | 0.8            | 0.8        | 3.1                 | 0.35 | 1.69  | 0.93        | 0.633     |
| 4T-45287/45220           | 62                                                                     | 62          | 93               | 99                            | 0.8            | 3.3        | 7.9                 | 0.33 | 1.80  | 0.99        | 1.17      |
| 4T-HM807049/HM807010     | 73                                                                     | 63          | 89               | 100                           | 3.5            | 3.3        | 7.4                 | 0.49 | 1.23  | 0.68        | 1.41      |
| 4T-539/532X              | 68                                                                     | 61          | 94               | 100                           | 3.5            | 3.3        | 12.3                | 0.30 | 2.02  | 1.11        | 1.47      |
| 4T-621/612               | 70                                                                     | 63          | 105              | 110                           | 3.5            | 3.3        | 14.4                | 0.31 | 1.91  | 1.05        | 2.21      |
| 4T-66584/66520           | 75                                                                     | 68          | 105              | 116                           | 3.5            | 3.3        | -1.8 <sub>1</sub> 3 | 0.67 | 0.90  | 0.50        | 1.79      |
| 4T-5578/5535             | 73                                                                     | 67          | 106              | 116                           | 3.5            | 3.3        | 13.3                | 0.36 | 1.67  | 0.92        | 2.64      |
| 4T-72212C/72487          | 79                                                                     | 67          | 102              | 116                           | 3.5            | 3.3        | -1.5 <sup>1</sup>   | 0.74 | 0.81  | 0.45        | 2.03      |
| 4T-557S/552A             | 71                                                                     | 65          | 109              | 116                           | 3.5            | 3.3        | 9.4                 | 0.35 | 1.73  | 0.95        | 2.26      |
| 4T-HM911242/HM911210     | 79                                                                     | 74          | 109              | 124                           | 3.5            | 3.3        | -5.2 <sup>12</sup>  |      | 0.73  | 0.40        | 2.27      |
| 4T-78214C/78551          | 79                                                                     | 77          | 117              | 132                           | 0.8            | 2.3        | -8.5 <sup>1</sup>   | 0.87 | 0.69  | 0.38        | 2.77      |
| 4T-HM807048/HM807010     | 73                                                                     | 63          | 89               | 100                           | 3.5            | 3.3        | 7.4                 | 0.49 | 1.23  | 0.68        | 1.40      |
| # 4T-JLM506849/JLM506810 | 63                                                                     | 61          | 82               | 86                            | 1.5            | 0.5        | 2.8                 | 0.40 | 1.49  | 0.82        | 0.558     |


<sup>1) &</sup>quot; - " means that load center at outside on end of inner ring.



### **Tapered Roller Bearings**

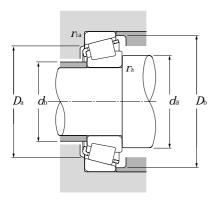


## Inch series J series



### d 55.000 ~ 60.000mm

|        | Воц                | ındary dime      | nsions           |                  | Basic load ratings dynamic static dynamic |             |                  | Limiting speeds static |                |                 |
|--------|--------------------|------------------|------------------|------------------|-------------------------------------------|-------------|------------------|------------------------|----------------|-----------------|
|        |                    | mm               |                  |                  | kN                                        | Static      |                  | gf                     | mir            | r <sup>-1</sup> |
| d      | D                  | T                | В                | С                | $C_{ m r}$                                | $C_{ m or}$ | $C_{\rm r}$      | $C_{ m or}$            | grease         | oil             |
|        | 95.000             | 29.000           | 29.000           | 23.500           | 107                                       | 144         | 10 900           | 14 700                 | 3 800          | 5 100           |
| 55.000 | 96.838<br>110.000  | 21.000<br>39.000 | 21.946<br>39.000 | 15.875<br>32.000 | 78.0<br>173                               | 96.5<br>219 | 7 950<br>17 600  | 9 850<br>22 400        | 3 700<br>3 500 | 5 000<br>4 600  |
|        | 97.630             | 24.608           | 24.608           | 19.446           | 88.5                                      | 128         | 9 000            | 13 000                 | 3 700          | 4 900           |
| 55.562 | 123.825            | 36.512           | 32.791           | 25.400           | 154                                       | 188         | 15 700           | 19 200                 | 2 900          | 3 900           |
|        | 127.000            | 36.512           | 36.512           | 26.988           | 163                                       | 228         | 16 600           | 23 300                 | 2 900          | 3 800           |
| 55.575 | 96.838             | 21.000           | 21.946           | 15.875           | 78                                        | 96.5        | 7 950            | 9 850                  | 3 700          | 5 000           |
|        | 96.838             | 21.000           | 21.946           | 15.875           | 78                                        | 96.5        | 7 950            | 9 850                  | 3 700          | 5 000           |
|        | 96.838             | 21.000           | 21.946           | 15.875           | 78                                        | 96.5        | 7 950            | 9 850                  | 3 700          | 5 000           |
|        | 96.838             | 21.000           | 21.946           | 15.875           | 78                                        | 96.5        | 7 950            | 9 850                  | 3 700          | 5 000           |
|        | 96.838             | 21.000           | 21.946           | 15.875           | 78                                        | 96.5        | 7 950            | 9 850                  | 3 700          | 5 000           |
|        | 97.630             | 24.608           | 24.608           | 19.446           | 88.5                                      | 128         | 9 000            | 13 000                 | 3 700          | 4 900           |
|        | 104.775            | 30.162           | 29.317           | 24.605           | 115                                       | 148         | 11 700           | 15 000                 | 3 500          | 4 700           |
|        | 104.775            | 30.162           | 29.317           | 24.605           | 115                                       | 148         | 11 700           | 15 000                 | 3 500          | 4 700           |
|        | 104.775            | 30.162           | 30.958           | 23.812           | 130                                       | 169         | 13 200           | 17 300                 | 3 500          | 4 700           |
|        | 107.950            | 27.783           | 29.317           | 22.225           | 115                                       | 148         | 11 700           | 15 000                 | 3 500          | 4 700           |
| 57.150 | 110.000            | 22.000           | 21.996           | 18.824           | 89.5                                      | 120         | 9 150            | 12 300                 | 3 200          | 4 300           |
|        | 110.000            | 27.795           | 29.317           | 27.000           | 115                                       | 148         | 11 700           | 15 000                 | 3 500          | 4 700           |
|        | 112.712            | 30.162           | 30.048           | 23.812           | 119                                       | 174         | 12 200           | 17 800                 | 3 200          | 4 300           |
|        | 112.712            | 30.162           | 30.162           | 23.812           | 138                                       | 195         | 14 100           | 19 800                 | 3 200          | 4 200           |
|        | 112.712            | 30.162           | 30.162           | 23.812           | 138                                       | 195         | 14 100           | 19 800                 | 3 200          | 4 200           |
|        | 117.475            | 30.162           | 30.162           | 23.812           | 117                                       | 175         | 11 900           | 17 900                 | 3 000<br>3 300 | 4 000<br>4 400  |
|        | 117.475            | 33.338           | 31.750<br>41.275 | 23.812           | 130<br>172                                | 153<br>213  | 13 200           | 15 600                 |                | 4 400<br>4 400  |
|        | 120.650<br>123.825 | 41.275<br>36.512 | 32.791           | 31.750<br>25.400 | 154                                       | 188         | 17 500<br>15 700 | 21 700<br>19 200       | 3 300<br>2 900 | 3 900           |
|        | 123.825            | 38.100           | 36.678           | 30.162           | 154                                       | 216         | 16 100           | 22 000                 | 3 000          | 4 100           |
|        | 140.030            | 36.512           | 33.236           | 23.520           | 171                                       | 212         | 17 400           | 21 600                 | 2 600          | 3 400           |
| 57.531 | 96.838             | 21.000           | 21.946           | 15.875           | 78.0                                      | 96.5        | 7 950            | 9 850                  | 3 700          | 5 000           |
| 59.972 | 122.238            | 33.338           | 31.750           | 23.812           | 134                                       | 163         | 13 700           | 16 600                 | 3 100          | 4 200           |
| 59.987 | 146.050            | 41.275           | 39.688           | 25.400           | 199                                       | 234         | 20 300           | 23 900                 | 2 400          | 3 200           |
| 60.000 | 95.000             | 24.000           | 24.000           | 19.000           | 83.0                                      | 122         | 8 500            | 12 400                 | 3 700          | 4 900           |
|        | 107.950            | 25.400           | 25.400           | 19.050           | 91.5                                      | 140         | 9 350            | 14 200                 | 3 200          | 4 300           |


Note: 1. Chamfer dimensions on the back face of the inner and outer rings of the bearing are larger than maximum values for installation dimensions  $r_{ls}$  and  $r_{ls}$ .

2. As for the maximum value for inner ring bore diameters of bearings whose bearing numbers are marked with "†" (inner ring), the precision class is an integer for class 4 and class 2 bearings only.

B-180



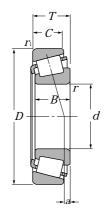




 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 

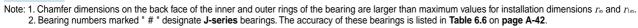
| $\frac{F_{\rm a}}{F_{\rm r}}$ | e | $\frac{F}{F}$ | $\frac{\overline{r_a}}{\overline{r_r}} > e$ |
|-------------------------------|---|---------------|---------------------------------------------|
| $\overline{X}$                | Y | X             | Y                                           |
| 1                             | 0 | 0.4           | <b>Y</b> 2                                  |

static  $P_{\text{or}} = 0.5 F_{\text{r}} + Y_0 F_a$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ For values of e,  $Y_2$  and  $Y_0$  see the table below.


| Bearing numbers                            |                                       | Abutment and fillet dimensions |                                 |                                    |                |              |                   | Constant     | Axi          |              | Mass           |
|--------------------------------------------|---------------------------------------|--------------------------------|---------------------------------|------------------------------------|----------------|--------------|-------------------|--------------|--------------|--------------|----------------|
|                                            |                                       |                                | n                               | nm                                 |                |              | center<br>mm      |              |              |              | kg             |
|                                            | ,                                     | ,                              | _                               | _                                  | $m{r}_{ m as}$ | <b>P</b> las |                   |              |              |              |                |
|                                            | $d_{\!\scriptscriptstyle \mathrm{a}}$ | $d_{\scriptscriptstyle  m b}$  | $D_{\!\scriptscriptstyle  m a}$ | $D_{\hspace{-0.05cm}	ext{	iny D}}$ | max            | max          | а                 | e            | $Y_2$        | $Y_{0}$      | (approx.)      |
| # 4T-JM207049/JM207010                     | 64                                    | 62                             | 85                              | 91                                 | 1.5            | 2.5          | 7.6               | 0.33         | 1.79         | 0.99         | 0.82           |
| 4T-385/382A                                | 65                                    | 62<br>61                       | 89                              | 92                                 | 2.3            | 0.8          | 3.1               | 0.35         | 1.79         | 0.99         | 0.62           |
| # 4T-JH307749/JH307710                     | 71                                    | 64                             | 97                              | 104                                | 3              | 2.5          | 11.7              | 0.35         | 1.73         | 0.95         | 1.71           |
| # 41-311307743/311307710                   | 7 1                                   | 04                             | 31                              | 104                                | 3              | 2.0          | 11.7              | 0.55         | 1.75         | 0.95         | 1.7 1          |
| 4T-28680/28622                             | 68                                    | 62                             | 88                              | 92                                 | 3.5            | 8.0          | 3.3               | 0.40         | 1.49         | 0.82         | 0.774          |
| 4T-72218C/72487                            | 80                                    | 67                             | 102                             | 116                                | 3.5            | 3.3          | -1.5 <sup>1</sup> | 0.74         | 0.81         | 0.45         | 1.99           |
| 4T-HM813840/HM813810                       | 76                                    | 70                             | 111                             | 121                                | 3.5            | 3.3          | 3.7               | 0.50         | 1.20         | 0.66         | 2.34           |
| 4T-389/382A                                | 65                                    | 61                             | 89                              | 92                                 | 2.3            | 0.8          | 3.1               | 0.35         | 1.69         | 0.93         | 0.608          |
| 4T-387/382A                                | 66                                    | 62                             | 89                              | 92                                 | 2.3            | 0.8          | 3.1               | 0.35         | 1.69         | 0.93         | 0.583          |
| 4T-387A/382A                               | 69                                    | 62                             | 89                              | 92                                 | 3.5            | 0.8          | 3.1               | 0.35         | 1.69         | 0.93         | 0.581          |
| 4T-387AS/382A                              | 72                                    | 62                             | 89                              | 92                                 | 5              | 0.8          | 3.1               | 0.35         | 1.69         | 0.93         | 0.576          |
| 4T-387S/382A                               | 63                                    | 62                             | 89                              | 92                                 | 0.8            | 0.8          | 3.1               | 0.35         | 1.69         | 0.93         | 0.585          |
| 4T-28682/28622                             | 70                                    | 63                             | 88                              | 92                                 | 3.5            | 0.8          | 3.3               | 0.40         | 1.49         | 0.82         | 0.747          |
| 4T-462/453X                                | 67                                    | 63                             | 92                              | 98                                 | 2.3            | 3.3          | 7.1               | 0.34         | 1.79         | 0.98         | 1.06           |
| 4T-469/453X                                | 70                                    | 63                             | 92                              | 98                                 | 3.5            | 3.3          | 7.1               | 0.34         | 1.79         | 0.98         | 1.06           |
| 4T-45289/45220                             | 65                                    | 65                             | 93                              | 99                                 | 0.8            | 3.3          | 7.9               | 0.33         | 1.80         | 0.99         | 1.1            |
| 4T-469/453A                                | 70                                    | 63                             | 97                              | 100                                | 3.5            | 8.0          | 7.1               | 0.34         | 1.79         | 0.98         | 1.11           |
| 4T-390/394A                                | 70                                    | 66                             | 101                             | 104                                | 2.3            | 1.3          | 0.7               | 0.40         | 1.49         | 0.82         | 0.954          |
| 4T-469/454                                 | 70                                    | 63                             | 96                              | 100                                | 3.5            | 2            | 7.1               | 0.34         | 1.79         | 0.98         | 1.24           |
| 4T-3979/3920                               | 72                                    | 66                             | 99                              | 106                                | 3.5            | 3.3          | 4.5               | 0.40         | 1.49         | 0.82         | 1.4            |
| 4T-39580/39520                             | 72                                    | 66                             | 101                             | 107                                | 3.5            | 3.3          | 6.6               | 0.34         | 1.77         | 0.97         | 1.41           |
| 4T-39581/39520                             | 81                                    | 66                             | 101                             | 107                                | 8              | 3.3          | 6.6               | 0.34         | 1.77         | 0.97         | 1.4            |
| 4T-33225/33462                             | 74                                    | 68                             | 104                             | 112                                | 3.5            | 3.3          | 2.6               | 0.44         | 1.38         | 0.76         | 1.58           |
| 4T-66225/66462                             | 76                                    | 69                             | 100                             | 111                                | 3.5            | 3.3          | 0.4               | 0.63         | 0.96         | 0.53         | 1.54           |
| 4T-623/612                                 | 72                                    | 66                             | 105                             | 110                                | 3.5            | 3.3          | 14.4              | 0.31         | 1.91         | 1.05         | 2.12           |
| 4T-72225C/72487                            | 81                                    | 67                             | 102                             | 116                                | 3.5            | 3.3          | <b>−1.5</b> 13    |              | 0.81         | 0.45         | 1.96           |
| 4T-555S/552A                               | 73                                    | 67                             | 109                             | 116                                | 3.5            | 3.3          | 9.4               | 0.35         | 1.73         | 0.95         | 2.18           |
| 4T-78225/78551                             | 83                                    | 77                             | 117                             | 132                                | 3.5            | 2.3          | <b>−8.5</b> 13    | 0.87         | 0.69         | 0.38         | 2.69           |
| 4T-388A/382A                               | 69                                    | 63                             | 89                              | 92                                 | 3.5            | 0.8          | 3.1               | 0.35         | 1.69         | 0.93         | 0.575          |
| 4T-66589/66520                             | 74                                    | 73                             | 105                             | 116                                | 0.8            | 3.3          | <b>–1.8</b> 13    | 0.67         | 0.90         | 0.50         | 1.66           |
| 4T-H913840†/H913810                        | 88                                    | 82                             | 124                             | 138                                | 3.5            | 3.3          | <b>-4.3</b> 13    | 0.78         | 0.77         | 0.42         | 3.22           |
| # 4T-JLM508748/JLM508710<br>4T-29580/29520 | 75<br>75                              | 66<br>68                       | 85<br>96                        | 91<br>103                          | 5<br>3.5       | 2.5<br>3.3   | 3.0<br>0.6        | 0.40<br>0.46 | 1.49<br>1.31 | 0.82<br>0.72 | 0.606<br>0.992 |

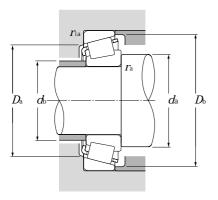
Note: 3. Bearing numbers marked " # " designate **J-series** bearings. The tolerances of these bearings is listed in **Table 6.6** on **page A-42**. 1 ) " - " means that load center at outside on end of inner ring.






#### Inch series J series




### d 60.000 ~ 65.000mm

|        | Boundary dimensions                                                                                                                                              |                                                                                                                                                    |                                                                                                                                                              |                                                                                                                                                              | Basic load ratings dynamic static dynamic                                                                         |                                                                                                              |                                                                                                                                               | -1-11-                                                                                                                                   | Limiting s                                                                                                                          | Limiting speeds                                                                                                                     |  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
|        |                                                                                                                                                                  | mm                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                              | dynamic<br>kN                                                                                                     | Static                                                                                                       |                                                                                                                                               | static<br>gf                                                                                                                             | mir                                                                                                                                 | n <sup>-1</sup>                                                                                                                     |  |
| d      | D                                                                                                                                                                | T                                                                                                                                                  | В                                                                                                                                                            | C                                                                                                                                                            | $C_{\scriptscriptstyle \Gamma}$                                                                                   | $C_{ m or}$                                                                                                  | $C_{\scriptscriptstyle \Gamma}$                                                                                                               | $C_{ m or}$                                                                                                                              | grease                                                                                                                              | oil                                                                                                                                 |  |
| 60.000 | 110.000<br>130.000                                                                                                                                               | 22.000<br>34.100                                                                                                                                   | 21.996<br>30.924                                                                                                                                             | 18.824<br>22.650                                                                                                                                             | 89.5<br>156.0                                                                                                     | 120<br>186                                                                                                   | 9 150<br>15 900                                                                                                                               | 12 300<br>19 000                                                                                                                         | 3 200<br>2 700                                                                                                                      | 4 300<br>3 600                                                                                                                      |  |
| 60.325 | 100.000<br>112.712<br>122.238<br>122.238<br>123.825<br>127.000<br>127.000<br>130.175                                                                             | 25.400<br>30.162<br>38.100<br>43.658<br>38.100<br>36.512<br>44.450<br>36.512                                                                       | 25.400<br>30.048<br>38.354<br>43.764<br>36.678<br>36.512<br>44.450<br>33.338                                                                                 | 19.845<br>23.812<br>29.718<br>36.512<br>30.162<br>26.988<br>34.925<br>23.812                                                                                 | 90.5<br>119<br>187<br>194<br>158<br>163<br>203<br>156                                                             | 134<br>174<br>244<br>283<br>216<br>228<br>263<br>186                                                         | 9 200<br>12 200<br>19 100<br>19 700<br>16 100<br>16 600<br>20 700<br>15 900                                                                   | 13 600<br>17 800<br>24 900<br>28 900<br>22 000<br>23 300<br>26 800<br>19 000                                                             | 3 500<br>3 200<br>3 100<br>3 100<br>3 000<br>2 900<br>3 100<br>2 700                                                                | 4 700<br>4 300<br>4 100<br>4 100<br>4 100<br>3 800<br>4 200<br>3 600                                                                |  |
| 61.912 | 110.000<br>136.525<br>146.050                                                                                                                                    | 22.000<br>46.038<br>41.275                                                                                                                         | 21.996<br>46.038<br>39.688                                                                                                                                   | 18.824<br>36.512<br>25.400                                                                                                                                   | 89.5<br>224<br>199                                                                                                | 120<br>355<br>234                                                                                            | 9 150<br>22 800<br>20 300                                                                                                                     | 12 300<br>36 500<br>23 900                                                                                                               | 3 200<br>2 600<br>2 400                                                                                                             | 4 300<br>3 500<br>3 200                                                                                                             |  |
| 61.976 | 101.600                                                                                                                                                          | 24.608                                                                                                                                             | 24.608                                                                                                                                                       | 19.845                                                                                                                                                       | 90.5                                                                                                              | 134                                                                                                          | 9 200                                                                                                                                         | 13 600                                                                                                                                   | 3 500                                                                                                                               | 4 700                                                                                                                               |  |
| 62.738 | 101.600                                                                                                                                                          | 25.400                                                                                                                                             | 25.400                                                                                                                                                       | 19.845                                                                                                                                                       | 90.5                                                                                                              | 134                                                                                                          | 9 200                                                                                                                                         | 13 600                                                                                                                                   | 3 500                                                                                                                               | 4 700                                                                                                                               |  |
| 63.500 | 94.458<br>107.950<br>107.950<br>110.000<br>110.000<br>112.712<br>112.712<br>120.000<br>120.000<br>122.238<br>122.238<br>123.825<br>127.000<br>136.525<br>140.030 | 19.050<br>25.400<br>25.400<br>22.000<br>25.400<br>30.162<br>30.162<br>29.794<br>29.794<br>38.100<br>43.658<br>38.100<br>36.512<br>41.275<br>36.512 | 19.050<br>25.400<br>25.400<br>21.996<br>25.400<br>30.048<br>30.162<br>29.007<br>29.007<br>38.354<br>43.764<br>36.678<br>36.170<br>36.512<br>41.275<br>33.236 | 15.083<br>19.050<br>19.050<br>18.824<br>19.050<br>23.812<br>23.812<br>24.237<br>24.237<br>29.718<br>36.512<br>30.162<br>28.575<br>26.988<br>31.750<br>23.520 | 60.5<br>91.5<br>91.5<br>89.5<br>91.5<br>119<br>138<br>128<br>128<br>187<br>194<br>158<br>163<br>163<br>194<br>171 | 103<br>140<br>140<br>120<br>140<br>174<br>195<br>177<br>177<br>244<br>283<br>216<br>229<br>228<br>262<br>212 | 6 150<br>9 350<br>9 350<br>9 150<br>9 350<br>12 200<br>14 100<br>13 000<br>13 000<br>19 100<br>19 700<br>16 100<br>16 600<br>19 800<br>17 400 | 10 500<br>14 200<br>14 200<br>12 300<br>14 200<br>17 800<br>19 800<br>18 100<br>24 900<br>28 900<br>22 000<br>23 300<br>26 700<br>21 600 | 3 600<br>3 200<br>3 200<br>3 200<br>3 200<br>3 200<br>3 200<br>3 000<br>3 100<br>3 100<br>3 100<br>2 900<br>2 900<br>2 800<br>2 600 | 4 800<br>4 300<br>4 300<br>4 300<br>4 300<br>4 300<br>4 200<br>4 000<br>4 100<br>4 100<br>4 100<br>3 800<br>3 800<br>3 800<br>3 400 |  |
| 65.000 | 105.000<br>110.000                                                                                                                                               | 24.000<br>28.000                                                                                                                                   | 23.000<br>28.000                                                                                                                                             | 18.500<br>22.500                                                                                                                                             | 85.0<br>119                                                                                                       | 117<br>174                                                                                                   | 8 700<br>12 200                                                                                                                               | 11 900<br>17 800                                                                                                                         | 3 300<br>3 200                                                                                                                      | 4 500<br>4 300                                                                                                                      |  |





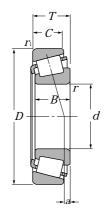




 $P_{\Gamma} = XF_{\Gamma} + YF_{\alpha}$ 

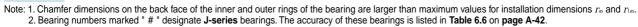
| $\frac{F_{\rm a}}{F_{\rm r}}$ | e | $\frac{F_{\rm a}}{F_{\rm r}} > e$ |            |  |  |  |  |
|-------------------------------|---|-----------------------------------|------------|--|--|--|--|
| $\overline{X}$                | Y | X                                 | Y          |  |  |  |  |
| 1                             | 0 | 0.4                               | <b>Y</b> 2 |  |  |  |  |

static  $P_{\text{Or}} = 0.5 F_{\text{r}} + Y_0 F_{\text{a}}$  When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$  For values of  $P_{\text{or}} < F_{\text{o}}$  and  $P_{\text{o}}$  see the table below.


| Bearing numbers          |                                 | Abuti                         | ment and f       | illet dimer                   | nsions     |            | Load<br>center           | Constant Axial load factors |         |             | Mass      |
|--------------------------|---------------------------------|-------------------------------|------------------|-------------------------------|------------|------------|--------------------------|-----------------------------|---------|-------------|-----------|
|                          |                                 |                               | m                | nm                            |            |            | mm                       |                             | ioau ia | Clors       | kg        |
|                          |                                 |                               |                  |                               | $m{arGas}$ | $m{r}$ las |                          |                             |         |             | Ü         |
|                          | $d_{\!\scriptscriptstyle  m a}$ | $d_{\scriptscriptstyle  m b}$ | $D_{\mathrm{a}}$ | $D_{\scriptscriptstyle  m b}$ | max        | max        | а                        | e                           | $Y_2$   | $Y_{\rm o}$ | (approx.) |
|                          |                                 |                               |                  |                               |            |            |                          |                             |         |             |           |
| 4T-397/394A              | 69                              | 68                            | 101              | 104                           | 0.8        | 1.3        | 0.7                      | 0.40                        | 1.49    | 0.82        | 0.91      |
| # 4T-JHM911244/JHM911211 | 84                              | 74                            | 109              | 123                           | 3.5        | 3.3        | <b>−</b> 7.6¹            | 0.82                        | 0.73    | 0.40        | 2.01      |
| 4T-28985/28921           | 73                              | 67                            | 89               | 96                            | 3.5        | 3.3        | 2.5                      | 0.43                        | 1.41    | 0.78        | 0.772     |
| 4T-3980/3920             | 75                              | 68                            | 99               | 106                           | 3.5        | 3.3        | 4.5                      | 0.40                        | 1.49    | 0.82        | 1.33      |
| 4T-HM212044/HM212011     | 85                              | 70                            | 108              | 116                           | 8          | 3.3        | 11.1                     | 0.34                        | 1.78    | 0.98        | 2.02      |
| 4T-5583/5535             | 78                              | 72                            | 106              | 116                           | 3.5        | 3.3        | 13.3                     | 0.36                        | 1.67    | 0.92        | 2.44      |
| 4T-558/552A              | 73                              | 69                            | 109              | 116                           | 2.3        | 3.3        | 9.4                      | 0.35                        | 1.73    | 0.95        | 2.1       |
| 4T-HM813841/HM813810     | 80                              | 73                            | 111              | 121                           | 3.5        | 3.3        | 3.7                      | 0.50                        | 1.20    | 0.66        | 2.21      |
| 4T-65237/65500           | 82                              | 71                            | 107              | 119                           | 3.5        | 3.3        | 9.3                      | 0.49                        | 1.23    | 0.68        | 2.65      |
| 4T-HM911245/HM911210     | 87                              | 74                            | 109              | 124                           | 5          | 3.3        | <b>-5.2</b> <sup>1</sup> | 0.82                        | 0.73    | 0.40        | 2.12      |
| 4T-392/394A              | 70                              | 69                            | 101              | 104                           | 0.8        | 1.3        | 0.7                      | 0.40                        | 1.49    | 0.82        | 0.879     |
| 4T-H715334/H715311       | 86                              | 79                            | 118              | 132                           | 3.5        | 3.3        | 8.7                      | 0.47                        | 1.27    | 0.70        | 3.47      |
| 4T-H913842/H913810       | 90                              | 82                            | 124              | 138                           | 3.5        | 3.3        | -4.3 <sup>1</sup>        |                             | 0.77    | 0.42        | 3.17      |
| 4T-28990/28920           | 72                              | 68                            | 90               | 97                            | 2          | 3.3        | 1.7                      | 0.43                        | 1.41    | 0.78        | 0.768     |
| 4T-28995/28920           | 75                              | 69                            | 90               | 97                            | 3.5        | 3.3        | 2.5                      | 0.43                        | 1.41    | 0.78        | 0.764     |
| 4T-L610549/L610510       | 71                              | 69                            | 86               | 91                            | 1.5        | 1.5        | -0.6 <sup>1</sup>        | 0.42                        | 1.41    | 0.78        | 0.449     |
| 4T-29585/29520           | 77                              | 71                            | 96               | 103                           | 3.5        | 3.3        | 0.6                      | 0.46                        | 1.31    | 0.72        | 0.924     |
| 4T-29586/29520           | 73                              | 71                            | 96               | 103                           | 1.5        | 3.3        | 0.6                      | 0.46                        | 1.31    | 0.72        | 0.929     |
| 4T-390A/394A             | 73                              | 70                            | 101              | 104                           | 1.5        | 1.3        | 0.7                      | 0.40                        | 1.49    | 0.82        | 0.851     |
| 4T-29585/29521           | 77                              | 71                            | 99               | 104                           | 3.5        | 1.3        | 0.6                      | 0.46                        | 1.31    | 0.72        | 0.982     |
| 4T-3982/3920             | 77                              | 71                            | 99               | 106                           | 3.5        | 3.3        | 4.5                      | 0.40                        | 1.49    | 0.82        | 1.26      |
| 4T-39585/39520           | 77                              | 71                            | 101              | 107                           | 3.5        | 3.3        | 6.6                      | 0.34                        | 1.77    | 0.97        | 1.27      |
| 4T-477/472               | 73                              | 72                            | 107              | 114                           | 8.0        | 2          | 3.9                      | 0.38                        | 1.56    | 0.86        | 1.49      |
| 4T-483/472               | 78                              | 72                            | 107              | 114                           | 3.5        | 2          | 3.9                      | 0.38                        | 1.56    | 0.86        | 1.48      |
| 4T-HM212046/HM212011     | 80                              | 73                            | 108              | 116                           | 3.5        | 3.3        | 11.1                     | 0.34                        | 1.78    | 0.98        | 1.95      |
| 4T-5584/5535             | 81                              | 75                            | 106              | 116                           | 3.5        | 3.3        | 13.3                     | 0.36                        | 1.67    | 0.92        | 2.34      |
| 4T-559/552A              | 78                              | 72                            | 109              | 116                           | 3.5        | 3.3        | 9.4                      | 0.35                        | 1.73    | 0.95        | 2.01      |
| 4T-565/563               | 80                              | 73                            | 112              | 120                           | 3.5        | 3.3        | 8.3                      | 0.36                        | 1.65    | 0.91        | 2.11      |
| 4T-HM813842/HM813810     | 82                              | 76                            | 111              | 121                           | 3.5        | 3.3        | 3.7                      | 0.50                        | 1.20    | 0.66        | 2.12      |
| 4T-639/632               | 81                              | 74                            | 118              | 125                           | 3.5        | 3.3        | 11.4                     | 0.36                        | 1.66    | 0.91        | 2.85      |
| 4T-78250/78551           | 85                              | 79                            | 117              | 132                           | 2.3        | 2.3        | –8.5¹                    | 0.87                        | 0.69    | 0.38        | 2.54      |
| # 4T-JLM710949/JLM710910 | 77                              | 71                            | 96               | 101                           | 3          | 1          | 0.3                      | 0.45                        | 1.32    | 0.73        | 0.742     |
|                          |                                 |                               | 00               | 101                           | -          |            | 0.0                      | 0.10                        |         | 0.70        | 0.7 12    |

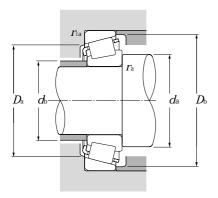
<sup>1) &</sup>quot; - " means that load center at outside on end of inner ring.






### Inch series J series




## d 65.000 ~ 70.000mm

|        | Воц     | ındary dime | nsions |        | d             | Basic load ratings dynamic static dynamic static |             |              | Limiting speeds |                 |  |
|--------|---------|-------------|--------|--------|---------------|--------------------------------------------------|-------------|--------------|-----------------|-----------------|--|
|        |         | mm          |        |        | dynamic<br>kN | static                                           |             | static<br>gf | mir             | n <sup>-1</sup> |  |
| d      | D       | T           | В      | С      | $C_{\Gamma}$  | $C_{ m or}$                                      | $C_{\rm r}$ | $C_{ m or}$  | grease          | oil             |  |
| 65.000 | 120.000 | 39.000      | 38.500 | 32.000 | 185           | 248                                              | 18 800      | 25 300       | 3 100           | 4 100           |  |
| 65.088 | 135.755 | 53.975      | 56.007 | 44.450 | 278           | 380                                              | 28 300      | 38 500       | 2 900           | 3 800           |  |
|        | 103.213 | 17.602      | 17.602 | 11.989 | 60.0          | 78.0                                             | 6 100       | 8 000        | 3 300           | 4 400           |  |
|        | 107.950 | 25.400      | 25.400 | 19.050 | 91.5          | 140                                              | 9 350       | 14 200       | 3 200           | 4 300           |  |
|        | 110.000 | 22.000      | 21.996 | 18.824 | 89.5          | 120                                              | 9 150       | 12 300       | 3 200           | 4 300           |  |
|        | 112.712 | 30.162      | 30.048 | 23.812 | 119           | 174                                              | 12 200      | 17 800       | 3 200           | 4 300           |  |
|        | 112.712 | 30.162      | 30.048 | 23.812 | 119           | 174                                              | 12 200      | 17 800       | 3 200           | 4 300           |  |
|        | 112.712 | 30.162      | 30.162 | 23.812 | 138           | 195                                              | 14 100      | 19 800       | 3 200           | 4 200           |  |
| 66.675 | 122.238 | 38.100      | 38.354 | 29.718 | 187           | 244                                              | 19 100      | 24 900       | 3 100           | 4 100           |  |
|        | 123.825 | 38.100      | 36.678 | 30.162 | 158           | 216                                              | 16 100      | 22 000       | 3 000           | 4 100           |  |
|        | 127.000 | 36.512      | 36.512 | 26.988 | 163           | 228                                              | 16 600      | 23 300       | 2 900           | 3 800           |  |
|        | 130.175 | 41.275      | 41.275 | 31.750 | 194           | 262                                              | 19 800      | 26 700       | 2 800           | 3 800           |  |
|        | 135.755 | 53.975      | 56.007 | 44.450 | 278           | 380                                              | 28 300      | 38 500       | 2 900           | 3 800           |  |
|        | 136.525 | 41.275      | 41.275 | 31.750 | 194           | 262                                              | 19 800      | 26 700       | 2 800           | 3 800           |  |
|        | 136.525 | 41.275      | 41.275 | 31.750 | 226           | 293                                              | 23 100      | 29 900       | 2 700           | 3 700           |  |
|        | 110.000 | 22.000      | 21.996 | 18.824 | 89.5          | 120                                              | 9 150       | 12 300       | 3 200           | 4 300           |  |
|        | 120.000 | 29.794      | 29.007 | 24.237 | 128           | 177                                              | 13 000      | 18 100       | 3 000           | 4 000           |  |
| 68.262 | 123.825 | 38.100      | 36.678 | 30.162 | 158           | 216                                              | 16 100      | 22 000       | 3 000           | 4 100           |  |
|        | 136.525 | 41.275      | 41.275 | 31.750 | 226           | 293                                              | 23 100      | 29 900       | 2 700           | 3 700           |  |
|        | 136.525 | 46.038      | 46.038 | 36.512 | 224           | 355                                              | 22 800      | 36 500       | 2 600           | 3 500           |  |
|        | 112.712 | 25.400      | 25.400 | 19.050 | 95.5          | 151                                              | 9 750       | 15 400       | 3 100           | 4 100           |  |
|        | 117.475 | 30.162      | 30.162 | 23.812 | 117           | 175                                              | 11 900      | 17 900       | 3 000           | 4 000           |  |
|        | 120.000 | 29.794      | 29.007 | 24.237 | 128           | 177                                              | 13 000      | 18 100       | 3 000           | 4 000           |  |
|        | 120.000 | 32.545      | 32.545 | 26.195 | 147           | 214                                              | 15 000      | 21 800       | 3 000           | 4 000           |  |
| 60.050 | 120.650 | 25.400      | 25.400 | 19.050 | 95.5          | 151                                              | 9 750       | 15 400       | 3 100           | 4 100           |  |
| 69.850 | 127.000 | 36.512      | 36.170 | 28.575 | 163           | 229                                              | 16 600      | 23 300       | 2 900           | 3 800           |  |
|        | 136.525 | 41.275      | 41.275 | 31.750 | 194           | 262                                              | 19 800      | 26 700       | 2 800           | 3 800           |  |
|        | 146.050 | 41.275      | 41.275 | 31.750 | 206           | 295                                              | 21 000      | 30 000       | 2 500           | 3 300           |  |
|        | 150.089 | 44.450      | 46.672 | 36.512 | 261           | 360                                              | 26 600      | 37 000       | 2 400           | 3 200           |  |
|        | 168.275 | 53.975      | 56.363 | 41.275 | 340           | 460                                              | 34 500      | 46 500       | 2 200           | 3 000           |  |
| 69.952 | 121.442 | 24.608      | 23.012 | 17.462 | 91.0          | 127                                              | 9 300       | 13 000       | 2 900           | 3 800           |  |
| 70 000 | 110.000 | 26.000      | 25.000 | 20.500 | 97.0          | 150                                              | 9 900       | 15 300       | 3 200           | 4 200           |  |
| 70.000 | 115.000 | 29.000      | 29.000 | 23.000 | 124           | 171                                              | 12 700      | 17 500       | 3 100           | 4 100           |  |





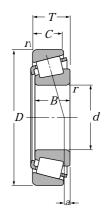




 $P_{\Gamma} = XF_{\Gamma} + YF_{\alpha}$ 

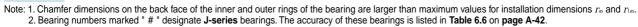
| $\frac{F_{\rm a}}{F_{\rm r}}$ | e | $\frac{F}{F}$ | $\frac{\overline{r_a}}{\overline{r_r}} > e$ |
|-------------------------------|---|---------------|---------------------------------------------|
| $\overline{X}$                | Y | X             | Y                                           |
| 1                             | 0 | 0.4           | <b>Y</b> 2                                  |

static  $P_{\text{Or}} = 0.5 F_{\text{r}} + Y_0 F_{\text{a}}$  When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$  For values of  $P_{\text{or}} < F_{\text{o}}$  and  $P_{\text{o}}$  see the table below.


| Bearing numbers          |         | Abut                                | ment and | fillet dime                         | nsions                 |                      | center              | Constant | Axi<br>load fa |             | Mass      |
|--------------------------|---------|-------------------------------------|----------|-------------------------------------|------------------------|----------------------|---------------------|----------|----------------|-------------|-----------|
|                          |         |                                     | n        | nm                                  |                        |                      | mm                  |          |                |             | kg        |
|                          | $d_{a}$ | $d_{\scriptscriptstyle \mathrm{b}}$ | $D_{a}$  | $D_{\scriptscriptstyle \mathrm{b}}$ | r <sub>as</sub><br>max | <i>I</i> ¹las<br>max | а                   | e        | $Y_2$          | $Y_{\rm o}$ | (approx.) |
| # 4T-JH211749/JH211710   | 80      | 74                                  | 107      | 114                                 | 3                      | 2.5                  | 10.9                | 0.34     | 1.78           | 0.98        | 1.90      |
| 4T-6379/6320             | 84      | 77                                  | 117      | 126                                 | 3.5                    | 3.3                  | 18.8                | 0.32     | 1.85           | 1.02        | 3.71      |
| 4T-L812148/L812111       | 74      | 72                                  | 96       | 99                                  | 1.5                    | 0.8                  | <b>-</b> 3.71)      |          | 1.23           | 0.68        | 0.48      |
| 4T-29590/29520           | 80      | 73                                  | 96       | 103                                 | 3.5                    | 3.3                  | 0.6                 | 0.46     | 1.31           | 0.72        | 0.86      |
| 4T-395A/394A             | 73      | 73                                  | 101      | 104                                 | 0.8                    | 1.3                  | 0.7                 | 0.40     | 1.49           | 0.82        | 0.796     |
| 4T-3984/3925             | 80      | 74                                  | 101      | 106                                 | 3.5                    | 8.0                  | 4.5                 | 0.40     | 1.49           | 0.82        | 1.19      |
| 4T-3994/3920             | 84      | 74                                  | 99       | 106                                 | 5.5                    | 3.3                  | 4.5                 | 0.40     | 1.49           | 0.82        | 1.18      |
| 4T-39590/39520           | 80      | 74                                  | 101      | 107                                 | 3.5                    | 3.3                  | 6.6                 | 0.34     | 1.77           | 0.97        | 1.19      |
| 4T-HM212049/HM212010     | 82      | 75                                  | 110      | 116                                 | 3.5                    | 1.5                  | 11.1                | 0.34     | 1.78           | 0.98        | 1.86      |
| 4T-560/552A              | 81      | 75                                  | 109      | 116                                 | 3.5                    | 3.3                  | 9.4                 | 0.35     | 1.73           | 0.95        | 1.92      |
| 4T-HM813844/HM813810     | 85      | 78                                  | 111      | 121                                 | 3.5                    | 3.3                  | 3.7                 | 0.50     | 1.20           | 0.66        | 2.03      |
| 4T-641/633               | 83      | 77                                  | 116      | 124                                 | 3.5                    | 3.3                  | 11.4                | 0.36     | 1.66           | 0.91        | 2.41      |
| 4T-6386/6320             | 87      | 77                                  | 117      | 126                                 | 4.3                    | 3.3                  | 18.8                | 0.32     | 1.85           | 1.02        | 3.64      |
| 4T-641/632               | 83      | 77                                  | 118      | 125                                 | 3.5                    | 3.3                  | 11.4                | 0.36     | 1.66           | 0.91        | 2.74      |
| 4T-H414242/H414210       | 85      | 81                                  | 121      | 129                                 | 3.5                    | 3.3                  | 11.0                | 0.36     | 1.67           | 0.92        | 2.75      |
| 4T-399A/394A             | 78      | 74                                  | 101      | 104                                 | 2.3                    | 1.3                  | 0.7                 | 0.40     | 1.49           | 0.82        | 0.764     |
| 4T-480/472               | 82      | 75                                  | 107      | 114                                 | 3.5                    | 2                    | 3.9                 | 0.38     | 1.56           | 0.86        | 1.37      |
| 4T-560S/552A             | 83      | 76                                  | 109      | 116                                 | 3.5                    | 3.3                  | 9.4                 | 0.35     | 1.73           | 0.95        | 1.87      |
| 4T-H414245/H414210       | 86      | 82                                  | 121      | 129                                 | 3.5                    | 3.3                  | 11.0                | 0.36     | 1.67           | 0.92        | 2.7       |
| 4T-H715343/H715311       | 90      | 84                                  | 118      | 132                                 | 3.5                    | 3.3                  | 8.7                 | 0.47     | 1.27           | 0.70        | 3.24      |
| 4T-29675/29620           | 80      | 77                                  | 101      | 109                                 | 1.5                    | 3.3                  | -0.9 <sup>1</sup> ) | 0.49     | 1.23           | 0.68        | 0.949     |
| 4T-33275/33462           | 84      | 77                                  | 104      | 112                                 | 3.5                    | 3.3                  | 2.6                 | 0.44     | 1.38           | 0.76        | 1.28      |
| 4T-482/472               | 83      | 77                                  | 107      | 114                                 | 3.5                    | 2                    | 3.9                 | 0.38     | 1.56           | 0.86        | 1.33      |
| 4T-47487/47420           | 84      | 78                                  | 107      | 114                                 | 3.5                    | 3.3                  | 6.1                 | 0.36     | 1.67           | 0.92        | 1.47      |
| 4T-29675/29630           | 80      | 77                                  | 104      | 113                                 | 1.5                    | 3.3                  | <b>-</b> 0.91)      | 0.49     | 1.23           | 0.68        | 1.17      |
| 4T-566/563               | 85      | 78                                  | 112      | 120                                 | 3.5                    | 3.3                  | 8.3                 | 0.36     | 1.65           | 0.91        | 1.92      |
| 4T-643/632               | 86      | 80                                  | 118      | 125                                 | 3.5                    | 3.3                  | 11.4                | 0.36     | 1.66           | 0.91        | 2.63      |
| 4T-655/653               | 88      | 82                                  | 131      | 139                                 | 3.5                    | 3.3                  | 8.0                 | 0.41     | 1.47           | 0.81        | 3.28      |
| 4T-745A/742              | 88      | 82                                  | 134      | 142                                 | 3.5                    | 3.3                  | 12.0                | 0.33     | 1.84           | 1.01        | 3.92      |
| 4T-835/832               | 91      | 84                                  | 149      | 155                                 | 3.5                    | 3.3                  | 18.5                | 0.30     | 2.00           | 1.10        | 6.13      |
| 4T-34274/34478           | 81      | 78                                  | 110      | 116                                 | 2                      | 2                    | <b>–1.2</b> 1)      | 0.45     | 1.33           | 0.73        | 1.11      |
| # 4T-JLM813049/JLM813010 | 78      | 77                                  | 98       | 105                                 | 1                      | 2.5                  | -0.3 <sub>1</sub> ) | 0.49     | 1.23           | 0.68        | 0.889     |
| # 4T-JM612949/JM612910   | 83      | 77                                  | 103      | 110                                 | 3                      | 2.5                  | 2.5                 | 0.43     | 1.39           | 0.77        | 1.13      |

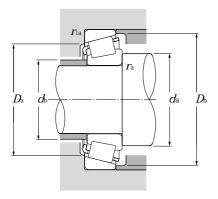
<sup>1 ) &</sup>quot; - " means that load center at outside on end of inner ring.






### Inch series J series




## d 70.000 ~ 76.200mm

|        | Воц                                                                                                                              | ındary dime                                                                                                          | nsions                                                                                                                         |                                                                                                                                | d                                                                                          |                                                                                         | nd ratings                                                                                                                  | atat'a                                                                                                                         | speeds                                                                                                   |                                                                                                                   |
|--------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|        |                                                                                                                                  | mm                                                                                                                   |                                                                                                                                |                                                                                                                                | dynamic<br>kN                                                                              | static                                                                                  | dynamic<br>kı                                                                                                               | static<br>gf                                                                                                                   | mir                                                                                                      | n <sup>-1</sup>                                                                                                   |
| d      | D                                                                                                                                | T                                                                                                                    | В                                                                                                                              | С                                                                                                                              | $C_{ m r}$                                                                                 | $C_{ m or}$                                                                             | $C_{\scriptscriptstyle  m r}$                                                                                               | $C_{ m or}$                                                                                                                    | grease                                                                                                   | oil                                                                                                               |
| 70.000 | 120.000<br>150.000                                                                                                               | 29.794<br>41.275                                                                                                     | 29.007<br>39.688                                                                                                               | 24.237<br>25.400                                                                                                               | 128<br>199                                                                                 | 177<br>234                                                                              | 13 000<br>20 300                                                                                                            | 18 100<br>23 900                                                                                                               | 3 000<br>2 400                                                                                           | 4 000<br>3 200                                                                                                    |
| 71.438 | 117.475<br>120.000<br>127.000<br>136.525<br>136.525<br>136.525                                                                   | 30.162<br>32.545<br>36.512<br>41.275<br>41.275<br>46.038                                                             | 30.162<br>32.545<br>36.170<br>41.275<br>41.275<br>46.038                                                                       | 23.812<br>26.195<br>28.575<br>31.750<br>31.750<br>36.512                                                                       | 117<br>147<br>163<br>194<br>226<br>224                                                     | 175<br>214<br>229<br>262<br>293<br>355                                                  | 11 900<br>15 000<br>16 600<br>19 800<br>23 100<br>22 800                                                                    | 17 900<br>21 800<br>23 300<br>26 700<br>29 900<br>36 500                                                                       | 3 000<br>3 000<br>2 900<br>2 800<br>2 700<br>2 600                                                       | 4 000<br>4 000<br>3 800<br>3 800<br>3 700<br>3 500                                                                |
| 73.025 | 112.712<br>117.475<br>127.000<br>139.992<br>149.225<br>150.089                                                                   | 25.400<br>30.162<br>36.512<br>36.512<br>53.975<br>44.450                                                             | 25.400<br>30.162<br>36.170<br>36.098<br>54.229<br>46.672                                                                       | 19.050<br>23.812<br>28.575<br>28.575<br>44.450<br>36.512                                                                       | 95.5<br>117<br>163<br>178<br>287<br>261                                                    | 151<br>175<br>229<br>265<br>410<br>360                                                  | 9 750<br>11 900<br>16 600<br>18 100<br>29 300<br>26 600                                                                     | 15 400<br>17 900<br>23 300<br>27 100<br>41 500<br>37 000                                                                       | 3 100<br>3 000<br>2 900<br>2 600<br>2 500<br>2 400                                                       | 4 100<br>4 000<br>3 800<br>3 400<br>3 400<br>3 200                                                                |
| 73.817 | 112.712<br>127.000                                                                                                               | 25.400<br>36.512                                                                                                     | 25.400<br>36.170                                                                                                               | 19.050<br>28.575                                                                                                               | 95.5<br>163                                                                                | 151<br>229                                                                              | 9 750<br>16 600                                                                                                             | 15 400<br>23 300                                                                                                               | 3 100<br>2 900                                                                                           | 4 100<br>3 800                                                                                                    |
| 74.612 | 139.992                                                                                                                          | 36.512                                                                                                               | 36.098                                                                                                                         | 28.575                                                                                                                         | 178                                                                                        | 265                                                                                     | 18 100                                                                                                                      | 27 100                                                                                                                         | 2 600                                                                                                    | 3 400                                                                                                             |
| 75.000 | 115.000<br>120.000<br>145.000                                                                                                    | 25.000<br>31.000<br>51.000                                                                                           | 25.000<br>29.500<br>51.000                                                                                                     | 19.000<br>25.000<br>42.000                                                                                                     | 94.5<br>131<br>287                                                                         | 143<br>197<br>410                                                                       | 9 650<br>13 300<br>29 300                                                                                                   | 14 600<br>20 100<br>41 500                                                                                                     | 3 000<br>2 900<br>2 500                                                                                  | 4 000<br>3 900<br>3 400                                                                                           |
| 76.200 | 109.538<br>121.442<br>121.442<br>127.000<br>133.350<br>135.733<br>136.525<br>139.992<br>139.992<br>146.050<br>149.225<br>150.089 | 19.050<br>24.608<br>24.608<br>30.162<br>33.338<br>39.688<br>44.450<br>30.162<br>36.512<br>41.275<br>53.975<br>44.450 | 19.050<br>23.012<br>23.012<br>31.000<br>33.338<br>39.688<br>46.100<br>29.769<br>36.098<br>36.098<br>41.275<br>54.229<br>46.672 | 15.083<br>17.462<br>17.462<br>22.225<br>26.195<br>32.545<br>34.925<br>22.225<br>28.575<br>28.575<br>31.750<br>44.450<br>36.512 | 63.0<br>91.0<br>91.0<br>135<br>153<br>177<br>211<br>129<br>178<br>178<br>206<br>287<br>261 | 115<br>127<br>127<br>194<br>235<br>305<br>330<br>189<br>265<br>265<br>295<br>410<br>360 | 6 450<br>9 300<br>9 300<br>13 800<br>15 600<br>18 000<br>21 600<br>13 200<br>18 100<br>18 100<br>21 000<br>29 300<br>26 600 | 11 700<br>13 000<br>13 000<br>19 800<br>24 000<br>31 000<br>34 000<br>19 300<br>27 100<br>27 100<br>30 000<br>41 500<br>37 000 | 3 100<br>2 900<br>2 900<br>2 800<br>2 600<br>2 600<br>2 600<br>2 600<br>2 600<br>2 500<br>2 500<br>2 400 | 4 100<br>3 800<br>3 800<br>3 700<br>3 500<br>3 500<br>3 500<br>3 500<br>3 400<br>3 400<br>3 300<br>3 400<br>3 200 |





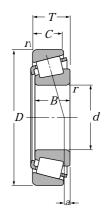




 $P_{\Gamma} = XF_{\Gamma} + YF_{\alpha}$ 

| $\frac{F_{\rm a}}{F_{\rm r}}$ | e | $\frac{F}{F}$ | $\frac{r_{\rm a}}{r_{\rm r}} > e$ |
|-------------------------------|---|---------------|-----------------------------------|
| X                             | Y | X             | Y                                 |
| 1                             | 0 | 0.4           | <b>Y</b> 2                        |

static  $P_{\text{Or}} = 0.5 F_{\text{r}} + Y_0 F_{\text{a}}$  When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$  For values of  $P_{\text{or}} < F_{\text{o}}$  and  $P_{\text{o}}$  see the table below.


| Bearing numbers          |                                 | Abutment and fillet dimensions |             |                                 |            |      |                    | Constant | Axi<br>load fa |         | Mass      |
|--------------------------|---------------------------------|--------------------------------|-------------|---------------------------------|------------|------|--------------------|----------|----------------|---------|-----------|
|                          |                                 |                                | m           | nm                              |            |      | center<br>mm       |          | ioau ia        | Clors   | kg        |
|                          |                                 |                                |             |                                 | $m{arGas}$ | rlas |                    |          |                |         | · ·       |
|                          | $d_{\!\scriptscriptstyle  m a}$ | $d_{\scriptscriptstyle  m b}$  | $D_{\rm a}$ | $D_{\!\scriptscriptstyle  m D}$ | max        | max  | a                  | e        | $Y_2$          | $Y_{0}$ | (approx.) |
| 4 <b>-</b> 4044-0        |                                 |                                | 407         |                                 |            | •    |                    |          | 4 = 0          |         | 4.00      |
| 4T-484/472               | 80                              | 77                             | 107         | 114                             | 2          | 2    | 3.9                | 0.38     | 1.56           | 0.86    | 1.33      |
| # 4T-JH913848/JH913811   | 92                              | 82                             | 126         | 146                             | 2          | 3.3  | <b>−4.3</b> 13     | 0.78     | 0.77           | 0.42    | 3.08      |
| 4T-33281/33462           | 85                              | 79                             | 104         | 112                             | 3.5        | 3.3  | 2.6                | 0.44     | 1.38           | 0.76    | 1.24      |
| 4T-47490/47420           | 86                              | 79                             | 107         | 114                             | 3.5        | 3.3  | 6.1                | 0.36     | 1.67           | 0.92    | 1.42      |
| 4T-567A/563              | 86                              | 80                             | 112         | 120                             | 3.5        | 3.3  | 8.3                | 0.36     | 1.65           | 0.91    | 1.87      |
| 4T-644/632               | 87                              | 81                             | 118         | 125                             | 3.5        | 3.3  | 11.4               | 0.36     | 1.66           | 0.91    | 2.57      |
| 4T-H414249/H414210       | 89                              | 83                             | 121         | 129                             | 3.5        | 3.3  | 11.0               | 0.36     | 1.67           | 0.92    | 2.58      |
| 4T-H715345/H715311       | 93                              | 87                             | 118         | 132                             | 3.5        | 3.3  | 8.7                | 0.47     | 1.27           | 0.70    | 3.11      |
| 4T-29685/29620           | 86                              | 80                             | 101         | 109                             | 3.5        | 3.3  | -0.913             | 0.49     | 1.23           | 0.68    | 0.873     |
| 4T-33287/33462           | 87                              | 80                             | 104         | 112                             | 3.5        | 3.3  | 2.6                | 0.44     | 1.38           | 0.76    | 1.19      |
| 4T-567/563               | 88                              | 81                             | 112         | 120                             | 3.5        | 3.3  | 8.3                | 0.36     | 1.65           | 0.91    | 1.82      |
| 4T-576/572               | 90                              | 83                             | 125         | 133                             | 3.5        | 3.3  | 5.5                | 0.40     | 1.49           | 0.82    | 2.53      |
| 4T-6460/6420             | 93                              | 87                             | 129         | 140                             | 3.5        | 3.3  | 14.8               | 0.36     | 1.66           | 0.91    | 4.42      |
| 4T-744/742               | 91                              | 85                             | 134         | 142                             | 3.5        | 3.3  | 12.0               | 0.33     | 1.84           | 1.01    | 3.79      |
| 4T-29688/29620           | 83                              | 80                             | 101         | 109                             | 1.5        | 3.3  | -0.913             | 0.49     | 1.23           | 0.68    | 0.86      |
| 4T-568/563               | 83                              | 82                             | 112         | 120                             | 8.0        | 3.3  | 8.3                | 0.36     | 1.65           | 0.91    | 1.80      |
| 4T-577/572               | 91                              | 85                             | 125         | 133                             | 3.5        | 3.3  | 5.5                | 0.40     | 1.49           | 0.82    | 2.48      |
| # 4T-JLM714149/JLM714110 | 87                              | 81                             | 104         | 110                             | 3          | 2.5  | -0.3 <sup>12</sup> | 0.46     | 1.31           | 0.72    | 0.875     |
| # 4T-JM714249/JM714210   | 88                              | 83                             | 108         | 115                             | 3          | 2.5  | 1.9                | 0.44     | 1.35           | 0.74    | 1.29      |
| # 4T-JH415647/JH415610   | 94                              | 89                             | 129         | 139                             | 3          | 2.5  | 14.1               | 0.36     | 1.66           | 0.91    | 3.81      |
| 4T-L814749/L814710       | 84                              | 82                             | 100         | 105                             | 1.5        | 1.5  | -5.0 <sup>13</sup> | 0.50     | 1.20           | 0.66    | 0.579     |
| 4T-34300/34478           | 86                              | 83                             | 110         | 116                             | 2          | 2    | -1.2 <sup>13</sup> |          | 1.33           | 0.73    | 0.982     |
| 4T-34301/34478           | 89                              | 83                             | 110         | 116                             | 3.5        | 2    | -1.2 <sup>13</sup> | 0.45     | 1.33           | 0.73    | 0.977     |
| 4T-42687/42620           | 90                              | 84                             | 114         | 121                             | 3.5        | 3.3  | 2.8                | 0.42     | 1.43           | 0.79    | 1.46      |
| 4T-47678/47620           | 97                              | 85                             | 119         | 128                             | 6.4        | 3.3  | 3.9                | 0.40     | 1.48           | 0.82    | 1.92      |
| 4T-HM516442/HM516410     | 93                              | 87                             | 118         | 128                             | 3.5        | 3.3  | 7.5                | 0.40     | 1.49           | 0.82    | 2.43      |
| 4T-5760/5735             | 94                              | 88                             | 119         | 130                             | 3.5        | 3.3  | 11.0               | 0.41     | 1.48           | 0.81    | 2.75      |
| 4T-495A/493              | 92                              | 86                             | 122         | 130                             | 3.5        | 3.3  | 0.7                | 0.44     | 1.35           | 0.74    | 1.83      |
| 4T-575/572               | 92                              | 86                             | 125         | 133                             | 3.5        | 3.3  | 5.5                | 0.40     | 1.49           | 0.82    | 2.43      |
| 4T-575S/572              | 99                              | 86                             | 125         | 133                             | 6.8        | 3.3  | 5.5                | 0.40     | 1.49           | 0.82    | 2.41      |
| 4T-659/653               | 93                              | 87                             | 131         | 139                             | 3.5        | 3.3  | 8.0                | 0.41     | 1.47           | 0.81    | 3.04      |
| 4T-6461A/6420            | 108                             | 89                             | 129         | 140                             | 9.7        | 3.3  | 14.8               | 0.36     | 1.66           | 0.91    | 4.23      |
| 4T-748S/742              | 93                              | 87                             | 134         | 142                             | 3.5        | 3.3  | 12.0               | 0.33     | 1.84           | 1.01    | 3.66      |

<sup>1) &</sup>quot; - " means that load center at outside on end of inner ring.



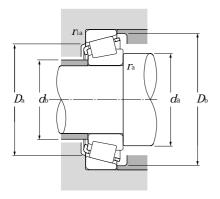


# Inch series J series



d 76.200 ~ 83.345mm

|        | Воц                | undary dime      | nsions           |                  |               |             | nd ratings       |                  | Limiting speeds |                 |  |
|--------|--------------------|------------------|------------------|------------------|---------------|-------------|------------------|------------------|-----------------|-----------------|--|
|        |                    | mm               |                  |                  | dynamic<br>kN | static      | dynamic<br>kç    | static<br>gf     | mir             | ) <sup>-1</sup> |  |
| d      | D                  | T                | В                | С                | $C_{\Gamma}$  | $C_{ m or}$ | $C_{ m r}$       | $C_{ m or}$      | grease          | oil             |  |
|        | 149.225            | 53.975           | 54.229           | 44.450           | 287           | 410         | 29 300           | 41 500           | 2 500           | 3 400           |  |
|        | 161.925            | 53.975           | 55.100           | 42.862           | 310           | 460         | 31 500           | 47 000           | 2 300           | 3 000           |  |
| 76.200 | 180.975            | 53.975           | 53.183           | 35.720           | 325           | 415         | 33 000           | 42 500           | 1 900           | 2 600           |  |
|        | 190.500            | 57.150           | 57.531           | 46.038           | 445           | 610         | 45 000           | 62 000           | 1 900           | 2 600           |  |
|        | 117.475            | 25.400           | 25.400           | 19.050           | 99.5          | 162         | 10 200           | 16 500           | 2 900           | 3 900           |  |
|        | 121.442            | 24.608           | 23.012           | 17.462           | 91.0          | 127         | 9 300            | 13 000           | 2 900           | 3 800           |  |
| 77.788 | 127.000            | 30.162           | 31.000           | 22.225           | 135           | 194         | 13 800           | 19 800           | 2 800           | 3 700           |  |
|        | 136.525            | 30.162           | 29.769           | 22.225           | 129           | 189         | 13 200           | 19 300           | 2 600           | 3 500           |  |
|        | 136.525            | 46.038           | 46.038           | 36.512           | 224           | 355         | 22 800           | 36 500           | 2 600           | 3 500           |  |
|        | 146.050            | 41.275           | 41.275           | 31.750           | 206           | 295         | 21 000           | 30 000           | 2 500           | 3 300           |  |
| 79.375 | 161.925            | 47.625           | 48.260           | 38.100           | 270           | 385         | 27 500           | 39 000           | 2 300           | 3 100           |  |
|        | 190.500            | 57.150           | 57.531           | 46.038           | 445           | 610         | 45 000           | 62 000           | 1 900           | 2 600           |  |
| 80.000 | 130.000            | 35.000           | 34.000           | 28.500           | 166           | 249         | 16 900           | 25 400           | 2 700           | 3 600           |  |
|        | 133.350            | 33.338           | 33.338           | 26.195           | 153           | 235         | 15 600           | 24 000           | 2 600           | 3 500           |  |
| 80.962 | 136.525            | 30.162           | 29.769           | 22.225           | 129           | 189         | 13 200           | 19 300           | 2 600           | 3 500           |  |
| 00.002 | 139.992            | 36.512           | 36.098           | 28.575           | 178           | 265         | 18 100           | 27 100           | 2 600           | 3 400           |  |
|        | 150.089            | 44.450           | 46.672           | 36.512           | 261           | 360         | 26 600           | 37 000           | 2 400           | 3 200           |  |
|        | 125.412            | 25.400           | 25.400           | 19.845           | 102           | 163         | 10 400           | 16 600           | 2 700           | 3 600           |  |
|        | 133.350            | 33.338           | 33.338           | 26.195           | 153           | 235         | 15 600           | 24 000           | 2 600           | 3 500           |  |
|        | 133.350            | 39.688           | 39.688           | 32.545           | 177           | 305         | 18 000           | 31 000           | 2 600           | 3 500           |  |
|        | 136.525            | 30.162           | 29.769           | 22.225           | 129           | 189         | 13 200           | 19 300           | 2 600           | 3 500           |  |
|        | 139.992            | 36.512           | 36.098<br>36.098 | 28.575           | 178           | 265         | 18 100           | 27 100           | 2 600           | 3 400           |  |
| 02 550 | 139.992            | 36.512           | 36.098<br>41.275 | 28.575           | 178<br>206    | 265<br>295  | 18 100           | 27 100           | 2 600<br>2 500  | 3 400<br>3 300  |  |
| 82.550 | 146.050<br>150.089 | 41.275<br>44.450 | 41.275<br>46.672 | 31.750<br>36.512 | 206<br>261    | 295<br>360  | 21 000<br>26 600 | 30 000<br>37 000 | 2 400           | 3 200           |  |
|        | 152.400            | 39.688           | 36.322           | 30.162           | 180           | 279         | 18 300           | 28 400           | 2 300           | 3 100           |  |
|        | 152.400            | 41.275           | 41.275           | 31.750           | 206           | 295         | 21 000           | 30 000           | 2 500           | 3 300           |  |
|        | 161.925            | 47.625           | 48.260           | 38.100           | 270           | 385         | 27 500           | 39 000           | 2 300           | 3 100           |  |
|        | 161.925            | 53.975           | 55.100           | 42.862           | 310           | 460         | 31 500           | 47 000           | 2 300           | 3 000           |  |
|        | 168.275            | 53.975           | 56.363           | 41.275           | 340           | 460         | 34 500           | 46 500           | 2 200           | 3 000           |  |
|        | 125.412            | 25.400           | 25.400           | 19.845           | 102           | 163         | 10 400           | 16 600           | 2 700           | 3 600           |  |
| 83.345 | 125.412            | 25.400           | 25.400           | 19.845           | 102           | 163         | 10 400           | 16 600           | 2 700           | 3 600           |  |
|        | 125.412            | 25.400           | 25.400           | 19.845           | 102           | 163         | 10 400           | 16 600           | 2 700           | 3 600           |  |


Note: 1. Chamfer dimensions on the back face of the inner and outer rings of the bearing are larger than maximum values for installation dimensions  $r_{is}$  and  $r_{is}$ .

2. As for the maximum value for inner and outer ring diameters of bearings whose bearing numbers are marked with "†" (inner ring) and "††" (outer ring), the precision class is an integer for class 4 and class 2 bearings only.

B-188





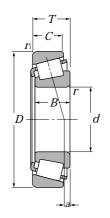


 $P_{\Gamma} = XF_{\Gamma} + YF_{\alpha}$ 

| $\frac{F_{\rm a}}{F_{\rm r}}$ | e | $\frac{F_{\rm a}}{F_{\rm r}} > e$ |            |  |  |  |
|-------------------------------|---|-----------------------------------|------------|--|--|--|
| $\overline{X}$                | Y | X                                 | Y          |  |  |  |
| 1                             | 0 | 0.4                               | <b>Y</b> 2 |  |  |  |

static  $P_{\text{or}} = 0.5 F_{\text{r}} + Y_0 F_a$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ For values of e,  $Y_2$  and  $Y_0$  see the table below.

| Bearing numbers                  |                                       | Abutment and fillet dimensions        |            |                               |                 |                      |                    | Constant     | Axia<br>load fa |              | Mass         |
|----------------------------------|---------------------------------------|---------------------------------------|------------|-------------------------------|-----------------|----------------------|--------------------|--------------|-----------------|--------------|--------------|
|                                  |                                       |                                       | m          | nm                            |                 | n                    | mm                 |              |                 |              | kg           |
|                                  | $d_{\!\scriptscriptstyle \mathrm{a}}$ | $d_{\!\scriptscriptstyle \mathrm{b}}$ | $D_{a}$    | $D_{\scriptscriptstyle  m D}$ | r <sub>as</sub> | <i>I</i> ¹las<br>max | a                  | e            | $Y_2$           | $Y_{\rm o}$  | (approx.)    |
| 4T-6461/6420                     | 96                                    | 89                                    | 129        | 140                           | 3.5             | 3.3                  | 14.8               | 0.36         | 1.66            | 0.91         | 4.26         |
| 4T-6576/6535                     | 99                                    | 92                                    | 141        | 154                           | 3.5             | 3.3                  | 12.8               | 0.40         | 1.50            | 0.82         | 5.44         |
| 4T-H917840/H917810††             | 110                                   | 100                                   | 152        | 170                           | 3.5             | 3.3                  | -0.5 <sup>13</sup> |              | 0.82            | 0.45         | 6.57         |
| 4T-HH221430/HH221410             | 101                                   | 95                                    | 171        | 179                           | 3.5             | 3.3                  | 14.4               | 0.33         | 1.79            | 0.99         | 8.69         |
| 4T-LM814849/LM814810             | 91                                    | 85                                    | 105        | 113                           | 3.5             | 3.3                  | <b>-2.3</b> 13     | 0.51         | 1.18            | 0.65         | 0.932        |
| 4T-34306/34478                   | 90                                    | 84                                    | 110        | 116                           | 3.5             | 2                    | -1.2 <sup>13</sup> | 0.45         | 1.33            | 0.73         | 0.943        |
| 4T-42690/42620                   | 91                                    | 85                                    | 114        | 121                           | 3.5             | 3.3                  | 2.8                | 0.42         | 1.43            | 0.79         | 1.41         |
| 4T-495AS/493                     | 93                                    | 87                                    | 122        | 130                           | 3.5             | 3.3                  | 0.7                | 0.44         | 1.35            | 0.74         | 1.78         |
| 4T-H715348/H715311               | 98                                    | 88                                    | 118        | 132                           | 3.5             | 3.3                  | 8.7                | 0.47         | 1.27            | 0.70         | 2.84         |
| 4T-661/653                       | 96                                    | 90                                    | 131        | 139                           | 3.5             | 3.3                  | 8.0                | 0.41         | 1.47            | 0.81         | 2.91         |
| 4T-756A/752                      | 106                                   | 91                                    | 144        | 150                           | 8               | 3.3                  | 12.0               | 0.34         | 1.76            | 0.97         | 4.55         |
| 4T-HH221431/HH221410             | 103                                   | 97                                    | 171        | 179                           | 3.5             | 3.3                  | 14.4               | 0.33         | 1.79            | 0.99         | 8.52         |
| # 4T-JM515649/JM515610           | 94                                    | 88                                    | 117        | 125                           | 3               | 2.5                  | 4.9                | 0.39         | 1.54            | 0.85         | 1.73         |
| 4T-47681/47620                   | 95                                    | 89                                    | 119        | 128                           | 3.5             | 3.3                  | 3.9                | 0.40         | 1.48            | 0.82         | 1.78         |
| 4T-496/493                       | 95                                    | 89                                    | 122        | 130                           | 3.5             | 3.3                  | 0.7                | 0.44         | 1.35            | 0.74         | 1.69         |
| 4T-581/572                       | 96                                    | 90                                    | 125        | 133                           | 3.5             | 3.3                  | 5.5                | 0.40         | 1.49            | 0.82         | 2.26         |
| 4T-740/742                       | 101                                   | 91                                    | 134        | 142                           | 5               | 3.3                  | 12.0               | 0.33         | 1.84            | 1.01         | 3.43         |
| 4T-27687/27620                   | 96                                    | 89                                    | 115        | 120                           | 3.5             | 1.5                  | -0.61              |              | 1.44            | 0.79         | 1.07         |
| 4T-47686/47620                   | 97                                    | 90                                    | 119        | 128                           | 3.5             | 3.3                  | 3.9                | 0.40         | 1.48            | 0.82         | 1.72         |
| 4T-HM516448/HM516410             | 105                                   | 92                                    | 118        | 128                           | 6.8             | 3.3                  | 7.5                | 0.40         | 1.49            | 0.82         | 2.16         |
| 4T-495/493                       | 97                                    | 90                                    | 122        | 130                           | 3.5             | 3.3                  | 0.7                | 0.44         | 1.35            | 0.74         | 1.64         |
| 4T-580/572                       | 98                                    | 91                                    | 125        | 133                           | 3.5             | 3.3                  | 5.5                | 0.40         | 1.49            | 0.82         | 2.2          |
| 4T-582/572                       | 104                                   | 91                                    | 125        | 133                           | 6.8             | 3.3                  | 5.5                | 0.40         | 1.49            | 0.82         | 2.19         |
| 4T-663/653                       | 99                                    | 92                                    | 131        | 139                           | 3.5             | 3.3                  | 8.0                | 0.41         | 1.47            | 0.81         | 2.78         |
| 4T-749A/742                      | 99                                    | 93                                    | 134        | 142                           | 3.5             | 3.3                  | 12.0               | 0.33         | 1.84            | 1.01         | 3.37         |
| 4T-595/592A                      | 100                                   | 93                                    | 135        | 144                           | 3.5             | 3.3                  | 2.6                | 0.44         | 1.36            | 0.75         | 3.02         |
| 4T-663/652                       | 99                                    | 92                                    | 134        | 141                           | 3.5             | 3.3                  | 8.0                | 0.41         | 1.47            | 0.81         | 3.15         |
| 4T-757/752                       | 100<br>104                            | 94                                    | 144        | 150                           | 3.5             | 3.3                  | 12.0               | 0.34         | 1.76            | 0.97         | 4.42         |
| 4T-6559C/6535<br>4T-842/832      | 104                                   | 98<br>94                              | 141<br>149 | 154<br>155                    | 3.5<br>3.5      | 3.3<br>3.3           | 12.8<br>18.5       | 0.40<br>0.30 | 1.50<br>2.00    | 0.82<br>1.10 | 5.09<br>5.46 |
| 4T-27689/27620                   | 90                                    | 90                                    | 115        | 120                           | 0.8             | 1.5                  | -0.613             | 0.42         | 1.44            | 0.79         | 1.06         |
| 41-27689/27620<br>4T-27690/27620 | 96                                    | 90<br>90                              | 115        | 120                           | 3.5             | 1.5                  | -0.612             |              | 1.44            | 0.79         | 1.06         |
| 41-27690/27620<br>4T-27691/27620 | 102                                   | 90                                    | 115        | 120                           | 3.5<br>6.4      | 1.5                  |                    | 0.42         | 1.44            | 0.79         | 1.05         |
| 41-2/091/2/02U                   | _                                     | 90                                    | IIO<br>    | 120                           | 0.4             |                      | -10.0<br>          |              |                 | 0.79         | 1.04         |


Note: 3. Bearing numbers marked " # " designate **J-series** bearings. The tolerances of these bearings is listed in **Table 6.6** on **page A-42**. 1 ) " - " means that load center at outside on end of inner ring.



## **Tapered Roller Bearings**



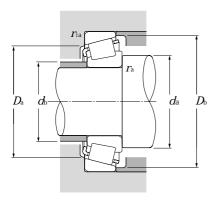
### Inch series J series



### d 84.138 ~ 95.000mm

|        | Воц                                                                       | ındary dime                                                        | nsions                                                             |                                                                    |                                                 | Basic load                                     |                                                                  | a ta t'a                                                          | Limiting s                                                           | speeds                                                      |
|--------|---------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|
|        |                                                                           | mm                                                                 |                                                                    |                                                                    | dynamic<br>kN                                   | static                                         | dynamic<br>k                                                     | static<br>gf                                                      | mir                                                                  | 1 <sup>-1</sup>                                             |
| d      | D                                                                         | T                                                                  | В                                                                  | С                                                                  | $C_{ m r}$                                      | $C_{ m or}$                                    | $C_{ m r}$                                                       | $C_{ m or}$                                                       | grease                                                               | oil                                                         |
| 84.138 | 136.525                                                                   | 30.162                                                             | 29.769                                                             | 22.225                                                             | 129                                             | 189                                            | 13 200                                                           | 19 300                                                            | 2 600                                                                | 3 500                                                       |
| 85.000 | 130.000<br>140.000                                                        | 30.000<br>39.000                                                   | 29.000<br>38.000                                                   | 24.000<br>31.500                                                   | 135<br>197                                      | 214<br>297                                     | 13 700<br>20 100                                                 | 21 900<br>30 500                                                  | 2 600<br>2 500                                                       | 3 500<br>3 400                                              |
| 85.026 | 150.089                                                                   | 44.450                                                             | 46.672                                                             | 36.512                                                             | 261                                             | 360                                            | 26 600                                                           | 37 000                                                            | 2 400                                                                | 3 200                                                       |
| 85.725 | 133.350<br>142.138<br>146.050<br>152.400<br>161.925                       | 30.162<br>42.862<br>41.275<br>39.688<br>47.625                     | 29.769<br>42.862<br>41.275<br>36.322<br>48.260                     | 22.225<br>34.133<br>31.750<br>30.162<br>38.100                     | 129<br>216<br>206<br>180<br>270                 | 189<br>350<br>295<br>279<br>385                | 13 200<br>22 000<br>21 000<br>18 300<br>27 500                   | 19 300<br>35 500<br>30 000<br>28 400<br>39 000                    | 2 600<br>2 500<br>2 500<br>2 300<br>2 300                            | 3 500<br>3 300<br>3 300<br>3 100<br>3 100                   |
| 87.960 | 148.430                                                                   | 28.575                                                             | 28.971                                                             | 21.433                                                             | 138                                             | 215                                            | 14 100                                                           | 21 900                                                            | 2 300                                                                | 3 100                                                       |
| 88.900 | 121.442<br>123.825<br>148.430<br>152.400<br>161.925<br>161.925<br>168.275 | 15.083<br>20.638<br>28.575<br>39.688<br>47.625<br>53.975<br>53.975 | 15.083<br>20.638<br>28.971<br>36.322<br>48.260<br>55.100<br>56.363 | 11.112<br>16.670<br>21.433<br>30.162<br>38.100<br>42.862<br>41.275 | 56.5<br>80.0<br>138<br>180<br>270<br>310<br>340 | 88.0<br>141<br>215<br>279<br>385<br>460<br>460 | 5 750<br>8 150<br>14 100<br>18 300<br>27 500<br>31 500<br>34 500 | 9 000<br>14 400<br>21 900<br>28 400<br>39 000<br>47 000<br>46 500 | 2 700<br>2 700<br>2 300<br>2 300<br>2 300<br>2 300<br>2 300<br>2 200 | 3 600<br>3 500<br>3 100<br>3 100<br>3 100<br>3 000<br>3 000 |
| 89.974 | 146.975                                                                   | 40.000                                                             | 40.000                                                             | 32.500                                                             | 227                                             | 340                                            | 23 200                                                           | 34 500                                                            | 2 400                                                                | 3 200                                                       |
| 90.000 | 145.000<br>155.000<br>190.000                                             | 35.000<br>44.000<br>50.800                                         | 34.000<br>44.000<br>46.038                                         | 27.000<br>35.500<br>31.750                                         | 189<br>270<br>281                               | 279<br>385<br>365                              | 19 300<br>27 500<br>28 700                                       | 28 400<br>39 000<br>37 000                                        | 2 400<br>2 300<br>1 800                                              | 3 200<br>3 100<br>2 400                                     |
| 90.488 | 161.925                                                                   | 47.625                                                             | 48.260                                                             | 38.100                                                             | 270                                             | 385                                            | 27 500                                                           | 39 000                                                            | 2 300                                                                | 3 100                                                       |
| 92.075 | 146.050<br>152.400<br>168.275                                             | 33.338<br>39.688<br>41.275                                         | 34.925<br>36.322<br>41.275                                         | 26.195<br>30.162<br>30.162                                         | 163<br>180<br>222                               | 266<br>279<br>340                              | 16 700<br>18 300<br>22 700                                       | 27 100<br>28 400<br>35 000                                        | 2 400<br>2 300<br>2 100                                              | 3 100<br>3 100<br>2 800                                     |
| 93.662 | 148.430                                                                   | 28.575                                                             | 28.971                                                             | 21.433                                                             | 138                                             | 215                                            | 14 100                                                           | 21 900                                                            | 2 300                                                                | 3 100                                                       |
| 95.000 | 150.000                                                                   | 35.000                                                             | 34.000                                                             | 27.000                                                             | 180                                             | 279                                            | 18 300                                                           | 28 400                                                            | 2 300                                                                | 3 100                                                       |

Note: 1. Chamfer dimensions on the back face of the inner and outer rings of the bearing are larger than maximum values for installation dimensions  $r_{is}$  and  $r_{is}$ .


2. As for the maximum value for inner and outer ring diameters of bearings whose bearing numbers are marked with "†" (inner ring) and "††" (outer ring), the precision class is an integer for class 4 and class 2 bearings only.

B-190







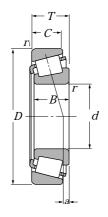


 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 

| $\frac{F_{\rm a}}{F_{\rm r}}$ | e | $\frac{F_{\rm a}}{F_{\rm r}} > e$ |            |  |  |  |  |
|-------------------------------|---|-----------------------------------|------------|--|--|--|--|
| $\overline{X}$                | Y | X                                 | Y          |  |  |  |  |
| 1                             | 0 | 0.4                               | <b>Y</b> 2 |  |  |  |  |

static  $P_{\text{or}} = 0.5 F_{\text{r}} + Y_0 F_a$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ For values of e,  $Y_2$  and  $Y_0$  see the table below.

| Bearing numbers          |         | Abuti                               | ment and | nsions                              |                 | Load<br>center | Constant Axial load factors |      |         | Mass        |           |
|--------------------------|---------|-------------------------------------|----------|-------------------------------------|-----------------|----------------|-----------------------------|------|---------|-------------|-----------|
|                          |         |                                     | n        | nm                                  |                 |                | mm                          |      | ioau ia | Ciors       | kg        |
|                          | $d_{a}$ | $d_{\scriptscriptstyle \mathrm{b}}$ | $D_{a}$  | $D_{\scriptscriptstyle \mathrm{b}}$ | r <sub>as</sub> | r₁as<br>max    | a                           | e    | $Y_2$   | $Y_{\rm o}$ | (approx.) |
| 4T-498/493               | 98      | 91                                  | 122      | 130                                 | 3.5             | 3.3            | 0.7                         | 0.44 | 1.35    | 0.74        | 1.6       |
|                          |         |                                     |          |                                     |                 |                |                             |      |         |             |           |
| # 4T-JM716648/JM716610   | 104     | 92                                  | 117      | 125                                 | 6               | 2.5            | 0.2                         | 0.44 | 1.35    | 0.74        | 1.37      |
| # 4T-JHM516849/JHM516810 | 100     | 94                                  | 125      | 134                                 | 3               | 2.5            | 5.9                         | 0.41 | 1.47    | 0.81        | 2.3       |
| 4T-749/742               | 101     | 95                                  | 134      | 142                                 | 3.5             | 3.3            | 12.0                        | 0.33 | 1.84    | 1.01        | 3.25      |
| 4T-497/492A              | 99      | 93                                  | 120      | 128                                 | 3.5             | 3.3            | 0.7                         | 0.44 | 1.35    | 0.74        | 1.43      |
| 4T-HM617049/HM617010     | 106     | 95                                  | 125      | 137                                 | 4.8             | 3.3            | 6.9                         | 0.43 | 1.39    | 0.76        | 2.69      |
| 4T-665/653               | 102     | 95                                  | 131      | 139                                 | 3.5             | 3.3            | 8.0                         | 0.41 | 1.47    | 0.81        | 2.65      |
| 4T-596/592A              | 102     | 96                                  | 135      | 144                                 | 3.5             | 3.3            | 2.6                         | 0.44 | 1.36    | 0.75        | 2.9       |
| 4T-758/752               | 103     | 97                                  | 144      | 150                                 | 3.5             | 3.3            | 12.0                        | 0.34 | 1.76    | 0.97        | 4.26      |
| 4T-42346/42584           | 103     | 98                                  | 134      | 142                                 | 3               | 3              | -3.0 <sup>1</sup>           | 0.49 | 1.22    | 0.67        | 1.99      |
| 4T-LL217849/LL217810     | 97      | 94                                  | 115      | 117                                 | 1.5             | 1.5            | -2.9 <sup>1</sup>           | 0.33 | 1.81    | 1.00        | 0.452     |
| 4T-L217849/L217810       | 97      | 94                                  | 116      | 119                                 | 1.5             | 1.5            | -0.7 <sup>1</sup>           | 0.33 | 1.82    | 1.00        | 0.737     |
| 4T-42350/42584           | 104     | 98                                  | 134      | 142                                 | 3               | 3              | -3.0 <sup>1</sup>           | 0.49 | 1.22    | 0.67        | 1.96      |
| 4T-593/592A              | 104     | 98                                  | 135      | 144                                 | 3.5             | 3.3            | 2.6                         | 0.44 | 1.36    | 0.75        | 2.78      |
| 4T-759/752               | 106     | 99                                  | 144      | 150                                 | 3.5             | 3.3            | 12.0                        | 0.34 | 1.76    | 0.97        | 4.09      |
| 4T-6580/6535             | 109     | 102                                 | 141      | 154                                 | 3.5             | 3.3            | 12.8                        | 0.40 | 1.50    | 0.82        | 4.73      |
| 4T-850/832               | 106     | 100                                 | 149      | 155                                 | 3.5             | 3.3            | 18.5                        | 0.30 | 2.00    | 1.10        | 5.08      |
| 4T-HM218248†/HM218210††  | 112     | 99                                  | 133      | 141                                 | 7               | 3.5            | 8.6                         | 0.33 | 1.80    | 0.99        | 2.55      |
| # 4T-JM718149/JM718110   | 105     | 99                                  | 131      | 139                                 | 3               | 2.5            | 2.0                         | 0.44 | 1.35    | 0.74        | 2.14      |
| # 4T-JHM318448/JHM318410 | 106     | 100                                 | 140      | 148                                 | 3               | 2.5            | 10.1                        | 0.34 | 1.76    | 0.97        | 3.32      |
| # 4T-J90354/J90748       | 120     | 112                                 | 162      | 179                                 | 3.5             | 3.3            | -12.9 <sup>1</sup>          | 0.87 | 0.69    | 0.38        | 6.32      |
| 4T-760/752               | 107     | 101                                 | 144      | 150                                 | 3.5             | 3.3            | 12.0                        | 0.34 | 1.76    | 0.97        | 4.01      |
| 4T-47890/47820           | 107     | 101                                 | 131      | 140                                 | 3.5             | 3.3            | 0.6                         | 0.45 | 1.34    | 0.74        | 2.08      |
| 4T-598A/592A             | 113     | 101                                 | 135      | 144                                 | 6.4             | 3.3            | 2.6                         | 0.44 | 1.36    | 0.75        | 2.63      |
| 4T-681/672               | 110     | 104                                 | 149      | 160                                 | 3.5             | 3.3            | 3.0                         | 0.47 | 1.28    | 0.70        | 3.87      |
| 4T-42368/42584           | 107     | 102                                 | 134      | 142                                 | 3               | 3              | -3.0 <sup>1</sup>           | 0.49 | 1.22    | 0.67        | 1.8       |
| # 4T-JM719149/JM719113   | 109     | 104                                 | 135      | 143                                 | 3               | 2.5            | 1.7                         | 0.44 | 1.36    | 0.75        | 2.19      |






## **Tapered Roller Bearings**



### Inch series J series

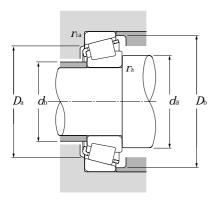


## d 95.250 ~ 109.538mm

|         | Воц     | ındary dime | nsions |        |              |             | nd ratings |             | Limiting speeds |       |  |
|---------|---------|-------------|--------|--------|--------------|-------------|------------|-------------|-----------------|-------|--|
|         |         |             |        |        | dynamic      | static      | dynamic .  | static      |                 | -1    |  |
|         |         | mm          |        |        | kN           |             | kį         | gt          | mir             | 1-1   |  |
| d       | D       | T           | В      | C      | $C_{\Gamma}$ | $C_{ m or}$ | $C_{ m r}$ | $C_{ m or}$ | grease          | oil   |  |
|         |         |             |        |        |              |             |            |             |                 |       |  |
|         | 130.175 | 20.638      | 21.433 | 16.670 | 81.0         | 147         | 8 300      | 15 000      | 2 500           | 3 300 |  |
|         | 146.050 | 33.338      | 34.925 | 26.195 | 163          | 266         | 16 700     | 27 100      | 2 400           | 3 100 |  |
|         | 147.638 | 35.717      | 36.322 | 26.192 | 180          | 279         | 18 300     | 28 400      | 2 300           | 3 100 |  |
| 95.250  | 148.430 | 28.575      | 28.971 | 21.433 | 138          | 215         | 14 100     | 21 900      | 2 300           | 3 100 |  |
| 00.200  | 152.400 | 39.688      | 36.322 | 30.162 | 180          | 279         | 18 300     | 28 400      | 2 300           | 3 100 |  |
|         | 157.162 | 36.512      | 36.116 | 26.195 | 188          | 305         | 19 200     | 31 000      | 2 200           | 2 900 |  |
|         | 168.275 | 41.275      | 41.275 | 30.162 | 222          | 340         | 22 700     | 35 000      | 2 100           | 2 800 |  |
|         | 190.500 | 57.150      | 57.531 | 46.038 | 445          | 610         | 45 000     | 62 000      | 1 900           | 2 600 |  |
| 06.000  | 148.430 | 28.575      | 28.971 | 21.433 | 138          | 215         | 14 100     | 21 900      | 2 300           | 3 100 |  |
| 96.838  | 188.912 | 50.800      | 46.038 | 31.750 | 281          | 365         | 28 700     | 37 000      | 1 800           | 2 400 |  |
| 00.405  | 157.162 | 36.512      | 36.116 | 26.195 | 188          | 305         | 19 200     | 31 000      | 2 200           | 2 900 |  |
| 98.425  | 168.275 | 41.275      | 41.275 | 30.162 | 222          | 340         | 22 700     | 35 000      | 2 100           | 2 800 |  |
| 99.974  | 212.725 | 66.675      | 66.675 | 53.975 | 575          | 810         | 58 500     | 82 500      | 1 700           | 2 300 |  |
| 100.000 | 155.000 | 36.000      | 35.000 | 28.000 | 192          | 310         | 19 600     | 31 500      | 2 200           | 2 900 |  |
| 100.012 | 157.162 | 36.512      | 36.116 | 26.195 | 188          | 305         | 19 200     | 31 000      | 2 200           | 2 900 |  |
|         | 157.162 | 36.512      | 36.116 | 26.195 | 188          | 305         | 19 200     | 31 000      | 2 200           | 2 900 |  |
|         | 168.275 | 41.275      | 41.275 | 30.162 | 222          | 340         | 22 700     | 35 000      | 2 100           | 2 800 |  |
|         | 180.975 | 47.625      | 48.006 | 38.100 | 285          | 430         | 29 100     | 44 000      | 2 000           | 2 700 |  |
| 101.600 | 190.500 | 57.150      | 57.531 | 44.450 | 380          | 555         | 38 500     | 56 500      | 2 000           | 2 600 |  |
| 101.000 | 190.500 | 57.150      | 57.531 | 46.038 | 445          | 610         | 45 000     | 62 000      | 1 900           | 2 600 |  |
|         | 190.500 | 57.150      | 57.531 | 46.038 | 445          | 610         | 45 000     | 62 000      | 1 900           | 2 600 |  |
|         | 212.725 | 66.675      | 66.675 | 53.975 | 475          | 695         | 48 500     | 71 000      | 1 800           | 2 300 |  |
|         | 212.725 | 66.675      | 66.675 | 53.975 | 575          | 810         | 58 500     | 82 500      | 1 700           | 2 300 |  |
| 104.775 | 180.975 | 47.625      | 48.006 | 38.100 | 285          | 430         | 29 100     | 44 000      | 2 000           | 2 700 |  |
|         | 158.750 | 23.020      | 21.438 | 15.875 | 102          | 166         | 10 400     | 17 000      | 2 100           | 2 800 |  |
| 107.950 | 159.987 | 34.925      | 34.925 | 26.988 | 167          | 320         | 17 100     | 33 000      | 2 100           | 2 800 |  |
| 107.930 | 165.100 | 36.512      | 36.512 | 26.988 | 191          | 315         | 19 500     | 32 000      | 2 100           | 2 700 |  |
|         | 212.725 | 66.675      | 66.675 | 53.975 | 475          | 695         | 48 500     | 71 000      | 1 800           | 2 300 |  |
| 109.538 | 158.750 | 23.020      | 21.438 | 15.875 | 102          | 166         | 10 400     | 17 000      | 2 100           | 2 800 |  |

Note: 1. Chamfer dimensions on the back face of the inner and outer rings of the bearing are larger than maximum values for installation dimensions  $r_{ls}$  and  $r_{ls}$ .

2. As for the maximum value for inner and outer ring diameters of bearings whose bearing numbers are marked with "†" (inner ring) and "††" (outer ring), the precision class is an integer for class 4 and class 2 bearings only.


B-192









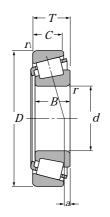


 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 

| $\frac{F_{\rm a}}{F_{\rm r}}$ | e | $\frac{F_{\rm a}}{F_{\rm r}} > e$ |            |  |  |  |  |
|-------------------------------|---|-----------------------------------|------------|--|--|--|--|
| $\overline{X}$                | Y | X                                 | Y          |  |  |  |  |
| 1                             | 0 | 0.4                               | <b>Y</b> 2 |  |  |  |  |

static  $P_{\text{or}} = 0.5 F_{\text{r}} + Y_0 F_a$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ For values of e,  $Y_2$  and  $Y_0$  see the table below.

| Bearing numbers        |         | Abuti                         |                                 | Load<br>center                  | Constant       | Axia       |                    | Mass |       |             |           |
|------------------------|---------|-------------------------------|---------------------------------|---------------------------------|----------------|------------|--------------------|------|-------|-------------|-----------|
|                        |         |                               | m                               | nm                              |                |            | mm                 |      |       |             | kg        |
|                        | ,       | ,                             |                                 |                                 | $m{r}_{ m as}$ | $m{r}$ las |                    |      |       |             |           |
|                        | $d_{a}$ | $d_{\scriptscriptstyle  m b}$ | $D_{\!\scriptscriptstyle  m a}$ | $D_{\!\scriptscriptstyle  m D}$ | max            | max        | а                  | e    | $Y_2$ | $Y_{\rm o}$ | (approx.) |
| 4T-L319249/L319210     | 103     | 101                           | 122                             | 125                             | 1.5            | 1.5        | <b>-1.0</b> 10     | 0.35 | 1.72  | 0.95        | 0.789     |
| 4T-47896/47820         | 110     | 101                           | 131                             | 140                             | 3.5            | 3.3        | 0.6                | 0.35 | 1.72  | 0.93        | 1.95      |
| 4T-594A/592XE          | 113     | 104                           | 135                             | 142                             | 5.5            | 0.8        | 2.6                | 0.44 | 1.36  | 0.75        | 2.09      |
| 4T-42375/42584         | 108     | 104                           | 134                             | 142                             | 3              | 3          | –3.0¹⊃             | _    | 1.22  | 0.73        | 1.75      |
| 4T-594/592A            | 110     | 104                           | 135                             | 144                             | 3.5            | 3.3        | 2.6                | 0.44 | 1.36  | 0.75        | 2.51      |
| 4T-52375/52618         | 112     | 105                           | 142                             | 152                             | 3.5            | 3.3        | 0.6                | 0.47 | 1.26  | 0.69        | 2.76      |
| 4T-683/672             | 113     | 106                           | 149                             | 160                             | 3.5            | 3.3        | 3.0                | 0.47 | 1.28  | 0.70        | 3.72      |
| 4T-HH221440/HH221410   | 125     | 110                           | 171                             | 179                             | 8              | 3.3        | 14.4               | 0.33 | 1.79  | 0.99        | 7.5       |
|                        |         |                               |                                 |                                 |                |            |                    |      |       |             |           |
| 4T-42381/42584         | 110     | 104                           | 134                             | 142                             | 3.5            | 3          | <b>−3.0</b> ¹⊃     |      | 1.22  | 0.67        | 1.69      |
| 4T-90381/90744         | 125     | 113                           | 161                             | 179                             | 3.5            | 3.3        | <b>–12.9</b> □     | 0.87 | 0.69  | 0.38        | 5.67      |
| 4T-52387/52618         | 114     | 108                           | 142                             | 152                             | 3.5            | 3.3        | 0.6                | 0.47 | 1.26  | 0.69        | 2.62      |
| 4T-685/672             | 116     | 109                           | 149                             | 160                             | 3.5            | 3.3        | 3.0                | 0.47 | 1.28  | 0.70        | 3.56      |
| 4T-HH224334†/HH224310  | 124     | 120                           | 192                             | 202                             | 3.5            | 3.3        | 18.9               | 0.33 | 1.84  | 1.01        | 11.5      |
| # 4T-JM720249/JM720210 | 115     | 109                           | 140                             | 149                             | 3              | 2.5        | -0.3 <sup>13</sup> | 0.47 | 1.27  | 0.70        | 2.4       |
| 4T-52393/52618         | 116     | 109                           | 142                             | 152                             | 3.5            | 3.3        | 0.6                | 0.47 | 1.26  | 0.69        | 2.55      |
| 4T-52400/52618         | 117     | 111                           | 142                             | 152                             | 3.5            | 3.3        | 0.6                | 0.47 | 1.26  | 0.69        | 2.48      |
| 4T-687/672             | 118     | 112                           | 149                             | 160                             | 3.5            | 3.3        | 3.0                | 0.47 | 1.28  | 0.70        | 3.4       |
| 4T-780/772††           | 119     | 113                           | 161                             | 168                             | 3.5            | 3.3        | 8.1                | 0.39 | 1.56  | 0.86        | 5.11      |
| 4T-861/854             | 129     | 114                           | 170                             | 174                             | 8              | 3.3        | 15.3               | 0.33 | 1.79  | 0.99        | 7         |
| 4T-HH221449/HH221410   | 131     | 116                           | 171                             | 179                             | 8              | 3.3        | 14.4               | 0.33 | 1.79  | 0.99        | 7.06      |
| 4T-HH221449A/HH221410  | 122     | 116                           | 171                             | 179                             | 3.5            | 3.3        | 14.4               | 0.33 | 1.79  | 0.99        | 7.06      |
| 4T-941/932             | 130     | 117                           | 187                             | 193                             | 7              | 3.3        | 19.7               | 0.33 | 1.84  | 1.01        | 11.2      |
| 4T-HH224335/HH224310   | 132     | 121                           | 192                             | 202                             | 7              | 3.3        | 18.9               | 0.33 | 1.84  | 1.01        | 11.3      |
| 4T-782/772††           | 122     | 116                           | 161                             | 168                             | 3.5            | 3.3        | 8.1                | 0.39 | 1.56  | 0.86        | 4.92      |
| 4T-37425/37625         | 122     | 115                           | 143                             | 152                             | 3.5            | 3.3        | <b>–14.0</b> □     | 0.61 | 0.99  | 0.54        | 1.37      |
| 4T-LM522546/LM522510   | 122     | 116                           | 146                             | 154                             | 3.5            | 3.3        | 1.4                | 0.40 | 1.49  | 0.82        | 2.37      |
| 4T-56425/56650         | 123     | 117                           | 149                             | 159                             | 3.5            | 3.3        | <b>-2.0</b> 13     | 0.50 | 1.21  | 0.66        | 2.69      |
| 4T-936/932             | 137     | 122                           | 187                             | 193                             | 8              | 3.3        | 19.7               | 0.33 | 1.84  | 1.01        | 10.7      |
| 4T-37431/37625         | 123     | 116                           | 143                             | 152                             | 3.5            | 3.3        | <b>–14.0</b> 13    | 0.61 | 0.99  | 0.54        | 1.33      |






## **Tapered Roller Bearings**

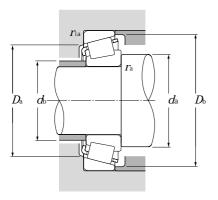


# Inch series J series



### d109.987 ~ 133.350mm

|         | Воц                                                                       | ındary dime                                                        | nsions                                                             |                                                                    | Basic load ratings dynamic static dynamic     |                                                 |                                                                    | Limiting speeds static                                              |                                                             |                                                             |
|---------|---------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
|         |                                                                           | mm                                                                 |                                                                    |                                                                    | kN                                            | Static                                          |                                                                    | gf                                                                  | min                                                         | -1                                                          |
| d       | D                                                                         | T                                                                  | В                                                                  | С                                                                  | $C_{\scriptscriptstyle  m T}$                 | $C_{ m or}$                                     | $C_{ m r}$                                                         | $C_{ m or}$                                                         | grease                                                      | oil                                                         |
| 109.987 | 159.987                                                                   | 34.925                                                             | 34.925                                                             | 26.988                                                             | 167                                           | 320                                             | 17 100                                                             | 33 000                                                              | 2 100                                                       | 2 800                                                       |
| 109.992 | 177.800                                                                   | 41.275                                                             | 41.275                                                             | 30.162                                                             | 232                                           | 375                                             | 23 600                                                             | 38 000                                                              | 1 900                                                       | 2 600                                                       |
| 110.000 | 165.000<br>180.000                                                        | 35.000<br>47.000                                                   | 35.000<br>46.000                                                   | 26.500<br>38.000                                                   | 191<br>305                                    | 315<br>480                                      | 19 500<br>31 000                                                   | 32 000<br>49 000                                                    | 2 100<br>1 900                                              | 2 700<br>2 600                                              |
| 111.125 | 214.312                                                                   | 55.562                                                             | 52.388                                                             | 39.688                                                             | 405                                           | 560                                             | 41 500                                                             | 57 000                                                              | 1 500                                                       | 2 000                                                       |
| 114.300 | 177.800<br>180.975<br>212.725<br>212.725<br>228.600                       | 41.275<br>34.925<br>66.675<br>66.675<br>53.975                     | 41.275<br>31.750<br>66.675<br>66.675<br>49.428                     | 30.162<br>25.400<br>53.975<br>53.975<br>38.100                     | 232<br>169<br>475<br>575<br>430               | 375<br>245<br>695<br>810<br>620                 | 23 600<br>17 200<br>48 500<br>58 500<br>44 000                     | 38 000<br>25 000<br>71 000<br>82 500<br>63 500                      | 1 900<br>1 900<br>1 800<br>1 700<br>1 400                   | 2 600<br>2 500<br>2 300<br>2 300<br>1 900                   |
| 115.087 | 190.500                                                                   | 47.625                                                             | 49.212                                                             | 34.925                                                             | 300                                           | 475                                             | 30 500                                                             | 48 500                                                              | 1 800                                                       | 2 500                                                       |
| 117.475 | 180.975                                                                   | 34.925                                                             | 31.750                                                             | 25.400                                                             | 169                                           | 245                                             | 17 200                                                             | 25 000                                                              | 1 900                                                       | 2 500                                                       |
| 120.000 | 170.000                                                                   | 25.400                                                             | 25.400                                                             | 19.050                                                             | 127                                           | 210                                             | 13 000                                                             | 21 400                                                              | 2 000                                                       | 2 600                                                       |
| 120.650 | 234.950                                                                   | 63.500                                                             | 63.500                                                             | 49.212                                                             | 525                                           | 825                                             | 53 500                                                             | 84 000                                                              | 1 500                                                       | 2 000                                                       |
| 123.825 | 182.562                                                                   | 39.688                                                             | 38.100                                                             | 33.338                                                             | 224                                           | 435                                             | 22 900                                                             | 44 000                                                              | 1 800                                                       | 2 400                                                       |
| 127.000 | 182.562<br>196.850<br>215.900<br>228.600<br>228.600<br>230.000<br>254.000 | 39.688<br>46.038<br>47.625<br>53.975<br>53.975<br>63.500<br>77.788 | 38.100<br>46.038<br>47.625<br>49.428<br>49.428<br>63.500<br>82.550 | 33.338<br>38.100<br>34.925<br>38.100<br>38.100<br>49.212<br>61.912 | 224<br>310<br>320<br>320<br>430<br>525<br>740 | 435<br>550<br>540<br>445<br>620<br>825<br>1 070 | 22 900<br>31 500<br>32 500<br>32 500<br>44 000<br>53 500<br>75 500 | 44 000<br>56 500<br>55 000<br>45 000<br>63 500<br>84 000<br>109 000 | 1 800<br>1 700<br>1 600<br>1 400<br>1 400<br>1 500<br>1 400 | 2 400<br>2 200<br>2 100<br>1 900<br>1 900<br>2 000<br>1 900 |
| 128.588 | 206.375                                                                   | 47.625                                                             | 47.625                                                             | 34.925                                                             | 315                                           | 520                                             | 32 000                                                             | 53 000                                                              | 1 700                                                       | 2 200                                                       |
| 130.175 | 196.850<br>206.375                                                        | 46.038<br>47.625                                                   | 46.038<br>47.625                                                   | 38.100<br>34.925                                                   | 310<br>315                                    | 550<br>520                                      | 31 500<br>32 000                                                   | 56 500<br>53 000                                                    | 1 700<br>1 700                                              | 2 200<br>2 200                                              |
| 133.350 | 177.008                                                                   | 25.400                                                             | 26.195                                                             | 20.638                                                             | 126                                           | 259                                             | 12 900                                                             | 26 400                                                              | 1 800                                                       | 2 400                                                       |


Note: 1. Chamfer dimensions on the back face of the inner and outer rings of the bearing are larger than maximum values for installation dimensions  $r_{is}$  and  $r_{is}$ .

2. As for the maximum value for inner and outer ring diameters of bearings whose bearing numbers are marked with "†" (inner ring) and "††" (outer ring), the precision class is an integer for class 4 and class 2 bearings only.

B-194



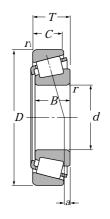




 $P_{\Gamma} = XF_{\Gamma} + YF_{\alpha}$ 

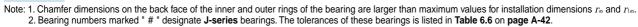
| $\frac{F_{\rm a}}{F_{ m r}}$ | e | $\frac{F_{\rm a}}{F_{\rm r}} > e$ |            |  |  |  |  |
|------------------------------|---|-----------------------------------|------------|--|--|--|--|
| $\overline{X}$               | Y | X                                 | Y          |  |  |  |  |
| 1                            | 0 | 0.4                               | <b>Y</b> 2 |  |  |  |  |

static  $P_{\text{or}} = 0.5 F_{\text{r}} + Y_0 F_a$ When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$ For values of e,  $Y_2$  and  $Y_0$  see the table below.


| Bearing numbers                                                                                                                                      |                                                      | Abut                                                 | ment and                                             | ensions                                              |                                                      | Load<br>center                                | Constant                                                          | Axi                  |                                                      | Mass                                                 |                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------|----------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|
|                                                                                                                                                      |                                                      |                                                      | n                                                    | nm                                                   |                                                      |                                               | mm                                                                |                      | iouu iu                                              | 0.013                                                | kg                                                          |
|                                                                                                                                                      | $d_{\scriptscriptstyle a}$                           | $d_{\scriptscriptstyle \! b}$                        | $D_{\!\scriptscriptstyle  m a}$                      | $D_{\!\scriptscriptstyle{ m D}}$                     | r <sub>as</sub>                                      | <i>I</i> ¹¹as<br>max                          | а                                                                 | e                    | $Y_2$                                                | $Y_{\circ}$                                          | (approx.)                                                   |
|                                                                                                                                                      | Ca                                                   | QD.                                                  | Da                                                   | 20                                                   | max                                                  | max                                           | u                                                                 | C                    | 1.                                                   | 10                                                   | (арргох.)                                                   |
| 4T-LM522548/LM522510                                                                                                                                 | 133                                                  | 118                                                  | 146                                                  | 154                                                  | 8                                                    | 3.3                                           | 1.4                                                               | 0.40                 | 1.49                                                 | 0.82                                                 | 2.24                                                        |
| 4T-64433/64700                                                                                                                                       | 128                                                  | 121                                                  | 160                                                  | 172                                                  | 3.5                                                  | 3.3                                           | <b>-1.1</b> 1                                                     | 0.52                 | 1.16                                                 | 0.64                                                 | 3.77                                                        |
| # 4T-JM822049/JM822010<br># 4T-JHM522649/JHM522610                                                                                                   | 124<br>127                                           | 119<br>122                                           | 149<br>162                                           | 159<br>172                                           | 3<br>3                                               | 2.5<br>2.5                                    | -3.0 <sup>12</sup><br>6.0                                         | 0.50<br>0.41         | 1.21<br>1.48                                         | 0.66<br>0.81                                         | 2.52<br>4.61                                                |
| 4T-H924045/H924010                                                                                                                                   | 139                                                  | 131                                                  | 186                                                  | 205                                                  | 3.5                                                  | 3.3                                           | -6.8 <sub>1</sub> 3                                               | 0.67                 | 0.89                                                 | 0.49                                                 | 8.18                                                        |
| 4T-64450/64700<br>4T-68450/68712††<br>4T-938/932<br>4T-HH224346/HH224310<br>4T-HM926740/HM926710                                                     | 131<br>130<br>141<br>143<br>146                      | 125<br>123<br>128<br>131<br>142                      | 160<br>163<br>187<br>192<br>200                      | 172<br>172<br>193<br>202<br>219                      | 3.5<br>3.5<br>7<br>7<br>3.5                          | 3.3<br>3.3<br>3.3<br>3.3<br>3.3               | -1.112<br>-5.412<br>19.7<br>18.9<br>-13.512                       | 0.50<br>0.33<br>0.33 | 1.16<br>1.21<br>1.84<br>1.84<br>0.81                 | 0.64<br>0.66<br>1.01<br>1.01<br>0.45                 | 3.52<br>2.93<br>10.1<br>10.2<br>9.76                        |
| 4T-71453/71750                                                                                                                                       | 133                                                  | 126                                                  | 171                                                  | 181                                                  | 3.5                                                  | 3.3                                           | 6.7                                                               | 0.42                 | 1.44                                                 | 0.79                                                 | 5.11                                                        |
| 4T-68462/68712††                                                                                                                                     | 132                                                  | 125                                                  | 163                                                  | 172                                                  | 3.5                                                  | 3.3                                           | <b>-5.4</b> 13                                                    | 0.50                 | 1.21                                                 | 0.66                                                 | 2.78                                                        |
| # 4T-JL724348/JL724314                                                                                                                               | 132                                                  | 127                                                  | 156                                                  | 163                                                  | 3.3                                                  | 3.3                                           | <b>-7.9</b> 13                                                    | 0.46                 | 1.31                                                 | 0.72                                                 | 1.67                                                        |
| 4T-95475/95925                                                                                                                                       | 149                                                  | 137                                                  | 209                                                  | 217                                                  | 6.4                                                  | 3.3                                           | 14.0                                                              | 0.37                 | 1.62                                                 | 0.89                                                 | 12.6                                                        |
| 4T-48286/48220                                                                                                                                       | 139                                                  | 133                                                  | 168                                                  | 176                                                  | 3.5                                                  | 3.3                                           | 5.7                                                               | 0.31                 | 1.97                                                 | 1.08                                                 | 3.52                                                        |
| 4T-48290/48220<br>4T-67388/67322<br>4T-74500/74850<br>4T-97500/97900<br>4T-HM926747/HM926710<br>4T-95500/95905<br>4T-HH228349/HH228310<br>4T-799/792 | 141<br>144<br>148<br>151<br>156<br>154<br>164<br>146 | 135<br>138<br>141<br>144<br>143<br>142<br>148<br>140 | 168<br>180<br>196<br>197<br>200<br>207<br>223<br>186 | 176<br>189<br>208<br>213<br>219<br>217<br>234<br>198 | 3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>6.4<br>9.7<br>3.3 | 3.3<br>3.3<br>3.3<br>3.3<br>3.3<br>6.4<br>3.3 | 5.7<br>6.3<br>-2.213<br>-13.413<br>-13.513<br>14.0<br>23.4<br>1.9 | 0.74                 | 1.97<br>1.74<br>1.23<br>0.81<br>0.81<br>1.62<br>1.87 | 1.08<br>0.96<br>0.68<br>0.45<br>0.45<br>0.89<br>1.03 | 3.33<br>5.1<br>7.05<br>8.43<br>8.83<br>12.9<br>19.5<br>5.77 |
| 4T-799A/792                                                                                                                                          | 148                                                  | 142                                                  | 186                                                  | 198                                                  | 3.5                                                  | 3.3                                           | 1.9                                                               | 0.46                 | 1.31                                                 | 0.72                                                 | 5.65                                                        |
| 4T-L327249/L327210                                                                                                                                   | 142                                                  | 140                                                  | 167                                                  | 171                                                  | 1.5                                                  | 1.5                                           | -3.71                                                             | 0.35                 | 1.72                                                 | 0.95                                                 | 1.7                                                         |

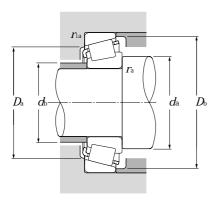
Note: 3. Bearing numbers marked " # " designate **J-series** bearings. The tolerances of these bearings is listed in **Table 6.6** on **page A-42**. 1 ) " - " means that load center at outside on end of inner ring.






### Inch series J series




## d 133.350 ~ 196.850mm

|         | Boundary dimensions |        |        |        |                                 |             | ad ratings   | ototio       | Limiting s | speeds          |
|---------|---------------------|--------|--------|--------|---------------------------------|-------------|--------------|--------------|------------|-----------------|
|         |                     | mm     |        |        | dynamic<br>kN                   | static      | dynamic<br>k | static<br>gf | mir        | ) <sup>-1</sup> |
| d       | D                   | T      | В      | C      | $C_{\scriptscriptstyle \Gamma}$ | $C_{ m or}$ | $C_{r}$      | $C_{ m or}$  | grease     | oil             |
|         | 190.500             | 39.688 | 39.688 | 33.338 | 236                             | 475         | 24 100       | 48 500       | 1 700      | 2 300           |
|         | 196.850             | 46.038 | 46.038 | 38.100 | 310                             | 550         | 31 500       | 56 500       | 1 700      | 2 200           |
| 133.350 | 196.850             | 46.038 | 46.038 | 38.100 | 310                             | 550         | 31 500       | 56 500       | 1 700      | 2 200           |
|         | 215.900             | 47.625 | 47.625 | 34.925 | 320                             | 540         | 32 500       | 55 000       | 1 600      | 2 100           |
|         | 234.950             | 63.500 | 63.500 | 49.212 | 525                             | 825         | 53 500       | 84 000       | 1 500      | 2 000           |
| 136.525 | 190.500             | 39.688 | 39.688 | 33.338 | 236                             | 475         | 24 100       | 48 500       | 1 700      | 2 300           |
|         | 228.600             | 57.150 | 57.150 | 44.450 | 445                             | 735         | 45 500       | 75 000       | 1 500      | 2 000           |
| 139.700 | 215.900             | 47.625 | 47.625 | 34.925 | 320                             | 540         | 32 500       | 55 000       | 1 600      | 2 100           |
|         | 228.600             | 57.150 | 57.150 | 44.450 | 445                             | 735         | 45 500       | 75 000       | 1 500      | 2 000           |
|         | 254.000             | 66.675 | 66.675 | 47.625 | 550                             | 910         | 56 000       | 92 500       | 1 400      | 1 800           |
| 142.875 | 200.025             | 41.275 | 39.688 | 34.130 | 239                             | 490         | 24 300       | 50 000       | 1 600      | 2 100           |
|         | 200.025             | 41.275 | 39.688 | 34.130 | 239                             | 490         | 24 300       | 50 000       | 1 600      | 2 100           |
| 146.050 | 193.675             | 28.575 | 28.575 | 23.020 | 165                             | 340         | 16 800       | 35 000       | 1 600      | 2 200           |
|         | 254.000             | 66.675 | 66.675 | 47.625 | 550                             | 910         | 56 000       | 92 500       | 1 400      | 1 800           |
| 152.400 | 192.088             | 25.000 | 24.000 | 19.000 | 130                             | 261         | 13 200       | 26 700       | 1 600      | 2 100           |
|         | 222.250             | 46.830 | 46.830 | 34.925 | 315                             | 585         | 32 000       | 60 000       | 1 500      | 2 000           |
| 158.750 | 205.583             | 23.812 | 23.812 | 18.258 | 126                             | 247         | 12 900       | 25 200       | 1 500      | 2 000           |
|         | 225.425             | 41.275 | 39.688 | 33.338 | 254                             | 555         | 25 900       | 56 500       | 1 400      | 1 900           |
| 165.100 | 225.425             | 41.275 | 39.688 | 33.338 | 254                             | 555         | 25 900       | 56 500       | 1 400      | 1 900           |
| 170.000 | 230.000             | 39.000 | 38.000 | 31.000 | 282                             | 520         | 28 700       | 53 000       | 1 400      | 1 800           |
| 177.800 | 227.012             | 30.162 | 30.162 | 23.020 | 181                             | 415         | 18 500       | 42 000       | 1 300      | 1 800           |
|         | 247.650             | 47.625 | 47.625 | 38.100 | 340                             | 690         | 35 000       | 70 500       | 1 300      | 1 700           |
| 180.000 | 250.000             | 47.000 | 45.000 | 37.000 | 370                             | 710         | 37 500       | 72 500       | 1 300      | 1 700           |
| 190.000 | 260.000             | 46.000 | 44.000 | 36.500 | 365                             | 720         | 37 000       | 73 500       | 1 200      | 1 600           |
| 196.850 | 241.300             | 23.812 | 23.017 | 17.462 | 160                             | 330         | 16 300       | 33 500       | 1 200      | 1 600           |





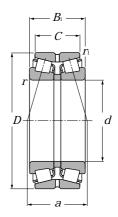




 $P_{\Gamma} = XF_{\Gamma} + YF_{\alpha}$ 

| $\frac{F_{\rm a}}{F_{\rm r}}$ | e | $\frac{F_{\rm a}}{F_{\rm r}} > e$ |            |  |  |  |  |
|-------------------------------|---|-----------------------------------|------------|--|--|--|--|
| $\overline{X}$                | Y | X                                 | Y          |  |  |  |  |
| 1                             | 0 | 0.4                               | <b>Y</b> 2 |  |  |  |  |

static  $P_{\text{Or}} = 0.5 F_{\text{r}} + Y_0 F_{\text{a}}$  When  $P_{\text{or}} < F_{\text{r}}$  use  $P_{\text{or}} = F_{\text{r}}$  For values of  $P_{\text{or}} < F_{\text{o}}$  and  $P_{\text{o}}$  see the table below.


| Bearing numbers                  |            | Abuti      |             | fillet dimer                  | nsions     |               | Load center         | Constant     | Axi<br>load fa | Mass         |              |
|----------------------------------|------------|------------|-------------|-------------------------------|------------|---------------|---------------------|--------------|----------------|--------------|--------------|
|                                  |            |            | m           | nm                            | arGammaas  | <b>l</b> 'las | mm                  |              |                |              | kg           |
|                                  | $d_{a}$    | $d_{b}$    | $D_{\rm a}$ | $D_{\scriptscriptstyle  m b}$ | max        | nax           | а                   | e            | $Y_2$          | $Y_{\rm o}$  | (approx.)    |
| 4T 40205/40220                   | 4.40       | 4.40       | 477         | 404                           | 2.5        | 2.2           | 4.0                 | 0.00         | 4.07           | 4.00         | 2.04         |
| 4T-48385/48320<br>4T-67390/67322 | 148<br>149 | 142<br>143 | 177<br>180  | 184<br>189                    | 3.5<br>3.5 | 3.3<br>3.3    | 4.0<br>6.3          | 0.32<br>0.34 | 1.87<br>1.74   | 1.03<br>0.96 | 3.64<br>4.63 |
| 4T-67390/67322<br>4T-67391/67322 | 157        | 143        | 180         | 189                           | 3.5<br>8   | 3.3           | 6.3                 | 0.34         | 1.74           | 0.96         | 4.63<br>4.59 |
| 4T-74525/74850                   | 152        | 143        | 196         | 208                           | 3.5        | 3.3           | -2.2 <sup>1)</sup>  |              | 1.74           | 0.90         | 6.56         |
| 4T-95525/95925                   | 166        | 148        | 209         | 217                           | 9.7        | 3.3           | 14.0                | 0.49         | 1.62           | 0.89         | 11.3         |
| 41-93323/93923                   | 100        | 140        | 209         | 217                           | 9.1        | 3.3           | 14.0                | 0.57         | 1.02           | 0.09         | 11.5         |
| 4T-48393/48320                   | 151        | 144        | 177         | 184                           | 3.5        | 3.3           | 4.0                 | 0.32         | 1.87           | 1.03         | 3.43         |
| 4T-896/892                       | 156        | 150        | 205         | 216                           | 3.5        | 3.3           | 6.0                 | 0.42         | 1.43           | 0.78         | 9.07         |
| 4T-74550/74850                   | 158        | 151        | 196         | 208                           | 3.5        | 3.3           | <b>-2.2</b> 1)      | 0.49         | 1.23           | 0.68         | 6.05         |
| 4T-898/892                       | 160        | 153        | 205         | 216                           | 3.5        | 3.3           | 6.0                 | 0.42         | 1.43           | 0.78         | 8.76         |
| 4T-99550/99100                   | 170        | 156        | 227         | 238                           | 7          | 3.3           | 12.1                | 0.41         | 1.47           | 0.81         | 14.3         |
| 4T-48684/48620                   | 166        | 151        | 185         | 193                           | 8          | 3.3           | 3.1                 | 0.34         | 1.78           | 0.98         | 3.85         |
| 4T-48685/48620                   | 158        | 151        | 185         | 193                           | 3.5        | 3.3           | 3.1                 | 0.34         | 1.78           | 0.98         | 3.89         |
| 4T-36690/36620                   | 155        | 153        | 182         | 188                           | 1.5        | 1.5           | -5.0 <sup>13</sup>  | 0.37         | 1.63           | 0.90         | 2.27         |
| 4T-99575/99100                   | 175        | 162        | 227         | 238                           | 7          | 3.3           | 12.1                | 0.41         | 1.47           | 0.81         | 13.5         |
| 4T-L630349/L630310               | 162        | 158        | 183         | 187                           | 2          | 2             | <b>–10.0</b> 13     | 0.42         | 1.44           | 0.79         | 1.53         |
| 4T-M231648/M231610               | 178        | 163        | 207         | 213                           | 8          | 1.5           | 5.9                 | 0.33         | 1.8            | 0.99         | 5.72         |
| 4T-L432349/L432310               | 168        | 166        | 195         | 199                           | 1.5        | 1.5           | <b>-9.8</b> 13      | 0.37         | 1.61           | 0.88         | 1.89         |
| 4T-46780/46720                   | 176        | 169        | 209         | 218                           | 3.5        | 3.3           | <b>-2.6</b> 13      | 0.38         | 1.57           | 0.86         | 5.2          |
| 4T-46790/46720                   | 181        | 174        | 209         | 218                           | 3.5        | 3.3           | -2.6 <sup>13</sup>  | 0.38         | 1.57           | 0.86         | 4.69         |
| # 4T-JHM534149/JHM534110         | 184        | 178        | 217         | 224                           | 3          | 2.5           | <b>-4.7</b> 13      | 0.38         | 1.57           | 0.86         | 4.37         |
| 4T-36990/36920                   | 188        | 186        | 214         | 221                           | 1.5        | 1.5           | <b>–</b> 12.8□      | 0.44         | 1.36           | 0.75         | 2.92         |
| 4T-67790/67720                   | 194        | 188        | 229         | 240                           | 3.5        | 3.3           | <b>-4.8</b> 13      | 0.44         | 1.36           | 0.75         | 6.57         |
| # 4T-JM736149/JM736110           | 196        | 190        | 232         | 243                           | 3          | 2.5           | -9.0 <sup>13</sup>  | 0.48         | 1.25           | 0.69         | 6.76         |
| # 4T-JM738249/JM738210           | 206        | 200        | 242         | 252                           | 3          | 2.5           | -10.9 <sup>13</sup> | 0.48         | 1.26           | 0.69         | 6.85         |
| 4T-LL639249/LL639210             | 205        | 203        | 232         | 236                           | 1.5        | 1.5           | -17.3 <sup>13</sup> | 0.42         | 1.44           | 0.79         | 2.07         |
|                                  |            |            |             |                               |            |               |                     |              |                |              |              |

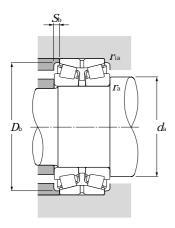
<sup>1) &</sup>quot; - " means that load center at outside on end of inner ring.





## **Back-to-back arrangement**




### d 40 ~ 70mm

|    | Boundary dimensions             |                             |                                      |                                 | dynamic                         | Basic Io                        | oad ratings<br>dynamic          | static                                         | Limiting speeds                                |                                           |                                           |
|----|---------------------------------|-----------------------------|--------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------|-------------------------------------------|
|    |                                 |                             | mm                                   |                                 |                                 | dynamic<br>ki                   |                                 | dynamic                                        | kgf                                            | mir                                       | 1 <sup>-1</sup>                           |
| d  | D                               | $B_1$                       | С                                    | <i>I</i> 's min <sup>1)</sup>   | $\Gamma$ ls min $^1$ )          | $C_{r}$                         | $C_{ m or}$                     | $C_{ m r}$                                     | $C_{ m or}$                                    | grease                                    | oil                                       |
| 40 | 80<br>80<br>90<br>90            | 45<br>55<br>56<br>56        | 37.5<br>43.5<br>39.5<br>45.5         | 1.5<br>1.5<br>2<br>2            | 0.6<br>0.6<br>0.6<br>0.6        | 105<br>136<br>132<br>157        | 134<br>187<br>171<br>204        | 10 700<br>13 900<br>13 500<br>16 000           | 13 700<br>19 100<br>17 400<br>20 800           | 4 100<br>4 100<br>3 200<br>3 700          | 5 500<br>5 500<br>4 200<br>4 900          |
| 45 | 85<br>85<br>100<br>100          | 47<br>55<br>60<br>60        | 37.5<br>43.5<br>41.5<br>49.5         | 1.5<br>1.5<br>2<br>2            | 0.6<br>0.6<br>0.6<br>0.6        | 116<br>141<br>165<br>191        | 157<br>200<br>218<br>251        | 11 800<br>14 300<br>16 800<br>19 500           | 16 000<br>20 400<br>22 200<br>25 600           | 3 700<br>3 700<br>2 800<br>3 300          | 4 900<br>4 900<br>3 800<br>4 400          |
| 50 | 90<br>90<br>110<br>110<br>110   | 49<br>55<br>64<br>64<br>90  | 39.5<br>43.5<br>43.5<br>51.5<br>71.5 | 1.5<br>1.5<br>2.5<br>2.5<br>2.5 | 0.6<br>0.6<br>0.6<br>0.6<br>0.6 | 132<br>150<br>194<br>227<br>315 | 186<br>218<br>260<br>305<br>465 | 13 500<br>15 300<br>19 800<br>23 200<br>32 000 | 18 900<br>22 200<br>26 600<br>31 000<br>47 500 | 3 400<br>3 400<br>2 600<br>3 000<br>3 000 | 4 500<br>4 500<br>3 500<br>4 000<br>4 000 |
| 55 | 100<br>100<br>120<br>120<br>120 | 51<br>60<br>70<br>70<br>97  | 41.5<br>48.5<br>49<br>57<br>76       | 2<br>2<br>2.5<br>2.5<br>2.5     | 0.6<br>0.6<br>0.6<br>0.6<br>0.6 | 160<br>186<br>226<br>266<br>370 | 221<br>269<br>305<br>360<br>550 | 16 300<br>18 900<br>23 100<br>27 100<br>37 500 | 22 600<br>27 400<br>31 500<br>36 500<br>56 000 | 3 100<br>3 100<br>2 400<br>2 700<br>2 700 | 4 100<br>4 100<br>3 100<br>3 700<br>3 700 |
| 60 | 110<br>110<br>130<br>130<br>130 | 53<br>66<br>74<br>74<br>104 | 43.5<br>54.5<br>51<br>59<br>81       | 2<br>2<br>3<br>3<br>3           | 0.6<br>0.6<br>1<br>1            | 180<br>223<br>258<br>310<br>420 | 249<br>330<br>350<br>420<br>625 | 18 300<br>22 700<br>26 300<br>31 500<br>42 500 | 25 400<br>33 500<br>36 000<br>43 000<br>64 000 | 2 800<br>2 800<br>2 200<br>2 500<br>2 500 | 3 800<br>3 800<br>2 900<br>3 400<br>3 400 |
| 65 | 120<br>120<br>140<br>140<br>140 | 56<br>73<br>79<br>79<br>108 | 46.5<br>61.5<br>53<br>63<br>84       | 2<br>2<br>3<br>3<br>3           | 0.6<br>0.6<br>1<br>1            | 211<br>273<br>297<br>350<br>470 | 295<br>410<br>410<br>475<br>700 | 21 500<br>27 800<br>30 500<br>35 500<br>47 500 | 30 000<br>42 000<br>41 500<br>48 500<br>71 500 | 2 600<br>2 600<br>2 000<br>2 300<br>2 300 | 3 500<br>3 500<br>2 700<br>3 100<br>3 100 |
| 70 | 125<br>125<br>150<br>150<br>150 | 59<br>74<br>83<br>83<br>116 | 48.5<br>61.5<br>57<br>67<br>92       | 2<br>2<br>3<br>3<br>3           | 0.6<br>0.6<br>1<br>1            | 225<br>285<br>330<br>395<br>530 | 325<br>440<br>460<br>545<br>805 | 23 000<br>29 000<br>33 500<br>40 000<br>54 000 | 33 000<br>45 000<br>46 500<br>55 500<br>82 500 | 2 400<br>2 400<br>1 900<br>2 200<br>2 200 | 3 200<br>3 200<br>2 500<br>2 900<br>2 900 |

<sup>1 )</sup> Minimum allowable dimension for chamfer dimension r or r1.

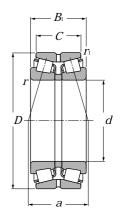






 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 

| $\frac{F_{\rm a}}{F_{ m r}}$ | e     | $\frac{F_{i}}{F_{i}}$ | ; > e |
|------------------------------|-------|-----------------------|-------|
| X                            | Y     | X                     | Y     |
| 1                            | $Y_1$ | 0.67                  | $Y_2$ |


static  $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$ For values of e,  $Y_2$  and  $Y_0$  see the table below.

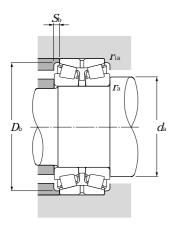
| Bearing numbers      | Ab                                  | utment an                           |                   | nensions               | s                    | Load center | Constant     | Axia         | al load fac  | ctors        | Mass         |
|----------------------|-------------------------------------|-------------------------------------|-------------------|------------------------|----------------------|-------------|--------------|--------------|--------------|--------------|--------------|
|                      | ,                                   | _                                   | mm                |                        |                      | mm          |              |              |              |              | kg           |
|                      | $d_{\!\scriptscriptstyle  m a}$ min | $D_{\!\scriptscriptstyle  m b}$ min | <i>S</i> ₅<br>min | r <sub>as</sub><br>max | <i>I</i> ¹las<br>max | а           | e            | <b>Y</b> 1   | $Y_2$        | $Y_{\circ}$  | (approx.)    |
| 4T-430208X           | 48.5                                | 75                                  | 3.5               | 1.5                    | 0.6                  | 38.5        | 0.37         | 1.80         | 2.68         | 1.76         | 0.929        |
| 4T-432208X           | 48.5                                | 75                                  | 5.5               | 1.5                    | 0.6                  | 43          | 0.37         | 1.80         | 2.68         | 1.76         | 1.18         |
| 4T-430308DX          | 50                                  | 86.5                                | 8                 | 2                      | 0.6                  | 64.5        | 0.83         | 0.82         | 1.22         | 0.80         | 1.56         |
| 4T-430308            | 50                                  | 82                                  | 5                 | 2                      | 0.6                  | 44.5        | 0.35         | 1.96         | 2.91         | 1.91         | 1.61         |
| 4T-430209            | 53.5                                | 80                                  | 4.5               | 1.5                    | 0.6                  | 42          | 0.40         | 1.67         | 2.48         | 1.63         | 1.04         |
| 4T-432209            | 53.5                                | 81                                  | 5.5               | 1.5                    | 0.6                  | 46          | 0.40         | 1.67         | 2.48         | 1.63         | 1.27         |
| * 4T-430309DX        | 55                                  | 96                                  | 9                 | 2                      | 0.6                  | 70          | 0.83         | 0.82         | 1.22         | 0.80         | 2.11         |
| 4T-430309            | 55                                  | 93                                  | 5                 | 2                      | 0.6                  | 47.5        | 0.35         | 1.96         | 2.91         | 1.91         | 2.11         |
| 4T-430210            | 58.5                                | 85                                  | 4.5               | 1.5                    | 0.6                  | 44.5        | 0.42         | 1.61         | 2.39         | 1.57         | 1.18         |
| 432210U              | 58.5                                | 85                                  | 5.5               | 1.5                    | 0.6                  | 47.5        | 0.42         | 1.61         | 2.39         | 1.57         | 1.36         |
| 4T-430310DX          | 62                                  | 105                                 | 10                | 2                      | 0.6                  | 75<br>54    | 0.83         | 0.82         | 1.22         | 0.80         | 2.65         |
| 4T-430310<br>432310U | 62<br>62                            | 102<br>102                          | 6<br>9            | 2<br>2                 | 0.6<br>0.6           | 51<br>62.5  | 0.35<br>0.35 | 1.96<br>1.96 | 2.91<br>2.91 | 1.91<br>1.91 | 2.72<br>3.98 |
| 4323100              | 02                                  | 102                                 | 9                 |                        | 0.6                  | 02.5        | 0.35         | 1.96         | 2.91         | 1.91         | 3.96         |
| 4T-430211X           | 65                                  | 94                                  | 4.5               | 2                      | 0.6                  | 47          | 0.40         | 1.67         | 2.48         | 1.63         | 1.55         |
| 432211U              | 65                                  | 95                                  | 5.5               | 2                      | 0.6                  | 51          | 0.40         | 1.67         | 2.48         | 1.63         | 1.85         |
| 4T-430311DX          | 67                                  | 113                                 | 10.5              | 2                      | 0.6                  | 83          | 0.83         | 0.82         | 1.22         | 0.80         | 3.42         |
| 430311XU             | 67                                  | 111                                 | 6.5               | 2                      | 0.6                  | 55.5        | 0.35         | 1.96         | 2.91         | 1.91         | 3.48         |
| 432311U              | 67                                  | 111                                 | 10.5              | 2                      | 0.6                  | 66.5        | 0.35         | 1.96         | 2.91         | 1.91         | 5.05         |
| 4T-430212X           | 70                                  | 103                                 | 4.5               | 2                      | 0.6                  | 49.5        | 0.40         | 1.67         | 2.48         | 1.63         | 1.99         |
| 432212U              | 70                                  | 104                                 | 5.5               | 2                      | 0.6                  | 56          | 0.40         | 1.67         | 2.48         | 1.63         | 2.49         |
| 4T-430312DX          | 74                                  | 124                                 | 11.5              | 2.5                    | 1                    | 88.5        | 0.83         | 0.82         | 1.22         | 0.80         | 4.22         |
| 430312U              | 74                                  | 120                                 | 7.5               | 2.5                    | 1                    | 59.5        | 0.35         | 1.96         | 2.91         | 1.91         | 4.31         |
| 432312U              | 74                                  | 120                                 | 11.5              | 2.5                    | 1                    | 71          | 0.35         | 1.96         | 2.91         | 1.91         | 6.29         |
| 4T-430213X           | 75                                  | 113                                 | 4.5               | 2                      | 0.6                  | 53.5        | 0.40         | 1.67         | 2.48         | 1.63         | 2.49         |
| 432213U              | 75                                  | 115                                 | 5.5               | 2                      | 0.6                  | 61.5        | 0.40         | 1.67         | 2.48         | 1.63         | 3.33         |
| 4T-430313DX          | 79                                  | 133                                 | 13                | 2.5                    | 1                    | 94.5        | 0.83         | 0.82         | 1.22         | 0.80         | 5.16         |
| 430313XU             | 79                                  | 130                                 | 8                 | 2.5                    | 1                    | 64          | 0.35         | 1.96         | 2.91         | 1.91         | 5.32         |
| 432313U              | 79                                  | 130                                 | 12                | 2.5                    | 1                    | 74.5        | 0.35         | 1.96         | 2.91         | 1.91         | 7.55         |
| 4T-430214            | 80                                  | 118                                 | 5                 | 2                      | 0.6                  | 57          | 0.42         | 1.61         | 2.39         | 1.57         | 2.67         |
| 432214U              | 80                                  | 119                                 | 6                 | 2                      | 0.6                  | 64.5        | 0.42         | 1.61         | 2.39         | 1.57         | 3.56         |
| 4T-430314DX          | 84                                  | 142                                 | 13                | 2.5                    | 1                    | 101         | 0.83         | 0.82         | 1.22         | 0.80         | 6.23         |
| 430314XU             | 84                                  | 140                                 | 8                 | 2.5                    | 1                    | 67          | 0.35         | 1.96         | 2.91         | 1.91         | 6.37         |
| 432314U              | 84                                  | 140                                 | 12                | 2.5                    | 1                    | 80.5        | 0.35         | 1.96         | 2.91         | 1.91         | 9.28         |





## **Back-to-back arrangement**




d 75 ~ 105mm

|           |     | Boundary dimensions |      |                               |                        | dynamic                         | Basic Io    | oad ratings<br>dynamic | static      | Limiting | Limiting speeds |  |  |
|-----------|-----|---------------------|------|-------------------------------|------------------------|---------------------------------|-------------|------------------------|-------------|----------|-----------------|--|--|
|           |     |                     | mm   |                               |                        |                                 | kN          | uynamic                | kgf         | miı      | n <sup>-1</sup> |  |  |
| d         | D   | $B_1$               | С    | <i>I</i> 's min <sup>1)</sup> | $\Gamma$ ls min $^1$ ) | $C_{\scriptscriptstyle \Gamma}$ | $C_{ m or}$ | $C_{r}$                | $C_{ m or}$ | grease   | oil             |  |  |
|           | 130 | 62                  | 51.5 | 2                             | 0.6                    | 238                             | 350         | 24 300                 | 36 000      | 2 300    | 3 000           |  |  |
|           | 130 | 74                  | 61.5 | 2                             | 0.6                    | 288                             | 445         | 29 300                 | 45 500      | 2 300    | 3 000           |  |  |
| <b>75</b> | 160 | 87                  | 59   | 3                             | 1                      | 370                             | 510         | 37 500                 | 52 000      | 1 700    | 2 300           |  |  |
|           | 160 | 87                  | 69   | 3                             | 1                      | 435                             | 605         | 44 500                 | 62 000      | 2 000    | 2 700           |  |  |
|           | 160 | 125                 | 99   | 3                             | 1                      | 610                             | 935         | 62 000                 | 95 500      | 2 000    | 2 700           |  |  |
|           | 140 | 64                  | 51.5 | 2.5                           | 0.6                    | 274                             | 400         | 27 900                 | 40 500      | 2 100    | 2 800           |  |  |
|           | 140 | 78                  | 63.5 | 2.5                           | 0.6                    | 340                             | 530         | 35 000                 | 54 000      | 2 100    | 2 800           |  |  |
| 80        | 170 | 92                  | 61   | 3                             | 1                      | 405                             | 565         | 41 500                 | 58 000      | 1 600    | 2 200           |  |  |
|           | 170 | 92                  | 73   | 3                             | 1                      | 500                             | 700         | 51 000                 | 71 500      | 1 900    | 2 500           |  |  |
|           | 170 | 131                 | 104  | 3                             | 1                      | 680                             | 1 050       | 69 000                 | 107 000     | 1 900    | 2 500           |  |  |
|           | 150 | 70                  | 57   | 2.5                           | 0.6                    | 315                             | 465         | 32 000                 | 47 000      | 2 000    | 2 700           |  |  |
|           | 150 | 86                  | 69   | 2.5                           | 0.6                    | 385                             | 600         | 39 000                 | 61 500      | 2 000    | 2 700           |  |  |
| 85        | 180 | 98                  | 65   | 4                             | 1                      | 425                             | 585         | 43 000                 | 59 500      | 1 500    | 2 100           |  |  |
|           | 180 | 98                  | 77   | 4                             | 1                      | 520                             | 725         | 53 000                 | 74 000      | 1 800    | 2 400           |  |  |
|           | 180 | 137                 | 108  | 4                             | 1                      | 690                             | 1 050       | 70 500                 | 107 000     | 1 800    | 2 400           |  |  |
|           | 160 | 74                  | 61   | 2.5                           | 0.6                    | 355                             | 535         | 36 500                 | 54 500      | 1 900    | 2 500           |  |  |
|           | 160 | 94                  | 77   | 2.5                           | 0.6                    | 450                             | 720         | 46 000                 | 73 500      | 1 900    | 2 500           |  |  |
| 90        | 190 | 102                 | 69   | 4                             | 1                      | 465                             | 645         | 47 500                 | 65 500      | 1 500    | 1 900           |  |  |
|           | 190 | 102                 | 81   | 4                             | 1                      | 580                             | 815         | 59 000                 | 83 000      | 1 700    | 2 300           |  |  |
|           | 190 | 144                 | 115  | 4                             | 1                      | 770                             | 1 190       | 78 500                 | 121 000     | 1 700    | 2 300           |  |  |
|           | 170 | 78                  | 63   | 3                             | 1                      | 385                             | 580         | 39 500                 | 59 000      | 1 800    | 2 400           |  |  |
|           | 170 | 100                 | 83   | 3                             | 1                      | 515                             | 835         | 52 500                 | 85 000      | 1 800    | 2 400           |  |  |
| 95        | 200 | 108                 | 85   | 4                             | 1                      | 630                             | 890         | 64 000                 | 91 000      | 1 600    | 2 100           |  |  |
|           | 200 | 108                 | 85   | 3                             | 1                      | 540                             | 735         | 55 500                 | 75 000      | 1 600    | 2 100           |  |  |
|           | 200 | 151                 | 118  | 4                             | 1                      | 865                             | 1 340       | 88 000                 | 137 000     | 1 600    | 2 100           |  |  |
|           | 180 | 83                  | 67   | 3                             | 1                      | 440                             | 675         | 45 000                 | 68 500      | 1 700    | 2 200           |  |  |
|           | 180 | 107                 | 87   | 3                             | 1                      | 565                             | 925         | 58 000                 | 94 500      | 1 700    | 2 200           |  |  |
| 100       | 215 | 112                 | 87   | 4                             | 1                      | 700                             | 995         | 71 500                 | 102 000     | 1 500    | 2 000           |  |  |
|           | 215 | 112                 | 87   | 3                             | 1                      | 590                             | 800         | 60 000                 | 81 500      | 1 500    | 2 000           |  |  |
|           | 215 | 162                 | 127  | 4                             | 1                      | 980                             | 1 540       | 100 000                | 157 000     | 1 500    | 2 000           |  |  |
|           | 190 | 88                  | 70   | 3                             | 1                      | 490                             | 760         | 50 000                 | 77 500      | 1 600    | 2 100           |  |  |
| 105       | 190 | 115                 | 95   | 3                             | 1                      | 650                             | 1 080       | 66 000                 | 111 000     | 1 600    | 2 100           |  |  |
|           | 225 | 116                 | 91   | 3                             | 1                      | 625                             | 845         | 63 500                 | 86 000      | 1 400    | 1 900           |  |  |

1 ) Minimum allowable dimension for chamfer dimension r or r. Note: 1. When incorporating bearings with bearing numbers marked with "  $\star$  ", please consult NTN Engineering.

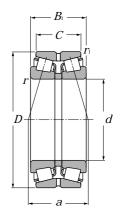






 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 

| $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | e     | $\frac{F_{i}}{F_{i}}$ | ; > e |
|-----------------------------------------|-------|-----------------------|-------|
| X                                       | Y     | X                     | Y     |
| 1                                       | $Y_1$ | 0.67                  | $Y_2$ |


static  $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$ For values of e,  $Y_2$  and  $Y_0$  see the table below.

| Bearing numbers | A                                   | Abutment and fillet dimensions mm   |                                     |                        |                      | Load<br>center | Constant Axial load factors |            |       | ctors       | Mass      |
|-----------------|-------------------------------------|-------------------------------------|-------------------------------------|------------------------|----------------------|----------------|-----------------------------|------------|-------|-------------|-----------|
|                 | ,                                   | D                                   |                                     |                        |                      | mm             |                             |            |       |             | kg        |
|                 | $d_{\!\scriptscriptstyle  m a}$ min | $D_{\!\scriptscriptstyle  m D}$ min | $S_{\!\scriptscriptstyle  m b}$ min | r <sub>as</sub><br>max | <i>I</i> ¹¹as<br>max | а              | e                           | <b>Y</b> 1 | $Y_2$ | $Y_{\circ}$ | (approx.) |
| 4T-430215       | 85                                  | 124                                 | 5                                   | 2                      | 0.6                  | 61.5           | 0.44                        | 1.55       | 2.31  | 1.52        | 2.99      |
| 432215U         | 85                                  | 125                                 | 6                                   | 2                      | 0.6                  | 67             | 0.44                        | 1.55       | 2.31  | 1.52        | 3.68      |
| 430315DU        | 89                                  | 151                                 | 14                                  | 2.5                    | 1                    | 107            | 0.83                        | 0.82       | 1.22  | 0.80        | 7.31      |
| 430315XU        | 89                                  | 149                                 | 9                                   | 2.5                    | 1                    | 70.5           | 0.35                        | 1.96       | 2.91  | 1.91        | 7.71      |
| 432315U         | 89                                  | 149                                 | 13                                  | 2.5                    | 1                    | 87.5           | 0.35                        | 1.96       | 2.91  | 1.91        | 11.5      |
| 430216XU        | 92                                  | 132                                 | 6                                   | 2                      | 0.6                  | 63             | 0.42                        | 1.61       | 2.39  | 1.57        | 3.65      |
| 432216XU        | 92                                  | 134                                 | 7                                   | 2                      | 0.6                  | 69.5           | 0.42                        | 1.61       | 2.39  | 1.57        | 4.58      |
| 430316DU        | 94                                  | 159                                 | 15.5                                | 2.5                    | 1                    | 114            | 0.83                        | 0.82       | 1.22  | 0.80        | 8.99      |
| 430316XU        | 94                                  | 159                                 | 9.5                                 | 2.5                    | 1                    | 75.5           | 0.35                        | 1.96       | 2.91  | 1.91        | 9.55      |
| 432316U         | 94                                  | 159                                 | 13.5                                | 2.5                    | 1                    | 90.5           | 0.35                        | 1.96       | 2.91  | 1.91        | 13.6      |
| 430217XU        | 97                                  | 141                                 | 6.5                                 | 2                      | 0.6                  | 69             | 0.42                        | 1.61       | 2.39  | 1.57        | 4.59      |
| 432217XU        | 97                                  | 142                                 | 8.5                                 | 2                      | 0.6                  | 76             | 0.42                        | 1.61       | 2.39  | 1.57        | 5.85      |
| 430317DU        | 103                                 | 169                                 | 16.5                                | 3                      | 1                    | 121            | 0.83                        | 0.82       | 1.22  | 0.80        | 10.6      |
| 430317XU        | 103                                 | 167                                 | 10.5                                | 3                      | 1                    | 80             | 0.35                        | 1.96       | 2.91  | 1.91        | 11.2      |
| 432317U         | 103                                 | 167                                 | 14.5                                | 3                      | 1                    | 96             | 0.35                        | 1.96       | 2.91  | 1.91        | 15.4      |
| 430218U         | 102                                 | 150                                 | 6.5                                 | 2                      | 0.6                  | 73             | 0.42                        | 1.61       | 2.39  | 1.57        | 5.66      |
| 432218U         | 102                                 | 152                                 | 8.5                                 | 2                      | 0.6                  | 81             | 0.42                        | 1.61       | 2.39  | 1.57        | 7.35      |
| 430318DU        | 108                                 | 180                                 | 16.5                                | 3                      | 1                    | 127            | 0.83                        | 0.82       | 1.22  | 0.80        | 12.5      |
| 430318U         | 108                                 | 177                                 | 10.5                                | 3                      | 1                    | 84             | 0.35                        | 1.96       | 2.91  | 1.91        | 12.9      |
| 432318U         | 108                                 | 177                                 | 14.5                                | 3                      | 1                    | 100            | 0.35                        | 1.96       | 2.91  | 1.91        | 18.2      |
| 430219XU        | 109                                 | 159                                 | 7.5                                 | 2.5                    | 1                    | 76.5           | 0.42                        | 1.61       | 2.39  | 1.57        | 8.01      |
| 432219XU        | 109                                 | 161                                 | 8.5                                 | 2.5                    | 1                    | 86.5           | 0.42                        | 1.61       | 2.39  | 1.57        | 9.04      |
| * 430319XU      | 113                                 | 186                                 | 11.5                                | 3                      | 1                    | 89             | 0.35                        | 1.96       | 2.91  | 1.91        | 15.0      |
| 430319X         | 113                                 | 186                                 | 11.5                                | 3                      | 1                    | 88.5           | 0.35                        | 1.95       | 2.90  | 1.91        | 14.0      |
| 432319U         | 113                                 | 186                                 | 16.5                                | 3                      | 1                    | 106            | 0.35                        | 1.96       | 2.91  | 1.91        | 21.5      |
| 430220XU        | 114                                 | 168                                 | 8                                   | 2.5                    | 1                    | 81.5           | 0.42                        | 1.61       | 2.39  | 1.57        | 8.11      |
| 432220XU        | 114                                 | 171                                 | 10                                  | 2.5                    | 1                    | 92             | 0.42                        | 1.61       | 2.39  | 1.57        | 10.7      |
| * 430320XU      | 118                                 | 200                                 | 12.5                                | 3                      | 1                    | 92             | 0.35                        | 1.96       | 2.91  | 1.91        | 18.4      |
| 430320X         | 118                                 | 200                                 | 12.5                                | 3                      | 1                    | 93.5           | 0.35                        | 1.95       | 2.90  | 1.91        | 16.5      |
| 432320U         | 118                                 | 200                                 | 17.5                                | 3                      | 1                    | 113            | 0.35                        | 1.96       | 2.91  | 1.91        | 26.5      |
| 430221XU        | 119                                 | 178                                 | 9                                   | 2.5                    | 1                    | 86             | 0.42                        | 1.61       | 2.39  | 1.57        | 9.73      |
| 432221XU        | 119                                 | 180                                 | 10                                  | 2.5                    | 1                    | 97.5           | 0.42                        | 1.61       | 2.39  | 1.57        | 13.1      |
| 430321X         | 123                                 | 209                                 | 12.5                                | 3                      | 1                    | 96.5           | 0.35                        | 1.95       | 2.90  | 1.91        | 19.6      |

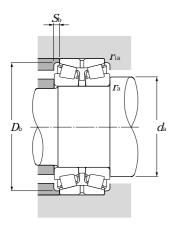




## **Back-to-back arrangement**



#### d 105 ~ 140mm


|     |                                                                    | Bound                                                   | lary dimensi                                           | ons                                          |                                            | dunamia                                                           | Basic Io                                                            | oad ratings                                                                               | static                                                                                     | Limiting                                                                      | speeds                                                                        |
|-----|--------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|----------------------------------------------|--------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|     |                                                                    |                                                         | mm                                                     |                                              |                                            | dynamic                                                           | kN                                                                  | dynamic                                                                                   | kgf                                                                                        | mir                                                                           | 1 <sup>-1</sup>                                                               |
| d   | D                                                                  | $B_1$                                                   | С                                                      | <i>I</i> 's min <sup>1</sup> )               | $\Gamma$ ls min $^1$ )                     | $C_{r}$                                                           | $C_{ m or}$                                                         | $C_{\scriptscriptstyle \Gamma}$                                                           | $C_{ m or}$                                                                                | grease                                                                        | oil                                                                           |
| 105 | 225<br>225                                                         | 116<br>170                                              | 91<br>133                                              | 4<br>3                                       | 1<br>1                                     | 750<br>955                                                        | 1 060<br>1 470                                                      | 76 000<br>97 500                                                                          | 109 000<br>150 000                                                                         | 1 400<br>1 400                                                                | 1 900<br>1 900                                                                |
| 110 | 180<br>180<br>200<br>200<br>240<br>240<br>240<br>240               | 56<br>70<br>92<br>121<br>118<br>118<br>181<br>181       | 50<br>56<br>74<br>101<br>93<br>93<br>142               | 2.5<br>2.5<br>3<br>4<br>3<br>4               | 0.6<br>0.6<br>1<br>1<br>1<br>1<br>1        | 228<br>298<br>555<br>720<br>825<br>685<br>1 070<br>1 210          | 340<br>485<br>865<br>1 210<br>1 180<br>925<br>1 660<br>1 940        | 23 300<br>30 500<br>56 500<br>73 500<br>84 000<br>69 500<br>109 000<br>123 000            | 35 000<br>49 500<br>88 500<br>124 000<br>120 000<br>94 500<br>169 000<br>197 000           | 1 600<br>1 600<br>1 500<br>1 500<br>1 400<br>1 400<br>1 400<br>1 400          | 2 200<br>2 200<br>2 000<br>2 000<br>1 800<br>1 800<br>1 800                   |
| 120 | 180<br>180<br>200<br>200<br>215<br>215<br>260<br>260               | 46<br>58<br>62<br>78<br>97<br>132<br>128<br>128         | 41<br>46<br>55<br>62<br>78<br>109<br>101<br>101        | 2.5<br>2.5<br>2.5<br>2.5<br>3<br>3<br>4<br>3 | 0.6<br>0.6<br>0.6<br>1<br>1<br>1           | 193<br>230<br>263<br>370<br>595<br>790<br>960<br>800<br>1 400     | 298<br>375<br>435<br>610<br>940<br>1 360<br>1 390<br>1 100<br>2 270 | 19 700<br>23 500<br>26 800<br>38 000<br>60 500<br>80 500<br>97 500<br>81 500<br>143 000   | 30 500<br>38 000<br>44 500<br>62 500<br>96 000<br>139 000<br>142 000<br>112 000<br>231 000 | 1 500<br>1 500<br>1 500<br>1 500<br>1 400<br>1 400<br>1 200<br>1 200<br>1 200 | 2 100<br>2 100<br>2 000<br>2 000<br>1 900<br>1 700<br>1 700<br>1 700          |
| 130 | 200<br>200<br>210<br>210<br>230<br>230<br>280                      | 52<br>65<br>64<br>80<br>98<br>145<br>137                | 46<br>52<br>57<br>64<br>78.5<br>117.5                  | 2.5<br>2.5<br>2.5<br>2.5<br>4<br>4<br>5      | 0.6<br>0.6<br>0.6<br>0.6<br>1<br>1         | 224<br>294<br>315<br>410<br>640<br>905<br>1 110                   | 365<br>490<br>485<br>675<br>1 010<br>1 630<br>1 660                 | 22 900<br>29 900<br>32 000<br>42 000<br>65 500<br>92 500<br>113 000                       | 37 500<br>50 000<br>49 500<br>69 000<br>103 000<br>166 000<br>169 000                      | 1 400<br>1 400<br>1 400<br>1 400<br>1 300<br>1 300<br>1 200                   | 1 900<br>1 900<br>1 800<br>1 800<br>1 700<br>1 700<br>1 500                   |
| 140 | 210<br>210<br>225<br>225<br>250<br>250<br>250<br>250<br>300<br>300 | 53<br>66<br>68<br>84<br>102<br>102<br>153<br>145<br>145 | 47<br>53<br>61<br>68<br>82.5<br>82.5<br>125.5<br>115.5 | 2.5<br>2.5<br>3<br>3<br>4<br>4<br>5          | 0.6<br>0.6<br>1<br>1<br>1<br>1<br>1<br>1.5 | 262<br>300<br>370<br>390<br>640<br>720<br>1 050<br>1 260<br>1 100 | 415<br>535<br>580<br>650<br>970<br>1 140<br>1 840<br>1 900<br>1 560 | 26 700<br>30 500<br>37 500<br>40 000<br>65 500<br>73 500<br>107 000<br>129 000<br>112 000 | 42 500<br>54 500<br>59 500<br>66 000<br>99 000<br>117 000<br>188 000<br>194 000<br>160 000 | 1 300<br>1 300<br>1 200<br>1 200<br>1 200<br>1 200<br>1 200<br>1 200<br>1 100 | 1 800<br>1 800<br>1 700<br>1 700<br>1 600<br>1 600<br>1 600<br>1 400<br>1 400 |



1 ) Minimum allowable dimension for chamfer dimension r or r. Note: 1. When incorporating bearings with bearing numbers marked with "  $\star$  ", please consult NTN Engineering.

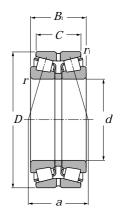






 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 

| $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | e     | $\frac{F_{i}}{F_{i}}$ | > e   |
|-----------------------------------------|-------|-----------------------|-------|
| X                                       | Y     | X                     | Y     |
| 1                                       | $Y_1$ | 0.67                  | $Y_2$ |


static  $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$ For values of e,  $Y_2$  and  $Y_0$  see the table below.

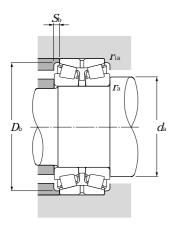
| Bearing numbers     | А                                   | butment ar                          |                                     | nensions               | 5           | Load center | Constant | Axia         | I load fac   | ctors        | Mass         |
|---------------------|-------------------------------------|-------------------------------------|-------------------------------------|------------------------|-------------|-------------|----------|--------------|--------------|--------------|--------------|
|                     |                                     |                                     | mm                                  |                        |             | mm          |          |              |              |              | kg           |
|                     | $d_{\!\scriptscriptstyle  m a}$ min | $D_{\!\scriptscriptstyle  m D}$ min | $S_{\!\scriptscriptstyle  m b}$ min | r <sub>as</sub><br>max | r₁as<br>max | а           | e        | $Y_1$        | $Y_2$        | $Y_{\rm o}$  | (approx.)    |
| * 430321XU          | 123                                 | 209                                 | 12.5                                | 3                      | 1           | 96.5        | 0.35     | 1.96         | 2.91         | 1.91         | 21.0         |
| 432321              | 119                                 | 208                                 | 18.5                                | 2.5                    | 1           | 117.5       | 0.35     | 1.96         | 2.90         | 1.91         | 30.2         |
| 413122              | 122                                 | 169                                 | 3                                   | 2                      | 0.6         | 66.5        | 0.40     | 1.68         | 2.50         | 1.64         | 5.20         |
| 423122              | 122                                 | 166                                 | 7                                   | 2                      | 0.6         | 66.5        | 0.33     | 2.03         | 3.02         | 1.98         | 6.38         |
| 430222XU            | 124                                 | 188                                 | 9                                   | 2.5                    | 1           | 90          | 0.42     | 1.61         | 2.39         | 1.57         | 11.4         |
| 432222XU            | 124                                 | 190                                 | 10                                  | 2.5                    | 1           | 102         | 0.42     | 1.61         | 2.39         | 1.57         | 15.5         |
| * 430322U           | 128                                 | 222                                 | 12.5                                | 3                      | 1           | 100         | 0.35     | 1.96         | 2.91         | 1.91         | 24.5         |
| 430322              | 128                                 | 222                                 | 12.5                                | 3                      | 1           | 97.5        | 0.35     | 1.95         | 2.90         | 1.91         | 22.1         |
| 432322              | 128                                 | 222                                 | 19.5                                | 3                      | 1           | 124         | 0.35     | 1.95         | 2.90         | 1.91         | 35.6         |
| * 432322U           | 128                                 | 222                                 | 19.5                                | 3                      | 1           | 127         | 0.35     | 1.96         | 2.91         | 1.91         | 38.2         |
| 413024              | 132                                 | 171                                 | 2.5                                 | 2                      | 0.6         | 59          | 0.37     | 1.80         | 2.69         | 1.76         | 3.85         |
| 423024              | 132                                 | 170                                 | 6                                   | 2                      | 0.6         | 66          | 0.37     | 1.80         | 2.69         | 1.76         | 4.41         |
| 413124              | 132                                 | 184                                 | 3.5                                 | 2                      | 0.6         | 76.5        | 0.43     | 1.57         | 2.34         | 1.53         | 7.24         |
| 423124              | 132                                 | 188                                 | 8                                   | 2                      | 0.6         | 76.5        | 0.37     | 1.80         | 2.69         | 1.76         | 8.96         |
| 430224XU            | 134                                 | 203                                 | 9.5                                 | 2.5                    | 1           | 98          | 0.44     | 1.55         | 2.31         | 1.52         | 13.6         |
| 432224XU            | 134                                 | 204                                 | 11.5                                | 2.5                    | 1           | 112<br>107  | 0.44     | 1.55         | 2.31         | 1.52         | 18.9         |
| 430324XU<br>430324X | 138<br>138                          | 239<br>239                          | 13.5                                | 3<br>3                 | 1<br>1      | 107         | 0.35     | 1.96<br>1.95 | 2.91<br>2.90 | 1.91<br>1.91 | 30.5<br>29.4 |
|                     |                                     |                                     | 13.5                                |                        |             |             | 0.35     |              |              |              |              |
| 432324U             | 138                                 | 239                                 | 21.5                                | 3                      | 1           | 130         | 0.35     | 1.96         | 2.91         | 1.91         | 47.0         |
| 413026              | 142                                 | 186                                 | 3                                   | 2                      | 0.6         | 66          | 0.37     | 1.80         | 2.69         | 1.76         | 5.55         |
| 423026              | 142                                 | 189                                 | 6.5                                 | 2                      | 0.6         | 71.5        | 0.37     | 1.80         | 2.69         | 1.76         | 6.62         |
| 413126              | 142                                 | 196                                 | 3.5                                 | 2                      | 0.6         | 69          | 0.33     | 2.03         | 3.02         | 1.98         | 7.83         |
| 423126              | 142                                 | 198                                 | 8                                   | 2                      | 0.6         | 79.5        | 0.37     | 1.80         | 2.69         | 1.76         | 9.77         |
| 430226XU            | 148                                 | 218                                 | 9.5                                 | 3                      | 1           | 102         | 0.44     | 1.55         | 2.31         | 1.52         | 15.9         |
| 432226XU            | 148                                 | 219                                 | 13.5                                | 3                      | 1           | 124         | 0.44     | 1.55         | 2.31         | 1.52         | 24.1         |
| 430326XU            | 152                                 | 255                                 | 14.5                                | 4                      | 1.5         | 116         | 0.35     | 1.96         | 2.91         | 1.91         | 37.9         |
| 413028              | 152                                 | 199                                 | 3                                   | 2                      | 0.6         | 68.5        | 0.37     | 1.80         | 2.69         | 1.76         | 5.88         |
| 423028              | 152                                 | 197                                 | 6.5                                 | 2                      | 0.6         | 75          | 0.37     | 1.84         | 2.74         | 1.80         | 7.11         |
| 413128              | 154                                 | 210                                 | 3.5                                 | 2.5                    | 1           | 73.5        | 0.33     | 2.03         | 3.02         | 1.98         | 9.18         |
| 423128              | 154                                 | 209                                 | 8                                   | 2.5                    | 1           | 88          | 0.37     | 1.80         | 2.69         | 1.76         | 11.8         |
| 430228X             | 158                                 | 237                                 | 9.5                                 | 3                      | 1           | 106         | 0.43     | 1.57         | 2.34         | 1.53         | 18.0         |
| * 430228XU          | 158                                 | 237                                 | 9.5                                 | 3                      | 1           | 107         | 0.44     | 1.55         | 2.31         | 1.52         | 19.9         |
| 432228XU            | 158                                 | 238                                 | 13.5                                | 3                      | 1           | 131         | 0.44     | 1.55         | 2.31         | 1.52         | 30.1         |
| * 430328XU          | 162                                 | 273                                 | 14.5                                | 4                      | 1.5         | 123         | 0.35     | 1.96         | 2.91         | 1.91         | 46.6         |
| 430328X             | 162                                 | 272                                 | 14.5                                | 4                      | 1.5         | 123         | 0.35     | 1.95         | 2.90         | 1.91         | 44.4         |





## **Back-to-back arrangement**




d 150 ~ 190mm

|         |     | Bound | ary dimens | sions                          |                         | dynamic     |                          | oad ratings<br>dynamic | static      | Limiting speeds |                 |
|---------|-----|-------|------------|--------------------------------|-------------------------|-------------|--------------------------|------------------------|-------------|-----------------|-----------------|
|         |     |       | mm         |                                |                         | dynamic     | kN static                | dynamic                | kgf         | mir             | 1 <sup>-1</sup> |
| d       | D   | $B_1$ | С          | <i>I</i> 's min <sup>1</sup> ) | $arGamma$ ls min $^1$ ) | $C_{\rm r}$ | $\mathcal{C}_{	ext{or}}$ | $C_{\rm r}$            | $C_{ m or}$ | grease          | oil             |
|         | 225 | 56    | 50         | 3                              | 1                       | 274         | 430                      | 27 900                 | 44 000      | 1 200           | 1 600           |
|         | 225 | 70    | 56         | 3                              | 1                       | 355         | 630                      | 36 000                 | 64 500      | 1 200           | 1 600           |
|         | 250 | 80    | 71         | 3                              | 1                       | 485         | 805                      | 49 500                 | 82 000      | 1 200           | 1 500           |
| 150     | 250 | 100   | 80         | 3                              | 1                       | 600         | 1 040                    | 61 500                 | 106 000     | 1 200           | 1 500           |
| 150     | 270 | 109   | 87         | 4                              | 1                       | 770         | 1 210                    | 78 500                 | 123 000     | 1 100           | 1 500           |
|         | 270 | 164   | 130        | 4                              | 1                       | 1 200       | 2 140                    | 122 000                | 218 000     | 1 100           | 1 500           |
|         | 320 | 154   | 120        | 5                              | 1.5                     | 1 410       | 2 140                    | 144 000                | 218 000     | 990             | 1 300           |
|         | 320 | 154   | 120        | 4                              | 1.5                     | 1 170       | 1 750                    | 119 000                | 178 000     | 990             | 1 300           |
|         | 240 | 60    | 53         | 3                              | 1                       | 330         | 535                      | 34 000                 | 54 500      | 1 100           | 1 500           |
|         | 240 | 75    | 60         | 3                              | 1                       | 430         | 765                      | 44 000                 | 78 000      | 1 100           | 1 500           |
|         | 270 | 86    | 76         | 3                              | 1                       | 595         | 965                      | 60 500                 | 98 000      | 1 100           | 1 400           |
| 160     | 270 | 108   | 86         | 3                              | 1                       | 675         | 1 180                    | 69 000                 | 120 000     | 1 100           | 1 400           |
| 100     | 290 | 115   | 91         | 4                              | 1                       | 900         | 1 440                    | 92 000                 | 147 000     | 1 000           | 1 400           |
|         | 290 | 178   | 144        | 4                              | 1                       | 1 530       | 2 840                    | 156 000                | 290 000     | 1 000           | 1 400           |
|         | 340 | 160   | 126        | 5                              | 1.5                     | 1 570       | 2 390                    | 160 000                | 244 000     | 920             | 1 200           |
|         | 340 | 160   | 126        | 4                              | 1.5                     | 1 290       | 1 950                    | 132 000                | 199 000     | 920             | 1 200           |
|         | 260 | 67    | 60         | 3                              | 1                       | 365         | 620                      | 37 000                 | 63 500      | 1 100           | 1 400           |
|         | 260 | 84    | 67         | 3                              | 1                       | 490         | 865                      | 50 000                 | 88 000      | 1 100           | 1 400           |
| 170     | 280 | 88    | 78         | 3                              | 1                       | 550         | 900                      | 56 000                 | 92 000      | 1 000           | 1 300           |
| 170     | 280 | 110   | 88         | 3                              | 1                       | 725         | 1 270                    | 74 000                 | 130 000     | 1 000           | 1 300           |
|         | 310 | 125   | 97         | 5                              | 1.5                     | 1 050       | 1 690                    | 107 000                | 173 000     | 950             | 1 300           |
|         | 310 | 192   | 152        | 5                              | 1.5                     | 1 710       | 3 200                    | 174 000                | 325 000     | 950             | 1 300           |
|         | 280 | 74    | 66         | 3                              | 1                       | 425         | 735                      | 43 000                 | 75 000      | 1 000           | 1 300           |
|         | 280 | 93    | 74         | 3                              | 1                       | 580         | 1 050                    | 59 500                 | 107 000     | 1 000           | 1 300           |
|         | 300 | 96    | 85         | 4                              | 1.5                     | 705         | 1 190                    | 72 000                 | 121 000     | 940             | 1 300           |
| 180     | 300 | 120   | 96         | 4                              | 1.5                     | 885         | 1 530                    | 90 500                 | 156 000     | 940             | 1 300           |
|         | 320 | 127   | 99         | 5                              | 1.5                     | 1 080       | 1 780                    | 110 000                | 182 000     | 890             | 1 200           |
|         | 320 | 192   | 152        | 5                              | 1.5                     | 1 760       | 3 350                    | 180 000                | 345 000     | 890             | 1 200           |
|         | 290 | 75    | 67         | 3                              | 1                       | 430         | 740                      | 44 000                 | 75 500      | 940             | 1 300           |
|         | 290 | 94    | 75         | 3                              | 1                       | 615         | 1 110                    | 63 000                 | 113 000     | 940             | 1 300           |
| 400     | 320 | 104   | 92         | 4                              | 1.5                     | 780         | 1 280                    | 79 500                 | 131 000     | 890             | 1 200           |
| 190     | 320 | 130   | 104        | 4                              | 1.5                     | 985         | 1 710                    | 100 000                | 174 000     | 890             | 1 200           |
|         | 340 | 133   | 105        | 5                              | 1.5                     | 1 230       | 2 010                    | 125 000                | 205 000     | 840             | 1 100           |
|         | 340 | 204   | 160        | 5                              | 1.5                     | 1 970       | 3 700                    | 201 000                | 380 000     | 840             | 1 100           |
| 4 > Min | 340 | 204   | 160        | 4                              | 1.5                     | 1 710       | 3 350                    | 175 000                | 340 000     | 840             | 1 100           |

1 ) Minimum allowable dimension for chamfer dimension r or r. Note: 1. When incorporating bearings with bearing numbers marked with "  $\star$  ", please consult NTN Engineering.

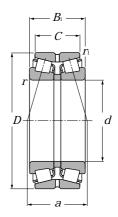






 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 

| $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | e     | $\frac{F_{i}}{F_{i}}$ | > e   |
|-----------------------------------------|-------|-----------------------|-------|
| X                                       | Y     | X                     | Y     |
| 1                                       | $Y_1$ | 0.67                  | $Y_2$ |


static  $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$ For values of e,  $Y_2$  and  $Y_0$  see the table below.

| Bearing numbers       | Α                                   | butment ar                          |                                  | nensions            | <b>S</b>             | Load center | Constant | Axia  | Axial load factors |              | Mass         |
|-----------------------|-------------------------------------|-------------------------------------|----------------------------------|---------------------|----------------------|-------------|----------|-------|--------------------|--------------|--------------|
|                       |                                     |                                     | mm                               |                     |                      | mm          |          |       |                    |              | kg           |
|                       | $d_{\!\scriptscriptstyle  m a}$ min | $D_{\!\scriptscriptstyle  m b}$ min | $S_{\!\scriptscriptstyle b}$ min | <i>I</i> ³as<br>max | <i>I</i> ¹las<br>max | а           | e        | $Y_1$ | $Y_2$              | $Y_{0}$      | (approx.)    |
| ± 440000              | 404                                 | 040                                 | •                                | 0.5                 | 4                    | 70.5        | 0.07     | 4.00  | 0.00               | 4.70         | 0.00         |
| * 413030              | 164                                 | 213                                 | 3                                | 2.5                 | 1                    | 73.5        | 0.37     | 1.80  | 2.69               | 1.76         | 6.66         |
| 423030                | 164                                 | 212                                 | 7                                | 2.5                 | 1                    | 79.5        | 0.37     | 1.80  | 2.69               | 1.76         | 8.76         |
| 413130                | 164                                 | 231                                 | 4.5                              | 2.5                 | 1                    | 82.5        | 0.33     | 2.03  | 3.02               | 1.98         | 14.3         |
| 423130                | 164<br>168                          | 234<br>255                          | 10                               | 2.5                 | 1                    | 96.5        | 0.37     | 1.80  | 2.69<br>2.31       | 1.76<br>1.52 | 18.0<br>24.4 |
| 430230U               |                                     | 255<br>254                          | 11                               | 3                   | 1                    | 114         | 0.44     | 1.55  | 2.31               | 1.52         | 24.4<br>37.3 |
| 432230XU<br>* 430330U | 168<br>172                          | 254<br>292                          | 17<br>17                         | 3<br>4              | 1                    | 139<br>132  | 0.44     | 1.55  |                    |              | 37.3<br>55.4 |
|                       | 172                                 |                                     |                                  | 4                   | 1.5                  |             | 0.35     | 1.96  | 2.91               | 1.91         |              |
| 430330                | 172                                 | 292                                 | 17                               | 4                   | 1.5                  | 135         | 0.37     | 1.80  | 2.69               | 1.76         | 52.8         |
| 413032                | 174                                 | 227                                 | 3.5                              | 2.5                 | 1                    | 79          | 0.37     | 1.80  | 2.69               | 1.76         | 8.29         |
| 423032                | 174                                 | 227                                 | 7.5                              | 2.5                 | 1                    | 85.5        | 0.37     | 1.80  | 2.69               | 1.76         | 10.7         |
| 413132E1              | 174                                 | 254                                 | 5                                | 2.5                 | 1                    | 98.5        | 0.40     | 1.68  | 2.50               | 1.64         | 18.2         |
| 423132E1              | 174                                 | 250                                 | 11                               | 2.5                 | 1                    | 106         | 0.37     | 1.80  | 2.69               | 1.76         | 22.8         |
| 430232U               | 178                                 | 272                                 | 12                               | 3                   | 1                    | 122         | 0.44     | 1.55  | 2.31               | 1.52         | 31.9         |
| 432232U               | 178                                 | 275                                 | 17                               | 3                   | 1                    | 150         | 0.44     | 1.55  | 2.31               | 1.52         | 46.9         |
| * 430332XU            | 182                                 | 310                                 | 17                               | 4                   | 1.5                  | 138         | 0.35     | 1.96  | 2.91               | 1.91         | 65.5         |
| 430332X               | 182                                 | 311                                 | 17                               | 4                   | 1.5                  | 141         | 0.37     | 1.80  | 2.69               | 1.76         | 62.4         |
| 413034                | 184                                 | 242                                 | 3.5                              | 2.5                 | 1                    | 86.5        | 0.37     | 1.80  | 2.69               | 1.76         | 11.6         |
| 423034                | 184                                 | 244                                 | 8.5                              | 2.5                 | 1                    | 93.5        | 0.37     | 1.80  | 2.69               | 1.76         | 14.3         |
| 413134E1              | 184                                 | 260                                 | 5                                | 2.5                 | 1                    | 104         | 0.40     | 1.68  | 2.50               | 1.64         | 19.5         |
| 423134E1              | 184                                 | 260                                 | 11                               | 2.5                 | 1                    | 109         | 0.37     | 1.80  | 2.69               | 1.76         | 24.7         |
| 430234U               | 192                                 | 288                                 | 14                               | 4                   | 1.5                  | 132         | 0.44     | 1.55  | 2.31               | 1.52         | 38.0         |
| 432234XU              | 192                                 | 293                                 | 20                               | 4                   | 1.5                  | 160         | 0.44     | 1.55  | 2.31               | 1.52         | 58.2         |
| 413036E1              | 194                                 | 260                                 | 4                                | 2.5                 | 1                    | 94          | 0.37     | 1.80  | 2.69               | 1.76         | 15.9         |
| 423036E1              | 194                                 | 262                                 | 9.5                              | 2.5                 | 1                    | 102         | 0.37     | 1.80  | 2.69               | 1.76         | 19.0         |
| 413136E1              | 198                                 | 280                                 | 5.5                              | 3                   | 1.5                  | 111         | 0.40     | 1.68  | 2.50               | 1.64         | 24.6         |
| 423136E1              | 198                                 | 279                                 | 12                               | 3                   | 1.5                  | 119         | 0.37     | 1.80  | 2.69               | 1.76         | 31.4         |
| 430236U               | 202                                 | 297                                 | 14                               | 4                   | 1.5                  | 139         | 0.45     | 1.50  | 2.23               | 1.47         | 39.4         |
| 432236U               | 202                                 | 305                                 | 20                               | 4                   | 1.5                  | 165         | 0.45     | 1.50  | 2.23               | 1.47         | 60.6         |
| 413038E1              | 204                                 | 271                                 | 4                                | 2.5                 | 1                    | 96          | 0.37     | 1.80  | 2.69               | 1.76         | 16.2         |
| 423038E1              | 204                                 | 272                                 | 9.5                              | 2.5                 | 1                    | 104         | 0.37     | 1.80  | 2.69               | 1.76         | 19.6         |
| 413138                | 208                                 | 300                                 | 6                                | 3                   | 1.5                  | 119         | 0.40     | 1.68  | 2.50               | 1.64         | 30.8         |
| 423138                | 208                                 | 299                                 | 13                               | 3                   | 1.5                  | 126         | 0.37     | 1.80  | 2.69               | 1.76         | 38.6         |
| 430238U               | 212                                 | 316                                 | 14                               | 4                   | 1.5                  | 141         | 0.44     | 1.55  | 2.31               | 1.52         | 45.4         |
| * 432238U             | 212                                 | 323                                 | 22                               | 4                   | 1.5                  | 174         | 0.44     | 1.55  | 2.31               | 1.52         | 73.3         |
| 432238                | 212                                 | 323                                 | 22                               | 4                   | 1.5                  | 185         | 0.49     | 1.38  | 2.06               | 1.35         | 69.8         |



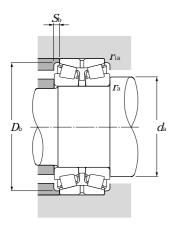


## **Back-to-back arrangement**



### d 200 ~ 340mm

|     | Boundary dimensions mm |       |     |                               |           | dun or: ! - |              | oad ratings | ototio        | Limiting speeds |                 |  |
|-----|------------------------|-------|-----|-------------------------------|-----------|-------------|--------------|-------------|---------------|-----------------|-----------------|--|
|     |                        |       | mm  |                               |           | dynamic     | static<br>kN | dynamic     | static<br>kgf | mir             | n <sup>-1</sup> |  |
| d   | D                      | $B_1$ | С   | <b>r</b> s min <sup>1 )</sup> | r¹s min¹) | $C_{\rm r}$ | $C_{ m or}$  | $C_{ m r}$  | $C_{ m or}$   | grease          | oil             |  |
|     | 310                    | 82    | 73  | 3                             | 1         | 530         | 940          | 54 000      | 96 000        | 900             | 1 200           |  |
|     | 310                    | 103   | 82  | 3                             | 1         | 720         | 1 320        | 73 000      | 135 000       | 900             | 1 200           |  |
|     | 340                    | 112   | 100 | 4                             | 1.5       | 965         | 1 660        | 98 500      | 169 000       | 840             | 1 100           |  |
| 200 | 340                    | 140   | 112 | 4                             | 1.5       | 1 090       | 1 910        | 111 000     | 195 000       | 840             | 1 100           |  |
| 200 | 360                    | 142   | 110 | 5                             | 1.5       | 1 350       | 2 210        | 137 000     | 226 000       | 800             | 1 100           |  |
|     | 360                    | 218   | 174 | 5                             | 1.5       | 2 260       | 4 250        | 230 000     | 435 000       | 800             | 1 100           |  |
|     | 360                    | 218   | 174 | 4                             | 1.5       | 1 980       | 3 950        | 201 000     | 400 000       | 800             | 1 100           |  |
|     | 340                    | 90    | 80  | 4                             | 1.5       | 595         | 1 060        | 61 000      | 108 000       | 810             | 1 100           |  |
| 220 | 340                    | 113   | 90  | 4                             | 1.5       | 880         | 1 650        | 89 500      | 168 000       | 810             | 1 100           |  |
| 220 | 370                    | 120   | 107 | 5                             | 1.5       | 1 110       | 1 920        | 113 000     | 196 000       | 760             | 1 000           |  |
|     | 370                    | 150   | 120 | 5                             | 1.5       | 1 220       | 2 260        | 125 000     | 230 000       | 760             | 1 000           |  |
|     | 360                    | 92    | 82  | 4                             | 1.5       | 655         | 1 160        | 66 500      | 118 000       | 730             | 980             |  |
| 240 | 360                    | 115   | 92  | 4                             | 1.5       | 910         | 1 770        | 92 500      | 181 000       | 730             | 980             |  |
| 240 | 400                    | 128   | 114 | 5                             | 1.5       | 1 230       | 2 130        | 126 000     | 217 000       | 690             | 920             |  |
|     | 400                    | 160   | 128 | 5                             | 1.5       | 1 400       | 2 600        | 142 000     | 265 000       | 690             | 920             |  |
|     | 400                    | 104   | 92  | 5                             | 1.5       | 840         | 1 540        | 85 500      | 157 000       | 670             | 900             |  |
| 260 | 400                    | 130   | 104 | 5                             | 1.5       | 1 150       | 2 190        | 117 000     | 223 000       | 670             | 900             |  |
| 200 | 440                    | 144   | 128 | 5                             | 1.5       | 1 500       | 2 630        | 152 000     | 268 000       | 630             | 840             |  |
|     | 440                    | 180   | 144 | 5                             | 1.5       | 1 940       | 3 750        | 198 000     | 380 000       | 630             | 840             |  |
|     | 420                    | 106   | 94  | 5                             | 1.5       | 890         | 1 630        | 91 000      | 166 000       | 620             | 820             |  |
| 200 | 420                    | 133   | 106 | 5                             | 1.5       | 1 200       | 2 340        | 123 000     | 238 000       | 620             | 820             |  |
| 280 | 460                    | 146   | 130 | 6                             | 2         | 1 640       | 2 900        | 167 000     | 296 000       | 580             | 770             |  |
|     | 460                    | 183   | 146 | 6                             | 2         | 1 940       | 3 650        | 198 000     | 375 000       | 580             | 770             |  |
|     | 460                    | 118   | 105 | 5                             | 1.5       | 1 070       | 1 990        | 109 000     | 203 000       | 570             | 760             |  |
| 200 | 460                    | 148   | 118 | 5                             | 1.5       | 1 610       | 3 150        | 165 000     | 320 000       | 570             | 760             |  |
| 300 | 500                    | 160   | 142 | 6                             | 2         | 2 010       | 3 600        | 205 000     | 370 000       | 530             | 710             |  |
|     | 500                    | 200   | 160 | 6                             | 2         | 2 100       | 4 050        | 214 000     | 415 000       | 530             | 710             |  |
|     | 480                    | 121   | 108 | 5                             | 1.5       | 1 190       | 2 250        | 121 000     | 229 000       | 530             | 710             |  |
| 200 | 480                    | 151   | 121 | 5                             | 1.5       | 1 580       | 3 100        | 162 000     | 315 000       | 530             | 710             |  |
| 320 | 540                    | 176   | 157 | 6                             | 2         | 2 240       | 4 100        | 228 000     | 415 000       | 500             | 660             |  |
|     | 540                    | 220   | 176 | 6                             | 2         | 2 500       | 4 900        | 255 000     | 500 000       | 500             | 660             |  |
| 340 | 520                    | 133   | 118 | 6                             | 2         | 1 480       | 2 870        | 150 000     | 293 000       | 500             | 660             |  |




1 ) Minimum allowable dimension for chamfer dimension r or r. Note: 1. When incorporating bearings with bearing numbers marked with "  $\star$  ", please consult NTN Engineering.



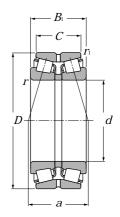






 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 

| $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | e     | $\frac{F_{i}}{F_{i}}$ | > e   |
|-----------------------------------------|-------|-----------------------|-------|
| X                                       | Y     | X                     | Y     |
| 1                                       | $Y_1$ | 0.67                  | $Y_2$ |


static  $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$ For values of e,  $Y_2$  and  $Y_0$  see the table below.

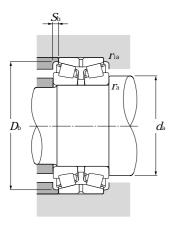
| Bearing numbers | A                                   | Abutment and fillet dimensions      |                   |                        |                      |     | Constant | ant Axial load factors |       |             | Mass      |
|-----------------|-------------------------------------|-------------------------------------|-------------------|------------------------|----------------------|-----|----------|------------------------|-------|-------------|-----------|
|                 | ,                                   | Б                                   | mm                |                        |                      | mm  |          |                        |       |             | kg        |
|                 | $d_{\!\scriptscriptstyle  m a}$ min | $D_{\!\scriptscriptstyle  m b}$ min | <i>S</i> ₅<br>min | r <sub>as</sub><br>max | <i>I</i> ¹las<br>max | а   | e        | $Y_1$                  | $Y_2$ | $Y_{\circ}$ | (approx.) |
| 413040E1        | 214                                 | 288                                 | 4.5               | 2.5                    | 1                    | 101 | 0.37     | 1.80                   | 2.69  | 1.76        | 20.6      |
| 423040E1        | 214                                 | 291                                 | 10.5              | 2.5                    | 1                    | 112 | 0.37     | 1.80                   | 2.69  | 1.76        | 25.7      |
| 413140          | 218                                 | 320                                 | 6                 | 3                      | 1.5                  | 125 | 0.40     | 1.68                   | 2.50  | 1.64        | 38.6      |
| 423140          | 218                                 | 316                                 | 14                | 3                      | 1.5                  | 134 | 0.37     | 1.80                   | 2.69  | 1.76        | 47.5      |
| 430240U         | 222                                 | 336                                 | 16                | 4                      | 1.5                  | 154 | 0.44     | 1.55                   | 2.31  | 1.52        | 62.8      |
| * 432240U       | 222                                 | 340                                 | 22                | 4                      | 1.5                  | 180 | 0.41     | 1.66                   | 2.47  | 1.62        | 95.2      |
| 432240          | 222                                 | 340                                 | 22                | 4                      | 1.5                  | 193 | 0.49     | 1.38                   | 2.06  | 1.35        | 90.7      |
| 413044E1        | 238                                 | 318                                 | 5                 | 3                      | 1.5                  | 112 | 0.37     | 1.80                   | 2.69  | 1.76        | 26.7      |
| 423044E1        | 238                                 | 319                                 | 11.5              | 3                      | 1.5                  | 125 | 0.37     | 1.80                   | 2.69  | 1.76        | 33.3      |
| 413144          | 242                                 | 346                                 | 6.5               | 4                      | 1.5                  | 135 | 0.40     | 1.68                   | 2.50  | 1.64        | 47.8      |
| 423144          | 242                                 | 341                                 | 15                | 4                      | 1.5                  | 154 | 0.40     | 1.68                   | 2.50  | 1.64        | 59.6      |
| 413048E1        | 258                                 | 339                                 | 5                 | 3                      | 1.5                  | 117 | 0.37     | 1.80                   | 2.69  | 1.76        | 30.2      |
| 423048E1        | 258                                 | 340.5                               | 11.5              | 3                      | 1.5                  | 131 | 0.37     | 1.80                   | 2.69  | 1.76        | 36.3      |
| 413148          | 262                                 | 375                                 | 7                 | 4                      | 1.5                  | 144 | 0.40     | 1.68                   | 2.50  | 1.64        | 58.9      |
| 423148          | 262                                 | 373                                 | 16                | 4                      | 1.5                  | 164 | 0.40     | 1.68                   | 2.50  | 1.64        | 71.7      |
| 413052          | 282                                 | 372                                 | 6                 | 4                      | 1.5                  | 131 | 0.37     | 1.80                   | 2.69  | 1.76        | 41.5      |
| 423052          | 282                                 | 374                                 | 13                | 4                      | 1.5                  | 143 | 0.37     | 1.80                   | 2.69  | 1.76        | 53.0      |
| 413152          | 282                                 | 412                                 | 8                 | 4                      | 1.5                  | 161 | 0.40     | 1.68                   | 2.50  | 1.64        | 82.2      |
| 423152          | 282                                 | 413                                 | 18                | 4                      | 1.5                  | 176 | 0.40     | 1.68                   | 2.50  | 1.64        | 101       |
| 413056          | 302                                 | 394                                 | 6                 | 4                      | 1.5                  | 136 | 0.37     | 1.80                   | 2.69  | 1.76        | 47.2      |
| 423056          | 302                                 | 397                                 | 13.5              | 4                      | 1.5                  | 148 | 0.37     | 1.80                   | 2.69  | 1.76        | 57.3      |
| 413156          | 308                                 | 435                                 | 8                 | 5                      | 2                    | 168 | 0.40     | 1.68                   | 2.50  | 1.64        | 87.4      |
| 423156          | 308                                 | 433                                 | 18.5              | 5                      | 2                    | 177 | 0.40     | 1.68                   | 2.50  | 1.64        | 109       |
| 413060          | 322                                 | 428                                 | 6.5               | 4                      | 1.5                  | 151 | 0.37     | 1.80                   | 2.69  | 1.76        | 65.6      |
| 423060          | 322                                 | 434                                 | 15                | 4                      | 1.5                  | 163 | 0.37     | 1.80                   | 2.69  | 1.76        | 80.2      |
| 413160          | 328                                 | 471                                 | 9                 | 5                      | 2                    | 182 | 0.40     | 1.68                   | 2.50  | 1.64        | 115       |
| 423160<br>      | 328                                 | 464                                 | 20                | 5                      | 2                    | 202 | 0.40     | 1.68                   | 2.50  | 1.64        | 144       |
| 413064          | 342                                 | 449                                 | 6.5               | 4                      | 1.5                  | 157 | 0.37     | 1.80                   | 2.69  | 1.76        | 70.9      |
| 423064          | 342                                 | 455                                 | 15                | 4                      | 1.5                  | 170 | 0.37     | 1.80                   | 2.69  | 1.76        | 85.4      |
| 413164          | 348                                 | 505                                 | 9.5               | 5                      | 2                    | 197 | 0.40     | 1.68                   | 2.50  | 1.64        | 150       |
| 423164<br>      | 348                                 | 502                                 | 22                | 5                      | 2                    | 217 | 0.40     | 1.68                   | 2.50  | 1.64        | 188       |
| 413068          | 368                                 | 488                                 | 7.5               | 5                      | 2                    | 170 | 0.37     | 1.8                    | 2.69  | 1.76        | 89.2      |





## **Back-to-back arrangement**




### d 340 ~ 480mm

|     |     | Bound | ary dimens | sions                          |             | Basic load ratings dynamic static dynamic kN |             |                               | static      | Limiting speeds |     |
|-----|-----|-------|------------|--------------------------------|-------------|----------------------------------------------|-------------|-------------------------------|-------------|-----------------|-----|
| 7   | D   | n     | mm         | 1)                             | 1)          | a                                            |             |                               | kgf         |                 |     |
| d   | D   | $B_1$ | С          | <i>I</i> 's min <sup>1</sup> ) | Ins min 1 ) | $C_{r}$                                      | $C_{ m or}$ | $C_{\scriptscriptstyle  m T}$ | $C_{ m or}$ | grease          | oil |
|     | 520 | 165   | 133        | 6                              | 2           | 1 890                                        | 3 750       | 193 000                       | 380 000     | 500             | 660 |
| 340 | 580 | 190   | 169        | 6                              | 2           | 2 690                                        | 4 900       | 274 000                       | 500 000     | 460             | 620 |
|     | 580 | 238   | 190        | 6                              | 2           | 3 350                                        | 6 500       | 345 000                       | 660 000     | 460             | 620 |
|     | 540 | 134   | 120        | 6                              | 2           | 1 470                                        | 2 810       | 150 000                       | 287 000     | 460             | 620 |
| 360 | 540 | 169   | 134        | 6                              | 2           | 2 050                                        | 4 200       | 209 000                       | 430 000     | 460             | 620 |
| 300 | 600 | 192   | 171        | 6                              | 2           | 2 720                                        | 5 050       | 277 000                       | 515 000     | 430             | 580 |
|     | 600 | 240   | 192        | 6                              | 2           | 3 200                                        | 6 500       | 325 000                       | 660 000     | 430             | 580 |
|     | 560 | 135   | 122        | 6                              | 2           | 1 690                                        | 3 350       | 172 000                       | 340 000     | 440             | 580 |
| 380 | 560 | 171   | 135        | 6                              | 2           | 2 080                                        | 4 350       | 213 000                       | 445 000     | 440             | 580 |
| 300 | 620 | 194   | 173        | 6                              | 2           | 2 840                                        | 5 250       | 289 000                       | 535 000     | 410             | 540 |
|     | 620 | 243   | 194        | 6                              | 2           | 3 350                                        | 6 700       | 340 000                       | 685 000     | 410             | 540 |
|     | 600 | 148   | 132        | 6                              | 2           | 1 860                                        | 3 700       | 190 000                       | 375 000     | 410             | 550 |
| 400 | 600 | 185   | 148        | 6                              | 2           | 2 530                                        | 5 450       | 258 000                       | 555 000     | 410             | 550 |
| 400 | 650 | 200   | 178        | 6                              | 3           | 3 000                                        | 5 800       | 305 000                       | 590 000     | 380             | 510 |
|     | 650 | 250   | 200        | 6                              | 3           | 3 750                                        | 7 850       | 385 000                       | 800 000     | 380             | 510 |
|     | 620 | 150   | 134        | 6                              | 2           | 2 110                                        | 4 250       | 215 000                       | 435 000     | 390             | 520 |
| 420 | 620 | 188   | 150        | 6                              | 2           | 2 650                                        | 5 900       | 270 000                       | 600 000     | 390             | 520 |
| 420 | 700 | 224   | 200        | 6                              | 3           | 3 700                                        | 7 200       | 375 000                       | 735 000     | 360             | 480 |
|     | 700 | 280   | 224        | 6                              | 3           | 4 800                                        | 9 700       | 490 000                       | 990 000     | 360             | 480 |
|     | 650 | 157   | 140        | 6                              | 3           | 2 470                                        | 5 150       | 252 000                       | 525 000     | 370             | 490 |
| 440 | 650 | 196   | 157        | 6                              | 3           | 2 600                                        | 5 450       | 266 000                       | 560 000     | 370             | 490 |
| 440 | 720 | 226   | 201        | 6                              | 3           | 4 000                                        | 7 800       | 410 000                       | 795 000     | 340             | 460 |
|     | 720 | 283   | 226        | 6                              | 3           | 5 000                                        | 10 300      | 510 000                       | 1 050 000   | 340             | 460 |
|     | 680 | 163   | 145        | 6                              | 3           | 2 600                                        | 5 350       | 265 000                       | 550 000     | 350             | 470 |
| 460 | 680 | 204   | 163        | 6                              | 3           | 3 050                                        | 6 600       | 310 000                       | 670 000     | 350             | 470 |
| 400 | 760 | 240   | 214        | 7.5                            | 4           | 4 550                                        | 9 150       | 465 000                       | 930 000     | 320             | 430 |
|     | 760 | 300   | 240        | 7.5                            | 4           | 4 900                                        | 10 300      | 500 000                       | 1 050 000   | 320             | 430 |
|     | 700 | 165   | 147        | 6                              | 3           | 2 490                                        | 5 000       | 254 000                       | 510 000     | 330             | 450 |
| 480 | 700 | 206   | 165        | 6                              | 3           | 3 050                                        | 6 700       | 310 000                       | 685 000     | 330             | 450 |
| 400 | 790 | 248   | 221        | 7.5                            | 4           | 4 800                                        | 9 600       | 490 000                       | 975 000     | 310             | 410 |
|     | 790 | 310   | 248        | 7.5                            | 4           | 5 300                                        | 11 100      | 540 000                       | 1 130 000   | 310             | 410 |
|     |     |       |            |                                |             |                                              |             |                               |             |                 |     |

<sup>1 )</sup> Minimum allowable dimension for chamfer dimension r or n.

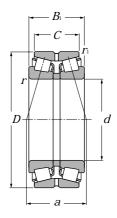






 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 

| $\frac{F_{\rm a}}{F_{\rm r}}$ | e     | $\frac{F_{i}}{F_{i}}$ | ; > e |
|-------------------------------|-------|-----------------------|-------|
| X                             | Y     | X                     | Y     |
| 1                             | $Y_1$ | 0.67                  | $Y_2$ |


static  $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$ For values of e,  $Y_2$  and  $Y_0$  see the table below.

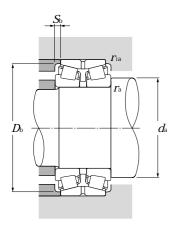
| Bearing numbers | Abutment and fillet dimensions mm   |                                     |                                     |                        |                     |     | Constant | Constant Axial load factors |       |             | Mass      |
|-----------------|-------------------------------------|-------------------------------------|-------------------------------------|------------------------|---------------------|-----|----------|-----------------------------|-------|-------------|-----------|
|                 | 7                                   | D                                   |                                     |                        |                     | mm  |          |                             |       |             | kg        |
|                 | $d_{\!\scriptscriptstyle  m a}$ min | $D_{\!\scriptscriptstyle  m b}$ min | $S_{\!\scriptscriptstyle  m b}$ min | r <sub>as</sub><br>max | <i>I</i> ¹as<br>max | а   | e        | $Y_1$                       | $Y_2$ | $Y_{\rm o}$ | (approx.) |
| 423068          | 368                                 | 489                                 | 16                                  | 5                      | 2                   | 184 | 0.37     | 1.80                        | 2.69  | 1.76        | 113       |
| 413168          | 368                                 | 548                                 | 10.5                                | 5                      | 2                   | 213 | 0.40     | 1.68                        | 2.50  | 1.64        | 188       |
| 423168          | 368                                 | 542                                 | 24                                  | 5                      | 2                   | 237 | 0.40     | 1.68                        | 2.50  | 1.64        | 235       |
| 413072          | 388                                 | 507                                 | 7                                   | 5                      | 2                   | 176 | 0.37     | 1.80                        | 2.69  | 1.76        | 92.7      |
| 423072          | 388                                 | 509                                 | 17.5                                | 5                      | 2                   | 192 | 0.37     | 1.80                        | 2.69  | 1.76        | 120       |
| 413172          | 388                                 | 561                                 | 10.5                                | 5                      | 2                   | 219 | 0.40     | 1.68                        | 2.50  | 1.64        | 199       |
| 423172          | 388                                 | 560                                 | 24                                  | 5                      | 2                   | 240 | 0.40     | 1.68                        | 2.50  | 1.64        | 248       |
| 413076          | 408                                 | 528                                 | 6.5                                 | 5                      | 2                   | 183 | 0.37     | 1.80                        | 2.69  | 1.76        | 95.9      |
| 423076          | 408                                 | 529                                 | 18                                  | 5                      | 2                   | 196 | 0.37     | 1.80                        | 2.69  | 1.76        | 126       |
| 413176          | 408                                 | 583                                 | 10.5                                | 5                      | 2                   | 225 | 0.40     | 1.68                        | 2.50  | 1.64        | 210       |
| 423176          | 408                                 | 578                                 | 24.5                                | 5                      | 2                   | 249 | 0.40     | 1.68                        | 2.50  | 1.64        | 262       |
| 413080          | 428                                 | 564                                 | 8                                   | 5                      | 2                   | 194 | 0.37     | 1.80                        | 2.69  | 1.76        | 105       |
| 423080          | 428                                 | 564                                 | 18.5                                | 5                      | 2                   | 210 | 0.37     | 1.80                        | 2.69  | 1.76        | 163       |
| 413180          | 428                                 | 610                                 | 11                                  | 5                      | 2.5                 | 232 | 0.40     | 1.68                        | 2.50  | 1.64        | 236       |
| 423180          | 428                                 | 610                                 | 25                                  | 5                      | 2.5                 | 256 | 0.40     | 1.68                        | 2.50  | 1.64        | 294       |
| 413084          | 448                                 | 586                                 | 8                                   | 5                      | 2                   | 200 | 0.37     | 1.80                        | 2.69  | 1.76        | 135       |
| 423084          | 448                                 | 583                                 | 19                                  | 5                      | 2                   | 220 | 0.37     | 1.80                        | 2.69  | 1.76        | 172       |
| 413184          | 448                                 | 655                                 | 12                                  | 5                      | 2.5                 | 258 | 0.40     | 1.68                        | 2.50  | 1.64        | 317       |
| 423184          | 448                                 | 659                                 | 28                                  | 5                      | 2.5                 | 287 | 0.40     | 1.68                        | 2.50  | 1.64        | 394       |
| 413088          | 468                                 | 614                                 | 8.5                                 | 5                      | 2.5                 | 208 | 0.37     | 1.80                        | 2.69  | 1.76        | 160       |
| 423088          | 468                                 | 614                                 | 19.5                                | 5                      | 2.5                 | 229 | 0.37     | 1.80                        | 2.69  | 1.76        | 198       |
| 413188          | 468                                 | 675                                 | 12.5                                | 5                      | 2.5                 | 263 | 0.40     | 1.68                        | 2.50  | 1.64        | 330       |
| 423188          | 468                                 | 678                                 | 28.5                                | 5                      | 2.5                 | 288 | 0.40     | 1.68                        | 2.50  | 1.64        | 412       |
| 413092          | 488                                 | 646                                 | 9                                   | 5                      | 2.5                 | 217 | 0.37     | 1.80                        | 2.69  | 1.76        | 179       |
| 423092          | 488                                 | 644                                 | 20.5                                | 5                      | 2.5                 | 239 | 0.37     | 1.80                        | 2.69  | 1.76        | 225       |
| 413192          | 496                                 | 714                                 | 13                                  | 6                      | 3                   | 276 | 0.40     | 1.68                        | 2.50  | 1.64        | 395       |
| 423192          | 496                                 | 712                                 | 30                                  | 6                      | 3                   | 305 | 0.40     | 1.68                        | 2.50  | 1.64        | 493       |
| 413096          | 508                                 | 665                                 | 9                                   | 5                      | 2.5                 | 223 | 0.37     | 1.80                        | 2.69  | 1.76        | 189       |
| 423096          | 508                                 | 664                                 | 20.5                                | 5                      | 2.5                 | 246 | 0.37     | 1.80                        | 2.69  | 1.76        | 236       |
| 413196          | 516                                 | 743                                 | 13.5                                | 6                      | 3                   | 281 | 0.40     | 1.68                        | 2.50  | 1.64        | 442       |
| 423196          | 516                                 | 738                                 | 31                                  | 6                      | 3                   | 329 | 0.40     | 1.68                        | 2.50  | 1.64        | 548       |





## **Back-to-back arrangement**




## *d* 500mm

|     |     | Bound | ary dimens | ions      |                       | ali a        | Basic load ratings |            | -4-4:-        | Limiting speeds   |     |  |
|-----|-----|-------|------------|-----------|-----------------------|--------------|--------------------|------------|---------------|-------------------|-----|--|
| mm  |     |       |            |           |                       | dynamic<br>I | static<br>kN       | dynamic    | static<br>kgf | min <sup>-1</sup> |     |  |
| d   | D   | $B_1$ | С          | rs min ¹) | ∏ls min <sup>1)</sup> | $C_{\rm r}$  | $C_{ m or}$        | $C_{ m r}$ | $C_{ m or}$   | grease            | oil |  |
|     | 720 | 167   | 149        | 6         | 3                     | 2 610        | 5 400              | 266 000    | 550 000       | 320               | 420 |  |
| EOO | 720 | 209   | 167        | 6         | 3                     | 3 050        | 6 900              | 315 000    | 700 000       | 320               | 420 |  |
| 500 | 830 | 264   | 235        | 7.5       | 4                     | 5 200        | 10 500             | 530 000    | 1 070 000     | 290               | 390 |  |
|     | 830 | 330   | 264        | 7.5       | 4                     | 6 400        | 14 000             | 650 000    | 1 420 000     | 290               | 390 |  |



<sup>1 )</sup> Minimum allowable dimension for chamfer dimension r or n.





 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 

| $\frac{F_{\rm a}}{F_{\rm r}}$ | e     | $\frac{F_{i}}{F_{i}}$ | ; > e |
|-------------------------------|-------|-----------------------|-------|
| X                             | Y     | X                     | Y     |
| 1                             | $Y_1$ | 0.67                  | $Y_2$ |

static  $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$ For values of e,  $Y_2$  and  $Y_0$  see the table below.

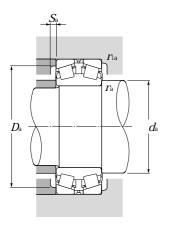
| Bearing numbers | Abutment and fillet dimensions   |                                     |                                     |                        |                      |     | Constant | Axia  | l load fact | ors         | Mass      |
|-----------------|----------------------------------|-------------------------------------|-------------------------------------|------------------------|----------------------|-----|----------|-------|-------------|-------------|-----------|
|                 |                                  |                                     | mm                                  |                        |                      | mm  |          |       |             |             | kg        |
|                 | $d_{\!\scriptscriptstyle a}$ min | $D_{\!\scriptscriptstyle  m b}$ min | $S_{\!\scriptscriptstyle  m b}$ min | r <sub>as</sub><br>max | <i>I</i> ¹las<br>max | a   | e        | $Y_1$ | $Y_2$       | $Y_{\rm o}$ | (approx.) |
|                 |                                  |                                     |                                     |                        |                      |     |          |       |             |             |           |
| 4130/500        | 528                              | 686                                 | 9                                   | 5                      | 2.5                  | 230 | 0.37     | 1.80  | 2.69        | 1.76        | 202       |
| 4230/500        | 528                              | 683                                 | 21                                  | 5                      | 2.5                  | 250 | 0.37     | 1.80  | 2.69        | 1.76        | 247       |
| 4131/500        | 536                              | 780                                 | 14.5                                | 6                      | 3                    | 296 | 0.40     | 1.68  | 2.50        | 1.64        | 528       |
| 5E-4231/500G2   | 536                              | 773                                 | 33                                  | 6                      | 3                    | 331 | 0.40     | 1.68  | 2.50        | 1.64        | 678       |



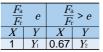


## **Face-to-face arrangement**




### d 110 ~ 280mm

|     |     | Bound | ary dimens            | ions                    |                               | dynamic                         | Basic Io    | ead ratings<br>dynamic | Limiting speeds |        |                 |
|-----|-----|-------|-----------------------|-------------------------|-------------------------------|---------------------------------|-------------|------------------------|-----------------|--------|-----------------|
|     |     |       | mm                    |                         |                               | kN                              | Statio      | dynamic<br>kç          | static<br>gf    | mir    | 1 <sup>-1</sup> |
| d   | D   | В     | <i>C</i> <sub>1</sub> | $\Gamma_{ m lsmin}^{1}$ | <i>I</i> 's min <sup>1)</sup> | $C_{\scriptscriptstyle \Gamma}$ | $C_{ m or}$ | $C_{\rm r}$            | $C_{ m or}$     | grease | oil             |
| 110 | 180 | 56    | 56                    | 2.5                     | 2                             | 298                             | 485         | 30 500                 | 49 500          | 1 600  | 2 200           |
| 120 | 180 | 46    | 46                    | 2.5                     | 2                             | 230                             | 375         | 23 500                 | 38 000          | 1 500  | 2 100           |
|     | 200 | 62    | 62                    | 2.5                     | 2                             | 370                             | 610         | 38 000                 | 62 500          | 1 500  | 2 000           |
| 130 | 200 | 52    | 52                    | 2.5                     | 2                             | 294                             | 490         | 29 900                 | 50 000          | 1 400  | 1 900           |
|     | 210 | 64    | 64                    | 2.5                     | 2                             | 410                             | 675         | 42 000                 | 69 000          | 1 400  | 1 800           |
| 140 | 210 | 53    | 53                    | 2.5                     | 2                             | 300                             | 535         | 30 500                 | 54 500          | 1 300  | 1 800           |
|     | 225 | 68    | 68                    | 3                       | 2.5                           | 390                             | 650         | 40 000                 | 66 000          | 1 200  | 1 700           |
| 150 | 225 | 56    | 56                    | 3                       | 2.5                           | 355                             | 630         | 36 000                 | 64 500          | 1 200  | 1 600           |
|     | 250 | 80    | 80                    | 3                       | 2.5                           | 600                             | 1 040       | 61 500                 | 106 000         | 1 200  | 1 500           |
| 160 | 240 | 60    | 60                    | 3                       | 2.5                           | 430                             | 765         | 44 000                 | 78 000          | 1 100  | 1 500           |
|     | 270 | 86    | 86                    | 3                       | 2.5                           | 675                             | 1 180       | 69 000                 | 120 000         | 1 100  | 1 400           |
| 170 | 260 | 67    | 67                    | 3                       | 2.5                           | 490                             | 865         | 50 000                 | 88 000          | 1 100  | 1 400           |
|     | 280 | 88    | 88                    | 3                       | 2.5                           | 725                             | 1 270       | 74 000                 | 130 000         | 1 000  | 1 300           |
| 180 | 280 | 74    | 74                    | 3                       | 2.5                           | 580                             | 1 050       | 59 500                 | 107 000         | 1 000  | 1 300           |
|     | 300 | 96    | 96                    | 4                       | 3                             | 885                             | 1 530       | 90 500                 | 156 000         | 940    | 1 300           |
| 190 | 290 | 75    | 75                    | 3                       | 2.5                           | 615                             | 1 110       | 63 000                 | 113 000         | 940    | 1 300           |
|     | 320 | 104   | 104                   | 4                       | 3                             | 985                             | 1 710       | 100 000                | 174 000         | 890    | 1 200           |
| 200 | 310 | 82    | 82                    | 3                       | 2.5                           | 720                             | 1 320       | 73 000                 | 135 000         | 900    | 1 200           |
|     | 340 | 112   | 112                   | 4                       | 3                             | 1 090                           | 1 910       | 111 000                | 195 000         | 840    | 1 100           |
| 220 | 340 | 90    | 90                    | 4                       | 3                             | 880                             | 1 650       | 89 500                 | 168 000         | 810    | 1 100           |
|     | 370 | 120   | 120                   | 5                       | 4                             | 1 220                           | 2 260       | 125 000                | 230 000         | 760    | 1 000           |
| 240 | 360 | 92    | 92                    | 4                       | 3                             | 910                             | 1 770       | 92 500                 | 181 000         | 730    | 980             |
|     | 400 | 128   | 128                   | 5                       | 4                             | 1 400                           | 2 600       | 142 000                | 265 000         | 690    | 920             |
| 260 | 400 | 104   | 104                   | 5                       | 4                             | 1 150                           | 2 190       | 117 000                | 223 000         | 670    | 900             |
|     | 440 | 144   | 144                   | 5                       | 4                             | 1 960                           | 3 750       | 200 000                | 380 000         | 630    | 840             |
| 280 | 420 | 106   | 106                   | 5                       | 4                             | 1 200                           | 2 340       | 123 000                | 238 000         | 620    | 820             |


<sup>1 )</sup> Minimum allowable dimension for chamfer dimension r or n.

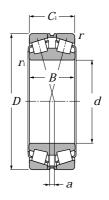






 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 



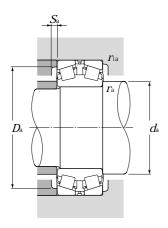

static  $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}}$  For values of e,  $Y_2$  and  $Y_0$  see the table below.

| Bearing numbers |           | Abutm | ent and f             | illet dir | nensions    | i                      |      | Load Constant Axial load factors center |       |       |             | Mass      |
|-----------------|-----------|-------|-----------------------|-----------|-------------|------------------------|------|-----------------------------------------|-------|-------|-------------|-----------|
|                 |           |       | m                     |           |             |                        | mm   |                                         |       |       |             | kg        |
|                 | d₁<br>max | max D | ) <sub>a</sub><br>min | Sa<br>min | r₁as<br>max | r <sub>as</sub><br>max | a    | e                                       | $Y_1$ | $Y_2$ | $Y_{\circ}$ | (approx.) |
| 323122          | 124       | 170   | 160                   | 8         | 2           | 2                      | 1    | 0.33                                    | 2.03  | 3.02  | 1.98        | 5.6       |
| 323024          | 134       | 170   | 164                   | 8         | 2           | 2                      | 12   | 0.37                                    | 1.80  | 2.69  | 1.76        | 4.08      |
| 323124          | 134       | 190   | 175                   | 8         | 2           | 2                      | 6.5  | 0.37                                    | 1.80  | 2.69  | 1.76        | 7.82      |
| 323026          | 144       | 190   | 184                   | 8         | 2           | 2                      | 13.5 | 0.37                                    | 1.80  | 2.69  | 1.76        | 5.92      |
| 323126          | 144       | 200   | 185                   | 8         | 2           | 2                      | 7.5  | 0.37                                    | 1.80  | 2.69  | 1.76        | 8.58      |
| 323028          | 155       | 200   | 190                   | 8         | 2           | 2                      | 10   | 0.37                                    | 1.84  | 2.74  | 1.80        | 6.4       |
| 323128          | 156       | 213   | 200                   | 10        | 2.5         | 2                      | 8    | 0.37                                    | 1.80  | 2.69  | 1.76        | 10.7      |
| 323030          | 165       | 213   | 205                   | 10        | 2.5         | 2                      | 15.5 | 0.37                                    | 1.80  | 2.69  | 1.76        | 7.76      |
| 323130          | 168       | 238   | 220                   | 10        | 2.5         | 2                      | 6.5  | 0.37                                    | 1.80  | 2.69  | 1.76        | 15.7      |
| 323032          | 175       | 228   | 215                   | 10        | 2.5         | 2                      | 17.5 | 0.37                                    | 1.80  | 2.69  | 1.76        | 9.46      |
| 323132E1        | 178       | 258   | 240                   | 10        | 2.5         | 2                      | 8    | 0.37                                    | 1.80  | 2.69  | 1.76        | 20        |
| 323034          | 185       | 248   | 235                   | 10        | 2.5         | 2                      | 18   | 0.37                                    | 1.80  | 2.69  | 1.76        | 12.8      |
| 323134E1        | 188       | 268   | 250                   | 10        | 2.5         | 2                      | 8.5  | 0.37                                    | 1.80  | 2.69  | 1.76        | 21.5      |
| 323036E1        | 198       | 268   | 250                   | 10        | 2.5         | 2                      | 17   | 0.37                                    | 1.80  | 2.69  | 1.76        | 16.5      |
| 323136E1        | 200       | 286   | 265                   | 12        | 3           | 2.5                    | 8    | 0.37                                    | 1.80  | 2.69  | 1.76        | 27.2      |
| 323038E1        | 208       | 278   | 260                   | 12        | 2.5         | 2                      | 17.5 | 0.37                                    | 1.80  | 2.69  | 1.76        | 17.9      |
| 323138          | 212       | 306   | 285                   | 12        | 3           | 2.5                    | 8.5  | 0.37                                    | 1.80  | 2.69  | 1.76        | 34        |
| 323040E1        | 218       | 298   | 280                   | 12        | 2.5         | 2                      | 19   | 0.37                                    | 1.80  | 2.69  | 1.76        | 21.7      |
| 323140          | 222       | 326   | 300                   | 12        | 3           | 2.5                    | 8.5  | 0.37                                    | 1.80  | 2.69  | 1.76        | 41.7      |
| 323044E1        | 242       | 326   | 310                   | 12        | 3           | 2.5                    | 21.5 | 0.37                                    | 1.80  | 2.69  | 1.76        | 29.8      |
| 323144          | 248       | 352   | 325                   | 14        | 4           | 3                      | 14   | 0.40                                    | 1.68  | 2.50  | 1.64        | 52.2      |
| 323048E1        | 269       | 346   | 321.5                 | 14        | 3           | 2.5                    | 25.5 | 0.37                                    | 1.80  | 2.69  | 1.76        | 32.6      |
| 323148          | 268       | 382   | 355                   | 14        | 4           | 3                      | 17   | 0.40                                    | 1.68  | 2.50  | 1.64        | 64.6      |
| 323052          | 285       | 382   | 365                   | 14        | 4           | 3                      | 25   | 0.37                                    | 1.80  | 2.69  | 1.76        | 47.3      |
| 323152          | 290       | 422   | 385                   | 16        | 4           | 3                      | 16.5 | 0.40                                    | 1.68  | 2.50  | 1.64        | 90        |
| 323056          | 305       | 402   | 385                   | 16        | 4           | 3                      | 29.5 | 0.37                                    | 1.80  | 2.69  | 1.76        | 51.2      |





## **Face-to-face arrangement**




## d 280 ~ 500mm

|     |     | Bound | ary dimens            | ions                   |                                | al a       |              | ad ratings   | -1-1:-        | Limiting speeds |     |
|-----|-----|-------|-----------------------|------------------------|--------------------------------|------------|--------------|--------------|---------------|-----------------|-----|
|     |     |       | mm                    |                        |                                | dynamic    | static<br>kN | dynamic<br>I | static<br>kgf | min             | -1  |
| d   | D   | В     | <i>C</i> <sub>1</sub> | $\Gamma$ ls min $^1$ ) | <i>I</i> 's min <sup>1</sup> ) | $C_{ m r}$ | $C_{ m or}$  | $C_{ m r}$   | $C_{ m or}$   | grease          | oil |
| 280 | 460 | 146   | 146                   | 6                      | 5                              | 1 940      | 3 650        | 198 000      | 375 000       | 580             | 770 |
| 300 | 460 | 118   | 118                   | 5                      | 4                              | 1 610      | 3 150        | 165 000      | 320 000       | 570             | 760 |
|     | 500 | 160   | 160                   | 6                      | 5                              | 2 100      | 4 050        | 214 000      | 415 000       | 530             | 710 |
| 320 | 480 | 121   | 121                   | 5                      | 4                              | 1 580      | 3 100        | 162 000      | 315 000       | 530             | 710 |
|     | 540 | 176   | 176                   | 6                      | 5                              | 2 500      | 4 900        | 255 000      | 500 000       | 500             | 660 |
| 340 | 520 | 133   | 133                   | 6                      | 5                              | 1 890      | 3 750        | 193 000      | 380 000       | 500             | 660 |
|     | 580 | 190   | 190                   | 6                      | 5                              | 3 350      | 6 500        | 345 000      | 660 000       | 460             | 620 |
| 360 | 540 | 134   | 134                   | 6                      | 5                              | 2 050      | 4 200        | 209 000      | 430 000       | 460             | 620 |
|     | 600 | 192   | 192                   | 6                      | 5                              | 3 200      | 6 500        | 325 000      | 660 000       | 430             | 580 |
| 380 | 560 | 135   | 135                   | 6                      | 5                              | 2 080      | 4 350        | 213 000      | 445 000       | 440             | 580 |
|     | 620 | 194   | 194                   | 6                      | 5                              | 3 350      | 6 700        | 340 000      | 685 000       | 410             | 540 |
| 400 | 600 | 148   | 148                   | 6                      | 5                              | 2 530      | 5 450        | 258 000      | 555 000       | 410             | 550 |
|     | 650 | 200   | 200                   | 6                      | 6                              | 3 750      | 7 850        | 385 000      | 800 000       | 380             | 510 |
| 420 | 620 | 150   | 150                   | 6                      | 5                              | 2 650      | 5 900        | 270 000      | 600 000       | 390             | 520 |
|     | 700 | 224   | 224                   | 6                      | 6                              | 4 800      | 9 700        | 490 000      | 990 000       | 360             | 480 |
| 440 | 650 | 157   | 157                   | 6                      | 6                              | 2 600      | 5 450        | 266 000      | 560 000       | 370             | 490 |
|     | 720 | 226   | 226                   | 6                      | 6                              | 5 000      | 10 300       | 510 000      | 1 050 000     | 340             | 460 |
| 460 | 680 | 163   | 163                   | 6                      | 6                              | 3 050      | 6 600        | 310 000      | 670 000       | 350             | 470 |
|     | 760 | 240   | 240                   | 7.5                    | 7.5                            | 4 900      | 10 300       | 500 000      | 1 050 000     | 320             | 430 |
| 480 | 700 | 165   | 165                   | 6                      | 6                              | 3 050      | 6 700        | 310 000      | 685 000       | 330             | 450 |
|     | 790 | 248   | 248                   | 7.5                    | 7.5                            | 5 300      | 11 100       | 540 000      | 1 130 000     | 310             | 410 |
| 500 | 720 | 167   | 167                   | 6                      | 6                              | 3 050      | 6 900        | 315 000      | 700 000       | 320             | 420 |
|     | 830 | 264   | 264                   | 7.5                    | 7.5                            | 6 400      | 14 000       | 650 000      | 1 420 000     | 290             | 390 |

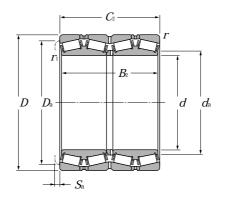
<sup>1 )</sup> Minimum allowable dimension for chamfer dimension r or n.





Equivalent radial load dynamic Pr = XFr + YFa




static\_

| $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}}F_{\text{a}}$ |       |
|-----------------------------------------------------------|-------|
| For values of $e$ , $Y_2$ and                             | $Y_0$ |
| see the table below.                                      |       |

|               |           | Abutment and fillet dimensions |     |                                     |             | center                 | Constant Axial load factors |      |       | .0.0  | Mass        |           |
|---------------|-----------|--------------------------------|-----|-------------------------------------|-------------|------------------------|-----------------------------|------|-------|-------|-------------|-----------|
|               | mm        |                                |     |                                     |             | mm                     |                             |      |       |       | kg          |           |
|               | d₁<br>max | max D                          | min | $S_{\!\scriptscriptstyle  m a}$ min | r₁as<br>max | r <sub>as</sub><br>max | а                           | e    | $Y_1$ | $Y_2$ | $Y_{\rm o}$ | (approx.) |
| 323156        | 315       | 438                            | 400 | 16                                  | 5           | 4                      | 16                          | 0.40 | 1.68  | 2.50  | 1.64        | 95.8      |
| 323060        | 330       | 442                            | 425 | 16                                  | 4           | 3                      | 31                          | 0.37 | 1.80  | 2.69  | 1.76        | 70.7      |
| 323160        | 335       | 478                            | 440 | 16                                  | 5           | 4                      | 18                          | 0.40 | 1.68  | 2.50  | 1.64        | 126       |
| 323064        | 350       | 462                            | 440 | 16                                  | 4           | 3                      | 34                          | 0.37 | 1.80  | 2.69  | 1.76        | 76.3      |
| 323164        | 355       | 518                            | 480 | 18                                  | 5           | 4                      | 18.5                        | 0.40 | 1.68  | 2.50  | 1.64        | 164       |
| 323068        | 370       | 498                            | 480 | 18                                  | 5           | 4                      | 36                          | 0.37 | 1.80  | 2.69  | 1.76        | 101       |
| 323168        | 380       | 558                            | 515 | 18                                  | 5           | 4                      | 35.5                        | 0.40 | 1.68  | 2.50  | 1.64        | 207       |
| 323072        | 395       | 518                            | 495 | 18                                  | 5           | 4                      | 41                          | 0.37 | 1.80  | 2.69  | 1.76        | 107       |
| 323172        | 400       | 578                            | 535 | 18                                  | 5           | 4                      | 25.5                        | 0.40 | 1.68  | 2.50  | 1.64        | 218       |
| 323076        | 415       | 538                            | 515 | 18                                  | 5           | 4                      | 44.5                        | 0.37 | 1.80  | 2.69  | 1.76        | 113       |
| 323176        | 420       | 598                            | 550 | 20                                  | 5           | 4                      | 29                          | 0.40 | 1.68  | 2.50  | 1.64        | 229       |
| 323080        | 440       | 578                            | 550 | 18                                  | 5           | 4                      | 45                          | 0.37 | 1.80  | 2.69  | 1.76        | 146       |
| 323180        | 445       | 622                            | 580 | 20                                  | 5           | 5                      | 32.5                        | 0.40 | 1.68  | 2.50  | 1.64        | 259       |
| 323084        | 460       | 598                            | 570 | 20                                  | 5           | 4                      | 48.5                        | 0.37 | 1.80  | 2.69  | 1.76        | 154       |
| 323184        | 465       | 672                            | 625 | 25                                  | 5           | 5                      | 60                          | 0.40 | 1.68  | 2.50  | 1.64        | 346       |
| 323088        | 480       | 622                            | 600 | 20                                  | 5           | 5                      | 53.5                        | 0.37 | 1.80  | 2.69  | 1.76        | 177       |
| 323188        | 485       | 692                            | 645 | 25                                  | 5           | 5                      | 44                          | 0.40 | 1.68  | 2.50  | 1.64        | 361       |
| 323092        | 500       | 652                            | 620 | 25                                  | 5           | 5                      | 56.5                        | 0.37 | 1.80  | 2.69  | 1.76        | 201       |
| 323192        | 510       | 724                            | 680 | 25                                  | 6           | 6                      | 34.5                        | 0.40 | 1.68  | 2.50  | 1.64        | 433       |
| 323096        | 520       | 672                            | 640 | 25                                  | 5           | 5                      | 63                          | 0.37 | 1.80  | 2.69  | 1.76        | 211       |
| 323196        | 530       | 754                            | 705 | 30                                  | 6           | 6                      | 36                          | 0.40 | 1.68  | 2.50  | 1.64        | 481       |
| 3230/500      | 540       | 692                            | 655 | 25                                  | 5           | 5                      | 61.5                        | 0.37 | 1.80  | 2.69  | 1.76        | 221       |
| 5E-3231/500G2 | 550       | 794                            | 740 | 30                                  | 6           | 6                      | 37.5                        | 0.40 | 1.68  | 2.50  | 1.64        | 570       |

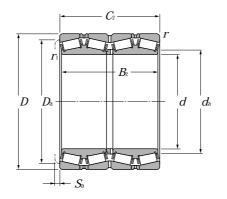






## d 120 ~ 187.325mm

| Boundary dimensions |                               |                               |                               |                      |                       | Basic load ratings dynamic static dynamic static |                         |                               |                               |  |
|---------------------|-------------------------------|-------------------------------|-------------------------------|----------------------|-----------------------|--------------------------------------------------|-------------------------|-------------------------------|-------------------------------|--|
|                     |                               | mn                            | n                             |                      |                       | kN                                               | Statio                  | kgf                           |                               |  |
| d                   | D                             | $B_2$                         | $C_2$                         | Ns min <sup>1)</sup> | r <sub>s min</sub> 1) | $C_{\rm r}$                                      | $C_{ m or}$             | $C_{ m r}$                    | $C_{ m or}$                   |  |
| 120                 | 170<br>210                    | 124<br>174                    | 124<br>174                    | 2.5<br>2.5           | 2<br>2.5              | 390<br>855                                       | 1 020<br>1 710          | 40 000<br>87 500              | 104 000<br>174 000            |  |
| 120.650             | 174.625                       | 141.288                       | 139.703                       | 0.8                  | 1.5                   | 510                                              | 1 220                   | 52 000                        | 124 000                       |  |
| 127                 | 182.562                       | 158.750                       | 158.750                       | 1.5                  | 3.3                   | 660                                              | 1 730                   | 67 000                        | 177 000                       |  |
| 130                 | 184                           | 134                           | 134                           | 2.5                  | 2                     | 480                                              | 1 190                   | 49 000                        | 122 000                       |  |
| 135                 | 180                           | 160                           | 160                           | 1                    | 2                     | 500                                              | 1 360                   | 51 000                        | 138 000                       |  |
| 136.525             | 190.500                       | 161.925                       | 161.925                       | 1.5                  | 3.3                   | 695                                              | 1 900                   | 71 000                        | 193 000                       |  |
| 139.700             | 200.025                       | 157.165                       | 160.340                       | 0.8                  | 3.3                   | 700                                              | 1 950                   | 71 500                        | 199 000                       |  |
| 140                 | 198                           | 144                           | 144                           | 2.5                  | 2                     | 575                                              | 1 460                   | 58 500                        | 149 000                       |  |
| 146.050             | 244.475                       | 192.088                       | 187.325                       | 1.5                  | 3.3                   | 955                                              | 1 980                   | 97 000                        | 202 000                       |  |
| 150                 | 212                           | 155                           | 155                           | 3                    | 2.5                   | 660                                              | 1 700                   | 67 500                        | 173 000                       |  |
| 152.400             | 222.250                       | 174.625                       | 174.625                       | 1.5                  | 1.5                   | 930                                              | 2 350                   | 94 500                        | 239 000                       |  |
| 160                 | 226<br>265                    | 165<br>173                    | 165<br>173                    | 3<br>2.5             | 2.5<br>2.5            | 775<br>1 100                                     | 2 030<br>2 270          | 79 000<br>112 000             | 207 000<br>231 000            |  |
| 165.100             | 225.425                       | 165.100                       | 168.275                       | 0.8                  | 3.3                   | 745                                              | 2 220                   | 76 000                        | 226 000                       |  |
| 170                 | 240<br>280                    | 175<br>181                    | 175<br>181                    | 3<br>2.5             | 2.5<br>2.5            | 835<br>1 150                                     | 2 200<br>2 420          | 85 500<br>117 000             | 224 000<br>247 000            |  |
| 177.800             | 247.650<br>279.400<br>304.800 | 192.088<br>234.950<br>238.227 | 192.088<br>234.947<br>233.365 | 1.5<br>1.5<br>3.3    | 3.3<br>3.3<br>3.3     | 1 000<br>1 420<br>1 580                          | 2 760<br>3 400<br>3 100 | 102 000<br>145 000<br>161 000 | 281 000<br>345 000<br>320 000 |  |
| 180                 | 254<br>300                    | 185<br>280                    | 185<br>280                    | 3<br>3               | 2.5<br>3              | 910<br>2 160                                     | 2 390<br>4 800          | 93 000<br>220 000             | 244 000<br>490 000            |  |
| 187.325             | 269.875                       | 211.138                       | 211.138                       | 1.5                  | 3.3                   | 1 240                                            | 3 400                   | 127 000                       | 345 000                       |  |






| Bearing numbers                                                                    | Abutmei           | Mass                            |                                                 |                      |
|------------------------------------------------------------------------------------|-------------------|---------------------------------|-------------------------------------------------|----------------------|
|                                                                                    |                   | mm                              |                                                 | kg                   |
|                                                                                    | $d_{a}$           | $D_{\!\scriptscriptstyle  m a}$ | $\mathcal{S}_{\!\scriptscriptstyle \mathrm{a}}$ | (approx.)            |
| E-625924<br>E-CRO-2418                                                             | 135<br>140        | 155.5<br>190                    | 5<br>4.5                                        | 8.97<br>22.2         |
| * E-M224749D/M224710/M224710D                                                      | 129               | 163                             | 3                                               | 11.5                 |
| * T-E-48290D/48220/48220D                                                          | 137               | 168                             | 4.5                                             | 14.3                 |
| E-625926                                                                           | 144.5             | 169                             | 5                                               | 11.3                 |
| E-CRO-2701                                                                         | 143               | 165                             | 2                                               | 13.5                 |
| * T-E-48393D/48320/48320D                                                          | 144               | 177                             | 4                                               | 14.8                 |
| * T-E-48680D/48620/48620D                                                          | 150               | 185                             | 3                                               | 17.3                 |
| E-625928                                                                           | 156               | 183                             | 5                                               | 14                   |
| * E-81576D/81962/81963D                                                            | 163               | 225                             | 6.5                                             | 36.8                 |
| E-625930                                                                           | 167.5             | 195                             | 5.5                                             | 16.9                 |
| * T-E-M231649D/M231610/M231610D                                                    | 165               | 207                             | 4                                               | 24.7                 |
| E-625932<br>E-CRO-3209                                                             | 177.5<br>184      | 208.5<br>247                    | 5.5<br>4.5                                      | 20.2<br>33.6         |
| * T-E-46791D/46720/46721D                                                          | 175               | 209                             | 3                                               | 20.7                 |
| E-625934<br>E-CRO-3409                                                             | 187.5<br>192      | 220<br>255                      | 5.5<br>5                                        | 24.4<br>44           |
| * E-67791D/67720/67721D<br>* E-82681D/82620/82620D<br>* E-EE280700D/281200/281201D | 190<br>195<br>198 | 229<br>251<br>279               | 5<br>5<br>7                                     | 29.4<br>55.3<br>69.9 |
| E-625936<br>E-CRO-3617                                                             | 200.5<br>201      | 233.5<br>274                    | 5.5<br>5                                        | 28.9<br>69.4         |
| * E-M238849D/M238810/M238810D                                                      | 199.9             | 250                             | 4                                               | 41.8                 |

Note: 1. Bearing numbers marked " \* " designate inch series bearings.





## d 190 ~ 260mm

| Boundary dimensions |                               |                               |                               |                    |                     | d : -                   |                         | ad ratings                    | -4-4:-                        |
|---------------------|-------------------------------|-------------------------------|-------------------------------|--------------------|---------------------|-------------------------|-------------------------|-------------------------------|-------------------------------|
|                     |                               | mn                            | n                             |                    |                     | dynamic<br>kN           | static                  | dynamic<br>kgf                | static                        |
| d                   | D                             | $B_2$                         | $C_2$                         | $r_{ m lsmin}^{1}$ | $r_{ m smin}^{1}$ ) | $C_{ m r}$              | $C_{ m or}$             | $C_{\Gamma}$                  | $C_{ m or}$                   |
| 190                 | 268<br>270<br>292.100         | 196<br>190<br>225.425         | 196<br>190<br>225.425         | 3<br>2.5<br>1.5    | 2.5<br>2.5<br>3.3   | 1 060<br>1 080<br>1 570 | 2 850<br>2 940<br>4 150 | 108 000<br>111 000<br>160 000 | 291 000<br>300 000<br>425 000 |
| 190.500             | 266.700                       | 187.325                       | 188.912                       | 1.5                | 3.3                 | 1 040                   | 2 990                   | 106 000                       | 305 000                       |
| 200                 | 282<br>290<br>310             | 206<br>160<br>200             | 206<br>160<br>200             | 3<br>2.5<br>3      | 2.5<br>2.5<br>3     | 1 200<br>925<br>1 360   | 3 300<br>2 210<br>2 980 | 122 000<br>94 500<br>138 000  | 335 000<br>226 000<br>305 000 |
| 203.200             | 317.500                       | 215.900                       | 209.550                       | 3.3                | 3.3                 | 1 270                   | 2 820                   | 129 000                       | 288 000                       |
| 215.900             | 288.925                       | 177.800                       | 177.800                       | 0.8                | 3.3                 | 1 090                   | 3 100                   | 111 000                       | 315 000                       |
| 220                 | 310                           | 226                           | 226                           | 4                  | 3                   | 1 380                   | 3 800                   | 141 000                       | 385 000                       |
| 220.662             | 314.325                       | 239.712                       | 239.712                       | 1.5                | 3.3                 | 1 840                   | 4 900                   | 187 000                       | 500 000                       |
| 228.600             | 425.450                       | 349.250                       | 361.950                       | 3.5                | 6.4                 | 3 450                   | 8 250                   | 355 000                       | 845 000                       |
| 234.950             | 327.025                       | 196.850                       | 196.850                       | 1.5                | 3.3                 | 1 370                   | 3 700                   | 140 000                       | 380 000                       |
| 240                 | 338                           | 248                           | 248                           | 4                  | 3                   | 1 870                   | 4 950                   | 191 000                       | 505 000                       |
| 241.478             | 350.838                       | 228.600                       | 228.600                       | 1.5                | 3.3                 | 1 770                   | 4 550                   | 180 000                       | 465 000                       |
| 244.475             | 327.025<br>381.000            | 193.675<br>304.800            | 193.675<br>304.800            | 1.5<br>3.3         | 3.3<br>4.8          | 1 430<br>2 220          | 4 100<br>5 750          | 146 000<br>227 000            | 415 000<br>590 000            |
| 250                 | 365<br>370                    | 270<br>220                    | 270<br>220                    | 1.5<br>4           | 3<br>4              | 2 150<br>2 050          | 6 150<br>5 750          | 219 000<br>209 000            | 630 000<br>590 000            |
| 254                 | 358.775<br>368.300<br>444.500 | 269.875<br>204.622<br>279.400 | 269.875<br>204.470<br>279.400 | 3.3<br>1.5<br>3.3  | 3.3<br>3.3<br>6.4   | 2 390<br>1 350<br>2 890 | 6 550<br>3 250<br>5 900 | 244 000<br>138 000<br>294 000 | 670 000<br>330 000<br>600 000 |
| 260                 | 368<br>400                    | 268<br>255                    | 268<br>255                    | 5<br>4             | 4<br>7.5            | 1 990<br>2 210          | 5 700<br>5 300          | 203 000<br>225 000            | 580 000<br>540 000            |


<sup>1 )</sup> Minimum allowable dimension for chamfer dimension r or r1.



| Bearing numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Abutmer      | nt and fillet dime | nsions  | Mass         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------|---------|--------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | mm                 |         | kg           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $d_{a}$      | $D_{a}$            | $S_{a}$ | (approx.)    |
| E-625938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 209          | 245.5              | 6       | 34.7         |
| E-CRO-3812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 205          | 250                | 6       | 34.7         |
| * E-M241538D/M241510/M241510D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 222          | 271                | 5       | 59.6         |
| * T-E-67885D/67820/67820D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 204          | 246                | 3       | 33.6         |
| E-625940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 219.5        | 258                | 6       | 40.5         |
| E-CRO-4013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 221          | 271                | 5       | 35.1         |
| E-CRO-4014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 222          | 284                | 6       | 48.4         |
| * E-EE132082D/132125/132126D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 224          | 294                | 9.5     | 62.5         |
| * E-LM742749D/LM742714/LM742714D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 227          | 267                | 5       | 34.3         |
| E-625944                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 242          | 284.5              | 6       | 53.5         |
| * T-E-M244249D/M244210/M244210D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 235          | 293                | 4       | 60.2         |
| * E-EE700090D/700167/700168D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 263          | 381                | 3       | 232          |
| * T-E-8576D/8520/8520D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 250          | 305                | 5       | 53.6         |
| E-625948A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 260.5        | 312                | 6       | 70           |
| * E-EE127097D/127137/127137D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 262          | 325                | 6.5     | 76.4         |
| * E-LM247748D/LM247710/LM247710DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 257          | 310                | 5       | 46.1         |
| * E-EE126096D/126150/126151D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 262          | 343                | 6.5     | 132          |
| E-CRO-5004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 275          | 339                | 5       | 82.1         |
| E-CRO-5001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 276          | 344                | 6       | 87           |
| + T = NO 107 10D /NO 107 10 /NO 1 | 076 -        | 005                |         | 0= 0         |
| * T-E-M249748D/M249710/M249710D<br>* E-EE171000D/171450/171451D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 272.5<br>269 | 335<br>340         | 5<br>6  | 85.6<br>71.8 |
| * E-EE171000D/171450/171451D<br>* E-EE822101D/822175/822176D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 269<br>289   | 340<br>406         | 6<br>8  | 71.8<br>185  |
| E-EE022101D/022173/022170D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 209          | 400                | 0       | 100          |
| E-625952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 287          | 338.5              | 6       | 90.3         |
| E-CRO-5215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 290          | 359                | 8       | 106          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                    |         |              |

Note: 1. Bearing numbers marked " \* " designate inch series bearings.





### d 260.350 ~ 304.800mm


|         |                               | Boundary di                   | imensions                     |                                  |                    |                                  |                                   | ad ratings                               |                                            |
|---------|-------------------------------|-------------------------------|-------------------------------|----------------------------------|--------------------|----------------------------------|-----------------------------------|------------------------------------------|--------------------------------------------|
|         |                               | mn                            | n                             |                                  |                    | dynamic<br>kN                    | static                            | dynamic<br>kç                            | static<br>gf                               |
| d       | D                             | $B_2$                         | $C_2$                         | <i>I</i> ? ls min <sup>1</sup> ) | $r_{ m s min}^{1}$ | $C_{r}$                          | $C_{ m or}$                       | $C_{ m r}$                               | $\mathcal{C}_{	ext{or}}$                   |
| 260.350 | 365.125<br>400.050<br>422.275 | 228.600<br>255.588<br>314.325 | 228.600<br>253.995<br>317.500 | 3.3<br>1.5<br>6.4                | 6.4<br>6.4<br>3.3  | 1 750<br>2 090<br>2 980          | 4 550<br>4 950<br>7 100           | 178 000<br>213 000<br>305 000            | 465 000<br>505 000<br>725 000              |
| 266.700 | 355.600<br>393.700            | 230.188<br>269.878            | 228.600<br>269.878            | 1.5<br>3.3                       | 3.3<br>6.4         | 1 840<br>2 110                   | 5 350<br>6 000                    | 188 000<br>216 000                       | 545 000<br>610 000                         |
| 269.875 | 381.000                       | 282.575                       | 282.575                       | 3.3                              | 3.3                | 2 470                            | 6 850                             | 252 000                                  | 700 000                                    |
| 270     | 410                           | 222                           | 222                           | 4                                | 4                  | 1 910                            | 4 550                             | 195 000                                  | 465 000                                    |
| 275     | 385                           | 200                           | 200                           | 3                                | 3                  | 1 610                            | 4 250                             | 165 000                                  | 435 000                                    |
| 276.225 | 406.400                       | 268.290                       | 260.355                       | 1.5                              | 6.4                | 2 110                            | 6 000                             | 216 000                                  | 610 000                                    |
| 279.400 | 469.900                       | 346.075                       | 349.250                       | 6.4                              | 3.3                | 3 500                            | 8 700                             | 355 000                                  | 885 000                                    |
| 279.578 | 380.898                       | 244.475                       | 244.475                       | 1.5                              | 3.3                | 1 950                            | 6 200                             | 199 000                                  | 635 000                                    |
| 280     | 395                           | 288                           | 288                           | 5                                | 4                  | 2 560                            | 7 100                             | 261 000                                  | 725 000                                    |
| 285.750 | 380.898                       | 244.475                       | 244.475                       | 1.5                              | 3.3                | 1 950                            | 6 200                             | 199 000                                  | 635 000                                    |
| 288.925 | 406.400                       | 298.450                       | 298.450                       | 3.3                              | 3.3                | 2 980                            | 8 300                             | 305 000                                  | 850 000                                    |
| 292.100 | 476.250                       | 296.047                       | 292.100                       | 1.5                              | 3.3                | 3 050                            | 6 800                             | 310 000                                  | 695 000                                    |
| 300     | 424<br>460<br>470<br>470      | 310<br>360<br>270<br>292      | 310<br>360<br>270<br>292      | 5<br>4<br>4<br>4                 | 4<br>4<br>4<br>4   | 2 570<br>4 050<br>3 200<br>3 500 | 7 450<br>10 100<br>7 250<br>8 300 | 262 000<br>415 000<br>325 000<br>360 000 | 760 000<br>1 030 000<br>740 000<br>845 000 |
| 300.038 | 422.275                       | 311.150                       | 311.150                       | 3.3                              | 3.3                | 3 350                            | 9 600                             | 340 000                                  | 980 000                                    |
| 304.648 | 438.048<br>438.048            | 279.400<br>280.990            | 279.400<br>279.400            | 3.3<br>3.3                       | 3.3<br>4.8         | 2 470<br>2 630                   | 6 500<br>6 900                    | 252 000<br>268 000                       | 665 000<br>700 000                         |
| 304.800 | 419.100<br>444.500            | 269.875<br>247.650            | 269.875<br>241.300            | 1.5<br>8                         | 6.4<br>1.5         | 2 390<br>1 850                   | 6 850<br>4 600                    | 244 000<br>188 000                       | 695 000<br>470 000                         |



| Bearing numbers                                                                                     | Abutme                       | nt and fillet dime              | ensions | Mass      |
|-----------------------------------------------------------------------------------------------------|------------------------------|---------------------------------|---------|-----------|
|                                                                                                     |                              | mm                              |         | kg        |
|                                                                                                     | $d_{\!\scriptscriptstyle a}$ | $D_{\!\scriptscriptstyle  m a}$ | $S_{a}$ | (approx.) |
| * E-EE134102D/134143/134144D                                                                        | 282                          | 340                             | 6.5     | 76.5      |
| * E-EE221027D/221575/221576D                                                                        | 292                          | 367                             | 8       | 117       |
| * E-HM252349D/HM252310/HM252310D                                                                    | 290                          | 392                             | 5.5     | 180       |
| * T-E-LM451349D/LM451310/LM451310D                                                                  | 281                          | 335                             | 6.5     | 62        |
| * E-EE275106D/275155/275156D                                                                        | 292                          | 367                             | 5       | 116       |
| * E-M252349D/M252310/M252310D                                                                       | 290                          | 356                             | 6       | 97.5      |
| E-CRO-5403                                                                                          | 305                          | 382                             | 6       | 91        |
| E-CRO-5501                                                                                          | 300                          | 355                             | 6       | 62.5      |
| * E-EE275109D/275160/275161D                                                                        | 293.6                        | 366                             | 8       | 122       |
| * E-EE722111D/722185/722186D                                                                        | 316                          | 432                             | 5       | 258       |
| * T-E-LM654644D/LM654610/LM654610D                                                                  | 297                          | 356                             | 5       | 83.2      |
| E-625956                                                                                            | 304.5                        | 363.5                           | 7       | 111       |
| * T-E-LM654648D/LM654610/LM654610D                                                                  | 302                          | 356                             | 5       | 77.9      |
| * E-M255449D/M255410/M255410D                                                                       | 310                          | 379                             | 5       | 125       |
| * E-EE921150D/921875/921876D                                                                        | 321                          | 441                             | 7       | 208       |
| E-625960                                                                                            | 329                          | 389.5                           | 7       | 138       |
| E-CRO-6015                                                                                          | 330                          | 427                             | 10      | 180       |
| E-CRO-6012                                                                                          | 338                          | 438                             | 7       | 152       |
| E-CRO-6013                                                                                          | 336                          | 437                             | 7       | 164       |
| * T-E-HM256849D/HM256810/HM256810DG2                                                                | 322                          | 394                             | 6       | 143       |
| * E-EE329119D/329172/329173D                                                                        | 328                          | 409                             | 8       | 143       |
| * E-M757448D/M757410/M757410D                                                                       | 328                          | 407                             | 7       | 140       |
| * E-M257149D/M257110/M257110D                                                                       | 322                          | 392                             | 5       | 115       |
| * E-EE291202D/291750/291751D  lote: 1. Bearing numbers marked " * " designate inch series bearings. | 328                          | 416                             | 9.5     | 127       |

Bearing numbers marked " \* " designate inch series bearings.
 Bearing numbers marked " " designate bearing with hollow rollers and pin type cages.





### d 304.800 ~ 360mm

|         |                                          | Boundary di                              | imensions                                |                          |                          | A                                |                                   | ad ratings                               | -1-1-                                      |
|---------|------------------------------------------|------------------------------------------|------------------------------------------|--------------------------|--------------------------|----------------------------------|-----------------------------------|------------------------------------------|--------------------------------------------|
|         |                                          | mn                                       | n                                        |                          |                          | dynamic<br>kN                    | static                            | dynamic<br>kı                            | static<br>gf                               |
| d       | D                                        | $B_2$                                    | $C_2$                                    | Ins min 1)               | $r_{ m smin}^{1}$        | $C_{\Gamma}$                     | $C_{ m or}$                       | $C_{ m r}$                               | $C_{ m or}$                                |
| 304.800 | 495.300                                  | 342.900                                  | 349.250                                  | 3.3                      | 6.4                      | 3 650                            | 9 400                             | 370 000                                  | 960 000                                    |
| 304.902 | 412.648                                  | 266.700                                  | 266.700                                  | 3.3                      | 3.3                      | 2 610                            | 7 450                             | 267 000                                  | 760 000                                    |
| 305.003 | 438.048                                  | 280.990                                  | 279.400                                  | 3.3                      | 4.8                      | 2 630                            | 6 900                             | 268 000                                  | 700 000                                    |
| 317.500 | 422.275<br>447.675                       | 269.875<br>327.025                       | 269.875<br>327.025                       | 1.5<br>3.3               | 3.3<br>3.3               | 2 260<br>3 400                   | 7 050<br>9 550                    | 231 000<br>345 000                       | 715 000<br>975 000                         |
| 320     | 460                                      | 338                                      | 338                                      | 5                        | 4                        | 2 940                            | 8 650                             | 300 000                                  | 880 000                                    |
| 330     | 470<br>510                               | 340<br>340                               | 340<br>340                               | 2.5<br>6                 | 2.5<br>6                 | 3 150<br>3 900                   | 10 200<br>9 650                   | 320 000<br>395 000                       | 1 040 000<br>985 000                       |
| 330.200 | 482.600                                  | 306.388                                  | 311.150                                  | 1.5                      | 3.3                      | 2 810                            | 7 900                             | 287 000                                  | 805 000                                    |
| 333.375 | 469.900                                  | 342.900                                  | 342.900                                  | 3.3                      | 3.3                      | 4 000                            | 11 000                            | 405 000                                  | 1 130 000                                  |
| 340     | 480                                      | 350                                      | 350                                      | 6                        | 5                        | 3 450                            | 10 400                            | 350 000                                  | 1 060 000                                  |
| 341.312 | 457.098                                  | 254.000                                  | 254.000                                  | 1.5                      | 3.3                      | 2 370                            | 6 900                             | 241 000                                  | 705 000                                    |
| 342.900 | 533.400                                  | 307.985                                  | 301.625                                  | 3.3                      | 3.3                      | 3 150                            | 6 900                             | 320 000                                  | 705 000                                    |
| 343.052 | 457.098                                  | 254.000                                  | 254.000                                  | 1.5                      | 3.3                      | 2 370                            | 6 900                             | 241 000                                  | 705 000                                    |
| 346.075 | 488.950                                  | 358.775                                  | 358.775                                  | 3.3                      | 3.3                      | 4 350                            | 12 800                            | 445 000                                  | 1 300 000                                  |
| 347.662 | 469.900                                  | 292.100                                  | 292.100                                  | 3.3                      | 3.3                      | 3 200                            | 9 100                             | 325 000                                  | 925 000                                    |
| 355     | 490                                      | 316                                      | 316                                      | 1.5                      | 3.3                      | 3 500                            | 10 000                            | 355 000                                  | 1 020 000                                  |
| 355.600 | 444.500<br>457.200<br>482.600<br>488.950 | 241.300<br>252.412<br>265.112<br>317.500 | 241.300<br>252.412<br>269.875<br>317.500 | 1.5<br>1.5<br>1.5<br>1.5 | 3.3<br>3.3<br>3.3<br>3.3 | 1 760<br>2 470<br>2 790<br>3 500 | 6 200<br>7 850<br>7 650<br>10 000 | 180 000<br>251 000<br>285 000<br>355 000 | 635 000<br>800 000<br>780 000<br>1 020 000 |
| 360     | 508<br>600                               | 370<br>540                               | 370<br>540                               | 6<br>5                   | 5<br>5                   | 3 700<br>6 700                   | 11 200<br>18 100                  | 380 000<br>685 000                       | 1 140 000<br>1 840 000                     |

<sup>1 )</sup> Minimum allowable dimension for chamfer dimension r or r1.



Bearing numbers

Mass

236

520

|                                                                                                                                        |                                 | mm                              |                                 | kg                       |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------|
|                                                                                                                                        | $d_{\!\scriptscriptstyle  m a}$ | $D_{\!\scriptscriptstyle  m a}$ | $S_{\!\scriptscriptstyle  m a}$ | (approx.)                |
| * E-EE724121D/724195/724196D                                                                                                           | 330                             | 450                             | 3                               | 273                      |
| * E-M257248D/M257210/M257210D                                                                                                          | 325                             | 388                             | 5                               | 107                      |
| * E-M757449D/M757410/M757410D                                                                                                          | 328                             | 407                             | 7                               | 139                      |
| * E-LM258649D/LM258610/LM258610D<br>* T-E-HM259049D/HM259010/HM259010D                                                                 | 333.3<br>339.6                  | 398<br>418                      | 7<br>5                          | 110<br>161               |
| E-625964                                                                                                                               | 355                             | 420.5                           | 7                               | 183                      |
| E-CRO-6604<br>E-CRO-6602                                                                                                               | 366<br>366                      | 440<br>469                      | 5.5<br>5                        | 141<br>221               |
| * E-EE526131D/526190/526191D                                                                                                           | 351                             | 448                             | 3                               | 197                      |
| * E-HM261049D/HM261010/HM261010D                                                                                                       | 357                             | 439                             | 5                               | 187                      |
| E-625968                                                                                                                               | 373                             | 440                             | 7                               | 200                      |
| * E-LM761648D/LM761610/LM761610D                                                                                                       | 359                             | 432                             | 5                               | 125                      |
| * E-EE971355D/972100/972103D                                                                                                           | 378                             | 502                             | 11                              | 252                      |
| * E-LM761649D/LM761610/LM761610D                                                                                                       | 361                             | 432                             | 5                               | 117                      |
| * T-E-HM262749D/HM262710/HM262710DG2                                                                                                   | 371                             | 456                             | 6                               | 227                      |
| * E-M262449D/M262410/M262410D                                                                                                          | 369                             | 443                             | 8                               | 148                      |
| E-CRO-7105                                                                                                                             | 378                             | 450                             | 7                               | 170                      |
| * E-L163149D/L163110/L163110D<br>* E-LM263149D/LM263110/LM263110D<br>* E-LM763449D/LM763410/LM763410D<br>* E-M263349D/M263310/M263310D | 370<br>372<br>375<br>374        | 422<br>434<br>453<br>459        | 6.5<br>6<br>3<br>5              | 89.<br>106<br>145<br>173 |
|                                                                                                                                        |                                 |                                 |                                 |                          |

Abutment and fillet dimensions

E-625972

E-CRO-7210



394

400


466.5

550

Note: 1. Bearing numbers marked " \* " designate inch series bearings.

2. Bearing numbers marked " " designate bearing with hollow rollers and pin type cages.





#### d 368.300 ~ 447.675mm

|         |                               | Boundary di                   | mensions                      |                       |                   |                         |                            | ad ratings                      |                                     |
|---------|-------------------------------|-------------------------------|-------------------------------|-----------------------|-------------------|-------------------------|----------------------------|---------------------------------|-------------------------------------|
|         |                               | mn                            | า                             |                       |                   | dynamic<br>kN           | static                     | dynamic<br>kç                   | static<br>gf                        |
| d       | D                             | $B_2$                         | $C_2$                         | Pls min <sup>1)</sup> | $r_{ m smin}^{1}$ | $C_{ m r}$              | $C_{ m or}$                | $C_{\scriptscriptstyle \Gamma}$ | $C_{ m or}$                         |
| 368.300 | 523.875                       | 382.588                       | 382.588                       | 3.3                   | 6.4               | 4 450                   | 13 100                     | 455 000                         | 1 330 000                           |
| 374.650 | 501.650                       | 250.825                       | 260.350                       | 1.5                   | 3.3               | 2 360                   | 6 250                      | 241 000                         | 640 000                             |
| 380     | 536<br>560                    | 390<br>285                    | 390<br>285                    | 6<br>5                | 5<br>5            | 4 900<br>3 250          | 14 100<br>7 700            | 500 000<br>330 000              | 1 440 000<br>785 000                |
| 384.175 | 546.100                       | 400.050                       | 400.050                       | 3.3                   | 6.4               | 5 400                   | 16 100                     | 560 000                         | 1 640 000                           |
| 385.762 | 514.350                       | 317.500                       | 317.500                       | 3.3                   | 3.3               | 3 650                   | 11 100                     | 370 000                         | 1 130 000                           |
| 393.700 | 546.100                       | 288.925                       | 288.925                       | 1.5                   | 6.4               | 3 200                   | 10 200                     | 325 000                         | 1 040 000                           |
| 395     | 545                           | 268.7                         | 288.7                         | 4                     | 7.5               | 2 970                   | 8 650                      | 305 000                         | 880 000                             |
| 400     | 560<br>564                    | 380<br>412                    | 380<br>412                    | 5<br>6                | 5<br>5            | 4 800<br>4 850          | 14 100<br>14 700           | 490 000<br>495 000              | 1 440 000<br>1 500 000              |
| 406.400 | 546.100<br>590.550<br>609.600 | 288.925<br>400.050<br>309.562 | 288.925<br>400.050<br>317.500 | 1.5<br>3.3<br>3.5     | 6.4<br>6.4<br>6.4 | 3 200<br>4 850<br>3 700 | 10 200<br>13 600<br>9 600  | 325 000<br>490 000<br>380 000   | 1 040 000<br>1 380 000<br>980 000   |
| 409.575 | 546.100                       | 334.962                       | 334.962                       | 1.5                   | 6.4               | 4 100                   | 12 700                     | 415 000                         | 1 290 000                           |
| 415.925 | 590.550                       | 434.975                       | 434.975                       | 3.3                   | 6.4               | 6 300                   | 18 900                     | 640 000                         | 1 930 000                           |
| 420     | 592<br>650                    | 432<br>460                    | 432<br>460                    | 6<br>5                | 5<br>5            | 5 350<br>6 950          | 16 300<br>18 300           | 545 000<br>710 000              | 1 660 000<br>1 870 000              |
| 431.800 | 571.500<br>571.500            | 279.400<br>336.550            | 279.400<br>336.550            | 1.5<br>1.5            | 3.3<br>6.4        | 3 100<br>3 700          | 9 300<br>11 800            | 315 000<br>380 000              | 950 000<br>1 200 000                |
| 432.003 | 609.524                       | 317.500                       | 317.500                       | 3.5                   | 6.4               | 4 350                   | 11 500                     | 445 000                         | 1 170 000                           |
| 440     | 620<br>650<br>650             | 454<br>355<br>460             | 454<br>355<br>460             | 6<br>4<br>6           | 6<br>7.5<br>6     | 6 500<br>5 350<br>6 750 | 19 900<br>13 400<br>20 700 | 665 000<br>545 000<br>690 000   | 2 030 000<br>1 370 000<br>2 110 000 |
| 447.675 | 635.000                       | 463.550                       | 463.550                       | 3.3                   | 6.4               | 7 100                   | 22 100                     | 725 000                         | 2 260 000                           |

<sup>1 )</sup> Minimum allowable dimension for chamfer dimension r or r1.



**Bearing numbers** 

Mass

kg

|                                                                                                  | $d_{\rm a}$       | $D_{\!\scriptscriptstyle  m a}$ | $S_{a}$           | (approx.)         |
|--------------------------------------------------------------------------------------------------|-------------------|---------------------------------|-------------------|-------------------|
| * E-HM265049D/HM265010/HM265010DG2                                                               | 393.7             | 487                             | 6                 | 280               |
| * E-LM765149D/LM765110/LM765110D                                                                 | 393               | 472                             | 2                 | 145               |
| E-625976<br>E-CRO-7612                                                                           | 410<br>417        | 495<br>525                      | 8<br>7            | 277<br>208        |
| * T-E-HM266449D/HM266410/HM266410DG2                                                             | 411               | 507                             | 6.5               | 312               |
| * E-LM665949D/LM665910/LM665910D                                                                 | 409               | 482                             | 7                 | 240               |
| * E-LM767745D/LM767710/LM767710D                                                                 | 418               | 510                             | 6.5               | 219               |
| E-CRO-7901                                                                                       | 434               | 508                             | 3                 | 200               |
| E-CRO-8005<br>E-625980                                                                           | 426<br>434        | 510<br>518.5                    | 8<br>7            | 300<br>324        |
| * E-LM767749D/LM767710/LM767710D<br>* E-EE833161D/833232/833233D<br>* E-EE911603D/912400/912401D | 427<br>448<br>441 | 510<br>549<br>568               | 6.5<br>6.5<br>1.5 | 201<br>395<br>332 |
| * E-M667947D/M667911/M667911DG2                                                                  | 431               | 510                             | 5.5               | 226               |
| * T-E-M268749D/M268710/M268710DG2                                                                | 444               | 549                             | 9                 | 396               |
| E-625984<br>E-CRO-8402                                                                           | 457<br>455        | 545<br>593                      | 7<br>8            | 374<br>600        |
| * E-LM869449D/LM869410/LM869410D<br>* E-LM769349D/LM769310/LM769310D                             | 453<br>453        | 537<br>534                      | 8<br>6.5          | 198<br>232        |
| * E-EE736173D/736238/736239D                                                                     | 464               | 572                             | 6.5               | 297               |

Abutment and fillet dimensions

mm

\* E-M270749D/M270710/M270710DAG2

E-625988

E-CRO-8807

E-CRO-8806



479

484

483

478

572.5

607

595

591

8

9

11

8

430

400


600

509

Note: 1. Bearing numbers marked " \* " designate inch series bearings.

2. Bearing numbers marked " " designate bearing with hollow rollers and pin type cages.



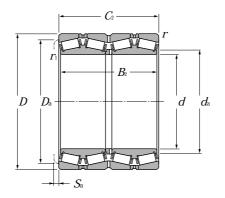


### d 457.200 ~ 571.500mm

| Boundary dimensions |            |                 |                 |            | Basic load ratings  |                |                  |                    |                        |
|---------------------|------------|-----------------|-----------------|------------|---------------------|----------------|------------------|--------------------|------------------------|
|                     |            | mn              | n               |            |                     | dynamic<br>kl  | static<br>N      | dynamic<br>k       | static<br>gf           |
|                     |            |                 |                 |            |                     |                |                  |                    | _                      |
| d                   | D          | $B_2$           | $C_2$           | Ins min 1) | $r_{\rm s min}^{1}$ | $C_{ m r}$     | $C_{ m or}$      | $C_{ m r}$         | $C_{ m or}$            |
| 457.000             | 596.900    | 276.225         | 279.400         | 1.5        | 3.3                 | 3 350          | 10 300           | 360 000            | 1 060 000              |
| 457.200             | 660.400    | 323.850         | 323.847         | 3.3        | 6.4                 | 4 150          | 11 200           | 425 000            | 1 140 000              |
| 400                 |            |                 |                 |            |                     |                |                  |                    |                        |
| 460                 | 650        | 474             | 474             | 6          | 6                   | 6 500          | 19 900           | 665 000            | 2 030 000              |
| 475                 | 660        | 450             | 450             | 3          | 5                   | 6 300          | 20 400           | 645 000            | 2 080 000              |
| 400                 | 678        | 494             | 494             | 6          | 6                   | 6 250          | 19 600           | 640 000            | 2 000 000              |
| 480                 | 700        | 390             | 390             | 6          | 6                   | 4 700          | 13 400           | 480 000            | 1 370 000              |
| 400 600             | 045.050    | 222.222         | 222.222         |            | 0.4                 | 4.000          | 10.100           | 40.5.000           | 4.070.000              |
| 482.600             | 615.950    | 330.200         | 330.200         | 3.3        | 6.4                 | 4 000          | 13 400           | 405 000            | 1 370 000              |
| 488.950             | 660.400    | 365.125         | 361.950         | 8          | 6.4                 | 5 350          | 16 100           | 550 000            | 1 640 000              |
| 489.026             | 634.873    | 320.675         | 320.675         | 3.3        | 3.3                 | 3 650          | 12 000           | 370 000            | 1 220 000              |
|                     | 670        | 515             | 515             | 1.5        | 5                   | 6 900          | 24 600           | 700 000            | 2 510 000              |
| 500                 | 690        | 480             | 480             | 5          | 5                   | 6 000          | 19 900           | 610 000            | 2 020 000              |
|                     | 705<br>730 | 515<br>440      | 515<br>440      | 6<br>6     | 6<br>6              | 8 450<br>7 200 | 27 100<br>20 600 | 860 000<br>735 000 | 2 760 000<br>2 100 000 |
|                     | 730        | <del>11</del> 0 | <del>44</del> 0 |            |                     | 7 200          | 20 000           | 733 000            | 2 100 000              |
| 501.650             | 711.200    | 520.700         | 520.700         | 3.3        | 6.4                 | 8 650          | 27 300           | 885 000            | 2 790 000              |
| 514.350             | 673.100    | 422.275         | 422.275         | 3.3        | 6.4                 | 5 950          | 20 500           | 605 000            | 2 090 000              |
| 519.112             | 736.600    | 536.575         | 536.575         | 3.3        | 6.4                 | 9 100          | 28 700           | 925 000            | 2 930 000              |
| 520                 | 735        | 535             | 535             | 7          | 5                   | 9 100          | 28 700           | 925 000            | 2 930 000              |
| 536.575             | 761.873    | 558.800         | 558.800         | 3.3        | 6.4                 | 10 100         | 30 500           | 1 030 000          | 3 100 000              |
|                     | 736.600    | 322.265         | 322.268         | 3.3        | 6.4                 | 4 300          | 13 500           | 435 000            | 1 380 000              |
| 558.800             | 736.600    | 409.575         | 409.575         | 3.3        | 6.4                 | 6 100          | 20 500           | 625 000            | 2 090 000              |
|                     |            |                 |                 |            |                     |                |                  |                    |                        |
| 570                 | 780        | 515<br>500      | 515<br>500      | 6          | 6                   | 9 200          | 31 000           | 935 000            | 3 150 000              |
|                     | 810        | 590             | 590             | 6          | 6                   | 11 000         | 35 500           | 1 120 000          | 3 600 000              |
| 571.500             | 812.800    | 593.725         | 593.725         | 3.3        | 6.4                 | 11 900         | 36 500           | 1 220 000          | 3 750 000              |
|                     |            |                 |                 |            |                     |                |                  |                    |                        |






| R    |
|------|
| مسلم |
|      |

| Bearing numbers                    | Abutme                                | Abutment and fillet dimensions  |                                                 |           |  |  |
|------------------------------------|---------------------------------------|---------------------------------|-------------------------------------------------|-----------|--|--|
| 🕻                                  |                                       |                                 |                                                 | l.a       |  |  |
|                                    |                                       | mm                              |                                                 | kg        |  |  |
|                                    | $d_{\!\scriptscriptstyle \mathrm{a}}$ | $D_{\!\scriptscriptstyle  m a}$ | $\mathcal{S}_{\!\scriptscriptstyle \mathrm{a}}$ | (approx.) |  |  |
| * E-L770849D/L770810/L770810DG2    | 478                                   | 567                             | 5.5                                             | 209       |  |  |
| * E-EE737179D/737260/737260D       | 495                                   | 616                             | 6.5                                             | 379       |  |  |
| E-625992A                          | 499                                   | 598.5                           | 7                                               | 493       |  |  |
| E-CRO-9501                         | 506                                   | 614                             | 10                                              | 465       |  |  |
| E-625996                           | 525                                   | 623                             | 7                                               | 563       |  |  |
| E-CRO-9602                         | 517                                   | 645                             | 8                                               | 436       |  |  |
| * E-LM272249D/LM272210/LM272210DG2 | 504                                   | 585                             | 6.5                                             | 250       |  |  |
| * T-E-EE640193D/640260/640261DG2   | 519                                   | 624                             | 9                                               | 364       |  |  |
| * E-LM772749D/LM772710/LM772710D   | 513                                   | 600                             | 6.5                                             | 268       |  |  |
| E-CRO-10008                        | 520                                   | 616                             | 8                                               | 598       |  |  |
| E-CRO-10005                        | 530                                   | 640                             | 7                                               | 600       |  |  |
| E-6259/500                         | 553                                   | 649.5                           | 7.5                                             | 632       |  |  |
| E-CRO-10003                        | 550                                   | 683                             | 11                                              | 535       |  |  |
| * E-M274149D/M274110/M274110DG2    | 534                                   | 663                             | 9.5                                             | 726       |  |  |
| * E-LM274449D/LM274410/LM274410D   | 540                                   | 648                             | 8                                               | 390       |  |  |
| * E-M275349D/M275310/M275310DG2    | 552                                   | 684                             | 9.5                                             | 761       |  |  |
| E-CRO-10402                        | 558                                   | 688                             | 11                                              | 750       |  |  |
| * E-M276449D/M276410/M276410DG2    | 564                                   | 711                             | 9.5                                             | 890       |  |  |
| * E-EE843221D/843290/843291D       | 585                                   | 699                             | 8.5                                             | 388       |  |  |
| * E-LM377449D/LM377410/LM377410DG2 | 588                                   | 696                             | 8                                               | 502       |  |  |
| E-CRO-11402                        | 609                                   | 733                             | 7.5                                             | 625       |  |  |
| E-CRO-11403                        | 620                                   | 760                             | 10                                              | 845       |  |  |
| * E-M278749D/M278710/M278710DAG2   | 609                                   | 756                             | 11                                              | 1 080     |  |  |

Note: 1. Bearing numbers marked " \* " designate inch series bearings.

2. Bearing numbers marked " " designate bearing with hollow rollers and pin type cages.





#### d 584.200 ~ 840mm

|         |           | Boundary di | mensions | dynamic         | Basic Id           | oad ratings<br>dynamic | ic static   |                                 |             |
|---------|-----------|-------------|----------|-----------------|--------------------|------------------------|-------------|---------------------------------|-------------|
|         |           | mn          | า        |                 |                    | kN                     | Static      |                                 | gf          |
| d       | D         | $B_2$       | $C_2$    | $I \sim 10^{1}$ | $r_{ m s min}^{1}$ | $C_{ m r}$             | $C_{ m or}$ | $C_{\scriptscriptstyle \Gamma}$ | $C_{ m or}$ |
| 584.200 | 762.000   | 396.875     | 401.638  | 3.3             | 6.4                | 6 550                  | 22 300      | 670 000                         | 2 280 000   |
| 585.788 | 771.525   | 479.425     | 479.425  | 3.3             | 6.4                | 7 350                  | 25 700      | 750 000                         | 2 620 000   |
| 595.312 | 844.550   | 615.950     | 615.950  | 3.3             | 6.4                | 12 600                 | 40 500      | 1 290 000                       | 4 100 000   |
| 609.600 | 787.400   | 361.950     | 361.950  | 3.3             | 6.4                | 6 450                  | 20 300      | 655 000                         | 2 070 000   |
| 657.225 | 933.450   | 676.275     | 676.275  | 3.3             | 6.4                | 15 300                 | 48 000      | 1 560 000                       | 4 900 000   |
| 660     | 1 070     | 642         | 642      | 7.5             | 7.5                | 15 400                 | 43 500      | 1 570 000                       | 4 450 000   |
| 660.400 | 812.800   | 365.125     | 365.125  | 3.3             | 6.4                | 6 200                  | 23 200      | 630 000                         | 2 360 000   |
| 679.450 | 901.700   | 552.450     | 552.450  | 3.3             | 6.4                | 11 200                 | 38 000      | 1 140 000                       | 3 900 000   |
| 680     | 870       | 460         | 460      | 3               | 6                  | 7 500                  | 27 400      | 765 000                         | 2 790 000   |
| 682.625 | 965.200   | 701.675     | 701.675  | 3.3             | 6.4                | 16 100                 | 50 500      | 1 640 000                       | 5 150 000   |
| 685.800 | 876.300   | 352.425     | 355.600  | 3.3             | 6.4                | 6 050                  | 21 800      | 615 000                         | 2 220 000   |
| 710     | 900       | 410         | 410      | 2.5             | 5                  | 7 650                  | 26 900      | 780 000                         | 2 740 000   |
| 711.200 | 914.400   | 317.500     | 317.500  | 3.3             | 6.4                | 5 350                  | 17 900      | 545 000                         | 1 820 000   |
| 730     | 1 070     | 642         | 642      | 7.5             | 7.5                | 15 400                 | 46 500      | 1 570 000                       | 4 750 000   |
| 730.250 | 1 035.050 | 755.650     | 755.650  | 3.3             | 6.4                | 18 100                 | 59 500      | 1 850 000                       | 6 050 000   |
| 749.300 | 990.600   | 605.000     | 605.000  | 3.3             | 6.4                | 12 600                 | 45 500      | 1 290 000                       | 4 650 000   |
| 762.000 | 1 079.500 | 787.400     | 787.400  | 4.8             | 12.7               | 19 200                 | 65 000      | 1 960 000                       | 6 600 000   |
| 800     | 1 120     | 820         | 820      | 7               | 7.5                | 21 000                 | 72 500      | 2 140 000                       | 7 400 000   |
| 825.500 | 1 168.400 | 844.550     | 844.550  | 4.8             | 12.7               | 22 300                 | 76 500      | 2 270 000                       | 7 800 000   |
| 840     | 1 170     | 840         | 840      | 6               | 6                  | 21 900                 | 76 500      | 2 230 000                       | 7 800 000   |





Bearing numbers

Mass

Abutment and fillet dimensions

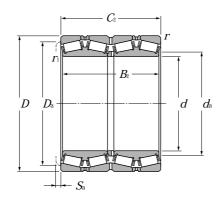
| bearing numbers                    | Abutille                        | Abutilient and fillet diffiensions |                                 |           |  |  |
|------------------------------------|---------------------------------|------------------------------------|---------------------------------|-----------|--|--|
|                                    |                                 | mm                                 |                                 | kg        |  |  |
|                                    | $d_{\!\scriptscriptstyle  m a}$ | $D_{a}$                            | $S_{\!\scriptscriptstyle  m a}$ | (approx.) |  |  |
| * E-LM778549D/LM778510/LM778510DG2 | 615                             | 717                                | 7                               | 511       |  |  |
| * E-LM278849D/LM278810/LM278810D   | 615                             | 726                                | 10                              | 750       |  |  |
| * E-M280049D/M280010/M280010DG2    | 633                             | 786                                | 11                              | 1 160     |  |  |
| * E-EE649241D/649310/649311DG2     | 636                             | 747                                | 9.5                             | 458       |  |  |
| * E-M281649D/M281610/M281610DG2    | 699                             | 870                                | 11                              | 1 630     |  |  |
| E-CRO-13202                        | 760                             | 991                                | 9                               | 1 950     |  |  |
| * E-L281149D/L281110/L281110DG2    | 682.8                           | 777                                | 9                               | 448       |  |  |
| * E-LM281849D/LM281810/LM281810DG2 | 714                             | 852                                | 11                              | 1 040     |  |  |
| E-CRO-13602                        | 713                             | 824                                | 8                               | 582       |  |  |
| * E-M282249D/M282210/M282210DG2    | 723                             | 900                                | 13                              | 1 770     |  |  |
| * E-EE655271D/655345/655346DG2     | 717                             | 831                                | 8                               | 539       |  |  |
| E-CRO-14208                        | 745                             | 850                                | 10                              | 620       |  |  |
| * E-EE755281D/755360/755361DG2     | 744                             | 873                                | 9.5                             | 527       |  |  |
| E-CRO-14601                        | 780                             | 1 020                              | 7                               | 1 900     |  |  |
| * E-M283449D/M283410/M283410DG2    | 774                             | 966                                | 13                              | 2 210     |  |  |
| * E-LM283649D/LM283610/LM283610DG2 | 786                             | 936                                | 10.5                            | 1 310     |  |  |
| * E-M284249D/M284210/M284210DG2    | 810                             | 1 005                              | 13                              | 2 480     |  |  |
| E-CRO-16001                        | 858                             | 1 052                              | 10                              | 3 960     |  |  |
| * E-M285848D/M285810/M285810DG2    | 879                             | 1 085                              | 13                              | 3 010     |  |  |
| E 000 /000                         |                                 |                                    |                                 |           |  |  |

E-CRO-16803



897

1 099


12

3 970

Note: 1. Bearing numbers marked " \* " designate inch series bearings.

2. Bearing numbers marked " " designate bearing with hollow rollers and pin type cages.

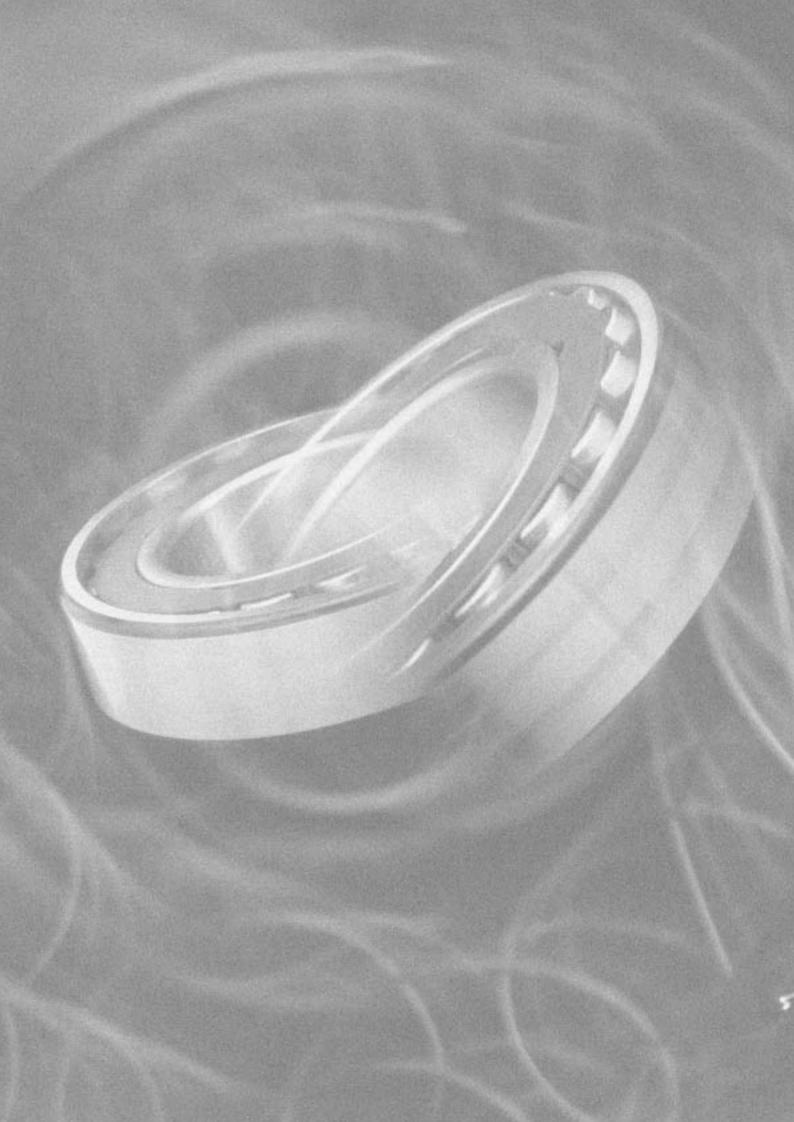




### d 863.600 ~ 1 200.150mm

|   |         |                        | <b>Boundary d</b> i |                    | Basic load ratings dynamic static dynamic kN kgf |                       |                  | static           |                                 |                          |
|---|---------|------------------------|---------------------|--------------------|--------------------------------------------------|-----------------------|------------------|------------------|---------------------------------|--------------------------|
|   | d       | D                      | $B_2$               | $C_2$              | Ns min <sup>1)</sup>                             | r <sub>s min</sub> 1) | $C_{ m r}$       | $C_{ m or}$      | $C_{\scriptscriptstyle \Gamma}$ | $\mathcal{C}_{	ext{or}}$ |
|   | 863.600 | 1 130.300<br>1 219.200 | 669.925<br>876.300  | 669.925<br>889.000 | 4.8<br>4.8                                       | 12.7<br>12.7          | 15 800<br>24 100 | 59 500<br>83 000 | 1 610 000<br>2 450 000          | 6 050 000<br>8 450 000   |
|   | 938.212 | 1 270.000              | 825.500             | 825.500            | 4.8                                              | 12.7                  | 22 500           | 80 000           | 2 300 000                       | 8 150 000                |
|   | 950     | 1 360                  | 880                 | 880                | 4                                                | 7.5                   | 27 000           | 89 000           | 2 750 000                       | 9 050 000                |
| 1 | 200.150 | 1 593.850              | 990.600             | 990.600            | 4.8                                              | 12.7                  | 33 500           | 132 000          | 3 400 000                       | 13 500 000               |






| Bearing numbers                                                      | Abutm                         | ent and fillet dim              | nensions                        | Mass           |
|----------------------------------------------------------------------|-------------------------------|---------------------------------|---------------------------------|----------------|
|                                                                      |                               | mm                              |                                 | kg             |
|                                                                      | $d_{\scriptscriptstyle \! a}$ | $D_{\!\scriptscriptstyle  m a}$ | $S_{\!\scriptscriptstyle  m a}$ | (approx.)      |
| * E-LM286249D/LM286210/LM286210DG2<br>* E-EE547341D/547480/547481DG2 | 906<br>918                    | 1 065<br>1 135                  | 11<br>6.5                       | 1 950<br>3 640 |
| * E-LM287649D/LM287610/LM287610DG2                                   | 990                           | 1 190                           | 10                              | 4 100          |
| E-CRO-19001                                                          | 1 030                         | 1 278                           | 12                              | 4 100          |
| * E-LM288949D/LM288910/LM288910DG2                                   | 1 260                         | 1 500                           | 13                              | 6 130          |



Note: 1. Bearing numbers marked " \* " designate inch series bearings.

2. Bearing numbers marked " " designate bearing with hollow rollers and pin type cages.







#### 1. Types, construction and characteristics

Spherical roller bearings consist of an outer ring having a continuous spherical raceway within which operates two rows of barrel-shaped rollers which are in turn guided by an inner ring with two raceways separated by a center rib. (Refer to **Diagram 1**) This bearing has self-aligning properties, and therefore is suited for use where misalignment between the inner and outer rings occurs from housing installation error or shaft flexure.

Spherical roller bearings have a large capacity for radial loads, axial loads in either direction, and complex loads. They are also suited for applications where vibration and shock loads are encountered. When operating under axial loads, however, it is desirable to maintain conditions so that  $F_{\rm a}/F_{\rm f}$  2e in order to prevent sliding movement along the row of rollers not receiving the axial load. (For the value of e, refer to dimension tables.)

As shown in **Table 1**, in addition to standard type there are various other types of spherical roller bearings. Among these, **Type E** has a particularly high load capacity.

In addition to bearings with cylindrical bore, those with tapered bore are also available. Bearings with tapered bore are specified by attaching the suffix "K" to the end of the bearing's basic number. The standard taper ratio is 1:12 for bearings with a "K" suffix, but for bearings in series 240 and 241 the suffix "K30" indicates the taper ratio for a bearing is 1:30. Most tapered bore bearings incorporate the use of adapters and withdrawal sleeves for shaft mounting.

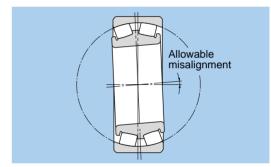



Diagram 1.

Table 1 Types of spherical roller bearings

| Туре                | Standard type (B type)         | C type                                                                           | 213 type                                                    | E type                                          |
|---------------------|--------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------|
| Construction        |                                |                                                                                  |                                                             |                                                 |
| Bearing series      | Does not include C type        | Series 222, 223, and 213 with bore dia. of 50 mm or less; series 24024 to 24038. | Series 213 with bore dia. of 55 mm or more                  | Series 22211 to 22218                           |
| Rollers             | Asymmetrical                   | Symmetrical                                                                      | Asymmetrical                                                | Symmetrical                                     |
| Roller guide method | Unified inner ring center rib  | By guide ring between the 2 rows of rollers                                      | By guide ring between rows of rollers on outer ring raceway | High precision cage (no guide ring, center rib) |
| cage type           | Pressed cage;<br>machined cage | Pressed cage                                                                     | Machined cage                                               | Molded resin cage                               |

#### 2. Standard cage types

Standard cage types for spherical roller bearings are shown in **Table 2**. In general, pressed cages are standard for small sized bearings, and machined cages are standard for large sized bearings.

E type bearings use as their standard cage type a cage molded from a newly developed glass fiber reinforced polyamide 46 resin which has excellent heat resistance qualities (allowable operating temperatures up to 150°C), strength, as well as unsurpassed oil resistance.

A standard cage may however not be able to be used for high-speed specifications, in high temperature atmospheres, or under excessive vibration/impact conditions. For more information concerning such conditions, please contact NTN Engineering.

Table 2 Standard cage types

| Bearing series | Molded resin cage | Pressed cage                       | Machined cage      |
|----------------|-------------------|------------------------------------|--------------------|
| 239            | -                 | -                                  | 23932 ~ 239/1400   |
| 230            | -                 | 23022B ~ 23048B                    | 23052B ~ 230/1120B |
| 240            | -                 | 24024C ~ 24038C                    | 24024B ~ 240/1120B |
| 231            | -                 | 23120B ~ 23136B                    | 23138B ~ 231/900B  |
| 241            | -                 | -                                  | 24122B ~ 241/710B  |
| 222            | 22211E ~ 22218E   | 22208C ~ 22210C<br>22211B ~ 22236B | 22238B ~ 22264B    |
| 232            | -                 | -                                  | 23218B ~ 232/750B  |
| 213            | -                 | 21308C ~ 21310C                    | 21311 ~ 21322      |
| 223            | -                 | 22308C ~ 22310C                    | 22330B ~ 22360B    |
|                |                   | 22311B ~ 22328B                    |                    |

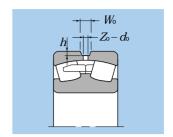



Table 3 Oil inlet and oil groove dimensions

Units mm

|      | l bearing | Oil groove          | Oil inlet            | Oil groove depth        |                   |  |
|------|-----------|---------------------|----------------------|-------------------------|-------------------|--|
| over | including | width<br><i>W</i> o | diameter $d_{\circ}$ | Width series<br>1, 2, 3 | Width series<br>4 |  |
| -    | 30        | 6                   | 3                    | 1.2                     | 1.0               |  |
| 30   | 45        | 7                   | 4                    | 1.5                     | 1.1               |  |
| 45   | 60        | 9                   | 5                    | 1.5                     | 1.3               |  |
| 60   | 80        | 11                  | 6                    | 2.0                     | 1.5               |  |
| 80   | 100       | 14                  | 8                    | 2.5                     | 2.0               |  |
| 100  | 120       | 16                  | 10                   | 3.0                     | 2.5               |  |
| 120  | 160       | 20                  | 12                   | 3.5                     | 3.0               |  |
| 160  | 200       | 27                  | 16                   | 5.0                     | 3.5               |  |
| 200  | 315       | 33                  | 20                   | 6.0                     | 5.0               |  |
| 315  | -         | 42                  | 25                   | 7.0                     | 6.5               |  |

Table 4 Oil inlet number

| Nominal outer diam over up to | eter mm | Oil inlet number |
|-------------------------------|---------|------------------|
| -                             | 320     | 4                |
| 320                           | 1 010   | 8                |
| 1 010                         | -       | 12               |

If a pin is necessary to prevent outer ring rotation, contact NTN Engineering.

#### 3. Oil inlets and oil groove dimensions

Spherical roller bearings with an outer diameter of 320mm or more are provided with an oil inlet and oil groove on the outer ring for the purpose of supplying lubricant to the bearing's moving parts. When necessary, oil inlets and oil grooves can also be provided on bearings with outer diameters less than 320 mm. In such cases, please add the supplementary suffix code "D1" to the end of the bearing number, and contact NTN Engineering. (Refer to page A-29)

**Table 3** lists dimensions for oil inlets and oil grooves. **Table 4** contains information about the number of oil inlets.

#### 4. Allowable misalignment

Spherical roller bearings possess the same self-aligning properties as other self-aligning bearings. The allowable misalignment angle will vary according to dimension series and load conditions, but the following misalignment angles are generally standard:

| Normal load (loads equivalent      |
|------------------------------------|
| to 0.09 <i>C</i> ):0.009rad (0.5°) |
| Light load:                        |



#### 5. Adapters and withdrawal sleeves

Adapters are used for installation of bearings with tapered bore on cylindrical shafts. Withdrawal sleeves are also used to install and disassemble bearings with tapered bore onto and off of cylindrical shafts. In disassembling the bearing from the shaft, the nut is pressed down against the edge of the inner ring utilizing the bolt provided on the withdrawal sleeve, and then the sleeve is drawn away from the bearing's inner diameter surface. (Precision of adapter and withdrawal sleeve are stipulated JIS B 1552 and JIS B 1556).

For bearings with a bore diameter of 200 mm or more, high pressure oil (hydraulic) type adapters and withdrawal sleeves have been standardized to make installation and disassembly easier. As shown in **Diagram 2** construction is designed to reduce friction by injecting high pressure oil between the surfaces of the adapter sleeve and bearing inner bore by means of a pressure fitting.

If the oil supply inlet is attached in the nut side of the adapter, the supplementary suffix "HF" should be added to the bearing number; if the oil supply inlet is attached on the opposite side, the suffix "HB" should be added to the bearing number. For adapter sleeves, the supplementary suffix "H" is added to the bearing's number in both cases.

The hydraulic sleeve nut is equipped with holes for bolts used for mounting and dismounting and holes for hydraulic piping. The suffix SP or SPB is added to the bearing number of the nut.

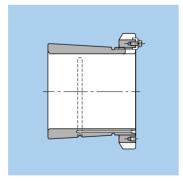



Diagram 2.

#### 6. LH series

In recent years, conditions under which spherical roller bearings are used have become increasingly severe. In particular, longer life is now demanded for use in high temperature environments.

Taking the global environment into account, NTN Engineering has developed a type of steel (STJ2) that offers longer life in a wide range of temperatures, from room temperature all the way up to 250°C. The steel is standardly used in NTN Engineering's **LH series of spherical roller bearings**.

Features are as follows (in comparison with SUJ2):

#### (1) Longer life in wide range of temperatures.

- 3.5 times longer life at room temperature.
- 30 times longer life at high temperature (250°C).

#### (2) Resists surface damage.

- 7 times stronger resistance to peeling
- 1.4 times stronger resistance to smearing
- 2.5 times stronger resistance to wear

#### (3) Dimensions stability at high temperatures.

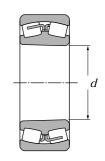
 Almost no dimensional variation when maintained at 250°C.

#### (4) Enhanced cracking fatigue strength.

- 2 times longer cracking fatigue life under high temperatures or tight fitting stress.
- 2 times better operating cracking fatigue strength.

#### (5) Simplified service part stock management.

 Applications ranging from room temperature to 250°C can be handles with a single type of standard bearing.


Items with LH preceding the basic number in the dimensions table are LH series and are gradually being switched.

Bearing numbers without LH can be manufactured according to size. For information, please contact NTN Engineering.









Cylindrical bore

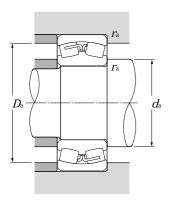
**Tapered bore** 



| <i>u</i> 23 | , , ,      |         |                       |             |             |             |             |          |                  |                 |                       |
|-------------|------------|---------|-----------------------|-------------|-------------|-------------|-------------|----------|------------------|-----------------|-----------------------|
| Вс          | oundary di | mension | 3                     |             | Basic Id    | oad ratings |             | Limiting | g speeds1)       | Bearing         | numbers4)             |
|             |            |         |                       | dynamic     | static      | dynamic     | static      |          |                  |                 |                       |
|             | mn         | า       |                       | kl          | N           | k           | gf          | m        | in <sup>-1</sup> |                 |                       |
|             |            |         |                       |             |             |             | -           |          |                  | cylindrical     | tapered <sup>2)</sup> |
| d           | D          | B       | $r_{ m s  min}^{3}$ ) | $C_{\rm r}$ | $C_{ m or}$ | $C_{ m r}$  | $C_{ m or}$ | grease   | oil              | bore            | bore                  |
|             |            |         |                       |             |             |             |             |          |                  |                 |                       |
| 25          | 52         | 18      | 1                     | 36.5        | 36          | 3 750       | 3 650       | 8 500    | 11 000           | 22205C          | 22205CK               |
| 25          |            |         |                       |             |             |             |             |          |                  |                 |                       |
| 30          | 62         | 20      | 1                     | 49          | 49          | 5 000       | 5 000       | 7 500    | 9 500            | 22206C          | 22206CK               |
|             |            |         |                       |             |             |             |             |          |                  |                 |                       |
| 35          | 72         | 23      | 1.1                   | 69.5        | 71          | 7 050       | 7 200       | 6 500    | 8 500            | 22207C          | 22207CK               |
|             |            |         |                       |             |             |             |             |          |                  |                 |                       |
|             | 80         | 23      | 1.1                   | 79          | 88.5        | 8 050       | 9 000       | 6 000    | 7 600            | LH-22208C       | LH-22208CK            |
| 40          | 90         | 23      | 1.5                   | 88          | 90          | 8 950       | 9 150       | 4 900    | 6 400            | 21308C          | 21308CK               |
|             | 90         | 33      | 1.5                   | 121         | 128         | 12 300      | 13 000      | 4 500    | 5 900            | 22308C          | 22308CK               |
|             |            |         |                       |             |             |             |             |          |                  |                 |                       |
|             | 85         | 23      | 1.1                   | 82.5        | 95          | 8 400       | 9 700       | 5 300    | 6 800            | LH-22209C       | LH-22209CK            |
| 45          | 100        | 25      | 1.5                   | 102         | 106         | 10 400      | 10 800      | 4 400    | 5 700            | 21309C          | 21309CK               |
| 43          | 100        | 36      | 1.5                   | 148         | 167         | 15 100      | 17 000      | 4 100    | 5 300            | 22309C          | 22309CK               |
|             | 100        |         | 1.0                   | 140         | 107         | 10 100      | 17 000      | + 100    | 0 000            | 223030          | 22000011              |
|             | 90         | 23      | 1.1                   | 86          | 102         | 8 750       | 10 400      | 4 900    | 6 300            | LH-22210C       | LH-22210CK            |
| 50          | 110        | 27      | 2                     | 118         | 127         | 12 000      | 12 900      | 4 000    | 5 200            | 21310C          | 21310CK               |
| 30          | 110        | 40      | 2                     | 186         | 212         | 19 000      | 21 600      | 3 700    | 4 800            | 22310C          | 22310CK               |
|             | 110        | 40      | 2                     | 100         | 212         | 19 000      | 21 600      | 3 700    | 4 000            | 223100          | 22310CK               |
|             | 100        | 25      | 1.5                   | 118         | 144         | 12 000      | 14 700      | 4 400    | 5 800            | LH-22211E       | LH-22211EK            |
|             | 100        | 25      | 1.5                   | 93.5        | 110         | 9 500       | 11 200      | 4 500    | 5 800            | LH-22211B       | LH-22211BK            |
| 55          | 120        | 29      | 2                     | 145         | 163         | 14 800      | 16 600      | 3 700    | 4 800            | 21311           | 21311K                |
|             | 120        | 43      | 2                     | 204         | 234         | 20 800      | 23 900      | 3 400    | 4 400            | 22311B          | 22311BK               |
|             | 120        | 43      |                       | 204         | 234         | 20 800      | 23 900      | 3 400    | 4 400            | 223110          | ZZSTIBK               |
|             | 110        | 28      | 1.5                   | 150         | 182         | 15 300      | 18 500      | 4 000    | 5 300            | LH-22212E       | LH-22212EK            |
|             | 110        | 28      | 1.5                   | 115         | 147         | 11 700      | 15 000      | 4 100    | 5 300            | LH-22212B       | LH-22212BK            |
| 60          | 130        | 31      | 2.1                   | 167         | 191         | 17 100      | 19 500      | 3 400    | 4 400            | 21312           | 21312K                |
|             | 130        | 46      |                       | 238         | 273         | 24 300      |             | 3 100    | 4 000            | 21312<br>22312B | -                     |
|             | 130        | 40      | 2.1                   | 230         | 213         | 24 300      | 27 800      | 3 100    | 4 000            | 223120          | 22312BK               |
|             | 120        | 31      | 1.5                   | 177         | 217         | 18 000      | 22 200      | 3 800    | 5 000            | LH-22213E       | LH-22213EK            |
|             | 120        | 31      | 1.5                   | 143         | 179         | 14 600      | 18 300      | 3 900    | 5 000            | LH-22213B       | LH-22213EK            |
| 65          |            |         |                       |             |             |             |             |          |                  |                 |                       |
|             | 140        | 33      | 2.1                   | 194         | 228         | 19 800      | 23 200      | 3 100    | 4 000            | 21313           | 21313K                |
|             | 140        | 48      | 2.1                   | 265         | 320         | 27 100      | 32 500      | 2 800    | 3 700            | 22313B          | 22313BK               |
|             | 125        | 31      | 1 5                   | 184         | 232         | 18 700      | 22 600      | 3 400    | 4 600            | LH-22214E       | LH-22214EK            |
|             | 125        |         | 1.5                   |             |             |             | 23 600      |          |                  |                 |                       |
| 70          | 125        | 31      | 1.5                   | 154         | 201         | 15 700      | 20 500      | 3 500    | 4 600            | LH-22214B       | LH-22214BK            |
|             | 150        | 35      | 2.1                   | 220         | 262         | 22 400      | 26 800      | 2 900    | 3 800            | 21314           | 21314K                |
|             | 150        | 51      | 2.1                   | 325         | 380         | 33 000      | 39 000      | 2 700    | 3 500            | 22314B          | 22314BK               |
| 75          | 400        | 0.4     | 4.5                   | 400         | 0.40        | 40.400      | 05.400      | 0.000    | 4.000            | 111 000455      | 111 00045516          |
| , 0         | 130        | 31      | 1.5                   | 190         | 246         | 19 400      | 25 100      | 3 200    | 4 200            | LH-22215E       | LH-22215EK            |






<sup>1)</sup> This value was achieved with machined cages and molded resin cages; for pressed cages, 75% of this value is allowable.

2) "K" indicates bearings have tapered bore with a taper ratio of 1: 12. 3) Smallest allowable dimension for chamfer dimension r.

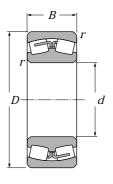
4) Bearing number with the prefix LH indicates LH series.

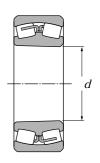
B-236





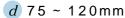
 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 


| $\frac{F_{\rm a}}{F_{\rm r}}$ | e     | $\frac{F_{\rm a}}{F_{\rm r}} > e$ |       |  |  |
|-------------------------------|-------|-----------------------------------|-------|--|--|
| X                             | Y     | X                                 | Y     |  |  |
| 1                             | $Y_1$ | 0.67                              | $Y_2$ |  |  |


**static**  $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}}F_{\text{a}}$  For values of e,  $Y_{\text{2}}$  and  $Y_{\text{0}}$  see the table below.

| А                                   | butment a | and fillet d   | imensions                    | 3                    | Constant                     | Axia                         | l load fac                   | ctors                        | Mass                         | (approx.)                     |
|-------------------------------------|-----------|----------------|------------------------------|----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|
| $d_{\!\scriptscriptstyle  m a}$ min | max       | mm<br><i>I</i> | D <sub>a</sub> max           | r <sub>as</sub>      | e                            | $Y_1$                        | $Y_2$                        | $Y_{ m o}$                   | kç<br>cylindrical<br>bore    | tapered<br>bore               |
| 31                                  |           |                | 46                           | 1                    | 0.35                         | 1.92                         | 2.86                         | 1.88                         | 0.186                        | 0.182                         |
| 36                                  |           |                | 56                           | 1                    | 0.33                         | 2.07                         | 3.09                         | 2.03                         | 0.287                        | 0.282                         |
| 42                                  |           |                | 65                           | 1                    | 0.32                         | 2.09                         | 3.11                         | 2.04                         | 0.446                        | 0.437                         |
| 47<br>48.5<br>48.5                  |           |                | 73<br>81.5<br>81.5           | 1<br>1.5<br>1.5      | 0.29<br>0.26<br>0.38         | 2.35<br>2.55<br>1.76         | 3.50<br>3.80<br>2.62         | 2.30<br>2.50<br>1.72         | 0.526<br>0.705<br>0.974      | 0.515<br>0.694<br>0.951       |
| 52<br>53.5<br>53.5                  |           |                | 78<br>91.5<br>91.5           | 1<br>1.5<br>1.5      | 0.27<br>0.26<br>0.36         | 2.50<br>2.60<br>1.86         | 3.72<br>3.87<br>2.77         | 2.44<br>2.54<br>1.82         | 0.584<br>0.927<br>1.33       | 0.572<br>0.912<br>1.3         |
| 57<br>60<br>60                      |           |                | 83<br>100<br>100             | 1<br>2<br>2          | 0.25<br>0.26<br>0.37         | 2.69<br>2.64<br>1.80         | 4.01<br>3.93<br>2.69         | 2.63<br>2.58<br>1.76         | 0.63<br>1.21<br>1.79         | 0.616<br>1.19<br>1.75         |
| 63.5<br>63.5<br>65                  | 67        | 89.5           | 91.5<br>91.5<br>110<br>110   | 1.5<br>1.5<br>2<br>2 | 0.24<br>0.28<br>0.25<br>0.40 | 2.83<br>2.42<br>2.69<br>1.68 | 4.21<br>3.61<br>4.01<br>2.50 | 2.76<br>2.37<br>2.63<br>1.64 | 0.808<br>0.85<br>1.71<br>2.3 | 0.79<br>0.832<br>1.69<br>2.25 |
| 68.5<br>68.5<br>72<br>72            | 72        | 98             | 101.5<br>101.5<br>118<br>118 | 1.5<br>1.5<br>2<br>2 | 0.25<br>0.27<br>0.25<br>0.42 | 2.75<br>2.49<br>2.69<br>1.62 | 4.09<br>3.71<br>4.00<br>2.42 | 2.69<br>2.44<br>2.63<br>1.59 | 1.09<br>1.15<br>2.1<br>2.9   | 1.07<br>1.13<br>2.07<br>2.83  |
| 73.5<br>73.5<br>77<br>77            | 78.5      | 107            | 111.5<br>111.5<br>128<br>128 | 1.5<br>1.5<br>2<br>2 | 0.25<br>0.28<br>0.25<br>0.38 | 2.71<br>2.42<br>2.69<br>1.79 | 4.04<br>3.60<br>4.00<br>2.67 | 2.65<br>2.37<br>2.63<br>1.75 | 1.43<br>1.5<br>2.55<br>3.45  | 1.4<br>1.47<br>2.51<br>3.37   |
| 78.5<br>78.5<br>82<br>82            | 83.5      | 112.5          | 116.5<br>116.5<br>138<br>138 | 1.5<br>1.5<br>2<br>2 | 0.24<br>0.26<br>0.25<br>0.37 | 2.86<br>2.55<br>2.69<br>1.81 | 4.25<br>3.80<br>4.00<br>2.70 | 2.79<br>2.50<br>2.63<br>1.77 | 1.51<br>1.55<br>3.18<br>4.22 | 1.47<br>1.52<br>3.14<br>4.12  |
| 83.5                                | 89        | 117.5          | 121.5                        | 1.5                  | 0.22                         | 3.00                         | 4.47                         | 2.94                         | 1.59                         | 1.55                          |





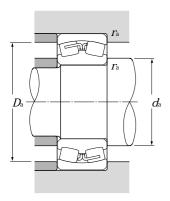





Cylindrical bore

**Tapered bore** 




| Boundary dimensions |            |          |                               | Basic load ratings dynamic static dynamic static |             |                  | Limiting         | speeds1)       | Bearing numbers <sup>4</sup> ) |                     |                               |
|---------------------|------------|----------|-------------------------------|--------------------------------------------------|-------------|------------------|------------------|----------------|--------------------------------|---------------------|-------------------------------|
|                     | mm         |          |                               |                                                  | N           | kį               |                  | mi             | n <sup>-1</sup>                |                     |                               |
| d                   | D          | В        | $arGamma_{	ext{s min}}^{3}$ ) | $C_{\rm r}$                                      | $C_{ m or}$ | $C_{\rm r}$      | $C_{ m or}$      | grease         | oil                            | cylindrical<br>bore | tapered <sup>2)</sup><br>bore |
|                     | 130        | 31       | 1.5                           | 166                                              | 223         | 16 900           | 22 800           | 3 200          | 4 200                          | LH-22215B           | LH-22215BK                    |
|                     | 160        | 37       | 2.1                           | 239                                              | 287         | 24 300           | 29 300           | 2 700          | 3 500                          | 21315               | 21315K                        |
| 75                  | 160        | 55       | 2.1                           | 330                                              | 410         | 33 500           | 42 000           | 2 500          | 3 200                          | 22315B              | 22315B                        |
|                     | 140        | 33       | 2                             | 213                                              | 277         | 21 700           | 28 200           | 3 000          | 4 000                          | LH-22216E           | LH-22216EH                    |
|                     | 140        | 33       | 2                             | 179                                              | 239         | 18 300           | 24 400           | 3 100          | 4 000                          | LH-22216B           | LH-22216BI                    |
| 80                  | 170        | 39       | 2.1                           | 260                                              | 315         | 26 500           | 32 000           | 2 500          | 3 300                          | 21316               | 21316K                        |
|                     | 170        | 58       | 2.1                           | 385                                              | 470         | 39 500           | 48 000           | 2 300          | 3 000                          | 22316B              | 22316BI                       |
|                     | 150        | 36       | 2                             | 251                                              | 320         | 25 600           | 33 000           | 2 800          | 3 800                          | LH-22217E           | LH-22217E                     |
|                     | 150        | 36       | 2                             | 206                                              | 272         | 21 000           | 27 800           | 2 900          | 3 800                          | LH-22217B           | LH-22217B                     |
| 85                  | 180        | 41       | 3                             | 289                                              | 355         | 29 500           | 36 000           | 2 400          | 3 100                          | 21317               | 21317K                        |
|                     | 180        | 60       | 3                             | 415                                              | 510         | 42 500           | 52 000           | 2 200          | 2 900                          | 22317B              | 22317B                        |
|                     | 160        | 40       | 2                             | 292                                              | 385         | 29 800           | 39 500           | 2 600          | 3 500                          | LH-22218E           | LH-22218E                     |
|                     | 160        | 40       | 2                             | 256                                              | 345         | 26 200           | 35 000           | 2 700          | 3 500                          | LH-22218B           | LH-22218B                     |
| 90                  | 160        | 52.4     | 2                             | 315                                              | 455         | 32 500           | 46 500           | 2 200          | 2 800                          | 23218B              | 23218B                        |
|                     | 190        | 43       | 3                             | 320                                              | 400         | 32 500           | 40 500           | 2 300          | 3 000                          | 21318               | 21318K                        |
|                     | 190        | 64       | 3                             | 480                                              | 590         | 49 000           | 60 000           | 2 100          | 2 700                          | 22318B              | 22318B                        |
|                     | 170        | 43       | 2.1                           | 294                                              | 390         | 30 000           | 39 500           | 2 500          | 3 300                          | 22219B              | 22219B                        |
| 95                  | 200        | 45       | 3                             | 335                                              | 420         | 34 000           | 43 000           | 2 100          | 2 700                          | 21319               | 21319K                        |
|                     | 200        | 67       | 3                             | 500                                              | 615         | 51 000           | 63 000           | 1 900          | 2 500                          | 22319B              | 22319B                        |
|                     | 165        | 52       | 2                             | 310                                              | 470         | 31 500           | 47 500           | 2 000          | 2 600                          | 23120B              | 23120B                        |
|                     | 180        | 46       | 2.1                           | 315                                              | 415         | 32 000           | 42 500           | 2 400          | 3 200                          | 22220B              | 22220B                        |
| 00                  | 180        | 60.3     | 2.1                           | 405                                              | 580         | 41 500           | 59 000           | 1 900          | 2 500                          | 23220B              | 23220B                        |
|                     | 215        | 47       | 3                             | 370                                              | 465         | 37 500           | 47 500           | 2 000          | 2 600                          | 21320               | 21320K                        |
|                     | 215        | 73       | 3                             | 605                                              | 755         | 61 500           | 77 000           | 1 800          | 2 400                          | 22320B              | 22320B                        |
|                     | 170        | 45       | 2                             | 282                                              | 455         | 28 800           | 46 500           | 2 200          | 2 800                          | 23022B              | 23022B                        |
|                     | 180        | 56       | 2                             | 370                                              | 580         | 37 500           | 59 500           | 1 800          | 2 400                          | 23122B              | 23122B                        |
|                     | 180        | 69       | 2                             | 450                                              | 755         | 46 000           | 77 000           | 1 800          | 2 400                          | 24122B              | 24122B                        |
| 10                  | 200        | 53       | 2.1                           | 410                                              | 570         | 42 000           | 58 000           | 2 200          | 2 800                          | 22222B              | 22222B                        |
|                     | 200        | 69.8     | 2.1                           | 515                                              | 760         | 52 500           | 77 500           | 1 700          | 2 200                          | 23222B              | 23222B                        |
|                     | 240<br>240 | 50<br>80 | 3<br>3                        | 495<br>745                                       | 615<br>930  | 50 500<br>76 000 | 62 500<br>95 000 | 1 800<br>1 700 | 2 300<br>2 200                 | 21322<br>22322B     | 21322K<br>22322B              |
|                     |            |          |                               |                                                  |             |                  |                  |                |                                |                     |                               |

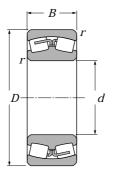


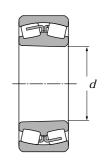
<sup>1 )</sup> This value was achieved with machined cages and molded resin cages; for pressed cages, 75% of this value is allowable. 2 ) Bearings appended with "K" have a tapered bore ratio of 1:12. 3 ) Smallest allowable dimension for chamfer dimension r. 4 ) Bearing number with the prefix LH indicates LH series.

B-238






 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 


| $\frac{F_{\rm a}}{F_{\rm r}}$ | e     | $\frac{F_a}{F_r}$ | > e   |
|-------------------------------|-------|-------------------|-------|
| X                             | Y     | X                 | Y     |
| 1                             | $Y_1$ | 0.67              | $Y_2$ |

static  $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}}F_{\text{a}}$  For values of e,  $Y_{\text{2}}$  and  $Y_{\text{0}}$  see the table below.

|      | Abutment a | and fillet d | imensions         | <b>S</b>       | Constant | Axia  | l load fac | tors        | Mass (approx.) |         |  |
|------|------------|--------------|-------------------|----------------|----------|-------|------------|-------------|----------------|---------|--|
|      |            | mm           |                   |                |          |       |            |             | kç             | 3       |  |
|      | $d_a$      | 1            | $\mathcal{O}_{a}$ | $m{r}_{ m as}$ |          |       |            |             | cylindrical    | tapered |  |
| min  | max        | min          | max               | max            | e        | $Y_1$ | $Y_2$      | $Y_{\rm o}$ | bore           | bore    |  |
|      |            |              |                   |                |          |       |            |             |                |         |  |
| 83.5 |            |              | 121.5             | 1.5            | 0.24     | 2.81  | 4.19       | 2.75        | 1.65           | 1.61    |  |
| 87   |            |              | 148               | 2              | 0.24     | 2.84  | 4.23       | 2.78        | 3.81           | 3.76    |  |
| 87   |            |              | 148               | 2              | 0.37     | 1.80  | 2.69       | 1.76        | 5.25           | 5.13    |  |
| 90   | 94.5       | 125.5        | 130               | 2              | 0.22     | 3.01  | 4.48       | 2.94        | 1.99           | 1.94    |  |
| 90   | 0 1.0      | 120.0        | 130               | 2              | 0.26     | 2.64  | 3.93       | 2.58        | 2.15           | 2.11    |  |
| 92   |            |              | 158               | 2              | 0.23     | 2.95  | 4.39       | 2.88        | 4.53           | 4.47    |  |
| 92   |            |              | 158               | 2              | 0.23     | 1.80  | 2.69       | 1.76        | 6.05           | 5.91    |  |
|      |            |              | 130               |                | 0.57     | 1.00  | 2.03       | 1.70        | 0.00           | 3.91    |  |
| 95   | 100.5      | 135          | 140               | 2              | 0.23     | 2.96  | 4.41       | 2.90        | 2.49           | 2.43    |  |
| 95   |            |              | 140               | 2              | 0.26     | 2.60  | 3.88       | 2.55        | 2.66           | 2.61    |  |
| 99   |            |              | 166               | 2.5            | 0.25     | 2.69  | 4.00       | 2.63        | 5.35           | 5.28    |  |
| 99   |            |              | 166               | 2.5            | 0.37     | 1.82  | 2.71       | 1.78        | 7.1            | 6.94    |  |
| 100  | 107.5      | 144          | 150               | 2              | 0.24     | 2.86  | 4.25       | 2.79        | 3.24           | 3.16    |  |
| 100  | 107.5      | 1-1-1        | 150               | 2              | 0.26     | 2.55  | 3.80       | 2.49        | 3.5            | 3.42    |  |
| 100  |            |              | 150               | 2              | 0.20     | 2.04  | 3.03       | 1.99        | 4.45           | 4.32    |  |
| 104  |            |              | 176               | 2.5            | 0.33     | 2.83  | 4.22       | 2.77        | 6.3            | 6.21    |  |
| 104  |            |              | 176               |                |          |       | 2.69       | 1.76        |                |         |  |
| 104  |            |              | 176               | 2.5            | 0.37     | 1.80  | 2.09       | 1.76        | 8.35           | 8.16    |  |
| 107  |            |              | 158               | 2              | 0.26     | 2.63  | 3.92       | 2.57        | 4.1            | 4.01    |  |
| 109  |            |              | 186               | 2.5            | 0.23     | 3.00  | 4.46       | 2.93        | 7.1            | 7       |  |
| 109  |            |              | 186               | 2.5            | 0.37     | 1.80  | 2.69       | 1.76        | 9.76           | 9.54    |  |
| 110  |            |              | 155               | 2              | 0.32     | 2.12  | 3.15       | 2.07        | 4.3            | 4.16    |  |
| 112  |            |              | 168               | 2              | 0.32     | 2.55  | 3.80       | 2.49        | 4.95           | 4.84    |  |
| 112  |            |              | 168               | 2              | 0.20     | 1.98  | 2.94       | 1.93        | 6.47           | 6.28    |  |
| 114  |            |              | 201               | 2.5            | 0.34     | 3.01  | 4.48       | 2.94        | 8.89           | 8.78    |  |
| 114  |            |              |                   | 2.5            | 0.22     | 1.80  |            |             |                |         |  |
| 114  |            |              | 201               | 2.5            | 0.37     | 1.60  | 2.69       | 1.76        | 12.4           | 12.1    |  |
| 120  |            |              | 160               | 2              | 0.26     | 2.59  | 3.85       | 2.53        | 3.71           | 3.58    |  |
| 120  |            |              | 170               | 2              | 0.31     | 2.17  | 3.24       | 2.13        | 5.4            | 5.22    |  |
| 120  |            |              | 170               | 2              | 0.38     | 1.76  | 2.63       | 1.73        | 7.07           | 6.96    |  |
| 122  |            |              | 188               | 2              | 0.27     | 2.51  | 3.74       | 2.46        | 7.2            | 7.04    |  |
| 122  |            |              | 188               | 2              | 0.35     | 1.91  | 2.84       | 1.86        | 9.71           | 9.43    |  |
| 124  |            |              | 226               | 2.5            | 0.21     | 3.20  | 4.77       | 3.13        | 11.2           | 11.1    |  |
| 124  |            |              | 226               | 2.5            | 0.36     | 1.87  | 2.79       | 1.83        | 17.1           | 16.7    |  |
| 130  |            |              | 170               | 2              | 0.25     | 2.69  | 4.01       | 2.63        | 4.05           | 3.9     |  |

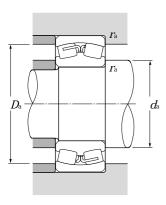






Cylindrical bore

**Tapered bore** 




| Во  | oundary d  | limension | s                        |             |                | oad ratings                |                    | Limiting       | speeds1)       | Bearing             | numbers <sup>4</sup> )        |
|-----|------------|-----------|--------------------------|-------------|----------------|----------------------------|--------------------|----------------|----------------|---------------------|-------------------------------|
|     |            |           |                          | dynamic     |                | dynamic .                  | static             |                |                |                     |                               |
|     | mı         | m         |                          |             | kN             | ŀ                          | (gf                | mi             | ın-'           | oulindrical         | tanarad?)                     |
| d   | D          | В         | $\Gamma_{\rm s min}^{3}$ | $C_{\rm r}$ | $C_{ m or}$    | $\mathcal{C}_{\mathrm{r}}$ | $C_{ m or}$        | grease         | oil            | cylindrical<br>bore | tapered <sup>2)</sup><br>bore |
| u   | D          | Б         | 2.5 111111               | Ci          | Coi            | Ci                         | Coi                | grouse         | Oli            | 5010                | boic                          |
|     | 400        | 00        | •                        | 200         | 670            | 20.500                     | CO 500             | 4.000          | 0.000          | 04004D              | 04004DK20                     |
|     | 180        | 60        | 2                        | 390         | 670            | 39 500                     | 68 500             | 1 800          | 2 300          | 24024B              | 24024BK30                     |
|     | 180        | 60        | 2                        | 395         | 695            | 40 000                     | 71 000             | 1 800          | 2 300          | 24024C              | 24024CK30                     |
|     | 200        | 62        | 2<br>2                   | 455<br>575  | 705            | 46 500                     | 71 500             | 1 600          | 2 100          | 23124B              | 23124BK                       |
| 120 | 200        | 80<br>58  | 2.1                      | 575<br>485  | 945            | 58 500                     | 96 500             | 1 600          | 2 100<br>2 600 | 24124B<br>22224B    | 24124BK30<br>22224BK          |
|     | 215<br>215 | 76        | 2.1                      | 465<br>585  | 700<br>880     | 49 500                     | 71 500             | 2 000<br>1 500 |                | 23224B              | 23224BK                       |
|     | 260        | 76<br>86  | 3                        | 880         | 1 120          | 59 500<br>89 500           | 89 500             | 1 500          | 2 000<br>2 000 | 23224B<br>22324B    | 23224BK<br>22324BK            |
|     | 200        | 00        | 3                        | 000         | 1 120          | 69 500                     | 114 000            | 1 300          | 2 000          | 223246              | 22324DN                       |
|     | 200        | 52        | 2                        | 375         | 620            | 38 500                     | 63 500             | 1 800          | 2 300          | 23026B              | 23026BK                       |
|     | 200        | 69        | 2                        | 505         | 895            | 51 500                     | 91 000             | 1 600          | 2 100          | 24026B              | 24026BK30                     |
|     | 200        | 69        | 2                        | 490         | 860            | 50 000                     | 87 500             | 1 600          | 2 100          | 24026C              | 24026CK30                     |
|     | 210        | 64        | 2                        | 495         | 795            | 50 500                     | 81 000             | 1 500          | 2 000          | 23126B              | 23126BK                       |
| 130 | 210        | 80        | 2                        | 585         | 995            | 60 000                     | 102 000            | 1 500          | 2 000          | 24126B              | 24126BK30                     |
|     | 230        | 64        | 3                        | 570         | 790            | 58 000                     | 80 500             | 1 800          | 2 400          | 22226B              | 22226BK                       |
|     | 230        | 80        | 3                        | 685         | 1 060          | 70 000                     | 108 000            | 1 500          | 1 900          | 23226B              | 23226BK                       |
|     | 280        | 93        | 4                        | 1 000       | 1 290          | 102 000                    | 131 000            | 1 400          | 1 800          | 22326B              | 22326BK                       |
|     |            |           |                          |             |                |                            |                    |                |                |                     |                               |
|     | 210        | 53        | 2                        | 405         | 690            | 41 000                     | 70 500             | 1 700          | 2 200          | 23028B              | 23028BK                       |
|     | 210        | 69        | 2                        | 510         | 945            | 52 000                     | 96 500             | 1 500          | 1 900          | 24028B              | 24028BK30                     |
|     | 210        | 69        | 2                        | 520         | 940            | 53 000                     | 95 500             | 1 500          | 1 900          | 24028C              | 24028CK30                     |
| 140 | 225        | 68        | 2.1                      | 540         | 895            | 55 000                     | 91 000             | 1 400          | 1 800          | 23128B              | 23128BK                       |
| 140 | 225        | 85        | 2.1                      | 670         | 1 150          | 68 500                     | 117 000            | 1 400          | 1 800          | 24128B              | 24128BK30                     |
|     | 250        | 68        | 3                        | 685         | 975            | 70 000                     | 99 500             | 1 700          | 2 200          | 22228B              | 22228BK                       |
|     | 250        | 88        | 3                        | 805         | 1 270          | 82 000                     | 129 000            | 1 300          | 1 700          | 23228B              | 23228BK                       |
|     | 300        | 102       | 4                        | 1 130       | 1 460          | 115 000                    | 149 000            | 1 300          | 1 700          | 22328B              | 22328BK                       |
|     | 205        | <i></i>   | 0.4                      | 445         | 77.            | 45 500                     | 70.000             | 4.500          | 0.000          | 00000               | 2202051/                      |
|     | 225        | 56        | 2.1                      | 445<br>505  | 775            | 45 500                     | 79 000             | 1 500          | 2 000          | 23030B              | 23030BK                       |
|     | 225        | 75<br>75  | 2.1<br>2.1               | 585         | 1 060          | 59 500                     | 108 000            | 1 400          | 1 800          | 24030B              | 24030BK30                     |
|     | 225        | 75        | 2.1<br>2.1               | 600<br>730  | 1 090          | 61 000                     | 111 000            | 1 400<br>1 300 | 1 800          | 24030C<br>23130B    | 24030CK30                     |
| 150 | 250<br>250 | 80<br>100 | 2.1                      | 730<br>885  | 1 190<br>1 520 | 74 500<br>90 500           | 121 000<br>155 000 | 1 300          | 1 700<br>1 700 | 23130B<br>24130B    | 23130BK<br>24130BK30          |
|     | 270        | 73        | 3                        | 775         | 1 160          |                            |                    | 1 600          | 2 000          | 24130B<br>22230B    | 22230BK                       |
|     | 270        | 73<br>96  | 3                        | 935         | 1 460          | 79 000<br>95 000           | 119 000<br>149 000 | 1 200          | 1 600          | 23230B<br>23230B    | 23230BK                       |
|     | 320        | 108       | 4                        | 1 270       | 1 750          | 130 000                    | 179 000            | 1 200          | 1 600          | 23230B<br>22330B    | 22330BK                       |
|     | 320        | 100       | 7                        | 1210        | 1 7 30         | 100 000                    | 179 000            | 1 200          | 1 000          | 223300              | ZZJJUDIN                      |
|     | 220        | 45        | 2                        | 320         | 610            | 33 000                     | 62 500             | 1 500          | 2 000          | 23932               | 23932K                        |
| 460 | 240        | 60        | 2.1                      | 505         | 885            | 51 500                     | 90 000             | 1 500          | 1 900          | 23032B              | 23032BK                       |
| 160 | 240        | 80        | 2.1                      | 650         | 1 200          | 66 500                     | 122 000            | 1 300          | 1 700          | 24032B              | 24032BK30                     |
|     | 240        | 80        | 2.1                      | 665         | 1 250          | 67 500                     | 127 000            | 1 300          | 1 700          | 24032C              | 24032CK30                     |
|     |            |           |                          |             |                | 0. 000                     |                    |                |                |                     | =                             |

<sup>1 )</sup> This value was achieved with machined cages and molded resin cages; for pressed cages, 75% of this value is allowable. 2 ) Bearings appended with "K" have a tapered bore ratio of 1:12. 3 ) Smallest allowable dimension for chamfer dimension r.







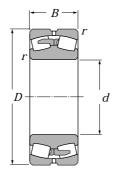
 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 

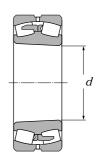
| $\frac{F_{\rm a}}{F_{\rm r}}$ | e     | $\frac{F_a}{F_r} > e$ |       |  |  |  |
|-------------------------------|-------|-----------------------|-------|--|--|--|
| X                             | Y     | X                     | Y     |  |  |  |
| 1                             | $Y_1$ | 0.67                  | $Y_2$ |  |  |  |

#### static

 $P_{\text{or}} = F_{\text{r}} + Y_{\text{o}}F_{\text{a}}$ 

For values of *e*, *Y*<sub>2</sub> and *Y*<sub>0</sub> see the table below.


|         | outment a        |                | Constant | Axia  | I load facto | rs          | Mass (a     | pprox.) |
|---------|------------------|----------------|----------|-------|--------------|-------------|-------------|---------|
|         | mm               |                |          |       |              |             | k           | g       |
| $d_{a}$ | $D_{\mathrm{a}}$ | $m{r}_{ m as}$ |          |       |              |             | cylindrical | tapered |
| min     | max              | max            | e        | $Y_1$ | $Y_2$        | $Y_{\rm o}$ | bore        | bore    |
| 130     | 170              | 2              | 0.33     | 2.06  | 3.07         | 2.02        | 5.48        | 5.39    |
| 130     | 170              | 2              | 0.32     | 2.12  | 3.15         | 2.07        | 5.48        | 4.91    |
| 130     | 190              | 2              | 0.31     | 2.17  | 3.24         | 2.13        | 7.7         | 7.46    |
| 130     | 190              | 2              | 0.40     | 1.68  | 2.50         | 1.64        | 10.3        | 10.1    |
| 132     | 203              | 2              | 0.27     | 2.47  | 3.68         | 2.42        | 9.1         | 8.89    |
| 132     | 203              | 2              | 0.36     | 1.89  | 2.82         | 1.85        | 12.1        | 11.7    |
| 134     | 246              | 2.5            | 0.37     | 1.80  | 2.69         | 1.76        | 21.5        | 21      |
| 140     | 190              | 2              | 0.26     | 2.63  | 3.92         | 2.57        | 5.9         | 5.69    |
| 140     | 190              | 2              | 0.34     | 1.98  | 2.95         | 1.94        | 8.08        | 7.95    |
| 140     | 190              | 2              | 0.32     | 2.12  | 3.15         | 2.07        | 7.91        | 7.78    |
| 140     | 200              | 2              | 0.30     | 2.23  | 3.32         | 2.18        | 8.47        | 8.2     |
| 140     | 200              | 2              | 0.38     | 1.78  | 2.65         | 1.74        | 11          | 10.8    |
| 144     | 216              | 2.5            | 0.28     | 2.39  | 3.56         | 2.33        | 11.2        | 10.9    |
| 144     | 216              | 2.5            | 0.35     | 1.92  | 2.86         | 1.88        | 14.3        | 13.9    |
| 148     | 262              | 3              | 0.37     | 1.81  | 2.69         | 1.77        | 26.8        | 26.2    |
| 150     | 200              | 2              | 0.25     | 2.73  | 4.06         | 2.67        | 6.35        | 6.12    |
| 150     | 200              | 2              | 0.32     | 2.09  | 3.12         | 2.05        | 8.57        | 8.43    |
| 150     | 200              | 2              | 0.30     | 2.23  | 3.32         | 2.18        | 8.48        | 7.66    |
| 152     | 213              | 2              | 0.30     | 2.25  | 3.35         | 2.20        | 10.2        | 9.86    |
| 152     | 213              | 2              | 0.38     | 1.80  | 2.68         | 1.76        | 13.3        | 13.1    |
| 154     | 236              | 2.5            | 0.28     | 2.39  | 3.55         | 2.33        | 14          | 13.7    |
| 154     | 236              | 2.5            | 0.36     | 1.90  | 2.83         | 1.86        | 18.8        | 18.2    |
| 158     | 282              | 3              | 0.37     | 1.80  | 2.69         | 1.76        | 33.8        | 33      |
| 162     | 213              | 2              | 0.24     | 2.76  | 4.11         | 2.70        | 7.73        | 7.45    |
| 162     | 213              | 2              | 0.33     | 2.06  | 3.07         | 2.02        | 10.7        | 10.5    |
| 162     | 213              | 2              | 0.30     | 2.25  | 3.34         | 2.20        | 10.5        | 10.3    |
| 162     | 238              | 2              | 0.32     | 2.11  | 3.15         | 2.06        | 15.6        | 15.1    |
| 162     | 238              | 2              | 0.40     | 1.69  | 2.51         | 1.65        | 20.2        | 20      |
| 164     | 256              | 2.5            | 0.27     | 2.46  | 3.66         | 2.4         | 18.1        | 17.7    |
| 164     | 256              | 2.5            | 0.36     | 1.88  | 2.79         | 1.83        | 24.1        | 23.4    |
| 168     | 302              | 3              | 0.35     | 1.92  | 2.86         | 1.88        | 42.7        | 41.8    |
| 170     | 210              | 2              | 0.18     | 3.69  | 5.49         | 3.61        | 5.5         | 5.33    |
| 172     | 228              | 2              | 0.25     | 2.74  | 4.09         | 2.68        | 9.42        | 9.09    |
| 172     | 228              | 2              | 0.32     | 2.10  | 3.13         | 2.06        | 13          | 12.8    |
| 172     | 228              | 2              | 0.31     | 2.18  | 3.24         | 2.13        | 12          | 11.8    |




Note: An oil groove is provided for outer rings of bearings with an outer diameter (*D* dimension) of 320 mm or more. See page **B-226** on dimensions. We can make bearings with oil hole or oil groove in the outer ring, per your request, for an outer diameter of 320mm or less. Such bearings are indicated by attaching "D1" to the end of the bearing number. (ex. 23032BD1)

B-241

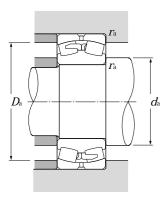






Cylindrical bore

**Tapered bore** 




| P   | oundon:   | limonoion   |                        |             | Basis Is    | ad ratings             |             | l imitin - | enoodo1)        | Dooring         | numbors4)              |
|-----|-----------|-------------|------------------------|-------------|-------------|------------------------|-------------|------------|-----------------|-----------------|------------------------|
| В   | oundary d | iiiierision | 5                      | dynamic     |             | oad ratings<br>dynamic | static      | Limiting   | speeds1)        | bearing         | numbers <sup>4</sup> ) |
|     | mı        | m           |                        | •           | kN          |                        | gf          | mi         | n <sup>-1</sup> |                 |                        |
|     |           |             |                        |             |             |                        |             |            |                 | cylindrical     | tapered2)              |
| d   | D         | В           | $r_{\rm s  min}^{3}$ ) | $C_{\rm r}$ | $C_{ m or}$ | $C_{\rm r}$            | $C_{ m or}$ | grease     | oil             | bore            | bore                   |
|     |           |             |                        |             |             |                        |             |            |                 |                 |                        |
|     | 270       | 86          | 2.1                    | 840         | 1 370       | 85 500                 | 140 000     | 1 200      | 1 600           | 23132B          | 23132BK                |
|     | 270       | 109         | 2.1                    | 1 040       | 1 780       | 106 000                | 181 000     | 1 200      | 1 600           | 24132B          | 24132BK30              |
| 160 | 290       | 80          | 3                      | 870         | 1 290       | 88 500                 | 132 000     | 1 500      | 1 900           | 22232B          | 22232BK                |
|     | 290       | 104         | 3                      | 1 050       | 1 660       | 107 000                | 170 000     | 1 200      | 1 500           | 23232B          | 23232BK                |
|     | 340       | 114         | 4                      | 1 410       | 1 990       | 144 000                | 203 000     | 1 200      | 1 500           | 22332B          | 22332BK                |
|     | 230       | 45          | 2                      | 330         | 650         | 34 000                 | 66 000      | 1 500      | 1 900           | 23934           | 23934K                 |
|     | 260       | 67          | 2.1                    | 630         | 1 080       | 64 000                 | 110 000     | 1 400      | 1 800           | 23034B          | 23034BK                |
|     | 260       | 90          | 2.1                    | 800         | 1 470       | 81 500                 | 150 000     | 1 200      | 1 600           | 24034B          | 24034BK30              |
|     | 260       | 90          | 2.1                    | 815         | 1 500       | 83 000                 | 153 000     | 1 200      | 1 600           | 24034C          | 24034CK30              |
| 170 | 280       | 88          | 2.1                    | 885         | 1 490       | 90 500                 | 152 000     | 1 200      | 1 500           | 23134B          | 23134BK                |
|     | 280       | 109         | 2.1                    | 1 080       | 1 880       | 110 000                | 191 000     | 1 200      | 1 500           | 24134B          | 24134BK30              |
|     | 310       | 86          | 4                      | 1 000       | 1 520       | 102 000                | 155 000     | 1 400      | 1 800           | 22234B          | 22234BK                |
|     | 310       | 110         | 4                      | 1 180       | 1 960       | 120 000                | 200 000     | 1 100      | 1 400           | 23234B          | 23234BK                |
|     | 360       | 120         | 4                      | 1 540       | 2 180       | 157 000                | 223 000     | 1 100      | 1 400           | 22334B          | 22334BK                |
|     | 250       | 52          | 2                      | 440         | 835         | 45 000                 | 85 000      | 1 400      | 1 800           | 23936           | 23936K                 |
|     | 280       | 52<br>74    | 2.1                    | 740         | 1 290       | 75 500                 | 132 000     | 1 300      | 1 700           | 23936<br>23036B | 23936K<br>23036BK      |
|     | 280       | 100         | 2.1                    | 965         | 1 770       | 98 500                 | 181 000     | 1 200      | 1 500           | 24036B          | 24036BK30              |
|     | 280       | 100         | 2.1                    | 965         | 1 770       | 98 500                 | 181 000     | 1 200      | 1 500           | 24036C          | 24036CK30              |
| 180 | 300       | 96          | 3                      | 1 030       | 1 730       | 105 000                | 176 000     | 1 100      | 1 400           | 23136B          | 23136BK                |
| 100 | 300       | 118         | 3                      | 1 250       | 2 210       | 127 000                | 225 000     | 1 100      | 1 400           | 24136B          | 24136BK30              |
|     | 320       | 86          | 4                      | 1 040       | 1 610       | 106 000                | 164 000     | 1 300      | 1 700           | 22236B          | 22236BK                |
|     | 320       | 112         | 4                      | 1 230       | 2 000       | 125 000                | 204 000     | 1 000      | 1 300           | 23236B          | 23236BK                |
|     | 380       | 126         | 4                      | 1 740       | 2 560       | 177 000                | 261 000     | 1 000      | 1 300           | 22336B          | 22336BK                |
|     | 260       | 52          | 2                      | 460         | 890         | 47 000                 | 91 000      | 1 300      | 1 700           | 23938           | 23938K                 |
|     | 290       | 75          | 2.1                    | 755         | 1 350       | 77 000                 | 138 000     | 1 200      | 1 600           | 23936<br>23038B | 23936K<br>23038BK      |
|     | 290       | 100         | 2.1                    | 995         | 1 850       | 102 000                | 188 000     | 1 100      | 1 400           | 24038B          | 24038BK30              |
|     | 290       | 100         | 2.1                    | 970         | 1 820       | 98 500                 | 186 000     | 1 100      | 1 400           | 24038C          | 24038CK30              |
| 190 | 320       | 104         | 3                      | 1 190       | 2 020       | 122 000                | 206 000     | 1 000      | 1 300           | 23138B          | 23138BK                |
| 130 | 320       | 128         | 3                      | 1 420       | 2 480       | 144 000                | 253 000     | 1 000      | 1 300           | 24138B          | 24138BK30              |
|     | 340       | 92          | 4                      | 1 160       | 1 810       | 118 000                | 185 000     | 1 200      | 1 600           | 22238B          | 22238BK                |
|     | 340       | 120         | 4                      | 1 400       | 2 330       | 143 000                | 237 000     | 920        | 1 200           | 23238B          | 23238BK                |
|     | 400       | 132         | 5                      | 1 870       | 2 790       | 191 000                | 284 000     | 920        | 1 200           | 22338B          | 22338BK                |
|     | 280       | 60          | 2.1                    | 545         | 1 100       | 56 000                 | 112 000     | 1 200      | 1 600           | 23940           | 23940K                 |
| 200 | 310       | 82          | 2.1                    | 915         | 1 620       | 93 000                 | 165 000     | 1 200      | 1 500           | 23940<br>23040B | 23040BK                |
| _00 | 310       | 109         | 2.1                    | 1 160       | 2 140       | 118 000                | 219 000     | 1 000      | 1 300           | 24040B          | 24040BK30              |
|     | 310       | 103         | ۷.۱                    | 1 100       | Z 140       | 110 000                | 213 000     | 1 000      | 1 300           | 240401          | 27040DN30              |

<sup>1 )</sup> This value was achieved with machined cages and molded resin cages; for pressed cages, 75% of this value is allowable. 2 ) Bearings appended with "K" have a tapered bore ratio of 1:12. 3 ) Smallest allowable dimension for chamfer dimension r.



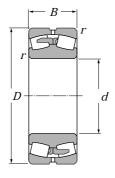


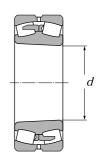


 $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 

| $rac{F_{ m a}}{F_{ m r}}$ | e     | $\frac{F_a}{F_1}$ | > e   |
|----------------------------|-------|-------------------|-------|
| $\overline{X}$             | Y     | X                 | Y     |
| 1                          | $Y_1$ | 0.67              | $Y_2$ |

 $\begin{array}{l} \textbf{static} \\ P_{\text{or}} = F_{\text{r}} + Y_{\text{o}} F_{\text{a}} \\ \text{For values of } e, \ Y_{\text{2}} \ \text{and} \ \ Y_{\text{3}} \\ \text{see the table below.} \end{array}$ 


|                 | outment ai                      |                | Constant               | Axia  | I load facto | rs      | Mass (a     | approx.) |
|-----------------|---------------------------------|----------------|------------------------|-------|--------------|---------|-------------|----------|
|                 | mm                              |                |                        |       |              |         | k           | g        |
| $d_{a}$         | $D_{\!\scriptscriptstyle  m a}$ | $m{r}_{ m as}$ |                        |       |              |         | cylindrical | tapered  |
| min             | max                             | max            | e                      | $Y_1$ | $Y_2$        | $Y_{0}$ | bore        | bore     |
| 470             | 050                             | 0              | 0.00                   | 0.44  | 2.45         | 2.07    | 40.0        | 40.0     |
| 172             | 258                             | 2<br>2         | 0.32                   | 2.11  | 3.15         | 2.07    | 19.8        | 19.2     |
| 172             | 258                             |                | 0.40                   | 1.67  | 2.48         | 1.63    | 26          | 25.6     |
| 174             | 276                             | 2.5            | 0.28                   | 2.42  | 3.60         | 2.37    | 22.7        | 22.2     |
| 174             | 276                             | 2.5            | 0.36                   | 1.86  | 2.77         | 1.82    | 30          | 29.1     |
| 178             | 322                             | 3              | 0.35                   | 1.94  | 2.89         | 1.90    | 50.8        | 49.7     |
| 180             | 220                             | 2              | 0.17                   | 3.91  | 5.83         | 3.83    | 5.8         | 5.62     |
| 182             | 248                             | 2              | 0.25                   | 2.66  | 3.96         | 2.60    | 12.7        | 12.3     |
| 182             | 248                             | 2              | 0.34                   | 1.98  | 2.95         | 1.94    | 17.7        | 17.4     |
| 182             | 248                             | 2              | 0.31                   | 2.16  | 3.22         | 2.12    | 17.4        | 17.1     |
| 182             | 268                             | 2              | 0.31                   | 2.15  | 3.21         | 2.11    | 21.5        | 20.8     |
| 182             | 268                             | 2              | 0.39                   | 1.74  | 2.59         | 1.70    | 27.2        | 26.8     |
| 188             | 292                             | 3              | 0.28                   | 2.39  | 3.56         | 2.34    | 28          | 27.3     |
| 188             | 292                             | 3              | 0.36                   | 1.87  | 2.79         | 1.83    | 36.8        | 35.7     |
| 188             | 342                             | 3              | 0.34                   | 1.96  | 2.91         | 1.91    | 59.8        | 58.5     |
| 190             | 240                             | 2              | 0.19                   | 3.52  | 5.25         | 3.45    | 8.21        | 7.95     |
| 192             | 268                             | 2              | 0.26                   | 2.59  | 3.85         | 2.53    | 16.7        | 16.1     |
| 192             | 268                             | 2              | 0.35                   | 1.91  | 2.85         | 1.87    | 23.3        | 22.9     |
| 192             | 268                             | 2              | 0.33                   | 2.04  | 3.04         | 2.00    | 23          | 22.6     |
| 194             | 286                             | 2.5            | 0.32                   | 2.11  | 3.15         | 2.07    | 25.1        | 24.2     |
| 194             | 286                             | 2.5            | 0.39                   | 1.72  | 2.56         | 1.68    | 34.3        | 33.8     |
| 198             | 302                             | 3              | 0.27                   | 2.49  | 3.70         | 2.43    | 29.3        | 28.6     |
| 198             | 302                             | 3              | 0.35                   | 1.91  | 2.84         | 1.86    | 39          | 37.8     |
| 198             | 362                             | 3              | 0.34                   | 1.97  | 2.93         | 1.92    | 70          | 68.5     |
| 200             | 250                             | 2              | 0.18                   | 3.81  | 5.67         | 3.73    | 8.6         | 8.34     |
| 202             | 278                             | 2              | 0.16                   | 2.65  | 3.94         | 2.59    | 17.7        | 17.1     |
| 202             | 278                             | 2              | 0.33                   | 2.03  | 3.02         | 1.98    | 24.3        | 23.9     |
| 202             | 278                             | 2              | 0.31                   | 2.16  | 3.22         | 2.12    | 23          | 22.6     |
| 204             | 306                             | 2.5            | 0.33                   | 2.07  | 3.09         | 2.03    | 35.3        | 34.2     |
| 204             | 306                             | 2.5            | 0.40                   | 1.69  | 2.51         | 1.65    | 42.8        | 42.2     |
| 208             | 322                             | 3              | 0.40                   | 2.47  | 3.68         | 2.42    | 36.6        | 35.8     |
| 208             | 322                             | 3              | 0.27                   | 1.89  | 2.82         | 1.85    | 47.6        | 46.2     |
| 212             | 378                             | 4              | 0.34                   | 1.97  | 2.94         | 1.93    | 81          | 79.3     |
| 212             | 260                             | 2              | 0.17                   | 2.01  | E 02         | 2 02    | 12.1        | 11.7     |
| 212             | 268                             | 2              | 0.17                   | 3.91  | 5.82         | 3.82    |             | 11.7     |
| 212             | 298                             | 2              | 0.26                   | 2.59  | 3.85         | 2.53    | 22.7        | 21.9     |
| 212<br>Note: An | 298                             |                | 0.35 for outer rings o | 1.94  | 2.89         | 1.90    | 31          | 30.5     |

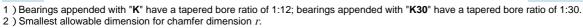



Note: An oil groove is provided for outer rings of bearings with an outer diameter (*D* dimension) of 320 mm or more. See page **B-234** on dimensions. We can make bearings with oil hole or oil groove in the outer ring, per your request, for an outer diameter of 320mm or less. Such bearings are indicated by attaching "**D1**" to the end of the bearing number. (ex. **23032BD1**)

B-243

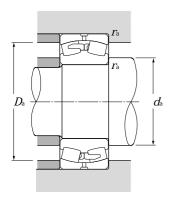







Cylindrical bore

**Tapered bore** 



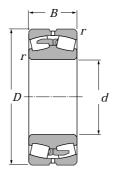

| Boundary dimensions |          |     | e                               |            | Rasic Id    | oad ratings                     |             | Limitin | g speeds        | Rearing             | numbers <sup>3)</sup>         |
|---------------------|----------|-----|---------------------------------|------------|-------------|---------------------------------|-------------|---------|-----------------|---------------------|-------------------------------|
|                     | andary a |     | •                               | dynamic    |             | dynamic                         | static      |         | gopeedo         | Dearing             | namber 5                      |
|                     | mr       | n   |                                 |            | kN          |                                 | gf          | mi      | n <sup>-1</sup> |                     |                               |
| d                   | D        | В   | r <sub>s min<sup>2</sup>)</sub> | $C_{ m r}$ | $C_{ m or}$ | $C_{\scriptscriptstyle \Gamma}$ | $C_{ m or}$ | grease  | oil             | cylindrical<br>bore | tapered <sup>1)</sup><br>bore |
|                     |          |     |                                 |            |             |                                 |             |         |                 |                     |                               |
|                     | 340      | 112 | 3                               | 1 350      | 2 270       | 137 000                         | 231 000     | 920     | 1 200           | 23140B              | 23140BK                       |
|                     | 340      | 140 | 3                               | 1 630      | 2 900       | 166 000                         | 295 000     | 920     | 1 200           | 24140B              | 24140BK30                     |
| 200                 | 360      | 98  | 4                               | 1 310      | 2 010       | 134 000                         | 205 000     | 1 100   | 1 500           | 22240B              | 22240BK                       |
|                     | 360      | 128 | 4                               | 1 610      | 2 640       | 165 000                         | 269 000     | 920     | 1 200           | 23240B              | 23240BK                       |
|                     | 420      | 138 | 5                               | 2 040      | 3 050       | 208 000                         | 310 000     | 850     | 1 100           | 22340B              | 22340BK                       |
|                     | 300      | 60  | 2.1                             | 565        | 1 170       | 57 500                          | 119 000     | 1 100   | 1 400           | 23944               | 23944K                        |
|                     | 340      | 90  | 3                               | 1 060      | 1 920       | 108 000                         | 195 000     | 1 000   | 1 300           | 23044B              | 23044BK                       |
|                     | 340      | 118 | 3                               | 1 350      | 2 570       | 138 000                         | 262 000     | 920     | 1 200           | 24044B              | 24044BK30                     |
| 220                 | 370      | 120 | 4                               | 1 540      | 2 670       | 157 000                         | 272 000     | 850     | 1 100           | 23144B              | 23144BK                       |
| 220                 | 370      | 150 | 4                               | 1 880      | 3 400       | 192 000                         | 345 000     | 850     | 1 100           | 24144B              | 24144BK30                     |
|                     | 400      | 108 | 4                               | 1 580      | 2 460       | 161 000                         | 251 000     | 1 000   | 1 300           | 22244B              | 22244BK                       |
|                     | 400      | 144 | 4                               | 2 010      | 3 350       | 205 000                         | 340 000     | 770     | 1 000           | 23244B              | 23244BK                       |
|                     | 460      | 145 | 5                               | 2 350      | 3 500       | 240 000                         | 360 000     | 770     | 1 000           | 22344B              | 22344BK                       |
|                     | 320      | 60  | 2.1                             | 565        | 1 190       | 58 000                          | 121 000     | 1 000   | 1 300           | 23948               | 23948K                        |
|                     | 360      | 92  | 3                               | 1 130      | 2 140       | 116 000                         | 219 000     | 920     | 1 200           | 23048B              | 23048BK                       |
|                     | 360      | 118 | 3                               | 1 410      | 2 770       | 144 000                         | 282 000     | 850     | 1 100           | 24048B              | 24048BK30                     |
| 240                 | 400      | 128 | 4                               | 1 730      | 3 050       | 177 000                         | 310 000     | 770     | 1 000           | 23148B              | 23148BK                       |
| 240                 | 400      | 160 | 4                               | 2 110      | 3 800       | 215 000                         | 390 000     | 770     | 1 000           | 24148B              | 24148BK30                     |
|                     | 440      | 120 | 4                               | 1 940      | 3 100       | 198 000                         | 315 000     | 920     | 1 200           | 22248B              | 22248BK                       |
|                     | 440      | 160 | 4                               | 2 430      | 4 100       | 247 000                         | 420 000     | 720     | 940             | 23248B              | 23248BK                       |
|                     | 500      | 155 | 5                               | 2 720      | 4 100       | 278 000                         | 420 000     | 720     | 930             | 22348B              | 22348BK                       |
|                     | 360      | 75  | 2.1                             | 760        | 1 580       | 77 500                          | 161 000     | 920     | 1 200           | 23952               | 23952K                        |
|                     | 400      | 104 | 4                               | 1 420      | 2 620       | 144 000                         | 267 000     | 850     | 1 100           | 23052B              | 23052BK                       |
|                     | 400      | 140 | 4                               | 1 830      | 3 550       | 186 000                         | 365 000     | 750     | 980             | 24052B              | 24052BK30                     |
| 260                 | 440      | 144 | 4                               | 2 140      | 3 850       | 219 000                         | 395 000     | 710     | 920             | 23152B              | 23152BK                       |
| 260                 | 440      | 180 | 4                               | 2 510      | 4 600       | 256 000                         | 470 000     | 710     | 920             | 24152B              | 24152BK30                     |
|                     | 480      | 130 | 5                               | 2 230      | 3 600       | 228 000                         | 365 000     | 850     | 1 100           | 22252B              | 22252BK                       |
|                     | 480      | 174 | 5                               | 2 760      | 4 700       | 281 000                         | 480 000     | 660     | 860             | 23252B              | 23252BK                       |
|                     | 540      | 165 | 6                               | 3 100      | 4 750       | 320 000                         | 485 000     | 650     | 850             | 22352B              | 22352BK                       |
|                     | 380      | 75  | 2.1                             | 830        | 1 750       | 84 500                          | 179 000     | 850     | 1 100           | 23956               | 23956K                        |
|                     | 420      | 106 | 4                               | 1 510      | 2 920       | 154 000                         | 297 000     | 770     | 1 000           | 23056B              | 23056BK                       |
| 280                 | 420      | 140 | 4                               | 1 950      | 3 950       | 199 000                         | 405 000     | 690     | 900             | 24056B              | 24056BK30                     |
| _00                 | 460      | 146 | 5                               | 2 300      | 4 250       | 234 000                         | 435 000     | 650     | 850             | 23156B              | 23156BK                       |
|                     | 460      | 180 | 5                               | 2 730      | 5 200       | 278 000                         | 530 000     | 650     | 850             | 24156B              | 24156BK30                     |
|                     | 500      | 130 | 5                               | 2 310      | 3 800       | 236 000                         | 390 000     | 770     | 1 000           | 22256B              | 22256BK                       |

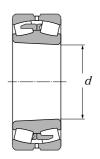









| $\frac{F_{\rm a}}{F_{\rm r}}$ | e     | $\frac{F_{i}}{F_{i}}$ | ; > e |
|-------------------------------|-------|-----------------------|-------|
| X                             | Y     | X                     | Y     |
| 1                             | $Y_1$ | 0.67                  | $Y_2$ |

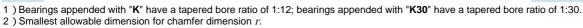

**static**  $P_{\text{or}} = F_{\text{F}} + Y_{\text{o}} F_{\text{a}}$  For values of e,  $Y_2$  and  $Y_0$  see the table below.

|         | outment a |                         | Constant | Axia  | I load facto | rs      | Mass (approx.) |         |  |
|---------|-----------|-------------------------|----------|-------|--------------|---------|----------------|---------|--|
|         | mm        |                         |          |       |              |         | ŀ              | g       |  |
| $d_{a}$ | $D_{a}$   | $m{r}_{\!\!\!	ext{as}}$ |          |       |              |         | cylindrical    | tapered |  |
| min     | max       | max                     | e        | $Y_1$ | $Y_2$        | $Y_{0}$ | bore           | bore    |  |
| 214     | 326       | 2.5                     | 0.33     | 2.05  | 3.05         | 2.00    | 43.3           | 42      |  |
| 214     | 326       | 2.5                     | 0.41     | 1.64  | 2.44         | 1.60    | 53.4           | 52.6    |  |
| 218     | 342       | 3                       | 0.28     | 2.45  | 3.64         | 2.39    | 44             | 43      |  |
| 218     | 342       | 3                       | 0.36     | 1.88  | 2.79         | 1.83    | 57.2           | 55.5    |  |
| 222     | 398       | 4                       | 0.34     | 1.98  | 2.95         | 1.94    | 93.2           | 91.2    |  |
| 232     | 288       | 2                       | 0.19     | 3.62  | 5.39         | 3.54    | 13.1           | 12.7    |  |
| 234     | 326       | 2.5                     | 0.26     | 2.59  | 3.85         | 2.53    | 29.9           | 28.8    |  |
| 234     | 326       | 2.5                     | 0.34     | 1.97  | 2.94         | 1.93    | 40.2           | 39.6    |  |
| 238     | 352       | 3                       | 0.33     | 2.07  | 3.09         | 2.03    | 53.3           | 51.6    |  |
| 238     | 352       | 3                       | 0.41     | 1.66  | 2.47         | 1.62    | 67             | 66      |  |
| 238     | 382       | 3                       | 0.27     | 2.46  | 3.66         | 2.40    | 60.4           | 59.1    |  |
| 238     | 382       | 3                       | 0.36     | 1.85  | 2.76         | 1.81    | 80             | 77.6    |  |
| 242     | 438       | 4                       | 0.33     | 2.06  | 3.07         | 2.02    | 117            | 115     |  |
| 252     | 308       | 2                       | 0.16     | 4.13  | 6.15         | 4.04    | 14             | 13.6    |  |
| 254     | 346       | 2.5                     | 0.25     | 2.69  | 4.01         | 2.63    | 33.4           | 32.2    |  |
| 254     | 346       | 2.5                     | 0.32     | 2.09  | 3.12         | 2.05    | 43             | 42.3    |  |
| 258     | 382       | 3                       | 0.32     | 2.11  | 3.15         | 2.07    | 65.8           | 63.8    |  |
| 258     | 382       | 3                       | 0.40     | 1.69  | 2.51         | 1.65    | 82.2           | 80.9    |  |
| 258     | 422       | 3                       | 0.28     | 2.43  | 3.62         | 2.38    | 81.7           | 80      |  |
| 258     | 422       | 3                       | 0.37     | 1.83  | 2.72         | 1.79    | 108            | 105     |  |
| 262     | 478       | 4                       | 0.32     | 2.10  | 3.13         | 2.06    | 148            | 145     |  |
| 272     | 348       | 2                       | 0.19     | 3.53  | 5.26         | 3.45    | 24             | 23.3    |  |
| 278     | 382       | 3                       | 0.26     | 2.63  | 3.92         | 2.57    | 48.5           | 46.8    |  |
| 278     | 382       | 3                       | 0.34     | 1.96  | 2.91         | 1.91    | 65.2           | 64.1    |  |
| 278     | 422       | 3                       | 0.33     | 2.05  | 3.06         | 2.01    | 91.4           | 88.6    |  |
| 278     | 422       | 3                       | 0.41     | 1.63  | 2.43         | 1.60    | 114            | 112     |  |
| 282     | 458       | 4                       | 0.28     | 2.45  | 3.64         | 2.39    | 106            | 104     |  |
| 282     | 458       | 4                       | 0.37     | 1.83  | 2.72         | 1.79    | 141            | 137     |  |
| 288     | 512       | 5                       | 0.32     | 2.13  | 3.18         | 2.09    | 183            | 179     |  |
| 292     | 368       | 2                       | 0.17     | 3.88  | 5.78         | 3.79    | 26.4           | 25.6    |  |
| 298     | 402       | 3                       | 0.25     | 2.73  | 4.06         | 2.67    | 52.4           | 50.6    |  |
| 298     | 402       | 3                       | 0.33     | 2.06  | 3.07         | 2.02    | 69             | 67.9    |  |
| 302     | 438       | 4                       | 0.32     | 2.13  | 3.18         | 2.09    | 97.7           | 94.6    |  |
| 302     | 438       | 4                       | 0.39     | 1.73  | 2.58         | 1.69    | 120            | 118     |  |
| 302     | 478       | 4                       | 0.26     | 2.57  | 3.83         | 2.51    | 112            | 110     |  |



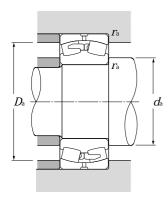







Cylindrical bore

**Tapered bore** 



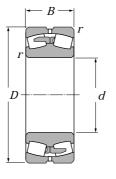

| <i>u</i> 20 | 00 ~ 3    | 0 0 1111111 |                    |             |             |                        |             |          |                 |             |           |
|-------------|-----------|-------------|--------------------|-------------|-------------|------------------------|-------------|----------|-----------------|-------------|-----------|
| В           | oundary d | limension   | s                  | dynamic     |             | oad ratings<br>dynamic | static      | Limiting | g speeds        | Bearin      | g numbers |
|             | mı        | m           |                    |             | kN          |                        | gf          | mi       | n <sup>-1</sup> |             |           |
|             |           |             |                    |             |             |                        |             |          |                 | cylindrical | tapered1) |
| d           | D         | В           | $r_{ m s min}^2$ ) | $C_{\rm r}$ | $C_{ m or}$ | $C_{\rm r}$            | $C_{ m or}$ | grease   | oil             | bore        | bore      |
|             |           |             |                    |             |             |                        |             |          |                 |             |           |
| 200         | 500       | 176         | 5                  | 2 930       | 5 150       | 298 000                | 525 000     | 610      | 790             | 23256B      | 23256BK   |
| 280         | 580       | 175         | 6                  | 3 500       | 5 350       | 360 000                | 545 000     | 600      | 780             | 22356B      | 22356BK   |
|             | 420       | 90          | 3                  | 1 110       | 2 320       | 113 000                | 237 000     | 770      | 1 000           | 23960       | 23960K    |
|             | 460       | 118         | 4                  | 1 890       | 3 550       | 193 000                | 365 000     | 720      | 940             | 23060B      | 23060BK   |
|             | 460       | 160         | 4                  | 2 450       | 4 950       | 250 000                | 505 000     | 650      | 840             | 24060B      | 24060BK30 |
|             | 500       | 160         | 5                  | 2 750       | 5 000       | 280 000                | 510 000     | 600      | 780             | 23160B      | 23160BK   |
| 300         | 500       | 200         | 5                  | 3 300       | 6 400       | 340 000                | 650 000     | 600      | 780             | 24160B      | 24160BK30 |
|             | 540       | 140         | 5                  | 2 670       | 4 350       | 272 000                | 440 000     | 720      | 930             | 22260B      | 22260BK   |
|             | 540       | 192         | 5                  | 3 450       | 6 000       | 355 000                | 615 000     | 560      | 730             | 23260B      | 23260BK   |
|             | 620       | 185         | 7.5                | 3 600       | 5 400       | 365 000                | 550 000     | 550      | 720             | 22360B      | 22360BK   |
|             | 440       | 90          | 3                  | 1 140       | 2 460       | 116 000                | 251 000     | 720      | 930             | 23964       | 23964K    |
|             | 480       | 121         | 4                  | 1 960       | 3 850       | 200 000                | 395 000     | 680      | 880             | 23064B      | 23064BK   |
|             | 480       | 160         | 4                  | 2 510       | 5 200       | 255 000                | 530 000     | 600      | 780             | 24064B      | 24064BK30 |
| 320         | 540       | 176         | 5                  | 3 100       | 5 800       | 320 000                | 590 000     | 560      | 730             | 23164B      | 23164BK   |
| 320         | 540       | 218         | 5                  | 3 850       | 7 300       | 390 000                | 745 000     | 560      | 730             | 24164B      | 24164BK30 |
|             | 580       | 150         | 5                  | 3 100       | 5 050       | 315 000                | 515 000     | 660      | 860             | 22264B      | 22264BK   |
|             | 580       | 208         | 5                  | 4 000       | 7 050       | 410 000                | 720 000     | 520      | 680             | 23264B      | 23264BK   |
|             | 460       | 90          | 3                  | 1 220       | 2 650       | 124 000                | 270 000     | 650      | 870             | 23968       | 23968K    |
|             | 520       | 133         | 5                  | 2 310       | 4 550       | 235 000                | 465 000     | 630      | 820             | 23068B      | 23068BK   |
|             | 520       | 180         | 5                  | 3 000       | 6 200       | 305 000                | 630 000     | 550      | 720             | 24068B      | 24068BK30 |
| 340         | 580       | 190         | 5                  | 3 600       | 6 600       | 365 000                | 670 000     | 520      | 680             | 23168B      | 23168BK   |
|             | 580       | 243         | 5                  | 4 600       | 8 950       | 470 000                | 910 000     | 520      | 680             | 24168B      | 24168BK30 |
|             | 620       | 224         | 6                  | 4 450       | 8 000       | 455 000                | 815 000     | 490      | 630             | 23268B      | 23268BK   |
|             | 480       | 90          | 3                  | 1 320       | 2 930       | 135 000                | 298 000     | 630      | 820             | 23972       | 23972K    |
|             | 540       | 134         | 5                  | 2 370       | 4 700       | 242 000                | 480 000     | 590      | 770             | 23072B      | 23072BK   |
|             | 540       | 180         | 5                  | 3 100       | 6 600       | 320 000                | 675 000     | 520      | 680             | 24072B      | 24072BK30 |
| 360         | 600       | 192         | 5                  | 3 750       | 7 050       | 385 000                | 715 000     | 490      | 630             | 23172B      | 23172BK   |
|             | 600       | 243         | 5                  | 4 600       | 9 150       | 470 000                | 935 000     | 490      | 630             | 24172B      | 24172BK30 |
|             | 650       | 232         | 6                  | 4 850       | 8 700       | 495 000                | 885 000     | 450      | 590             | 23272B      | 23272BK   |
|             | 520       | 106         | 4                  | 1 560       | 3 550       | 159 000                | 360 000     | 590      | 770             | 23976       | 23976K    |
|             | 560       | 135         | 5                  | 2 510       | 5 150       | 256 000                | 525 000     | 550      | 720             | 23076B      | 23076BK   |
| 380         | 560       | 180         | 5                  | 3 250       | 7 100       | 330 000                | 725 000     | 490      | 640             | 24076B      | 24076BK30 |
|             | 620       | 194         | 5                  | 3 900       | 7 500       | 400 000                | 765 000     | 450      | 590             | 23176B      | 23176BK   |
|             | 620       | 243         | 5                  | 4 800       | 9 650       | 490 000                | 985 000     | 450      | 590             | 24176B      | 24176BK30 |
| 4 \ D       |           | 0           | •                  | . 555       | : (4.40     | .00000                 |             |          | 300             |             |           |

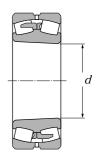









| $\frac{F_{ m a}}{F_{ m r}}$ | e     | $\frac{F_a}{F_r}$ | > e   |
|-----------------------------|-------|-------------------|-------|
| X                           | Y     | X                 | Y     |
| 1                           | $Y_1$ | 0.67              | $Y_2$ |


**static**  $P_{\text{or}} = F_{\text{F}} + Y_{\text{o}} F_{\text{a}}$  For values of e,  $Y_2$  and  $Y_0$  see the table below.

|         | utment ai   |             | Constant | Axia  | l load facto | rs          | Mass (      | approx.) |
|---------|-------------|-------------|----------|-------|--------------|-------------|-------------|----------|
|         | mm          | J           |          |       |              |             | ŀ           | кg       |
| $d_{a}$ | $D_{\rm a}$ | <b>T</b> as |          |       |              |             | cylindrical | tapered  |
| min     | max         | max         | e        | $Y_1$ | $Y_2$        | $Y_{\rm o}$ | bore        | bore     |
| 302     | 478         | 4           | 0.36     | 1.90  | 2.83         | 1.86        | 150         | 145      |
| 308     | 552         | 5           | 0.31     | 2.16  | 3.22         | 2.12        | 224         | 220      |
| 314     | 406         | 2.5         | 0.20     | 3.34  | 4.98         | 3.27        | 40          | 38.7     |
| 318     | 442         | 3           | 0.25     | 2.66  | 3.96         | 2.60        | 72.4        | 70.2     |
| 318     | 442         | 3           | 0.34     | 1.97  | 2.93         | 1.92        | 98          | 96.4     |
| 322     | 478         | 4           | 0.32     | 2.11  | 3.15         | 2.07        | 131         | 127      |
| 322     | 478         | 4           | 0.40     | 1.69  | 2.51         | 1.65        | 161         | 159      |
| 322     | 518         | 4           | 0.26     | 2.57  | 3.83         | 2.51        | 141         | 138      |
| 322     | 518         | 4           | 0.36     | 1.88  | 2.79         | 1.83        | 193         | 187      |
| 336     | 584         | 6           | 0.32     | 2.13  | 3.17         | 2.08        | 270         | 265      |
| 334     | 426         | 2.5         | 0.19     | 3.50  | 5.21         | 3.42        | 43          | 41.7     |
| 338     | 462         | 3           | 0.25     | 2.73  | 4.06         | 2.67        | 78.2        | 75.5     |
| 338     | 462         | 3           | 0.33     | 2.06  | 3.07         | 2.02        | 103         | 101      |
| 342     | 518         | 4           | 0.33     | 2.06  | 3.07         | 2.02        | 167         | 162      |
| 342     | 518         | 4           | 0.40     | 1.67  | 2.48         | 1.63        | 207         | 204      |
| 342     | 558         | 4           | 0.26     | 2.57  | 3.83         | 2.51        | 172         | 168      |
| 342     | 558         | 4           | 0.36     | 1.86  | 2.77         | 1.82        | 243         | 236      |
| 354     | 446         | 2.5         | 0.17     | 3.91  | 5.83         | 3.83        | 44.7        | 43.3     |
| 362     | 498         | 4           | 0.25     | 2.68  | 3.99         | 2.62        | 104         | 100      |
| 362     | 498         | 4           | 0.34     | 1.98  | 2.95         | 1.94        | 140         | 138      |
| 362     | 558         | 4           | 0.33     | 2.05  | 3.06         | 2.01        | 210         | 204      |
| 362     | 558         | 4           | 0.42     | 1.61  | 2.39         | 1.57        | 269         | 265      |
| 368     | 592         | 5           | 0.37     | 1.84  | 2.75         | 1.80        | 300         | 291      |
| 374     | 466         | 2.5         | 0.17     | 3.99  | 5.93         | 3.90        | 47.2        | 45.7     |
| 382     | 518         | 4           | 0.24     | 2.78  | 4.14         | 2.72        | 110         | 106      |
| 382     | 518         | 4           | 0.33     | 2.06  | 3.07         | 2.02        | 147         | 145      |
| 382     | 578         | 4           | 0.32     | 2.11  | 3.15         | 2.07        | 222         | 215      |
| 382     | 578         | 4           | 0.40     | 1.67  | 2.48         | 1.63        | 281         | 277      |
| 388     | 622         | 5           | 0.36     | 1.87  | 2.78         | 1.83        | 339         | 329      |
| 398     | 502         | 3           | 0.19     | 3.54  | 5.27         | 3.46        | 69.9        | 67.7     |
| 402     | 538         | 4           | 0.24     | 2.87  | 4.27         | 2.80        | 115         | 111      |
| 402     | 538         | 4           | 0.30     | 2.23  | 3.32         | 2.18        | 153         | 150      |
| 402     | 598         | 4           | 0.31     | 2.16  | 3.22         | 2.12        | 235         | 228      |
| 402     | 598         | 4           | 0.39     | 1.73  | 2.58         | 1.69        | 292         | 287      |



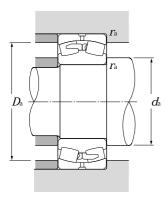






Cylindrical bore

**Tapered bore** 



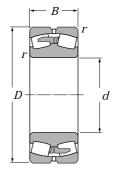

| Во  | undary d | imension | s                               | dynamic     | static      | ad ratings<br>dynamic | static      | Limiting |                 | Bearin              | g numbers                     |
|-----|----------|----------|---------------------------------|-------------|-------------|-----------------------|-------------|----------|-----------------|---------------------|-------------------------------|
|     | mr       | m        |                                 | k           | :N          |                       | kgf         | mir      | 1 <sup>-1</sup> | and the state of    | (11)                          |
| d   | D        | В        | r <sub>s min<sup>2</sup>)</sub> | $C_{\rm r}$ | $C_{ m or}$ | $C_{\rm r}$           | $C_{ m or}$ | grease   | oil             | cylindrical<br>bore | tapered <sup>1)</sup><br>bore |
| 380 | 680      | 240      | 6                               | 5 200       | 9 650       | 530 000               | 985 000     | 430      | 550             | 23276B              | 23276BK                       |
| 400 | 540      | 106      | 4                               | 1 580       | 3 650       | 161 000               | 370 000     | 550      | 720             | 23980               | 23980K                        |
|     | 600      | 148      | 5                               | 2 980       | 6 050       | 305 000               | 615 000     | 520      | 680             | 23080B              | 23080BK                       |
|     | 600      | 200      | 5                               | 3 850       | 8 400       | 390 000               | 855 000     | 460      | 600             | 24080B              | 24080BK30                     |
|     | 650      | 200      | 6                               | 4 200       | 8 050       | 425 000               | 820 000     | 430      | 560             | 23180B              | 23180BK                       |
|     | 650      | 250      | 6                               | 5 100       | 10 300      | 520 000               | 1 060 000   | 430      | 560             | 24180B              | 24180BK30                     |
|     | 720      | 256      | 6                               | 5 850       | 10 600      | 595 000               | 1 080 000   | 400      | 520             | 23280B              | 23280BK                       |
| 420 | 560      | 106      | 4                               | 1 630       | 3 850       | 166 000               | 390 000     | 530      | 690             | 23984               | 23984K                        |
|     | 620      | 150      | 5                               | 3 100       | 6 400       | 315 000               | 650 000     | 490      | 640             | 23084B              | 23084BK                       |
|     | 620      | 200      | 5                               | 3 850       | 8 450       | 395 000               | 865 000     | 440      | 570             | 24084B              | 24084BK30                     |
|     | 700      | 224      | 6                               | 5 200       | 9 950       | 530 000               | 1 020 000   | 410      | 530             | 23184B              | 23184BK                       |
|     | 700      | 280      | 6                               | 6 150       | 12 200      | 625 000               | 1 240 000   | 410      | 530             | 24184B              | 24184BK30                     |
|     | 760      | 272      | 7.5                             | 6 550       | 12 000      | 665 000               | 1 230 000   | 380      | 490             | 23284B              | 23284BK                       |
| 440 | 600      | 118      | 4                               | 2 030       | 4 700       | 207 000               | 480 000     | 500      | 650             | 23988               | 23988K                        |
|     | 650      | 157      | 6                               | 3 300       | 6 850       | 335 000               | 695 000     | 470      | 610             | 23088B              | 23088BK                       |
|     | 650      | 212      | 6                               | 4 300       | 9 450       | 440 000               | 960 000     | 420      | 540             | 24088B              | 24088BK30                     |
|     | 720      | 226      | 6                               | 5 200       | 10 100      | 530 000               | 1 030 000   | 390      | 500             | 23188B              | 23188BK                       |
|     | 720      | 280      | 6                               | 6 450       | 13 100      | 660 000               | 1 330 000   | 390      | 500             | 24188B              | 24188BK30                     |
|     | 790      | 280      | 7.5                             | 6 900       | 12 800      | 705 000               | 1 310 000   | 360      | 470             | 23288B              | 23288BK                       |
| 460 | 620      | 118      | 4                               | 2 100       | 4 950       | 214 000               | 505 000     | 480      | 620             | 23992               | 23992K                        |
|     | 680      | 163      | 6                               | 3 600       | 7 450       | 365 000               | 760 000     | 450      | 580             | 23092B              | 23092BK                       |
|     | 680      | 218      | 6                               | 4 600       | 10 200      | 470 000               | 1 040 000   | 390      | 510             | 24092B              | 24092BK30                     |
|     | 760      | 240      | 7.5                             | 5 700       | 11 400      | 585 000               | 1 160 000   | 360      | 470             | 23192B              | 23192BK                       |
|     | 760      | 300      | 7.5                             | 7 100       | 14 500      | 725 000               | 1 480 000   | 360      | 470             | 24192B              | 24192BK30                     |
|     | 830      | 296      | 7.5                             | 7 750       | 14 500      | 790 000               | 1 470 000   | 340      | 440             | 23292B              | 23292BK                       |
| 480 | 650      | 128      | 5                               | 2 330       | 5 500       | 238 000               | 565 000     | 450      | 590             | 23996               | 23996K                        |
|     | 700      | 165      | 6                               | 3 650       | 7 700       | 370 000               | 785 000     | 420      | 550             | 23096B              | 23096BK                       |
|     | 700      | 218      | 6                               | 4 650       | 10 500      | 475 000               | 1 070 000   | 380      | 490             | 24096B              | 24096BK30                     |
|     | 790      | 248      | 7.5                             | 6 200       | 12 300      | 635 000               | 1 260 000   | 350      | 450             | 23196B              | 23196BK                       |
|     | 790      | 308      | 7.5                             | 7 450       | 15 300      | 760 000               | 1 560 000   | 350      | 450             | 24196B              | 24196BK30                     |
|     | 870      | 310      | 7.5                             | 8 300       | 15 500      | 845 000               | 1 580 000   | 320      | 420             | 23296B              | 23296BK                       |
| 500 | 670      | 128      | 5                               | 2 370       | 5 600       | 242 000               | 570 000     | 430      | 560             | 239/500             | 239/500K                      |
|     | 720      | 167      | 6                               | 3 850       | 8 300       | 390 000               | 845 000     | 410      | 530             | 230/500B            | 230/500BK                     |

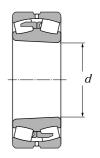
<sup>1 )</sup> Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30. 2 ) Smallest allowable dimension for chamfer dimension r.








| $\frac{F_{\rm a}}{F_{\rm r}}$ | e     | $\frac{F_{i}}{F_{i}}$ | ; > e |
|-------------------------------|-------|-----------------------|-------|
| X                             | Y     | X                     | Y     |
| 1                             | $Y_1$ | 0.67                  | $Y_2$ |

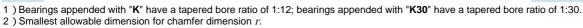

**static**  $P_{\text{or}} = F_{\text{F}} + Y_{\text{o}} F_{\text{a}}$  For values of e,  $Y_2$  and  $Y_0$  see the table below.

|         | outment a                       |                | Constant        | Axia  | l load facto | rs      | Mass (a     | ,       |
|---------|---------------------------------|----------------|-----------------|-------|--------------|---------|-------------|---------|
|         | mm                              |                |                 |       |              |         |             | (g      |
| $d_{a}$ | $D_{\!\scriptscriptstyle  m a}$ | $m{r}_{ m as}$ |                 |       |              |         | cylindrical | tapered |
| min     | max                             | max            | e               | $Y_1$ | $Y_2$        | $Y_{0}$ | bore        | bore    |
| 408     | 652                             | 5              | 0.36            | 1.89  | 2.82         | 1.85    | 380         | 369     |
| 418     | 522                             | 3              | 0.18            | 3.71  | 5.53         | 3.63    | 73          | 70.7    |
| 422     | 578                             | 4              | 0.24            | 2.80  | 4.16         | 2.73    | 149         | 144     |
| 422     | 578                             | 4              | 0.32            | 2.09  | 3.11         | 2.04    | 202         | 200     |
| 428     | 622                             | 5              | 0.31            | 2.21  | 3.28         | 2.16    | 264         | 256     |
| 428     | 622                             | 5              | 0.38            | 1.77  | 2.63         | 1.73    | 329         | 324     |
| 428     | 692                             | 5              | 0.37            | 1.81  | 2.69         | 1.77    | 457         | 443     |
| 438     | 542                             | 3              | 0.17            | 3.95  | 5.88         | 3.86    | 76.2        | 73.8    |
| 442     | 598                             | 4              | 0.24            | 2.85  | 4.24         | 2.78    | 157         | 152     |
| 442     | 598                             | 4              | 0.32            | 2.13  | 3.18         | 2.09    | 210         | 207     |
| 448     | 672                             | 5              | 0.32            | 2.11  | 3.15         | 2.07    | 354         | 343     |
| 448     | 672                             | 5              | 0.40            | 1.69  | 2.51         | 1.65    | 440         | 433     |
| 456     | 724                             | 6              | 0.36            | 1.86  | 2.77         | 1.82    | 544         | 528     |
| 458     | 582                             | 3              | 0.18            | 3.66  | 5.46         | 3.58    | 101         | 98      |
| 468     | 622                             | 5              | 0.24            | 2.85  | 4.24         | 2.78    | 181         | 175     |
| 468     | 622                             | 5              | 0.32            | 2.11  | 3.15         | 2.07    | 245         | 241     |
| 468     | 692                             | 5              | 0.31            | 2.15  | 3.21         | 2.11    | 370         | 358     |
| 468     | 692                             | 5              | 0.39            | 1.75  | 2.61         | 1.71    | 456         | 449     |
| 476     | 754                             | 6              | 0.36            | 1.88  | 2.80         | 1.84    | 600         | 582     |
| 478     | 602                             | 3              | 0.17            | 3.95  | 5.88         | 3.86    | 107         | 104     |
| 488     | 652                             | 5              | 0.23            | 2.88  | 4.29         | 2.82    | 206         | 200     |
| 488     | 652                             | 5              | 0.31            | 2.15  | 3.21         | 2.11    | 276         | 272     |
| 496     | 724                             | 6              | 0.31            | 2.14  | 3.19         | 2.10    | 443         | 429     |
| 496     | 724                             | 6              | 0.39            | 1.71  | 2.55         | 1.67    | 550         | 541     |
| 496     | 794                             | 6              | 0.36            | 1.87  | 2.78         | 1.83    | 704         | 683     |
| 502     | 628                             | 4              | 0.18            | 3.85  | 5.73         | 3.76    | 123         | 119     |
| 508     | 672                             | 5              | 0.23            | 2.94  | 4.38         | 2.88    | 217         | 209     |
| 508     | 672                             | 5              | 0.30            | 2.22  | 3.30         | 2.17    | 285         | 280     |
| 516     | 754                             | 6              | 0.31            | 2.15  | 3.21         | 2.11    | 492         | 477     |
| 516     | 754                             | 6              | 0.39            | 1.74  | 2.59         | 1.70    | 608         | 600     |
| 516     | 834                             | 6              | 0.36            | 1.87  | 2.78         | 1.83    | 814         | 790     |
| 522     | 648                             | 4              | 0.17            | 4.02  | 5.98         | 3.93    | 131         | 127     |
| 528     | 692                             | 5              | 0.23            | 2.98  | 4.44         | 2.91    | 226         | 218     |
|         |                                 |                | 3-234 for outer |       |              |         |             | -       |



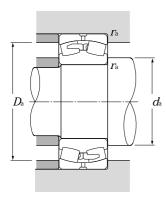







Cylindrical bore

**Tapered bore** 



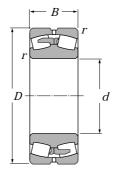

| Во  | oundary d | limensior | าร                | dynamic     | static      | oad ratings<br>dynamic | static      | Limiting |                 | Bearing             | g numbers                     |
|-----|-----------|-----------|-------------------|-------------|-------------|------------------------|-------------|----------|-----------------|---------------------|-------------------------------|
|     | mı        | m         |                   | ŀ           | κN          |                        | kgf         | mir      | 1 <sup>-1</sup> | ovilindriaal        | toporod1)                     |
| d   | D         | В         | $r_{ m smin}^2$ ) | $C_{\rm r}$ | $C_{ m or}$ | $C_{\rm r}$            | $C_{ m or}$ | grease   | oil             | cylindrical<br>bore | tapered <sup>1)</sup><br>bore |
|     |           |           |                   |             |             |                        |             |          |                 |                     |                               |
|     | 720       | 218       | 6                 | 4 750       | 10 900      | 485 000                | 1 110 000   | 350      | 460             | 240/500B            | 240/500BK30                   |
| E00 | 830       | 264       | 7.5               | 6 950       | 13 700      | 705 000                | 1 400 000   | 330      | 430             | 231/500B            | 231/500BK                     |
| 500 | 830       | 325       | 7.5               | 8 050       | 16 700      | 825 000                | 1 700 000   | 330      | 430             | 241/500B            | 241/500BK30                   |
|     | 920       | 336       | 7.5               | 9 400       | 17 800      | 960 000                | 1 820 000   | 310      | 400             | 232/500B            | 232/500BK                     |
|     | 710       | 136       | 5                 | 2 640       | 6 450       | 269 000                | 655 000     | 400      | 520             | 239/530             | 239/530K                      |
|     | 780       | 185       | 6                 | 4 400       | 9 350       | 445 000                | 955 000     | 380      | 490             | 230/530B            | 230/530BK                     |
| E20 | 780       | 250       | 6                 | 5 600       | 12 700      | 570 000                | 1 290 000   | 330      | 430             | 240/530B            | 240/530BK30                   |
| 530 | 870       | 272       | 7.5               | 7 000       | 14 200      | 715 000                | 1 450 000   | 310      | 400             | 231/530B            | 231/530BK                     |
|     | 870       | 335       | 7.5               | 8 300       | 17 400      | 850 000                | 1 770 000   | 310      | 400             | 241/530B            | 241/530BK30                   |
|     | 980       | 355       | 9.5               | 10 400      | 19 800      | 1 060 000              | 2 020 000   | 280      | 370             | 232/530B            | 232/530BK                     |
|     | 750       | 140       | 5                 | 2 830       | 6 700       | 288 000                | 680 000     | 380      | 490             | 239/560             | 239/560K                      |
|     | 820       | 195       | 6                 | 4 800       | 10 500      | 490 000                | 1 070 000   | 350      | 450             | 230/560B            | 230/560BK                     |
|     | 820       | 258       | 6                 | 6 100       | 14 100      | 620 000                | 1 440 000   | 310      | 400             | 240/560B            | 240/560BK30                   |
| 560 | 920       | 280       | 7.5               | 7 650       | 15 500      | 780 000                | 1 580 000   | 280      | 370             | 231/560B            | 231/560BK                     |
|     | 920       | 355       | 7.5               | 9 950       | 20 800      | 1 010 000              | 2 120 000   | 280      | 370             | 241/560B            | 241/560BK30                   |
|     | 1 030     | 365       | 9.5               | 11 100      | 21 100      | 1 130 000              | 2 150 000   | 260      | 340             | 232/560B            | 232/560BK                     |
|     | 800       | 150       | 5                 | 3 150       | 7 800       | 325 000                | 795 000     | 350      | 450             | 239/600             | 239/600K                      |
|     | 870       | 200       | 6                 | 5 250       | 12 000      | 535 000                | 1 220 000   | 310      | 420             | 230/600B            | 230/600BK                     |
| 000 | 870       | 272       | 6                 | 6 450       | 15 600      | 655 000                | 1 590 000   | 280      | 370             | 240/600B            | 240/600BK30                   |
| 600 | 980       | 300       | 7.5               | 9 000       | 18 400      | 920 000                | 1 880 000   | 260      | 340             | 231/600B            | 231/600BK                     |
|     | 980       | 375       | 7.5               | 10 700      | 23 200      | 1 090 000              | 2 360 000   | 260      | 340             | 241/600B            | 241/600BK30                   |
|     | 1 090     | 388       | 9.5               | 12 200      | 23 700      | 1 240 000              | 2 420 000   | 250      | 320             | 232/600B            | 232/600BK                     |
|     | 850       | 165       | 6                 | 3 700       | 9 250       | 375 000                | 945 000     | 320      | 420             | 239/630             | 239/630K                      |
|     | 920       | 212       | 7.5               | 5 900       | 13 000      | 600 000                | 1 330 000   | 310      | 400             | 230/630B            | 230/630BK                     |
|     | 920       | 290       | 7.5               | 7 550       | 17 900      | 770 000                | 1 830 000   | 270      | 350             | 240/630B            | 240/630BK30                   |
| 630 | 1 030     | 315       | 7.5               | 9 600       | 19 900      | 975 000                | 2 030 000   | 250      | 320             | 231/630B            | 231/630BK                     |
|     | 1 030     | 400       | 7.5               | 11 600      | 25 000      | 1 180 000              | 2 550 000   | 250      | 320             | 241/630B            | 241/630BK30                   |
|     | 1 150     | 412       | 12                | 13 700      | 26 800      | 1 400 000              | 2 740 000   | 230      | 300             | 232/630B            | 232/630BK                     |
|     | 900       | 170       | 6                 | 4 100       | 10 300      | 420 000                | 1 050 000   | 300      | 390             | 239/670             | 239/670K                      |
|     | 980       | 230       | 7.5               | 6 550       | 14 600      | 665 000                | 1 490 000   | 280      | 360             | 230/670B            | 230/670BK                     |
| 670 | 980       | 308       | 7.5               | 8 650       | 20 600      | 885 000                | 2 100 000   | 250      | 320             | 240/670B            | 240/670BK30                   |
| 0/0 | 1 090     | 336       | 7.5               | 11 000      | 22 800      | 1 120 000              | 2 330 000   | 230      | 300             | 231/670B            | 231/670BK                     |
|     | 1 090     | 412       | 7.5               | 12 700      | 28 000      | 1 300 000              | 2 850 000   | 230      | 300             | 241/670B            | 241/670BK30                   |
|     | 1 220     | 438       | 12                | 16 100      | 32 000      | 1 640 000              | 3 250 000   | 220      | 280             | 232/670B            | 232/670BK                     |

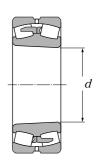






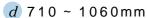



| $\frac{F_{\rm a}}{F_{\rm r}}$ | e     | $\frac{F_a}{F_r}$ | : > e |
|-------------------------------|-------|-------------------|-------|
| X                             | Y     | X                 | Y     |
| 1                             | $Y_1$ | 0.67              | $Y_2$ |

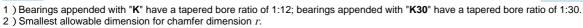

**static**  $P_{\text{or}} = F_{\text{F}} + Y_{\text{o}} F_{\text{a}}$  For values of e,  $Y_2$  and  $Y_0$  see the table below.

|             | butment a                       |           | Constant         | Axia           | I load facto  | rs          | Mass (approx.) |         |  |
|-------------|---------------------------------|-----------|------------------|----------------|---------------|-------------|----------------|---------|--|
|             | mm                              | -1.0      |                  |                |               |             |                | kg      |  |
| $d_{a}$     | $D_{\!\scriptscriptstyle  m a}$ | arGammaas |                  |                |               |             | cylindrical    | tapered |  |
| min         | max                             | max       | e                | $Y_1$          | $Y_2$         | $Y_{\circ}$ | bore           | bore    |  |
| <b>5</b> 00 | 600                             | _         | 0.00             | 0.00           | 0.40          | 0.00        | co=            | 000     |  |
| 528         | 692                             | 5         | 0.30             | 2.28           | 3.40          | 2.23        | 295            | 290     |  |
| 536         | 794                             | 6         | 0.32             | 2.12           | 3.16          | 2.08        | 584            | 566     |  |
| 536         | 794                             | 6         | 0.39             | 1.72           | 2.57          | 1.69        | 716            | 705     |  |
| 536         | 884                             | 6         | 0.39             | 1.74           | 2.59          | 1.70        | 1 000          | 971     |  |
| 552         | 688                             | 4         | 0.17             | 3.94           | 5.87          | 3.86        | 157            | 152     |  |
| 558         | 752                             | 5         | 0.22             | 3.03           | 4.52          | 2.97        | 306            | 295     |  |
| 558         | 752                             | 5         | 0.30             | 2.24           | 3.33          | 2.19        | 413            | 406     |  |
| 566         | 834                             | 6         | 0.30             | 2.22           | 3.30          | 2.17        | 653            | 633     |  |
| 566         | 834                             | 6         | 0.38             | 1.79           | 2.67          | 1.75        | 800            | 788     |  |
| 574         | 936                             | 8         | 0.39             | 1.74           | 2.59          | 1.70        | 1 200          | 1 170   |  |
|             | 700                             | 4         | 0.40             | 4.00           | 0.00          | 4.00        | 400            | 470     |  |
| 582         | 728                             | 4         | 0.16             | 4.09           | 6.09          | 4.00        | 182            | 176     |  |
| 588         | 792                             | 5         | 0.22             | 3.03           | 4.51          | 2.96        | 353            | 340     |  |
| 588         | 792                             | 5         | 0.30             | 2.29           | 3.40          | 2.24        | 467            | 459     |  |
| 596         | 884                             | 6         | 0.30             | 2.27           | 3.38          | 2.22        | 752            | 729     |  |
| 596         | 884                             | 6         | 0.39             | 1.75           | 2.61          | 1.71        | 948            | 934     |  |
| 604         | 986                             | 8         | 0.36             | 1.88           | 2.80          | 1.84        | 1 360          | 1 320   |  |
| 622         | 778                             | 4         | 0.18             | 3.85           | 5.73          | 3.76        | 218            | 211     |  |
| 628         | 842                             | 5         | 0.21             | 3.17           | 4.72          | 3.10        | 400            | 386     |  |
| 628         | 842                             | 5         | 0.29             | 2.33           | 3.47          | 2.28        | 544            | 535     |  |
| 636         | 944                             | 6         | 0.30             | 2.22           | 3.30          | 2.17        | 908            | 880     |  |
| 636         | 944                             | 6         | 0.37             | 1.81           | 2.70          | 1.77        | 1 130          | 1 110   |  |
| 644         | 1 046                           | 8         | 0.36             | 1.86           | 2.77          | 1.82        | 1 540          | 1 490   |  |
|             |                                 |           |                  |                |               |             |                |         |  |
| 658         | 822                             | 5         | 0.18             | 3.66           | 5.45          | 3.58        | 277            | 268     |  |
| 666         | 884                             | 6         | 0.22             | 3.14           | 4.67          | 3.07        | 481            | 464     |  |
| 666         | 884                             | 6         | 0.30             | 2.28           | 3.40          | 2.23        | 657            | 646     |  |
| 666         | 994                             | 6         | 0.30             | 2.27           | 3.38          | 2.22        | 1 050          | 1 020   |  |
| 666         | 994                             | 6         | 0.38             | 1.78           | 2.66          | 1.74        | 1 330          | 1 310   |  |
| 684         | 1 096                           | 10        | 0.36             | 1.87           | 2.78          | 1.83        | 1 900          | 1 840   |  |
| 698         | 872                             | 5         | 0.18             | 3.76           | 5.59          | 3.67        | 317            | 307     |  |
| 706         | 944                             | 6         | 0.10             | 3.07           | 4.57          | 3.00        | 594            | 573     |  |
| 706         | 944                             | 6         | 0.22             | 2.29           | 3.41          | 2.24        | 794            | 781     |  |
| 706         | 1 054                           | 6         | 0.29             | 2.29           | 3.41          | 2.24        | 1 250          | 1 210   |  |
|             |                                 |           |                  |                |               |             |                |         |  |
| 706         | 1 054                           | 6         | 0.37             | 1.83           | 2.73          | 1.79        | 1 530          | 1 510   |  |
| 724         | 1 166                           | 10        | 0.36             | 1.89           | 2.81          | 1.85        | 2 270          | 2 200   |  |
| Note: P     | iease refer                     | το page Β | -234 for outer I | rıng oli inlet | and oil groov | ve aimensia | ons.           |         |  |



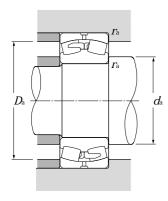





Cylindrical bore

**Tapered bore** 



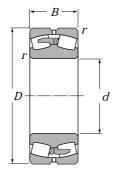

| 950 180 6<br>1 030 236 7<br>1 030 315   | dynamic  C                                      |                               | oad ratings<br>dynamic<br><i>C</i> <sub>r</sub><br>450 000<br>730 000 | static kgf  Cor          | Limiting :<br>min <sup>-</sup><br>grease |            | Bearing<br>cylindrical<br>bore | tapered <sup>1)</sup> bore |
|-----------------------------------------|-------------------------------------------------|-------------------------------|-----------------------------------------------------------------------|--------------------------|------------------------------------------|------------|--------------------------------|----------------------------|
| 950 180 6<br>1 030 236 7<br>1 030 315   | 6 4 450<br>7.5 7 200<br>7.5 9 300<br>9.5 11 600 | C <sub>or</sub> 11 500 16 200 | <i>C</i> r 450 000                                                    | kgf $C_{ m or}$          |                                          |            | •                              |                            |
| 950 180 6<br>1 030 236 7<br>1 030 315   | 6 4 450<br>7.5 7 200<br>7.5 9 300<br>9.5 11 600 | 11 500<br>16 200              | <i>C</i> <sub>r</sub> 450 000                                         | $\mathcal{C}_{	ext{or}}$ | grease                                   | oil        | •                              |                            |
| 950 180 6<br>1 030 236 7<br>1 030 315   | 6 4 450<br>7.5 7 200<br>7.5 9 300<br>9.5 11 600 | 11 500<br>16 200              | 450 000                                                               |                          | grease                                   | OII        | bore                           | bore                       |
| 1 030 236 1<br>1 030 315                | 7.5 7 200<br>7.5 9 300<br>9.5 11 600            | 16 200                        |                                                                       | 1 170 000                |                                          |            |                                |                            |
| 1 030 236 1<br>1 030 315                | 7.5 7 200<br>7.5 9 300<br>9.5 11 600            | 16 200                        |                                                                       | 1 170 000                | 280                                      | 370        | 239/710                        | 239/710K                   |
| 1 030 315                               | 7.5 9 300<br>9.5 11 600                         |                               | 130 000                                                               | 1 650 000                | 260                                      | 340        | 239/710<br>230/710B            | 239/710K<br>230/710BK      |
| <b>-</b> 40                             | 9.5 11 600                                      | // DUU                        | 945 000                                                               | 2 300 000                | 230                                      | 300        | 240/710B                       | 240/710BK30                |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                 | 24 900                        | 1 190 000                                                             | 2 540 000                | 220                                      | 280        | 231/710B                       | 231/710BK30                |
|                                         |                                                 | 32 000                        | 1 470 000                                                             | 3 250 000                | 220                                      | 280        | 241/710B                       | 241/710BK30                |
| 1 280 450 12                            |                                                 | 32 500                        | 1 660 000                                                             | 3 300 000                | 200                                      | 260        | 232/710B                       | 232/710BK                  |
| 1 200 400 12                            | 10 000                                          | 02 000                        | 1 000 000                                                             | 0 000 000                | 200                                      | 200        | 202/1100                       | 202// 105/(                |
| 1 000 185                               | 5 000                                           | 13 000                        | 510 000                                                               | 1 330 000                | 260                                      | 340        | 239/750                        | 239/750K                   |
| 1 090 250                               | 7.5 8 150                                       | 18 300                        | 835 000                                                               | 1 860 000                | 250                                      | 320        | 230/750B                       | 230/750BK                  |
| <b>750</b> 1 090 335                    | 7.5 10 100                                      | 24 600                        | 1 030 000                                                             | 2 500 000                | 220                                      | 280        | 240/750B                       | 240/750BK30                |
|                                         | 9.5 12 800                                      | 27 200                        | 1 310 000                                                             | 2 780 000                | 200                                      | 260        | 231/750B                       | 231/750BK                  |
| 1 360 475 15                            | 5 18 200                                        | 36 500                        | 1 860 000                                                             | 3 750 000                | 180                                      | 240        | 232/750B                       | 232/750BK                  |
| 1 060 195                               | 6 5 400                                         | 13 700                        | 550 000                                                               | 1 400 000                | 240                                      | 310        | 239/800                        | 239/800K                   |
|                                         | 7.5 8 400                                       | 19 500                        | 860 000                                                               | 1 990 000                | 220                                      | 290        | 230/800B                       | 230/800BK                  |
| Q/W                                     | 7.5 11 200                                      | 27 800                        | 1 140 000                                                             | 2 840 000                | 200                                      | 260        | 240/800B                       | 240/800BK30                |
|                                         | 9.5 14 400                                      | 31 000                        | 1 460 000                                                             | 3 150 000                | 180                                      | 240        | 231/800B                       | 231/800BK                  |
| 4.400 000                               | 2 5.050                                         | 45.400                        | 505.000                                                               | 4.540.000                | 200                                      | 000        | 000/050                        | 222/2521/                  |
|                                         | 6 5 850                                         | 15 100                        | 595 000                                                               | 1 540 000                | 220                                      | 290        | 239/850                        | 239/850K                   |
| OEA                                     | 7.5 9 750                                       | 22 700                        | 995 000                                                               | 2 310 000                | 210                                      | 270        | 230/850B                       | 230/850BK                  |
| 1 220 000                               | 7.5 12 500                                      | 31 500                        | 1 270 000                                                             | 3 200 000                | 180                                      | 240        | 240/850B                       | 240/850BK30                |
| 1 360 400 12                            | 2 15 500                                        | 34 000                        | 1 580 000                                                             | 3 500 000                | 170                                      | 220        | 231/850B                       | 231/850BK                  |
| 1 180 206                               | 6 6 6 5 0                                       | 17 300                        | 675 000                                                               | 1 770 000                | 210                                      | 270        | 239/900                        | 239/900K                   |
| 1 280 280                               | 7.5 10 300                                      | 24 700                        | 1 050 000                                                             | 2 520 000                | 190                                      | 250        | 230/900B                       | 230/900BK                  |
| 900 1 280 375                           | 7.5 13 200                                      | 33 500                        | 1 350 000                                                             | 3 450 000                | 170                                      | 220        | 240/900B                       | 240/900BK30                |
| 1 420 412 12                            | 2 16 800                                        | 38 000                        | 1 720 000                                                             | 3 850 000                | 150                                      | 200        | 231/900B                       | 231/900BK                  |
| 1 250 224                               | 7.5 7 750                                       | 20 500                        | 790 000                                                               | 2 090 000                | 190                                      | 250        | 239/950                        | 239/950K                   |
|                                         | 7.5 11 500                                      | 28 400                        | 1 180 000                                                             | 2 900 000                | 180                                      | 230        | 230/950B                       | 230/950BK                  |
|                                         | 7.5 15 500                                      | 40 000                        | 1 580 000                                                             | 4 100 000                | 160                                      | 210        | 240/950B                       | 240/950BK30                |
| 4.200                                   | 7.5 0.000                                       | 00.700                        | 075 000                                                               | 0.040.000                | 400                                      | 000        | 000/4000                       | 220/402016                 |
|                                         | 7.5 8 600                                       | 22 700                        |                                                                       | 2 310 000                | 180                                      | 230        | 239/1000                       | 239/1000K                  |
| 1000                                    | 7.5 12 400<br>7.5 16 000                        |                               | 1 260 000<br>1 640 000                                                |                          | 170<br>150                               | 220<br>190 |                                | 230/1000BK<br>240/1000BK30 |
| 1 420 412                               | 1.5 10 000                                      | 42 000                        | 1 040 000                                                             | 4 200 000                | 130                                      | 130        | 240/10000                      | 240/1000BN30               |
| 1 400 250                               | 7.5 9 300                                       | 24 700                        | 950 000                                                               | 2 520 000                | 160                                      | 210        | 239/1060                       | 239/1060K                  |
| 4000                                    | 9.5 13 600                                      |                               | 1 390 000                                                             |                          | 150                                      | 200        |                                | 230/1060BK                 |
|                                         | 9.5 17 800                                      |                               | 1 810 000                                                             |                          | 140                                      | 180        |                                | 240/1060BK30               |

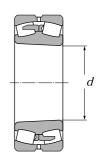









| $\frac{F_{\rm a}}{F_{\rm r}}$ | e     | $\frac{F_{i}}{F_{i}}$ | ; > e |
|-------------------------------|-------|-----------------------|-------|
| X                             | Y     | X                     | Y     |
| 1                             | $Y_1$ | 0.67                  | $Y_2$ |


**static**  $P_{\text{or}} = F_{\text{F}} + Y_{\text{o}} F_{\text{a}}$  For values of e,  $Y_2$  and  $Y_0$  see the table below.

|         | outment ar                     |             | Constant        | Axia  | I load facto | rs          | Mass (approx.) |         |  |
|---------|--------------------------------|-------------|-----------------|-------|--------------|-------------|----------------|---------|--|
| iiie    | mm                             | ,,,,        |                 |       |              |             | ı              | κg      |  |
| $d_{a}$ | $D_{\!\scriptscriptstyle m a}$ | $r_{ m as}$ |                 |       |              |             | cylindrical    | tapered |  |
| min     | max                            | max         | e               | $Y_1$ | $Y_2$        | $Y_{\rm o}$ | bore           | bore    |  |
|         |                                |             |                 |       |              |             |                |         |  |
| 738     | 922                            | 5           | 0.18            | 3.85  | 5.73         | 3.76        | 375            | 363     |  |
| 746     | 994                            | 6           | 0.22            | 3.02  | 4.50         | 2.96        | 663            | 640     |  |
| 746     | 994                            | 6           | 0.29            | 2.36  | 3.51         | 2.31        | 884            | 870     |  |
| 754     | 1 106                          | 8           | 0.29            | 2.32  | 3.45         | 2.27        | 1 420          | 1 380   |  |
| 754     | 1 106                          | 8           | 0.37            | 1.80  | 2.69         | 1.76        | 1 800          | 1 770   |  |
| 764     | 1 226                          | 10          | 0.35            | 1.91  | 2.84         | 1.87        | 2 540          | 2 470   |  |
|         |                                |             |                 |       |              |             |                |         |  |
| 778     | 972                            | 5           | 0.17            | 3.90  | 5.81         | 3.81        | 412            | 399     |  |
| 786     | 1 054                          | 6           | 0.21            | 3.20  | 4.76         | 3.13        | 790            | 763     |  |
| 786     | 1 054                          | 6           | 0.29            | 2.35  | 3.49         | 2.29        | 1 060          | 1 040   |  |
| 794     | 1 176                          | 8           | 0.29            | 2.32  | 3.45         | 2.27        | 1 700          | 1 650   |  |
| 814     | 1 296                          | 12          | 0.35            | 1.92  | 2.86         | 1.88        | 3 050          | 2 960   |  |
|         |                                |             |                 |       |              |             |                |         |  |
| 828     | 1 032                          | 5           | 0.17            | 4.05  | 6.04         | 3.96        | 487            | 471     |  |
| 836     | 1 114                          | 6           | 0.21            | 3.15  | 4.69         | 3.08        | 890            | 859     |  |
| 836     | 1 114                          | 6           | 0.28            | 2.41  | 3.59         | 2.36        | 1 190          | 1 170   |  |
| 844     | 1 236                          | 8           | 0.29            | 2.32  | 3.45         | 2.27        | 1 890          | 1 830   |  |
|         | 4 000                          |             | 0.40            | 4.05  | 2.22         | 4.45        |                | 500     |  |
| 878     | 1 092                          | 5           | 0.16            | 4.25  | 6.32         | 4.15        | 550            | 532     |  |
| 886     | 1 184                          | 6           | 0.20            | 3.32  | 4.95         | 3.25        | 1 050          | 1 010   |  |
| 886     | 1 184                          | 6           | 0.28            | 2.42  | 3.61         | 2.37        | 1 410          | 1 390   |  |
| 904     | 1 306                          | 10          | 0.28            | 2.37  | 3.54         | 2.32        | 2 270          | 2 200   |  |
| 928     | 1 152                          | 5           | 0.16            | 4.32  | 6.44         | 4.23        | 623            | 603     |  |
| 936     | 1 244                          | 6           | 0.20            | 3.32  | 4.95         | 3.25        | 1 170          | 1 130   |  |
| 936     | 1 244                          | 6           | 0.27            | 2.48  | 3.70         | 2.43        | 1 570          | 1 540   |  |
| 954     | 1 366                          | 10          | 0.28            | 2.42  | 3.60         | 2.36        | 2 500          | 2 420   |  |
|         |                                |             |                 |       |              |             |                |         |  |
| 986     | 1 214                          | 6           | 0.16            | 4.20  | 6.26         | 4.11        | 774            | 749     |  |
| 986     | 1 324                          | 6           | 0.21            | 3.26  | 4.85         | 3.18        | 1 430          | 1 380   |  |
| 986     | 1 324                          | 6           | 0.28            | 2.39  | 3.56         | 2.34        | 1 970          | 1 940   |  |
| 1.000   | 1.004                          |             | 0.40            | 4.04  | 6.00         | 1 1 1       | 040            | 007     |  |
| 1 036   | 1 284                          | 6           | 0.16            | 4.21  | 6.26         | 4.11        | 916            | 887     |  |
| 1 036   | 1 384                          | 6           | 0.20            | 3.37  | 5.02         | 3.29        | 1 580          | 1 520   |  |
| 1 036   | 1 384                          | 6           | 0.27            | 2.51  | 3.73         | 2.45        | 2 110          | 2 080   |  |
| 1 096   | 1 364                          | 6           | 0.16            | 4.28  | 6.37         | 4.19        | 1 090          | 1 060   |  |
| 1 104   | 1 456                          | 8           | 0.20            | 3.36  | 5.00         | 3.28        | 1 850          | 1 790   |  |
| 1 104   | 1 456                          | 8           | 0.27            | 2.49  | 3.71         | 2.44        | 2 450          | 2 140   |  |
|         |                                |             | 3-234 for outer | _     |              |             |                | -       |  |



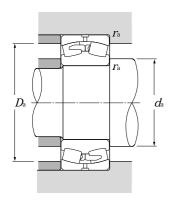






Cylindrical bore

Tapered bore


### d 1120 ~ 1400mm

| Boundary dimensions |       |     |                      | Basic load ratings dynamic static dynamic static |             |             |                   | Limiting speeds |     | Bearing numbers     |                               |
|---------------------|-------|-----|----------------------|--------------------------------------------------|-------------|-------------|-------------------|-----------------|-----|---------------------|-------------------------------|
| mm                  |       |     | dynamic static<br>kN |                                                  | kgf         |             | min <sup>-1</sup> |                 |     |                     |                               |
| d                   | D     | В   | $r_{\rm s  min}^{2}$ | $C_{\rm r}$                                      | $C_{ m or}$ | $C_{\rm r}$ | $C_{ m or}$       | grease          | oil | cylindrical<br>bore | tapered <sup>1)</sup><br>bore |
|                     | 1 460 | 250 | 7.5                  | 9 850                                            | 26 700      | 1 000 000   | 2 720 000         | 150             | 200 | 239/1120            | 239/1120K                     |
| 1120                | 1 580 | 345 | 9.5                  | 15 600                                           | 39 000      | 1 590 000   | 4 000 000         | 150             | 190 |                     | 230/1120BK                    |
| 1120                | 1 580 | 462 | 9.5                  | 19 500                                           | 52 500      | 1 990 000   | 5 350 000         | 120             | 160 | 240/1120B           | 240/1120BK30                  |
| 1180                | 1 540 | 272 | 7.5                  | 11 000                                           | 29 800      | 1 120 000   | 3 050 000         | 140             | 180 | 239/1180            | 239/1180K                     |
| 1250                | 1 630 | 280 | 7.5                  | 12 100                                           | 33 500      | 1 230 000   | 3 400 000         | 120             | 160 | 239/1250            | 239/1250K                     |
| 1320                | 1 720 | 300 | 7.5                  | 13 600                                           | 38 000      | 1 390 000   | 3 900 000         | 120             | 150 | 239/1320            | 239/1320K                     |
| 1400                | 1 820 | 315 | 9.5                  | 15 100                                           | 43 000      | 1 540 000   | 4 400 000         | 100             | 130 | 239/1400            | 239/1400K                     |

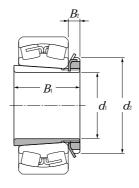


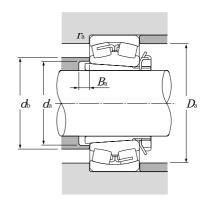
<sup>1 ) &</sup>quot;K" indicates bearings have tapered bore with a taper ratio of 1: 12. 2 ) Smallest allowable dimension for chamfer dimension r.





# Equivalent radial load dynamic $P_{\rm T} = XF_{\rm T} + YF_{\rm a}$


| $\frac{F_{\rm a}}{F_{ m r}}$ | e     | $\frac{F_a}{F_r}$ | : > e |
|------------------------------|-------|-------------------|-------|
| X                            | Y     | X                 | Y     |
| 1                            | $Y_1$ | 0.67              | $Y_2$ |

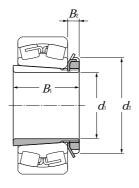

**static**  $P_{\text{or}} = F_{\text{F}} + Y_{\text{o}} F_{\text{a}}$  For values of e,  $Y_2$  and  $Y_0$  see the table below.

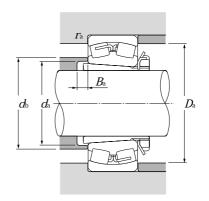
|         | utment ar                       |                | Constant | Axia  | I load factor | rs               | Mass (a     | pprox.) |
|---------|---------------------------------|----------------|----------|-------|---------------|------------------|-------------|---------|
|         | mm                              |                |          |       |               |                  | k           | g       |
| $d_{a}$ | $D_{\!\scriptscriptstyle  m a}$ | $m{r}_{ m as}$ |          |       |               |                  | cylindrical | tapered |
| min     | max                             | max            | e        | $Y_1$ | $Y_2$         | $Y_{\mathrm{o}}$ | bore        | bore    |
|         |                                 |                |          |       |               |                  |             |         |
| 1 156   | 1 424                           | 6              | 0.15     | 4.42  | 6.58          | 4.32             | 1 140       | 1 100   |
| 1 164   | 1 536                           | 8              | 0.21     | 3.29  | 4.80          | 3.21             | 2 160       | 2 090   |
| 1 164   | 1 536                           | 8              | 0.27     | 2.50  | 3.72          | 2.44             | 2 890       | 2 840   |
|         | . 000                           |                | 0.27     |       | 02            |                  |             |         |
| 1 216   | 1 504                           | 6              | 0.15     | 4.40  | 6.55          | 4.30             | 1 390       | 1 340   |
| 1 2 10  | 1 30-                           | 0              | 0.10     | 7.70  | 0.55          | 7.50             | 1 330       | 1 3-10  |
| 1 286   | 1 594                           | 6              | 0.15     | 4.42  | 6.58          | 4.32             | 1 600       | 1 550   |
| 1 200   | 1 594                           | 0              | 0.15     | 4.42  | 0.50          | 4.32             | 1 000       | 1 550   |
| 1 356   | 1 684                           | 6              | 0.16     | 4.34  | 6.46          | 4.24             | 1 900       | 1 840   |
| 1 330   | 1 004                           | O              | 0.16     | 4.34  | 0.40          | 4.24             | 1 900       | 1 040   |
| 1 444   | 1 776                           | 8              | 0.15     | 4.39  | 6.54          | 4.29             | 2 230       | 2 160   |
| 1 444   | 1//6                            | 0              | 0.15     | 4.39  | 6.54          | 4.29             | 2 230       | Z 100   |











#### $d_1 35 \sim 70 \text{ mm}$

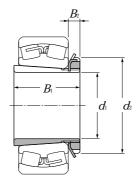
|    | Bounda | ry dimens | ions  | Bearing numbers           |                                     | Abutn            | nent and                            | fillet dimen    | sions                 |                 | Mass <sup>1)</sup> |
|----|--------|-----------|-------|---------------------------|-------------------------------------|------------------|-------------------------------------|-----------------|-----------------------|-----------------|--------------------|
|    |        | mm        |       |                           |                                     |                  |                                     | mm              | _                     |                 | kg                 |
| dı | $B_1$  | $d_2$     | $B_2$ |                           | $d_{\!\scriptscriptstyle  m a}$ min | d $ onumber$ max | $B_{\!\scriptscriptstyle  m a}$ min | <i>I</i><br>min | D <sub>a</sub><br>max | r <sub>as</sub> | (approx.)          |
|    |        |           |       |                           |                                     |                  |                                     |                 |                       |                 |                    |
|    | 36     | 58        | 10    | LH-22208CK; <b>H 308X</b> | 44                                  | 50               | 5                                   |                 | 73                    | 1               | 0.189              |
| 35 | 36     | 58        | 10    | 21308CK; <b>H 308X</b>    | 44                                  | 54               | 5                                   |                 | 81.5                  | 1.5             | 0.189              |
|    | 46     | 58        | 10    | 22308CK; <b>H2308X</b>    | 45                                  | 52               | 5                                   |                 | 81.5                  | 1.5             | 0.224              |
|    | 39     | 65        | 11    | LH-22209CK; <b>H 309X</b> | 49                                  | 57               | 8                                   |                 | 78                    | 1               | 0.248              |
| 40 | 39     | 65        | 11    | 21309CK; <b>H 309X</b>    | 49                                  | 61               | 5                                   |                 | 91.5                  | 1.5             | 0.248              |
|    | 50     | 65        | 11    | 22309CK; <b>H2309X</b>    | 50                                  | 58               | 5                                   |                 | 91.5                  | 1.5             | 0.28               |
|    | 42     | 70        | 12    | LH-22210CK; <b>H 310X</b> | 54                                  | 63               | 10                                  |                 | 83                    | 1               | 0.303              |
| 45 | 42     | 70        | 12    | 21310CK; <b>H 310X</b>    | 54                                  | 67               | 5                                   |                 | 100                   | 2               | 0.303              |
|    | 55     | 70        | 12    | 22310CK; <b>H2310X</b>    | 56                                  | 65               | 5                                   |                 | 100                   | 2               | 0.362              |
|    | 45     | 75        | 12    | LH-22211EK; <b>H 311X</b> | 60                                  | 67               | 11                                  | 89.5            | 91.5                  | 1.5             | 0.345              |
| ΕO | 45     | 75        | 12    | LH-22211BK; <b>H 311X</b> | 60                                  | 67               | 11                                  |                 | 91.5                  | 1.5             | 0.345              |
| 50 | 45     | 75        | 12    | 21311K ; <b>H 311X</b>    | 60                                  | 73               | 6                                   |                 | 110                   | 2               | 0.345              |
|    | 59     | 75        | 12    | 22311BK; <b>H2311X</b>    | 61                                  | 71               | 6                                   |                 | 110                   | 2               | 0.42               |
|    | 47     | 80        | 13    | LH-22212EK; <b>H 312X</b> | 65                                  | 72               | 9                                   | 98              | 101.5                 | 1.5             | 0.394              |
| 55 | 47     | 80        | 13    | LH-22212BK; <b>H 312X</b> | 65                                  | 72               | 9                                   |                 | 101.5                 | 1.5             | 0.394              |
| 55 | 47     | 80        | 13    | 21312K ; <b>H 312X</b>    | 65                                  | 79               | 5                                   |                 | 118                   | 2               | 0.394              |
|    | 62     | 80        | 13    | 22312BK; <b>H2312X</b>    | 66                                  | 77               | 5                                   |                 | 118                   | 2               | 0.481              |
|    | 50     | 85        | 14    | LH-22213EK; <b>H 313X</b> | 70                                  | 78.5             | 8                                   | 107             | 111.5                 | 1.5             | 0.458              |
| 60 | 50     | 85        | 14    | LH-22213BK; <b>H 313X</b> | 70                                  | 78.5             | 9                                   |                 | 111.5                 | 1.5             | 0.458              |
| 00 | 50     | 85        | 14    | 21313K ; <b>H 313X</b>    | 70                                  | 85               | 5                                   |                 | 128                   | 2               | 0.458              |
|    | 65     | 85        | 14    | 22313BK; <b>H2313X</b>    | 72                                  | 84               | 5                                   |                 | 128                   | 2               | 0.557              |
|    | 55     | 98        | 15    | LH-22215EK; <b>H 315X</b> | 80                                  | 89               | 12                                  | 117.5           | 121.5                 | 1.5             | 0.831              |
| 65 | 55     | 98        | 15    | LH-22215BK; <b>H 315X</b> | 80                                  | 89               | 12                                  |                 | 121.5                 | 1.5             | 0.831              |
| 05 | 55     | 98        | 15    | 21315K ; <b>H 315X</b>    | 80                                  | 97               | 5                                   |                 | 148                   | 2               | 0.831              |
|    | 73     | 98        | 15    | 22315BK; <b>H2315X</b>    | 82                                  | 96               | 5                                   |                 | 148                   | 2               | 1.05               |
|    | 59     | 105       | 17    | LH-22216EK; <b>H 316X</b> | 86                                  | 94.5             | 12                                  | 125.5           | 130                   | 2               | 1.03               |
| 70 | 59     | 105       | 17    | LH-22216BK; <b>H 316X</b> | 86                                  | 94.5             | 12                                  |                 | 130                   | 2               | 1.03               |
| 70 | 59     | 105       | 17    | 21316K ; <b>H 316X</b>    | 86                                  | 103              | 5                                   |                 | 158                   | 2               | 1.03               |
|    | 78     | 105       | 17    | 22316BK; <b>H2316X</b>    | 87                                  | 103              | 5                                   |                 | 158                   | 2               | 1.28               |
|    |        |           |       |                           |                                     |                  |                                     |                 |                       |                 |                    |

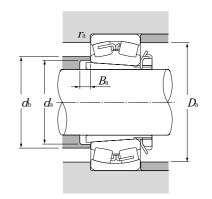


 <sup>1 )</sup> Indicates adapter mass.
 Note: 1. Please refer to page **B-236 to B-239** for bearing dimensions, rated loads, and mass.
 2. Please refer to page **C-2 to C-10** and **C-12 to C-14** for adapter locknut and washer dimensions.
 3. Adapter numbers with the suffix "X" signify narrow slit type adapters, and use washers with straight inner tabs.






d 75 ~ 115mm


| ui i  |          | 1 3 111111 |          |                           |            |                               |          |             |         |            |                    |
|-------|----------|------------|----------|---------------------------|------------|-------------------------------|----------|-------------|---------|------------|--------------------|
|       | Bounda   | ry dimens  | ions     | Bearing numbers           |            | Abutn                         | nent and | fillet dime | ensions |            | Mass <sup>1)</sup> |
|       |          | mm         |          |                           |            |                               |          | mm          |         |            | kg                 |
|       |          |            |          |                           | $d_{a}$    | $d_{\scriptscriptstyle \! b}$ | $B_{a}$  |             | $D_{a}$ | $m{arGas}$ |                    |
| $d_1$ | $B_1$    | $d_2$      | $B_2$    |                           | min        | max                           | min      | min         | max     | max        | (approx.)          |
|       |          |            |          |                           |            |                               |          |             |         |            |                    |
|       | 63       | 110        | 18       | LH-22217EK; <b>H 317X</b> | 91         | 100.5                         | 12       | 135         | 140     | 2          | 1.18               |
| 75    | 63       | 110        | 18       | LH-22217BK; <b>H 317X</b> | 91         | 100.5                         | 12       |             | 140     | 2          | 1.18               |
| - 0   | 63       | 110        | 18       | 21317K ; <b>H 317X</b>    | 91         | 110                           | 6        |             | 166     | 2.5        | 1.18               |
|       | 82       | 110        | 18       | 22317BK; <b>H2317X</b>    | 94         | 110                           | 6        |             | 166     | 2.5        | 1.45               |
|       | 65       | 120        | 18       | LH-22218EK; <b>H 318X</b> | 96         | 107.5                         | 10       | 144         | 150     | 2          | 1.37               |
|       | 65       | 120        | 18       | LH-22218BK; <b>H 318X</b> | 96         | 107.5                         | 10       |             | 150     | 2          | 1.37               |
| 80    | 86       | 120        | 18       | 23218BK; <b>H2318X</b>    | 99         | 110                           | 18       |             | 150     | 2          | 1.69               |
|       | 65       | 120        | 18       | 21318K ; <b>H 318X</b>    | 96         | 116                           | 6        |             | 176     | 2.5        | 1.37               |
|       | 86       | 120        | 18       | 22318BK; <b>H2318X</b>    | 99         | 117                           | 6        |             | 176     | 2.5        | 1.69               |
|       | 68       | 125        | 19       | 22219BK; <b>H 319X</b>    | 102        | 117                           | 9        |             | 158     | 2          | 1.56               |
| 85    | 68       | 125        | 19       | 21319K ; <b>H 319X</b>    | 102        | 123                           | 7        |             | 186     | 2.5        | 1.56               |
|       | 90       | 125        | 19       | 22319BK; <b>H2319X</b>    | 105        | 123                           | 7        |             | 186     | 2.5        | 1.92               |
|       | 71       | 130        | 20       | 22220DK:H 220V            | 107        | 100                           | 8        |             | 168     | 2          | 1.60               |
|       | 97       | 130        | 20       | 22220BK; <b>H 320X</b>    | 1107       | 123<br>122                    | o<br>19  |             | 168     |            | 1.69<br>2.15       |
| 90    |          |            | 20       | 23220BK; <b>H2320X</b>    |            |                               |          |             |         | 2<br>2.5   |                    |
|       | 71<br>97 | 130<br>130 | 20<br>20 | 21320K ; <b>H 320X</b>    | 107<br>110 | 130<br>129                    | 7<br>7   |             | 201     | 2.5<br>2.5 | 1.69<br>2.15       |
|       | 97       | 130        | 20       | 22320BK; <b>H2320X</b>    | 110        | 129                           |          |             | 201     | 2.5        | 2.15               |
|       | 81       | 145        | 21       | 23122BK; <b>H3122X</b>    | 117        | 127                           | 7        |             | 170     | 2          | 2.25               |
| 400   | 77       | 145        | 21       | 22222BK; <b>H 322X</b>    | 117        | 137                           | 6        |             | 188     | 2          | 2.18               |
| 100   | 105      | 145        | 21       | 23222BK; <b>H2322X</b>    | 121        | 135                           | 17       |             | 188     | 2          | 2.74               |
|       | 77       | 145        | 21       | 21322K ; <b>H 322X</b>    | 117        | 142                           | 9        |             | 226     | 2.5        | 2.18               |
|       | 105      | 145        | 21       | 22322BK; <b>H2322X</b>    | 121        | 142                           | 7        |             | 226     | 2.5        | 2.74               |
|       | 72       | 145        | 22       | 23024BK; <b>H3024X</b>    | 127        | 136                           | 7        |             | 170     | 2          | 1.93               |
|       | 88       | 155        | 22       | 23124BK; <b>H3124X</b>    | 128        | 140                           | 7        |             | 190     | 2          | 2.64               |
| 110   | 88       | 155        | 22       | 22224BK; <b>H3124X</b>    | 128        | 150                           | 11       |             | 203     | 2          | 2.64               |
|       | 112      | 155        | 22       | 23224BK; <b>H2324X</b>    | 131        | 147                           | 17       |             | 203     | 2          | 3.19               |
|       | 112      | 155        | 22       | 22324BK; <b>H2324X</b>    | 131        | 154                           | 7        |             | 246     | 2.5        | 3.19               |
|       | 80       | 155        | 23       | 23026BK; <b>H3026</b>     | 137        | 147                           | 8        |             | 190     | 2          | 2.85               |
| 115   | 92       | 165        | 23       | 23126BK; <b>H3126</b>     | 138        | 152                           | 8        |             | 200     | 2          | 3.66               |
|       | 92       | 165        | 23       | 22226BK; <b>H3126</b>     | 138        | 161                           | 8        |             | 216     | 2.5        | 3.66               |
|       | 121      | 165        | 23       | 23226BK; <b>H2326</b>     | 142        | 160                           | 21       |             | 216     | 2.5        | 4.6                |
|       |          | . 50       |          |                           |            | . 50                          |          |             |         | 0          |                    |



 <sup>1 )</sup> Indicates adapter mass.
 Note: 1. Please refer to page B-238 to B-241 for bearing dimensions, rated loads, and mass.
 2. Please refer to page C-2 to C-10 and C-12 to C-14 for adapter locknut and washer dimensions.
 3. Adapter numbers with the suffix "X" signify narrow slit type adapters, and use washers with straight inner tabs.

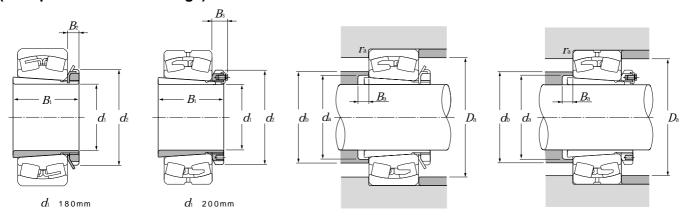








|            | Bound | lary dimensi | ions  | Bearing numbers       |                                  | Abutment          | and fillet di                       | imensions                                 |                 | Mass <sup>1)</sup> |
|------------|-------|--------------|-------|-----------------------|----------------------------------|-------------------|-------------------------------------|-------------------------------------------|-----------------|--------------------|
|            |       | mm           |       |                       | ,                                |                   | mm                                  |                                           |                 | kg                 |
| <i>d</i> ı | $B_1$ | $d_2$        | $B_2$ |                       | $d_{\!\scriptscriptstyle a}$ min | <i>d</i> ₅<br>max | $B_{\!\scriptscriptstyle  m a}$ min | $D_{\!\scriptscriptstyle \mathrm{a}}$ max | <i>Γ</i> as max | (approx.)          |
| 115        | 121   | 165          | 23    | 22326BK; <b>H2326</b> | 142                              | 167               | 8                                   | 262                                       | 3               | 4.6                |
|            | 82    | 165          | 24    | 23028BK; <b>H3028</b> | 147                              | 158               | 8                                   | 200                                       | 2               | 3.16               |
|            | 97    | 180          | 24    | 23128BK; <b>H3128</b> | 149                              | 165               | 8                                   | 213                                       | 2               | 4.34               |
| 125        | 97    | 180          | 24    | 22228BK; <b>H3128</b> | 149                              | 173               | 8                                   | 236                                       | 2.5             | 4.34               |
|            | 131   | 180          | 24    | 23228BK; <b>H2328</b> | 152                              | 172               | 22                                  | 236                                       | 2.5             | 5.55               |
|            | 131   | 180          | 24    | 22328BK; <b>H2328</b> | 152                              | 179               | 8                                   | 282                                       | 3               | 5.55               |
|            | 87    | 180          | 26    | 23030BK; <b>H3030</b> | 158                              | 170               | 8                                   | 213                                       | 2               | 3.89               |
|            | 111   | 195          | 26    | 23130BK; <b>H3130</b> | 160                              | 178               | 8                                   | 238                                       | 2               | 5.52               |
| 135        |       | 195          | 26    | 22230BK; <b>H3130</b> | 160                              | 188               | 15                                  | 256                                       | 2.5             | 5.52               |
|            | 139   | 195          | 26    | 23230BK; <b>H2330</b> | 163                              | 185               | 20                                  | 256                                       | 2.5             | 6.63               |
|            | 139   | 195          | 26    | 22330BK; <b>H2330</b> | 163                              | 192               | 8                                   | 302                                       | 3               | 6.63               |
|            | 93    | 190          | 28    | 23032BK; <b>H3032</b> | 168                              | 181               | 8                                   | 228                                       | 2               | 5.21               |
|            | 119   | 210          | 28    | 23132BK; <b>H3132</b> | 170                              | 190               | 8                                   | 258                                       | 2               | 7.67               |
| 140        |       | 210          | 28    | 22232BK; <b>H3132</b> | 170                              | 200               | 14                                  | 276                                       | 2.5             | 7.67               |
|            | 147   | 210          | 28    | 23232BK; <b>H2332</b> | 174                              | 198               | 18                                  | 276                                       | 2.5             | 9.14               |
|            | 147   | 210          | 28    | 22332BK; <b>H2332</b> | 174                              | 205               | 8                                   | 322                                       | 3               | 9.14               |
|            | 101   | 200          | 29    | 23034BK; <b>H3034</b> | 179                              | 193               | 8                                   | 248                                       | 2               | 5.99               |
|            | 122   | 220          | 29    | 23134BK; <b>H3134</b> | 180                              | 202               | 8                                   | 268                                       | 2               | 8.38               |
| 150        |       | 220          | 29    | 22234BK; <b>H3134</b> | 180                              | 212               | 10                                  | 292                                       | 3               | 8.38               |
|            | 154   | 220          | 29    | 23234BK; <b>H2334</b> | 185                              | 218               | 18                                  | 292                                       | 3               | 10.2               |
|            | 154   | 220          | 29    | 22334BK; <b>H2334</b> | 185                              | 218               | 8                                   | 342                                       | 3               | 10.2               |
|            | 109   | 210          | 30    | 23036BK; <b>H3036</b> | 189                              | 204               | 8                                   | 268                                       | 2               | 6.83               |
|            | 131   | 230          | 30    | 23136BK; <b>H3136</b> | 191                              | 215               | 8                                   | 286                                       | 2.5             | 9.5                |
| 160        |       | 230          | 30    | 22236BK; <b>H3136</b> | 191                              | 225               | 18                                  | 302                                       | 3               | 9.5                |
|            | 161   | 230          | 30    | 23236BK; <b>H2336</b> | 195                              | 223               | 22                                  | 302                                       | 3               | 11.3               |
|            | 161   | 230          | 30    | 22336BK; <b>H2336</b> | 195                              | 230               | 8                                   | 362                                       | 3               | 11.3               |
|            | 112   | 220          | 31    | 23038BK; <b>H3038</b> | 199                              | 215               | 9                                   | 278                                       | 2               | 7.45               |
|            | 141   | 240          | 31    | 23138BK; <b>H3138</b> | 202                              | 228               | 9                                   | 306                                       | 2.5             | 10.8               |
| 170        | 141   | 240          | 31    | 22238BK; <b>H3138</b> | 202                              | 238               | 21                                  | 322                                       | 3               | 10.8               |
|            | 169   | 240          | 31    | 23238BK; <b>H2338</b> | 206                              | 236               | 21                                  | 322                                       | 3               | 12.6               |
|            | 169   | 240          | 31    | 22338BK; <b>H2338</b> | 206                              | 243               | 9                                   | 378                                       | 4               | 12.6               |
|            |       |              |       |                       |                                  |                   |                                     |                                           |                 |                    |




<sup>1 )</sup> Indicates adapter mass.

Note: 1. Please refer to page **B-240 to B-243** for bearing dimensions, rated loads, and mass.

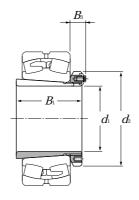
2. Please refer to page **C-2 to C-10** and **C-12 to C-14** for adapter locknut and washer dimensions.

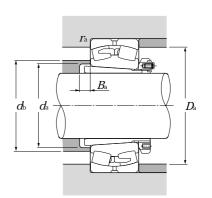




#### d 180 ~ 300mm

|          | Bound     | lary dime  | ensions |          | Bearing numbers       |         | Abutment                            | and fillet d | imensions                       |            | Mass <sup>1)</sup> |
|----------|-----------|------------|---------|----------|-----------------------|---------|-------------------------------------|--------------|---------------------------------|------------|--------------------|
|          |           | mm         |         |          |                       |         |                                     | mm           |                                 |            | kg                 |
|          |           |            |         |          |                       | $d_{a}$ | $d_{\scriptscriptstyle \mathrm{b}}$ | $B_{\rm a}$  | $D_{\!\scriptscriptstyle  m a}$ | $rac{}$ as |                    |
| $d_1$    | $B_1$     | $d_2$      | $B_2$   | $B_3$    |                       | min     | max                                 | min          | max                             | max        | (approx.)          |
|          | 400       | 0.40       |         |          | 0004001/110040        | 040     |                                     | 4.0          | 000                             | •          | 0.40               |
|          | 120       | 240        | 32      |          | 23040BK; <b>H3040</b> | 210     | 227                                 | 10           | 298                             | 2          | 9.19               |
| 400      | 150       | 250        | 32      |          | 23140BK; <b>H3140</b> | 212     | 240                                 | 10           | 326                             | 2.5        | 12.1               |
| 180      |           | 250        | 32      |          | 22240BK; <b>H3140</b> | 212     | 250                                 | 24           | 342                             | 3          | 12.1               |
|          | 176       | 250        | 32      |          | 23240BK; <b>H2340</b> | 216     | 248                                 | 20           | 342                             | 3          | 13.9               |
|          | 176       | 250        | 32      |          | 22340BK; <b>H2340</b> | 216     | 255                                 | 10           | 398                             | 4          | 13.9               |
|          | 126       | 260        |         | 41       | 23044BK; <b>H3044</b> | 231     | 250                                 | 12           | 326                             | 2.5        | 10.2               |
|          | 158       | 280        |         | 44       | 23144BK; <b>H3144</b> | 233     | 264                                 | 10           | 352                             | 3          | 14.7               |
| 200      | 158       | 280        |         | 44       | 22244BK; <b>H3144</b> | 233     | 274                                 | 22           | 382                             | 3          | 14.7               |
|          | 183       | 280        |         | 44       | 23244BK; <b>H2344</b> | 236     | 271                                 | 11           | 382                             | 3          | 16.7               |
|          | 183       | 280        |         | 44       | 22344BK; <b>H2344</b> | 236     | 278                                 | 10           | 438                             | 4          | 16.7               |
|          | 133       | 290        |         | 46       | 23048BK; <b>H3048</b> | 251     | 272                                 | 11           | 346                             | 2.5        | 13.2               |
|          | 169       | 300        |         | 46       | 23148BK; <b>H3148</b> | 254     | 288                                 | 11           | 382                             | 3          | 17.3               |
| 220      |           | 300        |         | 46       | 22248BK; <b>H3148</b> | 254     | 298                                 | 19           | 422                             | 3          | 17.3               |
|          | 196       | 300        |         | 46       | 23248BK; <b>H2348</b> | 257     | 295                                 | 6            | 422                             | 3          | 19.7               |
|          | 196       | 300        |         | 46       | 22348BK; <b>H2348</b> | 257     | 302                                 | 11           | 478                             | 4          | 19.7               |
|          |           |            |         |          |                       |         |                                     |              |                                 |            |                    |
|          | 145       | 310        |         | 46       | 23052BK; <b>H3052</b> | 272     | 295                                 | 13           | 382                             | 3          | 15.1               |
| 0.40     | 187       | 330        |         | 49       | 23152BK; <b>H3152</b> | 276     | 313                                 | 11           | 422                             | 3          | 22                 |
| 240      |           | 330        |         | 49       | 22252BK; <b>H3152</b> | 276     | 323                                 | 25           | 458                             | 4          | 22                 |
|          | 208       | 330        |         | 49       | 23252BK; <b>H2352</b> | 278     | 319                                 | 2            | 458                             | 4          | 24.2               |
|          | 208       | 330        |         | 49       | 22352BK; <b>H2352</b> | 278     | 326                                 | 11           | 512                             | 5          | 24.2               |
|          | 152       | 330        |         | 50       | 23056BK; <b>H3056</b> | 292     | 317                                 | 12           | 402                             | 3          | 17.7               |
|          | 192       | 350        |         | 51       | 23156BK; <b>H3156</b> | 296     | 336                                 | 12           | 438                             | 4          | 24.5               |
| 260      |           | 350        |         | 51       | 22256BK; <b>H3156</b> | 296     | 346                                 | 28           | 478                             | 4          | 24.5               |
|          | 221       | 350        |         | 51       | 23256BK; <b>H2356</b> | 299     | 343                                 | 11           | 478                             | 4          | 27.8               |
|          | 221       | 350        |         | 51       | 22356BK; <b>H2356</b> | 299     | 350                                 | 12           | 552                             | 5          | 27.8               |
|          | 168       | 360        |         | 54       | 23060BK; <b>H3060</b> | 313     | 340                                 | 12           | 442                             | 3          | 22.8               |
|          | 200       | 380        |         | 53       | 23160BK; <b>H3160</b> | 317     | 361                                 | 12           | 442<br>478                      | 4          | 30.2               |
| 280      | 208       | 380        |         | 53<br>53 | 22260BK; <b>H3160</b> | 317     | 371                                 | 32           | 518                             | 4          | 30.2               |
|          | 240       | 380        |         | 53       | 23260BK; <b>H3260</b> | 321     | 368                                 | 12           | 518                             | 4          | 34.1               |
|          | _ 10      |            |         |          | 2020011,110200        | 021     |                                     |              | 0.10                            | •          | · · · ·            |
|          | 171       | 380        |         | 55       | 23064BK; <b>H3064</b> | 334     | 363                                 | 13           | 462                             | 3          | 24.6               |
| 300      | 226       | 400        |         | 56       | 23164BK; <b>H3164</b> | 339     | 384                                 | 13           | 518                             | 4          | 34.9               |
|          | 226       | 400        |         | 56       | 22264BK; <b>H3164</b> | 339     | 394                                 | 39           | 558                             | 4          | 34.9               |
| 1 ) Indi | icates ac | danter mad |         |          |                       |         |                                     |              |                                 |            |                    |


<sup>1 )</sup> Indicates adapter mass.

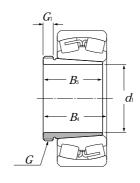


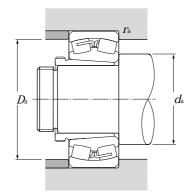

Note: 1. Please refer to page **B-242 to B-247** for bearing dimensions, rated loads, and mass.

2. Please refer to page **C-2 to C-10** and **C-12 to C-14** for adapter locknut and washer dimensions.







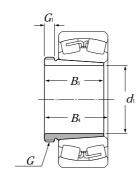


#### d 300 ~ 470mm

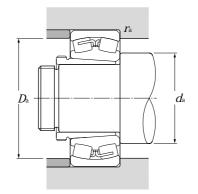
|       | Bounda | ry dimensio | ons   | Bearing numbers           |                                     | Abutment a                          | and fillet dim                      | ensions                             |                 | Mass <sup>1)</sup> |
|-------|--------|-------------|-------|---------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-----------------|--------------------|
|       |        | mm          |       |                           | ,                                   | ,                                   | mm                                  | D                                   |                 | kg                 |
| $d_1$ | $B_1$  | $d_{2}$     | $B_3$ |                           | $d_{\!\scriptscriptstyle  m a}$ min | $d_{\!\scriptscriptstyle  m b}$ max | $B_{\!\scriptscriptstyle  m a}$ min | $D_{\!\scriptscriptstyle  m a}$ max | <i>Γ</i> as max | (approx.)          |
|       | 050    | 100         | 50    | 0000 401/ 11000 4         | 0.40                                | 222                                 | 40                                  | 550                                 |                 | 00.0               |
| 300   | 258    | 400         | 56    | 23264BK; <b>H3264</b>     | 343                                 | 393                                 | 13                                  | 558                                 | 4               | 39.3               |
|       | 187    | 400         | 58    | 23068BK; <b>H3068</b>     | 355                                 | 386                                 | 14                                  | 498                                 | 4               | 28.7               |
| 320   | 254    | 440         | 72    | 23168BK; <b>H3168</b>     | 360                                 | 409                                 | 14                                  | 558                                 | 4               | 49.5               |
|       | 288    | 440         | 72    | 23268BK; <b>H3268</b>     | 364                                 | 421                                 | 14                                  | 592                                 | 5               | 54.6               |
|       | 188    | 420         | 58    | 23072BK; <b>H3072</b>     | 375                                 | 408                                 | 14                                  | 518                                 | 4               | 30.5               |
| 340   | 259    | 460         | 75    | 23172BK; <b>H3172</b>     | 380                                 | 432                                 | 14                                  | 578                                 | 4               | 54.2               |
|       | 299    | 460         | 75    | 23272BK; <b>H3272</b>     | 385                                 | 442                                 | 14                                  | 622                                 | 5               | 60.2               |
|       | 193    | 450         | 62    | 23076BK; <b>H3076</b>     | 396                                 | 431                                 | 15                                  | 538                                 | 4               | 35.8               |
| 360   | 264    | 490         | 77    | 23176BK; <b>H3176</b>     | 401                                 | 456                                 | 15                                  | 598                                 | 4               | 61.7               |
|       | 310    | 490         | 77    | 23276BK; <b>H3276</b>     | 405                                 | 465                                 | 15                                  | 652                                 | 5               | 69.6               |
|       | 210    | 470         | 66    | 23080BK; <b>H3080</b>     | 417                                 | 454                                 | 15                                  | 578                                 | 4               | 41.3               |
| 380   | 272    | 520         | 82    | 23180BK; <b>H3180</b>     | 421                                 | 479                                 | 15                                  | 622                                 | 5               | 70.6               |
|       | 328    | 520         | 82    | 23280BK; <b>H3280</b>     | 427                                 | 488                                 | 15                                  | 692                                 | 5               | 81                 |
|       | 212    | 490         | 66    | 23084BK; <b>H3084</b>     | 437                                 | 476                                 | 16                                  | 598                                 | 4               | 43.7               |
| 400   | 304    | 540         | 90    | 23184BK; <b>H3184</b>     | 443                                 | 504                                 | 16                                  | 672                                 | 5               | 84.2               |
|       | 352    | 540         | 90    | 23284BK; <b>H3284</b>     | 448                                 | 515                                 | 16                                  | 724                                 | 6               | 94                 |
|       | 228    | 520         | 77    | 23088BK; <b>H3088</b>     | 458                                 | 499                                 | 17                                  | 622                                 | 5               | 65.2               |
| 410   | 307    | 560         | 90    | 23188BK; <b>H3188</b>     | 464                                 | 527                                 | 17                                  | 692                                 | 5               | 104                |
|       | 361    | 560         | 90    | 23288BK; <b>H3288</b>     | 469                                 | 539                                 | 17                                  | 754                                 | 6               | 118                |
|       | 234    | 540         | 77    | 23092BK; <b>H3092</b>     | 478                                 | 521                                 | 17                                  | 652                                 | 5               | 69.5               |
| 430   | 326    | 580         | 95    | 23192BK; <b>H3192</b>     | 485                                 | 551                                 | 17                                  | 724                                 | 6               | 116                |
|       | 382    | 580         | 95    | 23292BK; <b>H3292</b>     | 491                                 | 563                                 | 17                                  | 794                                 | 6               | 132                |
|       | 237    | 560         | 77    | 23096BK; <b>H3096</b>     | 499                                 | 544                                 | 18                                  | 672                                 | 5               | 73.3               |
| 450   | 335    | 620         | 95    | 23196BK; <b>H3196</b>     | 505                                 | 575                                 | 18                                  | 754                                 | 6               | 133                |
|       | 397    | 620         | 95    | 23296BK; <b>H3296</b>     | 512                                 | 590                                 | 18                                  | 834                                 | 6               | 152                |
|       | 247    | 580         | 85    | 230/500BK; <b>H30/500</b> | 519                                 | 566                                 | 18                                  | 692                                 | 5               | 81.8               |
| 470   | 356    | 630         | 100   | 231/500BK; <b>H31/500</b> | 527                                 | 600                                 | 18                                  | 794                                 | 6               | 143                |
|       | 428    | 630         | 100   | 232/500BK; <b>H32/500</b> | 534                                 | 618                                 | 18                                  | 884                                 | 6               | 166                |
|       |        |             |       |                           |                                     |                                     |                                     |                                     |                 |                    |



Indicates adapter mass.
 Note: 1. Please refer to page B-242 to B-251 for bearing dimensions, rated loads, and mass.
 Please refer to page C-2 to C-10 and C-12 to C-14 for adapter locknut and washer dimensions.

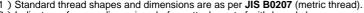




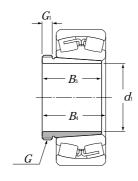

| $a_1$ | 35 ~ 70m             | ım    |       |             |                             |       |          |             |                |             |                    |                   |
|-------|----------------------|-------|-------|-------------|-----------------------------|-------|----------|-------------|----------------|-------------|--------------------|-------------------|
|       | Boundary (           | dimen | sions |             | Bearing numbers             | Ab    | utment a | nd fillet o | dimensio       | าร          | Mass <sup>3)</sup> | Appro-4)          |
|       | m                    | ım    |       |             |                             |       |          | mm          |                |             | kg                 | priate<br>nut no. |
|       | thread <sup>1)</sup> |       |       |             |                             | $d_a$ |          | 1           | D <sub>a</sub> | $r_{ m as}$ | 3                  |                   |
| $d_1$ | G                    | $B_3$ | $G_1$ | $B_{4^2}$ ) |                             | min   | max      | min         | max            | max         | (approx.)          |                   |
|       | M45 × 1.5            | 29    | 6     | 32          | LH-22208CK ; <b>AH 308</b>  | 47    |          |             | 73             | 1           | 0.09               | AN09              |
| 35    | $M45 \times 1.5$     | 29    | 6     | 32          | 21308CK ; <b>AH 308</b>     | 48.5  |          |             | 81.5           | 1.5         | 0.09               | AN09              |
| 33    | $M45 \times 1.5$     | 40    | 7     | 43          | 22308CK ; <b>AH 2308</b>    | 48.5  |          |             | 81.5           | 1.5         | 0.03               | AN09              |
|       | 1V143 X 1.3          | 40    |       | 40          | 22300CN ,AIT 2300           | 40.5  |          |             | 01.5           | 1.5         | 0.120              | ANOS              |
|       | M50 × 1.5            | 31    | 6     | 34          | LH-22209CK ; <b>AH 309</b>  | 52    |          |             | 78             | 1           | 0.109              | AN10              |
| 40    | M50 × 1.5            | 31    | 6     | 34          | 21309CK ; <b>AH 309</b>     | 53.5  |          |             | 91.5           | 1.5         | 0.109              | AN10              |
|       | M50 × 1.5            | 44    | 7     | 47          | 22309CK ; <b>AH 2309</b>    | 53.5  |          |             | 91.5           | 1.5         | 0.164              | AN10              |
|       | M55 × 2              | 35    | 7     | 38          | LH-22210CK ;AHX 310         | 57    |          |             | 83             | 1           | 0.137              | AN11              |
| 45    | M55 × 2              | 35    | 7     | 38          | 21310CK ;AHX 310            | 60    |          |             | 100            | 2           | 0.137              | AN11              |
|       | M55 × 2              | 50    | 9     | 53          | 22310CK ; <b>AHX 2310</b>   | 60    |          |             | 100            | 2           | 0.209              | AN11              |
|       | M60 × 2              | 37    | 7     | 40          | LH-22211EK; <b>AHX 311</b>  | 63.5  | 67       | 89.5        | 91.5           | 1.5         | 0.161              | AN12              |
| 50    | M60 × 2              | 37    | 7     | 40          | LH-22211BK; <b>AHX 311</b>  | 63.5  |          |             | 91.5           | 1.5         | 0.161              | AN12              |
| 50    | M60 × 2              | 37    | 7     | 40          | 21311K ; <b>AHX 311</b>     | 65    |          |             | 110            | 2           | 0.161              | AN12              |
|       | M60 × 2              | 54    | 10    | 57          | 22311BK; <b>AHX 2311</b>    | 65    |          |             | 110            | 2           | 0.253              | AN12              |
|       | M65 × 2              | 40    | 8     | 43          | LH-22212EK ; <b>AHX 312</b> | 68.5  | 72       | 98          | 101.5          | 1.5         | 0.189              | AN13              |
| 55    | M65 × 2              | 40    | 8     | 43          | LH-22212BK ; <b>AHX 312</b> | 68.5  |          |             | 101.5          | 1.5         | 0.189              | AN13              |
| 33    | M65 × 2              | 40    | 8     | 43          | 21312K ; <b>AHX 312</b>     | 72    |          |             | 118            | 2           | 0.189              | AN13              |
|       | M65 × 2              | 58    | 11    | 61          | 22312BK ; <b>AHX 2312</b>   | 72    |          |             | 118            | 2           | 0.297              | AN13              |
|       | M75 × 2              | 42    | 8     | 45          | LH-22213EK ; <b>AH 313</b>  | 73.5  | 78.5     | 107         | 111.5          | 1.5         | 0.253              | AN15              |
| 60    | M75 × 2              | 42    | 8     | 45          | LH-22213BK ; <b>AH 313</b>  | 73.5  |          |             | 111.5          | 1.5         | 0.253              | AN15              |
| 00    | M75 × 2              | 42    | 8     | 45          | 21313K ; <b>AH 313</b>      | 77    |          |             | 128            | 2           | 0.253              | AN15              |
|       | M75 × 2              | 61    | 12    | 64          | 22313BK; <b>AH 2313</b>     | 77    |          |             | 128            | 2           | 0.395              | AN15              |
|       | M80 × 2              | 43    | 8     | 47          | LH-22214EK ; <b>AH 314</b>  | 78.5  | 83.5     | 112.5       | 116.5          | 1.5         | 0.28               | AN16              |
| 6 E   | M80 × 2              | 43    | 8     | 47          | LH-22214BK ; <b>AH 314</b>  | 78.5  |          | -           | 116.5          | 1.5         | 0.28               | AN16              |
| 65    | M80 × 2              | 43    | 8     | 47          | 21314K ; <b>AH 314</b>      | 82    |          |             | 138            | 2           | 0.28               | AN16              |
|       | M80 × 2              | 64    | 12    | 68          | 22314BK; <b>AHX 2314</b>    | 82    |          |             | 138            | 2           | 0.466              | AN16              |
|       | M85 × 2              | 45    | 8     | 49          | LH-22215EK ; <b>AH 315</b>  | 83.5  | 89       | 117.5       | 121.5          | 1.5         | 0.313              | AN17              |
| 70    | M85 × 2              | 45    | 8     | 49          | LH-22215BK ; <b>AH 315</b>  | 83.5  |          |             | 121.5          | 1.5         | 0.313              | AN17              |
| 70    | M85 × 2              | 45    | 8     | 49          | 21315K ; <b>AH 315</b>      | 87    |          |             | 148            | 2           | 0.313              | AN17              |
|       | M85 × 2              | 68    | 12    | 72          | 22315BK ; <b>AHX 2315</b>   | 87    |          |             | 148            | 2           | 0.534              | AN17              |

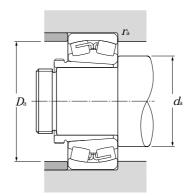



Standard thread shapes and dimensions are as per JIS B0207 (metric thread).
 Indicates reference dimensions before attachment of withdrawal sleeve.
 Indicates withdrawal sleeve mass.
 Indicates number of nut to be used at time of disassembly. See pages C-2 to C-10 for nut dimensions.
 Please refer to page B-236, B-239 for bearing dimensions, rated loads, and mass.






#### d 75 ~ 115mm

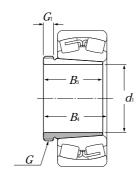

|            | Boundary of                        | dimen    | sions |                   | Bearing numbers             |     | Abutment a | nd fillet o | limensio   | ns             | Mass <sup>3)</sup> | Appro-4) priate |
|------------|------------------------------------|----------|-------|-------------------|-----------------------------|-----|------------|-------------|------------|----------------|--------------------|-----------------|
|            |                                    | m        |       |                   |                             |     |            | mm          |            |                | kg                 | nut no.         |
| J.         | thread <sup>1)</sup> $G$           | D        | $G_1$ | B <sub>4</sub> 2) |                             |     | $d_{a}$    |             | <b>)</b> a | $m{r}_{ m as}$ | ,                  |                 |
| <i>d</i> ı | G                                  | $B_3$    | Gl    | D42 7             |                             | min | max        | min         | max        | max            | (approx.)          |                 |
|            | M00 0                              | 40       | 0     | 50                | LLL 00040EIX: ALL 040       | 00  | 04.5       | 405.5       | 400        | 0              | 0.005              | A N I 4 O       |
|            | M90 × 2                            | 48       | 8     | 52                | LH-22216EK; <b>AH 316</b>   | 90  | 94.5       | 125.5       | 130        | 2              | 0.365              | AN18            |
| <b>75</b>  | M90 × 2                            | 48       | 8     | 52                | LH-22216BK; <b>AH 316</b>   | 90  |            |             | 130        | 2              | 0.365              | AN18            |
|            | M90 × 2                            | 48       | 8     | 52<br>75          | 21316K ; <b>AH 316</b>      | 92  |            |             | 158        | 2              | 0.365              | AN18            |
|            | M90 × 2                            | 71       | 12    | 75                | 22316BK; <b>AHX 2316</b>    | 92  |            |             | 158        | 2              | 0.597              | AN18            |
|            | M95 × 2                            | 52       | 9     | 56                | LH-22217EK; <b>AHX 317</b>  | 95  | 100.5      | 135         | 140        | 2              | 0.429              | AN19            |
| 00         | M95 × 2                            | 52       | 9     | 56                | LH-22217BK; <b>AHX 317</b>  | 95  |            |             | 140        | 2              | 0.429              | AN19            |
| 80         | M95 × 2                            | 52       | 9     | 56                | 21317K ; <b>AHX 317</b>     | 99  |            |             | 166        | 2.5            | 0.429              | AN19            |
|            | M95 × 2                            | 74       | 13    | 78                | 22317BK; <b>AHX 2317</b>    | 99  |            |             | 166        | 2.5            | 0.67               | AN19            |
|            |                                    |          |       |                   | <u> </u>                    |     |            |             |            |                |                    |                 |
|            | $M100 \times 2$                    | 53       | 9     | 57                | LH-22218EK; <b>AHX 318</b>  | 100 | 107.5      | 144         | 150        | 2              | 0.461              | AN20            |
|            | $M100 \times 2$                    | 53       | 9     | 57                | LH-22218BK; <b>AHX 318</b>  | 100 |            |             | 150        | 2              | 0.461              | AN20            |
| 85         | $M100 \times 2$                    | 63       | 10    | 67                | 23218BK; <b>AHX 3218</b>    | 100 |            |             | 150        | 2              | 0.576              | AN20            |
|            | $M100 \times 2$                    | 53       | 9     | 57                | 21318K ; <b>AHX 318</b>     | 104 |            |             | 176        | 2.5            | 0.461              | AN20            |
|            | M100 × 2                           | 79       | 14    | 83                | 22318BK; <b>AHX 2318</b>    | 104 |            |             | 176        | 2.5            | 0.779              | AN20            |
|            | M105 × 2                           | 57       | 10    | 61                | 22219BK; <b>AHX 319</b>     | 107 |            |             | 158        | 2              | 0.532              | AN21            |
| 90         | $M105 \times 2$                    | 57       | 10    | 61                | 21319K ; <b>AHX 319</b>     | 109 |            |             | 186        | 2.5            | 0.532              | AN21            |
|            | M105 x 2                           | 85       | 16    | 89                | 22319BK; <b>AHX 2319</b>    | 109 |            |             | 186        | 2.5            | 0.886              | AN21            |
|            |                                    |          |       |                   |                             |     |            |             |            |                |                    |                 |
|            | $M110 \times 2$                    | 59       | 10    | 63                | 22220BK; AHX 320            | 112 |            |             | 168        | 2              | 0.582              | AN22            |
| 95         | $M110 \times 2$                    | 73       | 11    | 77                | 23220BK; <b>AHX 3220</b>    | 112 |            |             | 168        | 2              | 0.767              | AN22            |
| 33         | $M110 \times 2$                    | 59       | 10    | 63                | 21320K ; <b>AHX 320</b>     | 114 |            |             | 201        | 2.5            | 0.582              | AN22            |
|            | $M110 \times 2$                    | 90       | 16    | 94                | 22320BK; <b>AHX 2320</b>    | 114 |            |             | 201        | 2.5            | 0.998              | AN22            |
|            | M120 × 2                           | 68       | 11    | 72                | 23122BK ; <b>AHX 3122</b>   | 120 |            |             | 170        | 2              | 0.76               | AN24            |
|            | M115 x 2                           | 82       | 13    | 91                | 24122BK30; <b>AH 24122</b>  | 120 |            |             | 170        | 2              | 0.73               | AN23            |
| 405        | M120 × 2                           | 68       | 11    | 72                | 22222BK ; <b>AHX 3122</b>   | 122 |            |             | 188        | 2              | 0.76               | AN24            |
| 105        | M125 x 2                           | 82       | 11    | 86                | 23222BK ; <b>AHX 3222</b>   | 122 |            |             | 188        | 2              | 1.04               | AN25            |
|            | M120 × 2                           | 63       | 12    | 67                | 21322K ; <b>AHX 322</b>     | 124 |            |             | 226        | 2.5            | 0.663              | AN24            |
|            | M125 × 2                           | 98       | 16    | 102               | 22322BK ; <b>AHX 2322</b>   | 124 |            |             | 226        | 2.5            | 1.35               | AN25            |
|            | M130 × 2                           | 60       | 13    | 64                | 23024BK ; <b>AHX 3024</b>   | 130 |            |             | 170        | 2              | 0.75               | AN26            |
| 445        | $M125 \times 2$                    | 73       | 13    | 82                | 24024BK30 ; <b>AH 24024</b> | 130 |            |             | 170        | 2              | 0.75               | AN25            |
| 115        | M125 x 2                           | 73<br>73 | 13    | 82                | 24024CK30; <b>AH 24024</b>  | 130 |            |             | 170        | 2              | 0.65               | AN25<br>AN25    |
|            | $M123 \times 2$<br>$M130 \times 2$ | 75       | 12    | 62<br>79          | 23124BK ; <b>AHX 3124</b>   | 130 |            |             | 190        | 2              | 0.65               | AN26            |
|            | IVI I SU X Z                       | 73       | 12    | 19                | 23124DN , ANA 3124          | 130 |            |             | 190        | 4              | 0.90               | ANZO            |

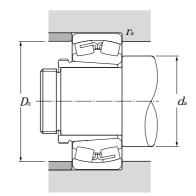




Standard thread shapes and dimensions are as per JIS B0207 (metric thread).
 Indicates reference dimensions before attachment of withdrawal sleeve.
 Indicates withdrawal sleeve mass.
 Indicates number of nut to be used at time of disassembly. See pages C-2 to C-10 for nut dimensions.
 Please refer to page B-238, B-241 for bearing dimensions, rated loads, and mass.





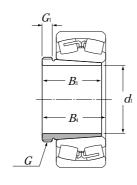

|       | Boundar              | y dimens | sions |               | Bearing numbers             | Abutment                              | and fillet di                      | mensions    | Mass <sup>3)</sup> | Appro-4) priate |
|-------|----------------------|----------|-------|---------------|-----------------------------|---------------------------------------|------------------------------------|-------------|--------------------|-----------------|
|       | thread <sup>1)</sup> | mm       |       |               |                             | $d_{\!\scriptscriptstyle \mathrm{a}}$ | mm $D_{\!\scriptscriptstyle  m a}$ | <i>T</i> as | kg                 | nut no.         |
| $d_1$ | G                    | $B_3$    | $G_1$ | $B_{4}^{2}$ ) |                             | min                                   | max                                | max         | (approx.)          |                 |
|       | M130 × 2             | 93       | 13    | 102           | 24124BK30 ; <b>AH 24124</b> | 130                                   | 190                                | 2           | 1                  | AN26            |
|       | M130 × 2             | 75       | 12    | 79            | 22224BK ; <b>AHX 3124</b>   | 132                                   | 203                                | 2           | 0.95               | AN26            |
| 115   | M135 × 2             | 90       | 13    | 94            | 23224BK ; <b>AHX 3224</b>   | 132                                   | 203                                | 2           | 1.3                | AN27            |
|       | M135 × 2             | 105      | 17    | 109           | 22324BK ; <b>AHX 2324</b>   | 134                                   | 246                                | 2.5         | 1.6                | AN27            |
|       | M140 × 2             | 67       | 14    | 71            | 23026BK ; <b>AHX 3026</b>   | 140                                   | 190                                | 2           | 0.93               | AN28            |
|       | $M135 \times 2$      | 83       | 14    | 93            | 24026BK30; AH 24026         | 140                                   | 190                                | 2           | 0.84               | AN27            |
|       | $M135 \times 2$      | 83       | 14    | 93            | 24026CK30; AH 24026         | 140                                   | 190                                | 2           | 0.84               | AN27            |
| 125   | $M140 \times 2$      | 78       | 12    | 82            | 23126BK ; <b>AHX 3126</b>   | 140                                   | 200                                | 2           | 1.08               | AN28            |
| 123   | $M140 \times 2$      | 94       | 14    | 104           | 24126BK30; AH 24126         | 140                                   | 200                                | 2           | 1.11               | AN28            |
|       | $M140 \times 2$      | 78       | 12    | 82            | 22226BK ; <b>AHX 3126</b>   | 144                                   | 216                                | 2.5         | 1.08               | AN28            |
|       | $M145 \times 2$      | 98       | 15    | 102           | 23226BK ; <b>AHX 3226</b>   | 144                                   | 216                                | 2.5         | 1.58               | AN29            |
|       | M145 × 2             | 115      | 19    | 119           | 22326BK ; <b>AHX 2326</b>   | 148                                   | 262                                | 3           | 1.97               | AN29            |
|       | M150 × 2             | 68       | 14    | 73            | 23028BK ; <b>AHX 3028</b>   | 150                                   | 200                                | 2           | 1.01               | AN30            |
|       | $M145 \times 2$      | 83       | 14    | 93            | 24028BK30 ; <b>AH 24028</b> | 150                                   | 200                                | 2           | 0.91               | AN29            |
|       | M145 × 2             | 83       | 14    | 93            | 24028CK30 ; <b>AH 24028</b> | 150                                   | 200                                | 2           | 0.91               | AN29            |
| 135   | M150 × 2             | 83       | 14    | 88            | 23128BK ; <b>AHX 3128</b>   | 152                                   | 213                                | 2           | 1.28               | AN30            |
|       | $M150 \times 2$      | 99       | 14    | 109           | 24128BK30 ; <b>AH 24128</b> | 152                                   | 213                                | 2           | 1.25               | AN30            |
|       | M150 × 2             | 83       | 14    | 88            | 22228BK ; <b>AHX 3128</b>   | 154                                   | 236                                | 2.5         | 1.28               | AN30            |
|       | $M155 \times 3$      | 104      | 15    | 109           | 23228BK ; <b>AHX 3228</b>   | 154                                   | 236                                | 2.5         | 1.84               | AN31            |
|       | M155 × 3             | 125      | 20    | 130           | 22328BK ; <b>AHX 2328</b>   | 158                                   | 282                                | 3           | 2.33               | AN31            |
|       | M160 × 3             | 72       | 15    | 77            | 23030BK ; <b>AHX 3030</b>   | 162                                   | 213                                | 2           | 1.15               | AN32            |
|       | $M155 \times 3$      | 90       | 15    | 101           | 24030BK30 ; <b>AH 24030</b> | 162                                   | 213                                | 2           | 1.04               | AN31            |
|       | $M155 \times 3$      | 90       | 15    | 101           | 24030CK30; <b>AH 24030</b>  | 162                                   | 213                                | 2           | 1.04               | AN31            |
| 145   | $M165 \times 3$      | 96       | 15    | 101           | 23130BK ; <b>AHX 3130</b>   | 162                                   | 238                                | 2           | 1.79               | AN33            |
|       | $M160 \times 3$      | 115      | 15    | 126           | 24130BK30 ; <b>AH 24130</b> | 162                                   | 238                                | 2           | 1.56               | AN32            |
|       | $M165 \times 3$      | 96       | 15    | 101           | 22230BK ; <b>AHX 3130</b>   | 164                                   | 256                                | 2.5         | 1.79               | AN33            |
|       | M165 × 3             | 114      | 17    | 119           | 23230BK ; <b>AHX 3230</b>   | 164                                   | 256                                | 2.5         | 2.22               | AN33            |
|       | M165 × 3             | 135      | 24    | 140           | 22330BK ; <b>AHX 2330</b>   | 168                                   | 302                                | 3           | 2.82               | AN33            |
|       | M170 × 3             | 77       | 16    | 82            | 23032BK ; <b>AH 3032</b>    | 172                                   | 228                                | 2           | 2.06               | AN34            |
| 150   | $M170 \times 3$      | 95       | 15    | 106           | 24032BK30 ; <b>AH 24032</b> | 172                                   | 228                                | 2           | 2.33               | AN34            |
|       | $M170 \times 3$      | 95       | 15    | 106           | 24032CK30; <b>AH 24032</b>  | 172                                   | 228                                | 2           | 2.33               | AN34            |
|       | $M180 \times 3$      | 103      | 16    | 108           | 23132BK ; <b>AH 3132</b>    | 172                                   | 258                                | 2           | 3.21               | AN36            |

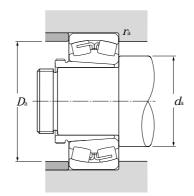


Standard thread shapes and dimensions are as per JIS B0207 (metric thread).
 Indicates reference dimensions before attachment of withdrawal sleeve.
 ndicates withdrawal sleeve mass.
 Indicates number of nut to be used at time of disassembly. See pages C-2 to C-10 for nut dimensions.
 Please refer to page B-240, B-243 for bearing dimensions, rated loads, and mass.






#### d 150 ~ 190mm


|       | Bounda               | ry dimens | sions |               | Bearing numbers                       | Abutment         | and fillet di                   | mensions       | Mass <sup>3)</sup> | Appro-4) priate |
|-------|----------------------|-----------|-------|---------------|---------------------------------------|------------------|---------------------------------|----------------|--------------------|-----------------|
|       |                      | mm        |       |               |                                       |                  | mm                              |                | kg                 | nut no.         |
|       | thread <sup>1)</sup> |           |       |               |                                       | $d_{a}$          | $D_{\!\scriptscriptstyle  m a}$ | $m{r}_{ m as}$ | J                  |                 |
| $d_1$ | G                    | $B_3$     | $G_1$ | $B_{4}^{2}$ ) |                                       | min              | max                             | max            | (approx.)          |                 |
|       |                      |           |       |               |                                       |                  |                                 |                |                    |                 |
|       | M170 × 3             | 124       | 15    | 135           | 24132BK30 ; AH 24132                  | 172              | 258                             | 2              | 3                  | AN34            |
| 450   | M180 × 3             | 103       | 16    | 108           | 22232BK ; <b>AH 3132</b>              | 174              | 276                             | 2.5            | 3.21               | AN36            |
| 150   | M180 × 3             | 124       | 20    | 130           | 23232BK ; <b>AH 3232</b>              | 174              | 276                             | 2.5            | 4.08               | AN36            |
|       | M180 × 3             | 140       | 24    | 146           | 22332BK ; <b>AH 2332</b>              | 178              | 322                             | 3              | 4.72               | AN36            |
|       |                      |           |       |               | · · · · · · · · · · · · · · · · · · · |                  |                                 |                |                    |                 |
|       | M180 × 3             | 85        | 17    | 90            | 23034BK ; <b>AH 3034</b>              | 182              | 248                             | 2              | 2.43               | AN36            |
|       | M180 × 3             | 106       | 16    | 117           | 24034BK30 ; <b>AH 24034</b>           | 182              | 248                             | 2              | 2.8                | AN36            |
|       | M180 × 3             | 106       | 16    | 117           | 24034CK30; <b>AH 24034</b>            | 182              | 248                             | 2              | 2.8                | AN36            |
| 160   | M190 × 3             | 104       | 16    | 109           | 23134BK ; <b>AH 3134</b>              | 182              | 268                             | 2              | 3.4                | AN38            |
| .00   | M180 × 3             | 125       | 16    | 136           | 24134BK30 ; <b>AH 24134</b>           | 182              | 268                             | 2              | 3.21               | AN36            |
|       | M190 × 3             | 104       | 16    | 109           | 22234BK ; <b>AH 3134</b>              | 188              | 292                             | 3              | 3.4                | AN38            |
|       | M190 × 3             | 134       | 24    | 140           | 23234BK ; <b>AH 3234</b>              | 188              | 292                             | 3              | 4.8                | AN38            |
|       | M190 × 3             | 146       | 24    | 152           | 22334BK ; <b>AH 2334</b>              | 188              | 342                             | 3              | 5.25               | AN38            |
|       | M190 × 3             | 92        | 17    | 98            | 23036BK ; <b>AH 3036</b>              | 192              | 268                             | 2              | 2.81               | AN38            |
|       | M190 × 3             | 116       | 16    | 127           | 24036BK30 ; <b>AH 24036</b>           | 192              | 268                             | 2              | 3.1                | AN38            |
|       | M190 × 3             | 116       | 16    | 127           | 24036CK30; <b>AH 24036</b>            | 192              | 268                             | 2              | 3.1                | AN38            |
| 470   | M200 × 3             | 116       | 19    | 122           | 23136BK ; <b>AH 3136</b>              | 194              | 286                             | 2.5            | 4.22               | AN40            |
| 170   | M190 × 3             | 134       | 16    | 145           | 24136BK30 ; <b>AH 24136</b>           | 194              | 286                             | 2.5            | 3.68               | AN38            |
|       | M200 × 3             | 105       | 17    | 110           | 22236BK ; <b>AH 2236</b>              | 198              | 302                             | 3              | 3.73               | AN40            |
|       | M200 × 3             | 140       | 24    | 146           | 23236BK ; <b>AH 3236</b>              | 198              | 302                             | 3              | 5.32               | AN40            |
|       | M200 × 3             | 154       | 26    | 160           | 22336BK ; <b>AH 2336</b>              | 198              | 362                             | 3              | 5.83               | AN40            |
|       | Tr205 × 4            | 96        | 18    | 102           | 23038BK ; <b>AH 3038</b>              | 202              | 278                             | 2              | 3.32               | HNL41           |
|       | M200 × 3             | 118       | 18    | 131           | 24038BK30 ; <b>AH 24038</b>           | 202              | 278                             | 2              | 3.5                | AN40            |
|       | M200 x 3             | 118       | 18    | 131           | 24038CK30 ; <b>AH 24038</b>           | 202              | 278                             | 2              | 3.5                | AN40            |
| 400   | Tr210 × 4            | 125       | 20    | 131           | 23138BK ; <b>AH 3138</b>              | 204              | 306                             | 2.5            | 4.89               | HN42            |
| 180   | M200 × 3             | 146       | 18    | 159           | 24138BK30 ; <b>AH 24138</b>           | 204              | 306                             | 2.5            | 4.28               | AN40            |
|       | Tr210 × 4            | 112       | 18    | 117           | 22238BK ; <b>AH 2238</b>              | 208              | 322                             | 3              | 4.25               | HN42            |
|       | Tr210 × 4            | 145       | 25    | 152           | 23238BK ; <b>AH 3238</b>              | 208              | 322                             | 3              | 5.9                | HN42            |
|       | Tr210 × 4            | 160       | 26    | 167           | 22338BK ; <b>AH 2338</b>              | 212              | 378                             | 4              | 6.63               | HN42            |
|       | Tr215 × 4            | 102       | 19    | 108           | 23040BK ; <b>AH 3040</b>              | 212              | 298                             | 2              | 3.8                | HNL43           |
| 400   | Tr210 × 4            | 127       | 18    | 140           | 24040BK30 ; <b>AH 24040</b>           | 212              | 298                             | 2              | 3.93               | HN42            |
| 190   | Tr220 × 4            | 134       | 21    | 140           | 23140BK ; <b>AH 3140</b>              | 212              | 326                             | 2.5            | 5.49               | HN44            |
|       | Tr210 × 4            | 158       | 18    | 171           | 24140BK30 ; <b>AH 24140</b>           | 214              | 326                             | 2.5            | 5.49<br>5.1        | HN42            |
|       | 11210 8 4            | 130       | 10    | 17.1          | 24140DR30 ,AN 24140                   | ۷ ۱ <del>۷</del> | 320                             | ۷.5            | J. I               | 111144          |

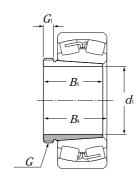


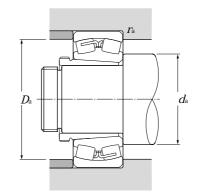


Standard thread shapes and dimensions are as per JIS B0207 (metric thread).
 Indicates reference dimensions before attachment of withdrawal sleeve.
 Indicates withdrawal sleeve mass.
 Indicates number of nut to be used at time of disassembly. See pages C-2 to C-10 for nut dimensions.
 Please refer to page B-242, B-245 for bearing dimensions, rated loads, and mass.









|    | Bounda               | ry dimens  | sions    |               | Bearing numbers              | Abutment                              | and fillet di | mensions       | Mass <sup>3)</sup> | Appro-4)     |
|----|----------------------|------------|----------|---------------|------------------------------|---------------------------------------|---------------|----------------|--------------------|--------------|
|    |                      | mm         |          |               |                              |                                       | mm            |                | kg                 | nut no.      |
|    | thread <sup>1)</sup> | _          | _        | - 0.          |                              | $d_{\!\scriptscriptstyle \mathrm{a}}$ | $D_{\rm a}$   | $m{r}_{ m as}$ |                    |              |
| d  | G                    | $B_3$      | $G_1$    | $B_{4}^{2}$ ) |                              | min                                   | max           | max            | (approx.)          |              |
|    | Tr220 × 4            | 440        | 40       | 400           | 22240BK ; <b>AH 2240</b>     | 218                                   | 0.40          | 2              | 4.00               | HN44         |
| 19 |                      | 118<br>153 | 19<br>25 | 123           |                              | 218                                   | 342<br>342    | 3<br>3         | 4.68               | HN44         |
| 19 | _                    |            |          | 160           | 23240BK ; <b>AH 3240</b>     |                                       |               | 3<br>4         | 6.68               |              |
|    | Tr220 × 4            | 170        | 30       | 177           | 22340BK ; <b>AH 2340</b>     | 222                                   | 398           | 4              | 7.54               | HN44         |
|    | Tr235 × 4            | 111        | 20       | 117           | 23044BK ; <b>AH 3044</b>     | 234                                   | 326           | 2.5            | 7.4                | HNL47        |
|    | Tr230 × 4            | 138        | 20       | 152           | 24044BK30 ; <b>AH 24044H</b> | 234                                   | 326           | 2.5            | 8.25               | HN46         |
|    | Tr240 × 4            | 145        | 23       | 151           | 23144BK ; <b>AH 3144</b>     | 238                                   | 352           | 3              | 10.4               | HN48         |
| 20 | <b>0</b> Tr230 × 4   | 170        | 20       | 184           | 24144BK30 ; <b>AH 24144H</b> | 238                                   | 352           | 3              | 10.2               | HN46         |
|    | Tr240 × 4            | 130        | 20       | 136           | 22244BK ; <b>AH 2244</b>     | 238                                   | 382           | 3              | 9.1                | HN48         |
|    | Tr240 × 4            | 181        | 30       | 189           | 23244BK ; <b>AH 2344</b>     | 238                                   | 382           | 3              | 13.5               | HN48         |
|    | Tr240 × 4            | 181        | 30       | 189           | 22344BK ; <b>AH 2344</b>     | 242                                   | 438           | 4              | 13.5               | HN48         |
|    | Tr260 × 4            | 116        | 21       | 123           | 23048BK : <b>AH 3048</b>     | 254                                   | 346           | 2.5            | 8.75               | HNL52        |
|    | Tr250 × 4            | 138        | 20       | 153           | 24048BK30 : <b>AH 24048H</b> | 254                                   | 346           | 2.5            | 8.98               | HN50         |
|    | Tr260 × 4            | 154        | 25       | 161           | 23148BK ; <b>AH 3148</b>     | 258                                   | 382           | 3              | 12                 | HN52         |
| 22 |                      | 180        | 20       | 195           | 24148BK30 ; <b>AH 24148H</b> | 258                                   | 382           | 3              | 12.5               | HN52         |
|    | Tr260 × 4            | 144        | 21       | 150           | 22248BK ; <b>AH 2248</b>     | 258                                   | 422           | 3              | 11.1               | HN52         |
|    | Tr260 × 4            | 189        | 30       | 197           | 23248BK ; <b>AH 2348</b>     | 258                                   | 422           | 3              | 15.5               | HN52         |
|    | Tr260 × 4            | 189        | 30       | 197           | 22348BK ; <b>AH 2348</b>     | 262                                   | 478           | 4              | 15.5               | HN52         |
|    | Tr280 × 4            | 128        | 23       | 135           | 23052BK ; <b>AH 3052</b>     | 278                                   | 382           | 3              | 10.7               | HNL56        |
|    | Tr270 × 4            | 162        | 22       | 178           | 24052BK30 ; <b>AH 24052</b>  | 278                                   | 382           | 3              | 11.8               | HN54         |
|    | Tr290 × 4            | 172        | 26       | 179           | 23152BK ; <b>AH 3152</b>     | 278                                   | 422           | 3              | 16.2               | HN58         |
| 24 |                      | 202        | 22       | 218           | 24152BK30 ; <b>AH 24152H</b> | 278                                   | 422           | 3              | 15.4               | HN56         |
| 24 | Tr290 × 4            | 155        | 23       | 161           | 22252BK ; <b>AH 2252</b>     | 282                                   | 458           | 4              | 14                 | HN58         |
|    | Tr290 × 4            | 205        | 30       | 213           | 23252BK ; <b>AH 2352</b>     | 282                                   | 458           | 4              | 19.6               | HN58         |
|    | Tr290 × 4            | 205        | 30       | 213           | 22352BK ; <b>AH 2352</b>     | 288                                   | 512           | 5              | 19.6               | HN58         |
|    | Tr300 × 4            | 131        | 24       | 139           | 23056BK ; <b>AH 3056</b>     | 298                                   | 402           | 3              | 12                 | HNL60        |
|    | Tr290 × 4            | 162        | 22       | 179           | 24056BK30 ; <b>AH 24056H</b> | 298                                   | 402           | 3              | 12.8               | HN58         |
|    | Tr310 × 5            | 175        | 28       | 183           | 23156BK ; <b>AH 3156</b>     | 302                                   | 438           | 4              | 17.5               | HN62         |
|    | Tr300 × 4            | 202        | 22       | 219           | 24156BK30 ; <b>AH 24156H</b> | 302                                   | 438           | 4              | 16.3               | HN60         |
| 26 | 0 Tr310 × 5          | 155        | 24       | 163           | 22256BK ; <b>AH 2256</b>     | 302                                   | 478           | 4              | 15.2               | HN62         |
|    | Tr310 × 5            | 212        | 30       | 220           | 23256BK ; <b>AH 2356</b>     | 302                                   | 478           | 4              | 21.6               | HN62         |
|    | Tr310 × 5            | 212        | 30       | 220           | 22356BK ; <b>AH 2356</b>     | 308                                   | 552           | 5              | 21.6               | HN62         |
|    |                      |            |          |               |                              |                                       |               | ŭ              |                    | <del>-</del> |

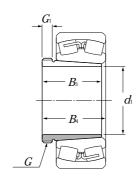


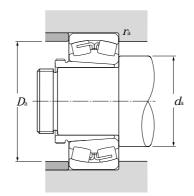
Standard thread shapes and dimensions are as per JIS B0207 (metric thread).
 Indicates reference dimensions before attachment of withdrawal sleeve.
 Indicates withdrawal sleeve mass.
 Indicates number of nut to be used at time of disassembly. See pages C-2 to C-10 for nut dimensions.
 Please refer to page B-244, B-247 for bearing dimensions, rated loads, and mass.
 Withdrawal sleeve numbers appended with the suffix "H" signify high pressure oil (hydraulic) design. (See page B-227)








#### d 280 ~ 400mm


| ## Tr320 x 5 145 26 153 23060BK ;AH 3060 318 442 3 14.4 H  ## Tr330 x 5 192 30 200 23160BK ;AH 3160 322 478 4 20.8    ## Tr320 x 5 170 26 178 22260B ;AH 2260 322 518 4 18.1    ## Tr345 x 5 149 27 157 23064BK ;AH 3064 338 462 3 16 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Appro-4)<br>priate |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| di         G         B <sub>8</sub> Gi         B <sub>8</sub> <sup>2</sup> Ci         < | nut no.            |
| Tr320 x 5 145 26 153 23060BK ;AH 3060 318 442 3 14.4 H Tr310 x 5 184 24 202 24060BK30 ;AH 24060H 318 442 3 15.5 I Tr330 x 5 192 30 200 23160BK ;AH 3160 322 478 4 20.8 I Tr320 x 5 224 24 242 24160BK30 ;AH 24160H 322 478 4 19.5 I Tr330 x 5 170 26 178 22260B ;AH 2260 322 518 4 18.1 I Tr330 x 5 228 34 236 23260BK ;AH 3260 322 518 4 26 I  Tr345 x 5 149 27 157 23064BK ;AH 3064 338 462 3 16 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |
| Tr310 x 5 184 24 202 24060BK30; AH 24060H 318 442 3 15.5    Tr330 x 5 192 30 200 23160BK; AH 3160 322 478 4 20.8    Tr320 x 5 224 24 242 24160BK30; AH 24160H 322 478 4 19.5    Tr330 x 5 170 26 178 22260B; AH 2260 322 518 4 18.1    Tr330 x 5 228 34 236 23260BK; AH 3260 322 518 4 26    Tr345 x 5 149 27 157 23064BK; AH 3064 338 462 3 16 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |
| Tr310 x 5 184 24 202 24060BK30; AH 24060H 318 442 3 15.5    Tr330 x 5 192 30 200 23160BK; AH 3160 322 478 4 20.8    Tr320 x 5 224 24 242 24160BK30; AH 24160H 322 478 4 19.5    Tr330 x 5 170 26 178 22260B; AH 2260 322 518 4 18.1    Tr330 x 5 228 34 236 23260BK; AH 3260 322 518 4 26    Tr345 x 5 149 27 157 23064BK; AH 3064 338 462 3 16 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |
| Tr330 x 5 192 30 200 23160BK ;AH 3160 322 478 4 20.8   Tr320 x 5 224 24 242 24160BK30 ;AH 24160H 322 478 4 19.5   Tr330 x 5 170 26 178 22260B ;AH 2260 322 518 4 18.1   Tr330 x 5 228 34 236 23260BK ;AH 3260 322 518 4 26   Tr345 x 5 149 27 157 23064BK ;AH 3064 338 462 3 16   H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NL64               |
| Tr320 x 5 224 24 242 24160BK30; AH 24160H 322 478 4 19.5 1 Tr330 x 5 170 26 178 22260B ; AH 2260 322 518 4 18.1 1 Tr330 x 5 228 34 236 23260BK ; AH 3260 322 518 4 26 1  Tr345 x 5 149 27 157 23064BK ; AH 3064 338 462 3 16 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1N62               |
| Tr320 x 5 224 24 242 24160BK30; AH 24160H 322 478 4 19.5 Tr330 x 5 170 26 178 22260B; AH 2260 322 518 4 18.1 Tr330 x 5 228 34 236 23260BK; AH 3260 322 518 4 26  Tr345 x 5 149 27 157 23064BK; AH 3064 338 462 3 16 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HN66               |
| Tr330 × 5 228 34 236 23260BK ; <b>AH 3260</b> 322 518 4 26 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HN64               |
| Tr345 x 5 149 27 157 23064BK ; <b>AH 3064</b> 338 462 3 16 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HN66               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HN66               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NL69               |
| Tr330 x 5 184 24 202 24064BK30 ; <b>AH 24064H</b> 338 462 3 16.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HN66               |
| 300 Tr350 x 5 209 31 217 23164BK ;AH 3164 342 518 4 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -IN70              |
| Tr340 x 5 242 24 260 24164BK30 ; <b>AH 24164H</b> 342 518 4 21.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HN68               |
| Tr350 x 5 180 27 190 22264BK ; <b>AH 2264</b> 342 558 4 20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -IN70              |
| Tr350 x 5 246 36 254 23264BK ; <b>AH 3264</b> 342 558 4 30.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HN70               |
| Tr365 x 5 162 28 171 23068BK ; <b>AH 3068</b> 362 498 4 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HN73               |
| 320 Tr360 x 5 206 26 225 24068BK30 ;AH 24068H 362 498 4 21.7 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NL72               |
| Tr370 x 5 225 33 234 23168BK ; <b>AH 3168</b> 362 558 4 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HN74               |
| Tr360 x 5 269 26 288 24168BK30 ; <b>AH 24168H</b> 362 558 4 27.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HN72               |
| Tr385 x 5 167 30 176 23072BK ; <b>AH 3072</b> 382 518 4 21 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NL77               |
| <b>340</b> Tr380 × 5 206 26 226 24072BK30 ; <b>AH 24072H</b> 382 518 4 22.7 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NL76               |
| Tr400 x 5 229 35 238 23172BK ; <b>AH 3172</b> 382 578 4 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -08NH              |
| Tr380 x 5 269 26 289 24172BK30 ; <b>AH 24172H</b> 382 578 4 29.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HN76               |
| Tr410 × 5 170 31 180 23076BK ; <b>AH 3076</b> 402 538 4 23.2 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NL82               |
| <b>360</b> Tr400 x 5 208 28 228 24076BK30 ; <b>AH 24076H</b> 402 538 4 23.7 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NL80               |
| Tr420 x 5 232 36 242 23176BK ; <b>AH 3176</b> 402 598 4 35.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HN84               |
| Tr400 x 5 271 28 291 24176BK30 ; <b>AH 24176H</b> 402 598 4 31.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HN80               |
| Tr430 × 5 183 33 193 23080BK ; <b>AH 3080</b> 422 578 4 27.3 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NL86               |
| Trancia E 200 20 240 24000PK20 AH 24000H 422 E70 4 274 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NL84               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1N88              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HN84               |
| <b>400</b> Tr450 × 5 186 34 196 23084BK ; <b>AH 3084</b> 442 598 4 29 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NL90               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NL88               |





<sup>1 )</sup> Standard thread shapes and dimensions are as per JIS B0207 (metric thread).
2 ) Indicates reference dimensions before attachment of withdrawal sleeve.
3 ) Indicates withdrawal sleeve mass.
4 ) Indicates number of nut to be used at time of disassembly. See pages C-2 to C-10 for nut dimensions.
Note: 1. Please refer to page B-246, B-249 for bearing dimensions, rated loads, and mass.
2. Withdrawal sleeve numbers appended with the suffix "H" signify high pressure oil (hydraulic) design. (See page B-235)





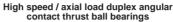


| Boundary           | y dimens                                              | ions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 | Bearing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | numbers                                                                                                                                       | Abutment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and fillet di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mensions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mass <sup>3)</sup> | Appro-4) priate                                       |
|--------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------|
|                    | mm                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | kg                 | nut no.                                               |
| G G                | $B_3$                                                 | $G_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $B_{4^{2}}$                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                               | <i>G</i> a<br>min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <i>D</i> a<br>max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tas<br>max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (approx.)          |                                                       |
| 460 × 5            | 266                                                   | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 276                                             | 23184BK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ΔΗ 3184                                                                                                                                       | 448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 672                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.5               | HN92                                                  |
| 140 × 5            | 310                                                   | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 332                                             | 24184BK30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ;AH 24184H                                                                                                                                    | 448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 672                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.3               | HN88                                                  |
| 470 × 5            | 194                                                   | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 205                                             | 23088BK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ;AHX 3088                                                                                                                                     | 468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 622                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32                 | HNL94                                                 |
| 460 × 5<br>480 × 5 | 242<br>270                                            | 30<br>42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 264<br>281                                      | 24088BK30<br>23188BK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ;AH 24088H<br>;AHX 3188                                                                                                                       | 468<br>468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 622<br>692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31.9<br>49.8       | HNL92<br>HN96                                         |
| 460 × 5            | 310                                                   | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 332                                             | 24188BK30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ;AH 24188H                                                                                                                                    | 468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42.3               | HN92                                                  |
| 490 × 5<br>480 × 5 | 202<br>250                                            | 37<br>32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 213<br>273                                      | 23092BK<br>24092BK30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ;AHX 3092<br>;AH 24092H                                                                                                                       | 488<br>488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 652<br>652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35.2<br>34.7       | HNL98<br>HNL96                                        |
| 510 × 6<br>480 × 5 | 285<br>332                                            | 43<br>32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 296<br>355                                      | 23192BK<br>24192BK30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ;AHX 3192<br>;AH 24192H                                                                                                                       | 496<br>496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 724<br>724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 57.9<br>47.6       | HN102<br>HN96                                         |
| 520 × 6            | 205                                                   | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 217                                             | 23096BK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ;AHX 3096                                                                                                                                     | 508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 672                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39.2               | HNL104                                                |
| 500 × 5            | 250                                                   | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 273                                             | 24096BK30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ;AH 24096H                                                                                                                                    | 508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 672                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36.6               | HNL100                                                |
| 530 × 6<br>500 × 5 | 295<br>340                                            | 45<br>32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 307<br>363                                      | 23196BK<br>24196BK30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ;AHX 3196<br>;AH 24196H                                                                                                                       | 516<br>516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 754<br>754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63.1<br>52.6       | HN106<br>HN100                                        |
| 540 × 6            | 209                                                   | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 221                                             | 230/500BK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ;AHX 30/500                                                                                                                                   | 528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42.5               | HNL108                                                |
| 530 × 6            | 253                                                   | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 276                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 43.9               | HNL106                                                |
| 550 × 6<br>530 × 6 | 313<br>360                                            | 47<br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 325<br>383                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 794<br>794                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70.9<br>59         | HN110<br>HN106                                        |
|                    | thread <sup>1</sup> ) $G$ $G$ $G$ $G$ $G$ $G$ $G$ $G$ | mm  thread <sup>1</sup> ) $G$ $B_3$ $A_{1}^{1}$ $A_{2}^{1}$ $A_{3}^{2}$ $A_{4}^{2}$ $A_{5}^{2}$ $A$ | Thread 1) $G$ $B_3$ $G$ $G$ $G$ $G$ $G$ $G$ $G$ | mm $(100 \times 5) \times (100 \times 5) \times $ | mm  thread¹)  G  B <sub>3</sub> G  B <sub>4</sub> C  B <sub>6</sub> A  A  B <sub>6</sub> B <sub>8</sub> A  B  B  B  B  B  B  B  B  B  B  B  B | mm (hread <sup>1</sup> ) $B_3$ $G_1$ $B_4^2$ ) $160 \times 5$ $266$ $40$ $276$ $23184BK$ ; AH $3184$ $24184BK30$ ; AH $24184BK30$ ; AH $24184BK30$ ; AH $24184BK30$ ; AH $24088BK30$ ; AH $2408BK30$ ; AH $2409BK30$ ; AH $24$ | mm $A_{1}^{1} = A_{2}^{1} = A_{3}^{1} = A_{4}^{1} = $ | mm $\frac{1}{G}$ $\frac{1}{B}$ $\frac{1}{G}$ $\frac{1}{B}$ $\frac{1}{G}$ $\frac{1}{B}$ $\frac{1}{G}$ $\frac{1}{B}$ $\frac{1}{G}$ $\frac{1}{B}$ $\frac{1}{G}$ $\frac{1}{B}$ $\frac{1}{G}$ $\frac$ | mm                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |



<sup>1 )</sup> Standard thread shapes and dimensions are as per JIS B0207 (metric thread).
2 ) Indicates reference dimensions before attachment of withdrawal sleeve.
3 ) Indicates withdrawal sleeve mass.
4 ) Indicates number of nut to be used at time of disassembly. See pages C-2 to C-10 for nut dimensions.
Note: 1. Please refer to page B-248, B-251 for bearing dimensions, rated loads, and mass.
2. Withdrawal sleeve numbers appended with the suffix "H" signify high pressure oil (hydraulic) design. (See page B-227)






Single direction thrust ball bearings



Double direction angular contact thrust ball bearings







Spherical roller thrust bearings

These bearings are designed primarily to support axial loads at contact angles between 30° and 90°. Just as with radial bearings, these bearings differ according to the type of rolling element they use: there are thrust ball bearings that use balls and thrust roller bearings that use rollers.

The configuration and characteristics of each type of bearing are given.

With thrust bearings, it is necessary to supply an axial preload in order to prevent slipping movement between the bearing's rolling elements and raceways. For more detailed information on this point, please refer to the material concerning bearing preload on page A-62.

#### 1. Single direction thrust ball bearings

As shown in **Diagram 1**, the steel balls of single direction thrust ball bearings are arranged between a pair of shaft housing washers (bearing shaft washer and housing shaft washer), and the normal contact angle is 90°. Axial loads can

be supported in only one direction, radial loads can not be accommodated, therefore these bearings are unsuitable for high speed operation.

**Table 1** lists the standard cage types for single direction thrust ball bearings.

#### 2. Angular contact thrust ball bearings

Angular contact thrust ball bearings are high precision bearings which are widely used to handle axial loads from machine tool main shafts. These bearings come in a number of varieties including double direction angular contact thrust ball bearings (series 5629 and 5620), and high speed / axial load duplex angular contact thrust ball bearings (HTA series).

These bearings have the same bore diameter and outer diameter as double row cylindrical roller bearings (series NN30, NN49, and NNU49) and can be arranged for use together. **Table 2** shows the construction and characteristics of these various bearings.

Table 1 Standard cage types for single direction thrust ball bearings

| Bearing series    | 511              | 512              | 513     | 514     |
|-------------------|------------------|------------------|---------|---------|
| Molded resin cage | 51100<br>~ 51107 | 51200<br>~ 51207 | -       | -       |
| Pressed cage      | 51108            | 51208            | 51305   | 51405   |
|                   | ~ 51152          | ~ 51224          | ~ 51320 | ~ 51415 |
| Machined cage     | 51156            | 51226            | 51322   | 51416   |
|                   | ~ 511/530        | ~ 51260          | ~ 51340 | ~ 51420 |

Note: Due to their material properties, molded resin cages can not be used in applications where temperatures exceed 120°C.

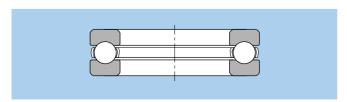



Diagram 1. Single direction thrust ball bearing (with pressed cage)

[P]

Table 2 Angular contact thrust ball bearing construction and characteristics

| Danis a sa            | Paul disasting construction and characteristics                                                                                                                                                                                                                                          | High speed / axial load duplex angular                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bearing no.           | Double direction angular contact thrust bearing                                                                                                                                                                                                                                          | contact thrust ball bearing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Bearing series        | Series 5629, 5620                                                                                                                                                                                                                                                                        | HTA, DB series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Bearing construction  |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Initial contact angle | 60°                                                                                                                                                                                                                                                                                      | 40°, 30°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Standard cage type    | Machined cage                                                                                                                                                                                                                                                                            | Molded resin cage, Machined cage                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Characteristics       | <ul> <li>5629 is used in combination with NN (NNU) 49 and 5620 with NN30.</li> <li>High axial direction rigidity; can support axial loads in either direction</li> <li>Unsuitable for vertical shafts</li> <li>Oil inlet and oil groove dimensions listed in dimension charts</li> </ul> | <ul> <li>HTA9, DB can be arranged and used with NN (NNU) 49: HTA0, DB can be arranged and used with NN30</li> <li>Bearing outer diameter dimension same as double direction angular contact thrust ball bearings minus tolerances (suffix code: L); can only support axial loads</li> <li>Axial rigidity is less than that of high-speed duplex angular contact ball bearings (for axial loads).</li> <li>Allowable axial load should be regulated to approx. 1/6 of the rated basic static load</li> </ul> |
| Bearing accuracy      | See <b>Table 6.9</b> on p. A-41                                                                                                                                                                                                                                                          | See Table 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Standard preload      | See T                                                                                                                                                                                                                                                                                    | able 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Interchangeability    | thrust ball bearing Series 5629 Series 5620 Because                                                                                                                                                                                                                                      | Dimension $A = \text{dimension } 2B$ Washer D  Washer D  d / axial load duplex angular contact thrust ball bearing HTA9DB series HTA0DB series et dimension $A = \text{dimension } 2B$ , it is necessary to the washer dimension.                                                                                                                                                                                                                                                                           |

For more details about these bearings, please refer to the NTN machine tool precision bearing catalog.

Table 3 Standard cages for duplex angular contact ball bearings for high-speed axial loads

| Bearing<br>series | HTA 9             | HTA 0                                  |
|-------------------|-------------------|----------------------------------------|
| Formed resin cage | -                 | HTA 010 ~ HTA 032                      |
| Machined cage     | HTA 920 ~ HTA 964 | HTA 005 ~ HTA 009<br>HTA 034 ~ HTA 064 |

Table 4 Tolerance of high speed / axial load duplex angular contact thrust ball bearings

Table 4.1 Inner rings

Units µm

| Nominal bore dia. |          | olerance of mean<br>er within plane |                   | eter variation    | Dimensional<br>tolerance of mean<br>inside diameter<br>within planee | Side runout with bore | Axial runout    | Tolerance of combination width | Width variation |
|-------------------|----------|-------------------------------------|-------------------|-------------------|----------------------------------------------------------------------|-----------------------|-----------------|--------------------------------|-----------------|
| d                 | Δ        | ∆ <i>a</i> mp                       | Diameter series 9 | Diameter series 0 | V <sub>dmp</sub>                                                     | $S_{ m d}$            | $S_{ia}$        | $\Delta \mathit{B}$ s          | $V_{B\!s}$      |
| mm                | Class 5  | Class 4 <sup>10</sup>               | Class 5 Class 4   | Class 5 Class 4   | Class 5 Class 4                                                      | Class 5 Class 4       | Class 5 Class 4 | Class 5 Class 4                | Class 5 Class 4 |
| over up to/incl.  | High Low | High Low                            | Max               | Max               | Max                                                                  | Max                   | Max             | High Low                       | Max             |
| 18 30             | 0 -6     | 0 -5                                | 6 5               | 5 4               | 3 2.5                                                                | 8 4                   | 5 3             | 0 -240                         | 5 2.5           |
| 30 50             | 0 -8     | 0 -6                                | 8 6               | 6 5               | 4 3                                                                  | 8 4                   | 5 3             | 0 -240                         | 5 3             |
| 50 80             | 0 -9     | 0 -7                                | 9 7               | 7 5               | 5 3.5                                                                | 8 5                   | 6 5             | 0 -300                         | 6 4             |
| 80 120            | 0 -10    | 0 -8                                | 10 8              | 8 6               | 5 4                                                                  | 9 5                   | 6 5             | 0 -400                         | 7 4             |
| 120 150           | 0 -13    | 0 -10                               | 13 10             | 10 8              | 7 5                                                                  | 10 6                  | 8 6             | 0 -500                         | 8 5             |
| 150 180           | 0 -13    | 0 -10                               | 13 10             | 10 8              | 7 5                                                                  | 10 6                  | 8 6             | 0 -500                         | 8 5             |
| 180 250           | 0 -15    | 0 -12                               | 15 12             | 12 9              | 8 6                                                                  | 11 7                  | 8 6             | 0 -600                         | 10 6            |
| 250 315           | 0 -18    | 0 -14                               | 18 14             | 14 11             | 9 8                                                                  | 13 8                  | 10 8            | 0 -700                         | 13 8            |
| 315 400           | 0 -23    | 0 -16                               | 23 17             | 18 12             | 12 9                                                                 | 15 10                 | 13 10           | 0 -800                         | 15 10           |

<sup>1</sup> The allowable deviation of single bore diameter deviation Δds is identical to the allowable deviation of the single plane mean bore diameter deviation.

Table 4.2 Outer ring

Units  $\mu\,m$ 

| outsid | ninal<br>de dia. | mean bore of within plan | I tolerance of liameter $\Delta$ $_{Dmp}$ ie and outer olerance $\Delta$ $_{Ds}$ |    | rial<br>rout<br>Sea |    | dth<br>ation<br>/cs |
|--------|------------------|--------------------------|----------------------------------------------------------------------------------|----|---------------------|----|---------------------|
|        | m<br>to/incl.    | Class 5<br>High          | Class 4<br>Low                                                                   |    | Class 4<br>lax      |    | Class 4<br>lax      |
| 30     | 50               | -25                      | -36                                                                              | 8  | 5                   | 5  | 2.5                 |
| 50     | 80               | -30                      | <b>-</b> 43                                                                      | 10 | 5                   | 6  | 3                   |
| 80     | 120              | -36                      | <del>-</del> 51                                                                  | 11 | 6                   | 8  | 4                   |
| 120    | 150              | -43                      | <b>-61</b>                                                                       | 13 | 7                   | 8  | 5                   |
| 150    | 180              | -43                      | <b>-61</b>                                                                       | 14 | 8                   | 8  | 5                   |
| 180    | 250              | -50                      | <b>-</b> 70                                                                      | 15 | 10                  | 10 | 7                   |
| 250    | 315              | -56                      | <b>-</b> 79                                                                      | 18 | 10                  | 11 | 7                   |
| 315    | 400              | -62                      | <b>-</b> 87                                                                      | 20 | 13                  | 13 | 8                   |
| 400    | 500              | -68                      | <b>-</b> 95                                                                      | 23 | 15                  | 15 | 10                  |

Note: 1. These standards are NTN standards.

Bearing which use these accuracies should be appended with the accuracies code L.
 (Example: HTA 020 DB / GNP 4L)



Table 4 Standard preload

Units N { kgf

|                 | 56               | 629                  | 56               | 620                  | HTA                  | 9DB              | HTA              | .0DB                 | HTA                  | DADB             |         |         |
|-----------------|------------------|----------------------|------------------|----------------------|----------------------|------------------|------------------|----------------------|----------------------|------------------|---------|---------|
| Bore<br>dia. no |                  | Medium preload<br>GM |                  | Medium preload<br>GM | Normal preload<br>GN |                  |                  | Medium preload<br>GM | Normal preload<br>GN |                  |         |         |
| 05              |                  |                      | 294{ 30 }        | 685{ 70 }            |                      |                  | 390              | 685                  | 147                  | 294              |         |         |
| 06              |                  |                      |                  |                      |                      |                  | { 40 }           | { 70 }               | { 15 }               | { 30 }           |         |         |
| 07              |                  |                      | 490              | 785                  |                      |                  |                  |                      |                      |                  |         |         |
| 80              |                  |                      | { 50 }           | { 80 }               |                      |                  |                  |                      | 294                  | 590              |         |         |
| 09              |                  |                      |                  |                      |                      |                  | 685              | 1,270                | { 30 }               | { 60 }           |         |         |
| 10              |                  |                      |                  |                      |                      |                  | {70}             | { 130 }              |                      |                  |         |         |
| 11              |                  |                      | 980              | 1,670                |                      |                  |                  |                      | 490                  | 885              |         |         |
| 12              |                  |                      | { 100 }          | { 170 }              |                      |                  |                  |                      | { 50 }               | { 90 }           |         |         |
| 13              |                  |                      |                  |                      |                      |                  |                  |                      |                      |                  |         |         |
| 14              |                  |                      |                  |                      |                      |                  |                  | 1,570<br>{ 160 }     | 590                  | 1,470            |         |         |
| 15              |                  |                      | 1 470            | 2,450<br>{ 250 }     |                      |                  | 980<br>{ 100 }   |                      | { 60 }               | { 150 }          |         |         |
| 16              |                  |                      | 1,470<br>{ 150 } |                      |                      |                  | (100)            | 1,960<br>{ 200 }     |                      |                  |         |         |
| 17<br>18        |                  |                      |                  |                      |                      |                  |                  | (200)                | 885                  | 1,960            |         |         |
| 19              |                  |                      |                  |                      |                      |                  | 1,470            | 2,450                | { 90 }               | { 200 ]          |         |         |
| 20              |                  | 2.450                |                  |                      |                      |                  | { 150 }          | 2,450<br>{ 250 }     |                      |                  |         |         |
| 21              | 1,470            | 2,450<br>{ 250 }     |                  |                      | 980                  | 1,670            |                  |                      |                      | 2.450            |         |         |
| 22              | { 150 }          |                      |                  |                      |                      | { 100 }          | { 170 }          | 1,960                | 3,450                | 980<br>{ 100 }   | 2,450   |         |
| 24              |                  |                      |                  |                      |                      |                  | 4 000            | 2 250                |                      |                  | { 200 } | { 350 } |
| 26              |                  |                      | 1,960<br>{ 200 } | 3,250<br>{ 330 }     | 1,270                | 2,450            |                  |                      |                      |                  |         |         |
| 28              | 1,960            | 2,940                |                  |                      | { 130 }              | { 250 }          | 2,940            | 5,400                | 1,470<br>{ 150 }     | 3,450<br>{ 350 } |         |         |
| 30              | { 200 }          | { 300 }              |                  |                      |                      |                  | { 300 }          | { 550 }              | \ 130 }              | 1 330 /          |         |         |
| 32              |                  |                      |                  |                      | 1,960<br>{ 200 }     | 3,450<br>{ 350 } | 3,900            | 7,350                |                      |                  |         |         |
| 34              |                  |                      |                  |                      |                      |                  | { 400 }          | { 750 }              | 2,450<br>{ 250 }     | 4,900<br>{ 500 } |         |         |
| 36              | 2.450            | 2.000                | 2.450            | 2 000                | 3,450                | 5,900            | 4.000            | 0.200                | (_30)                | (000)            |         |         |
| 38              | 2,450<br>{ 250 } | 3,900<br>{ 400 }     | 2,450<br>{ 250 } | 3,900<br>{ 400 }     | { 350 }              | { 600 }          | 4,900<br>{ 500 } | 9,300<br>{ 950 }     | 2.450                | 6.050            |         |         |
| 40              |                  | { 400 }              |                  |                      | 3,900                | 6,850            |                  |                      | 3,450<br>{ 350 }     | 6,850<br>{ 700 } |         |         |
| 44              | 2,940            | 4,400                |                  |                      | { 400 }              | { 700 }          | 6,850            | 12,700               |                      |                  |         |         |
| 48              | { 300 }          | { 450 }              | 2,940            | 4,400                |                      |                  | { 700 }          | { 1,300 }            | 3,900                | 7,850            |         |         |
| 52              |                  |                      | { 300 }          | { 450 }              | 4,900                | 8,850            | 8,850            | 15,700               | { 400 }              | { 800 }          |         |         |
| 56              | 3,900            | 5,900                |                  |                      | { 500 }              | { 900 }          | { 900 }          | { 1,600 }            | 5,900                | 11,800           |         |         |
| 60              | { 400 }          | { 600 }              | 3,900            | 5,900                | 5,900                | 11,800           | 10,800           | 17,700               | { 600 }              | { 1,200          |         |         |
| 64              | 4,900{ 500 }     | } 7,350{ 750         | { 400 }          | { 600 }              | { 600 }              | { 1,200 }        | { 1,100 }        | { 1,800 }            | ( 000 )              | 1,200            |         |         |

## P

#### 3. Spherical roller thrust bearings

Just like spherical roller bearings, the center of the spherical surface for spherical roller thrust bearings is the point where the raceway surface of the housing raceway disc meets the center axis of the bearing. Since spherical roller thrust bearings incorporate barrel-shaped rollers as rolling elements, they also have self-aligning properties. (See Diagram 2)

Under normal load conditions, the allowable misalignment is 1° to 2°, although this will vary depending upon the bearing's dimension series.

These bearings use machined copper alloy cages and a guide sleeve is attached to the inner ring to guide the cage. The axial load capacity of these bearings is high, and a certain amount of radial load can also be accommodated when the ring is in an axially loaded state. However, it is necessary to operate these bearings where the load condition meet  $F_t/F_0$  0.55.

These bearings have some spots where lubricant cannot enter such as the gap between the cage and guide sleeve. It is necessary to use oil lubrication even in low speed operation.

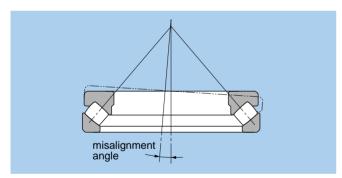



Diagram 2. Spherical roller thrust bearings

#### 4. Cylindrical roller thrust bearings

Thrust bearings incorporating cylindrical rollers are available in single row, double row, triple row, and four row varieties. (See **Diagram 3**) NTN Engineering offers the 811, 812 and 893 series of standard series bearings that conform to dimension series 11, 12 and 93 prescribed in JIS, as well as other special dimensions.

Cylindrical roller thrust bearings are able to receive axial loads only, and have high axial rigidity which makes them well suited for heavy axial loads. Needle roller bearing information for series 811, 812, and 893 is also listed in the dimension tables.

Furthermore, bearings with dimensions not listed in the dimension tables are also manufactured. Contact NTN Engineering for more information.

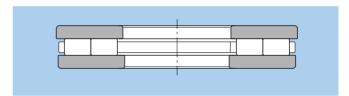



Diagram 3. Double row cylindrical roller thrust bearings

#### 5. Tapered roller thrust bearings

Although not listed in the dimension tables, tapered roller bearings like those in **Diagram 4** are also manufactured. Contact **NTN** Engineering for more detailed information.

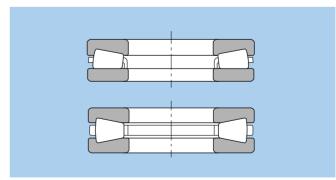
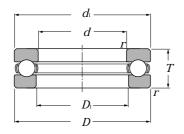
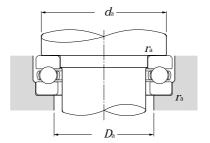





Diagram 4. Tapered roller thrust bearings

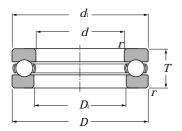


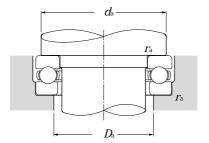




Equivalent bearing load dynamic  $P_{\rm a}$  =  $F_{\rm a}$ static

 $P_{\text{oa}} = F_{\text{a}}$ 


d 10 ~ 50mm


| E  | Sound | <b>dary</b><br>mr    |                      | sions                | dynamic<br>kl                | static                       | ad ratings<br>dynamic<br>k        | static                              | <b>Limiting</b>                  | ·                                | Bearing<br>numbers               | <b>Dimer</b><br>m     | n <b>sions</b><br>m     | fillet               | tment a<br>dimens<br>mm                   | ions            | <b>Mass</b><br>kg                |
|----|-------|----------------------|----------------------|----------------------|------------------------------|------------------------------|-----------------------------------|-------------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------|-------------------------|----------------------|-------------------------------------------|-----------------|----------------------------------|
| C  | 1     | D                    | T                    | $r_{ m s min}^{1}$   | Ca                           | $C_{oa}$                     | Ca                                | $C_{\mathrm{oa}}$                   | grease                           | oil                              |                                  | $d_{1s \max^2}$       | $D_{ m 1smin}^{ m 3}$ ) | da<br>min            | $D_{\!\scriptscriptstyle \mathrm{a}}$ max | r <sub>as</sub> | (approx.)                        |
| 1  |       | 24<br>26             | 9<br>11              | 0.3<br>0.6           | 10.0<br>12.7                 | 14.0<br>17.1                 | 1 020<br>1 290                    | 1 420<br>1 740                      | 6 700<br>5 800                   | 9 500<br>8 300                   | 51100<br>51200                   | 24<br>26              | 11<br>12                | 18<br>20             | 16<br>16                                  | 0.3<br>0.6      | 0.021<br>0.03                    |
| 1: | _     | 26<br>28             | 9<br>11              | 0.3<br>0.6           | 10.3<br>13.2                 | 15.4<br>19.0                 | 1 050<br>1 340                    | 1 570<br>1 940                      | 6 400<br>5 600                   | 9 200<br>8 000                   | 51101<br>51201                   | 26<br>28              | 13<br>14                | 20<br>22             | 18<br>18                                  | 0.3<br>0.6      | 0.023<br>0.034                   |
| 1: |       | 28<br>32             | 9<br>12              | 0.3<br>0.6           | 10.5<br>16.6                 | 16.8<br>24.8                 | 1 070<br>1 690                    | 1 710<br>2 530                      | 6 200<br>5 000                   | 8 800<br>7 100                   | 51102<br>51202                   | 28<br>32              | 16<br>17                | 23<br>25             | 20<br>22                                  | 0.3<br>0.6      | 0.024<br>0.046                   |
| 1  | _     | 30<br>35             | 9<br>12              | 0.3<br>0.6           | 10.8<br>17.2                 | 18.2<br>27.3                 | 1 100<br>1 750                    | 1 850<br>2 780                      | 6 000<br>4 800                   | 8 500<br>6 800                   | 51103<br>51203                   | 30<br>35              | 18<br>19                | 25<br>28             | 22<br>24                                  | 0.3<br>0.6      | 0.026<br>0.054                   |
| 2  |       | 35<br>40             | 10<br>14             | 0.3<br>0.6           | 14.2<br>22.3                 | 24.7<br>37.5                 | 1 450<br>2 270                    | 2 520<br>3 850                      | 5 200<br>4 100                   | 7 500<br>5 900                   | 51104<br>51204                   | 35<br>40              | 21<br>22                | 29<br>32             | 26<br>28                                  | 0.3<br>0.6      | 0.04<br>0.081                    |
| 2: | 5     | 42<br>47<br>52<br>60 | 11<br>15<br>18<br>24 | 0.6<br>0.6<br>1      | 19.6<br>27.8<br>35.5<br>55.5 | 37.0<br>50.5<br>61.5<br>89.5 | 1 990<br>2 830<br>3 650<br>5 650  | 3 800<br>5 150<br>6 250<br>9 100    | 4 600<br>3 700<br>3 200<br>2 600 | 6 500<br>5 300<br>4 600<br>3 700 | 51105<br>51205<br>51305<br>51405 | 42<br>47<br>52<br>60  | 26<br>27<br>27<br>27    | 35<br>38<br>41<br>46 | 32<br>34<br>36<br>39                      | 0.6<br>0.6<br>1 | 0.06<br>0.111<br>0.176<br>0.33   |
| 3  | 0     | 47<br>52<br>60<br>70 | 11<br>16<br>21<br>28 | 0.6<br>0.6<br>1      | 20.4<br>29.3<br>43.0<br>72.5 | 42.0<br>58.0<br>78.5<br>126  | 2 080<br>2 990<br>4 350<br>7 400  | 4 300<br>5 950<br>8 000<br>12 800   | 4 300<br>3 400<br>2 800<br>2 200 | 6 200<br>4 900<br>3 900<br>3 200 | 51106<br>51206<br>51306<br>51406 | 47<br>52<br>60<br>70  | 32<br>32<br>32<br>32    | 40<br>43<br>48<br>54 | 37<br>39<br>42<br>46                      | 0.6<br>0.6<br>1 | 0.069<br>0.139<br>0.269<br>0.516 |
| 3  | 5     | 52<br>62<br>68<br>80 | 12<br>18<br>24<br>32 | 0.6<br>1<br>1<br>1.1 | 20.4<br>39.0<br>55.5<br>87.0 | 44.5<br>78.0<br>105<br>155   | 2 080<br>4 000<br>5 650<br>8 850  | 4 550<br>7 950<br>10 700<br>15 800  | 3 900<br>2 900<br>2 400<br>1 900 | 5 600<br>4 200<br>3 500<br>2 800 | 51107<br>51207<br>51307<br>51407 | 52<br>62<br>68<br>80  | 37<br>37<br>37<br>37    | 45<br>51<br>55<br>62 | 42<br>46<br>48<br>53                      | 0.6<br>1<br>1   | 0.085<br>0.215<br>0.383<br>0.759 |
| 4  | 0     | 60<br>68<br>78<br>90 | 13<br>19<br>26<br>36 | 0.6<br>1<br>1<br>1.1 | 26.9<br>47.0<br>69.0<br>112  | 63.0<br>98.5<br>135<br>205   | 2 740<br>4 800<br>7 050<br>11 500 | 6 400<br>10 000<br>13 700<br>20 900 | 3 500<br>2 700<br>2 200<br>1 700 | 5 000<br>3 900<br>3 100<br>2 500 | 51108<br>51208<br>51308<br>51408 | 60<br>68<br>78<br>90  | 42<br>42<br>42<br>42    | 52<br>57<br>63<br>70 | 48<br>51<br>55<br>60                      | 0.6<br>1<br>1   | 0.125<br>0.276<br>0.548<br>1.08  |
| 4  | 5     | 65<br>73<br>85<br>00 | 14<br>20<br>28<br>39 | 0.6<br>1<br>1<br>1.1 | 27.9<br>48.0<br>80.0<br>130  | 69.0<br>105<br>163<br>242    | 2 840<br>4 850<br>8 150<br>13 200 | 7 050<br>10 700<br>16 700<br>24 700 | 3 200<br>2 600<br>2 000<br>1 600 | 4 600<br>3 700<br>2 900<br>2 200 | 51109<br>51209<br>51309<br>51409 | 65<br>73<br>85<br>100 | 47<br>47<br>47<br>47    | 57<br>62<br>69<br>78 | 53<br>56<br>61<br>67                      | 0.6<br>1<br>1   | 0.148<br>0.317<br>0.684<br>1.43  |
| 5  |       | 70<br>78             | 14<br>22             | 0.6<br>1             | 28.8<br>48.5                 | 75.5<br>111                  | 2 930<br>4 950                    | 7 700<br>11 400                     | 3 100<br>2 400                   | 4 500<br>3 400                   | 51110<br>51210                   | 70<br>78              | 52<br>52                | 62<br>67             | 58<br>61                                  | 0.6<br>1        | 0.161<br>0.378                   |

<sup>1 )</sup> Smallest allowable dimension for chamfer dimension r. 2 ) Maximum allowable dimension for shaft washer outer dimension d. 3 ) Smallest allowable dimension for housing washer inner dimension D.



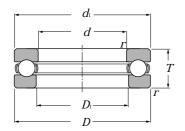


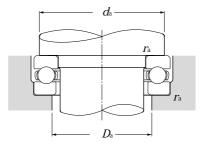




Equivalent bearing load dynamic  $P_a = F_a$ 

static  $P_{\text{oa}} = F_{\text{a}}$ 


d 50 ~ 90mm


| Воц | undary | dimen |                   | dynamic      |          | ad ratings<br>dynamic |                   | Limiting | speeds          | Bearing<br>numbers | Dimer           | nsions               |                   | tment a                             |                 | Mass      |
|-----|--------|-------|-------------------|--------------|----------|-----------------------|-------------------|----------|-----------------|--------------------|-----------------|----------------------|-------------------|-------------------------------------|-----------------|-----------|
|     | m      | m     |                   | kl           |          | •                     | gf                | mi       | n <sup>-1</sup> |                    | m               | m                    |                   | mm                                  |                 | kg        |
| d   | D      | T     | $r_{ m smin}^{1}$ | ) <i>C</i> a | $C_{oa}$ | <i>C</i> a            | $C_{\mathrm{oa}}$ | grease   | oil             |                    | $d_{1s \max^2}$ | $D_{ m lsmin}^{3}$ ) | <i>d</i> a<br>min | $D_{\!\scriptscriptstyle  m a}$ max | r <sub>as</sub> | (approx.) |
| 50  | 95     | 31    | 1.1               | 96.5         | 202      | 9 850                 | 20 600            | 1 800    | 2 600           | 51310              | 95              | 52                   | 77                | 68                                  | 1               | 0.951     |
|     | 110    | 43    | 1.5               | 148          | 283      | 15 100                | 28 800            | 1 400    | 2 000           | 51410A             | 110             | 52                   | 86                | 74                                  | 1.5             | 1.9       |
| 55  | 78     | 16    | 0.6               | 35.0         | 93.0     | 3 550                 | 9 500             | 2 800    | 4 000           | 51111              | 78              | 57                   | 69                | 64                                  | 0.6             | 0.226     |
|     | 90     | 25    | 1                 | 69.5         | 159      | 7 100                 | 16 200            | 2 100    | 3 000           | 51211              | 90              | 57                   | 76                | 69                                  | 1               | 0.608     |
|     | 105    | 35    | 1.1               | 119          | 246      | 12 200                | 25 100            | 1 600    | 2 300           | 51311              | 105             | 57                   | 85                | 75                                  | 1               | 1.29      |
|     | 120    | 48    | 1.5               | 178          | 360      | 18 200                | 36 500            | 1 300    | 1 800           | 51411              | 120             | 57                   | 94                | 81                                  | 1.5             | 2.52      |
| 60  | 85     | 17    | 1                 | 41.5         | 113      | 4 200                 | 11 500            | 2 600    | 3 700           | 51112              | 85              | 62                   | 75                | 70                                  | 1               | 0.296     |
|     | 95     | 26    | 1                 | 73.5         | 179      | 7 500                 | 18 200            | 2 000    | 2 800           | 51212              | 95              | 62                   | 81                | 74                                  | 1               | 0.676     |
|     | 110    | 35    | 1.1               | 123          | 267      | 12 600                | 27 200            | 1 600    | 2 300           | 51312              | 110             | 62                   | 90                | 80                                  | 1               | 1.37      |
|     | 130    | 51    | 1.5               | 214          | 435      | 21 800                | 44 500            | 1 200    | 1 700           | 51412              | 130             | 62                   | 102               | 88                                  | 1.5             | 3.12      |
| 65  | 90     | 18    | 1                 | 41.5         | 117      | 4 250                 | 12 000            | 2 400    | 3 500           | 51113              | 90              | 67                   | 80                | 75                                  | 1               | 0.338     |
|     | 100    | 27    | 1                 | 75.0         | 189      | 7 650                 | 19 200            | 1 900    | 2 700           | 51213              | 100             | 67                   | 86                | 79                                  | 1               | 0.767     |
|     | 115    | 36    | 1.1               | 128          | 287      | 13 000                | 29 300            | 1 500    | 2 200           | 51313              | 115             | 67                   | 95                | 85                                  | 1               | 1.51      |
|     | 140    | 56    | 2                 | 232          | 495      | 23 600                | 50 500            | 1 100    | 1 600           | 51413              | 140             | 68                   | 110               | 95                                  | 2               | 3.96      |
| 70  | 95     | 18    | 1                 | 43.0         | 127      | 4 400                 | 12 900            | 2 400    | 3 400           | 51114              | 95              | 72                   | 85                | 80                                  | 1               | 0.356     |
|     | 105    | 27    | 1                 | 76.0         | 199      | 7 750                 | 20 200            | 1 800    | 2 600           | 51214              | 105             | 72                   | 91                | 84                                  | 1               | 0.793     |
|     | 125    | 40    | 1.1               | 148          | 340      | 15 100                | 34 500            | 1 400    | 2 000           | 51314              | 125             | 72                   | 103               | 92                                  | 1               | 2.01      |
|     | 150    | 60    | 2                 | 250          | 555      | 25 500                | 56 500            | 1 000    | 1 500           | 51414              | 150             | 73                   | 118               | 102                                 | 2               | 4.86      |
| 75  | 100    | 19    | 1                 | 44.5         | 136      | 4 550                 | 13 900            | 2 200    | 3 200           | 51115              | 100             | 77                   | 90                | 85                                  | 1               | 0.399     |
|     | 110    | 27    | 1                 | 77.5         | 209      | 7 900                 | 21 300            | 1 800    | 2 600           | 51215              | 110             | 77                   | 96                | 89                                  | 1               | 0.874     |
|     | 135    | 44    | 1.5               | 171          | 395      | 17 400                | 40 500            | 1 300    | 1 800           | 51315              | 135             | 77                   | 111               | 99                                  | 1.5             | 2.61      |
|     | 160    | 65    | 2                 | 269          | 615      | 27 400                | 63 000            | 940      | 1 400           | 51415              | 160             | 78                   | 125               | 110                                 | 2               | 5.97      |
| 80  | 105    | 19    | 1                 | 44.5         | 141      | 4 550                 | 14 400            | 2 200    | 3 100           | 51116              | 105             | 82                   | 95                | 90                                  | 1               | 0.422     |
|     | 115    | 28    | 1                 | 78.5         | 218      | 8 000                 | 22 300            | 1 700    | 2 400           | 51216              | 115             | 82                   | 101               | 94                                  | 1               | 0.916     |
|     | 140    | 44    | 1.5               | 176          | 425      | 18 000                | 43 000            | 1 200    | 1 800           | 51316              | 140             | 82                   | 116               | 104                                 | 1.5             | 2.72      |
|     | 170    | 68    | 2.1               | 270          | 620      | 27 500                | 63 500            | 890      | 1 300           | 51416              | 170             | 83                   | 133               | 117                                 | 2               | 7.77      |
| 85  | 110    | 19    | 1                 | 46.0         | 150      | 4 700                 | 15 300            | 2 100    | 3 000           | 51117              | 110             | 87                   | 100               | 95                                  | 1               | 0.444     |
|     | 125    | 31    | 1                 | 95.5         | 264      | 9 700                 | 26 900            | 1 600    | 2 200           | 51217              | 125             | 88                   | 109               | 101                                 | 1               | 1.25      |
|     | 150    | 49    | 1.5               | 201          | 490      | 20 500                | 50 000            | 1 100    | 1 600           | 51317              | 150             | 88                   | 124               | 111                                 | 1.5             | 3.52      |
|     | 180    | 72    | 2.1               | 288          | 685      | 29 400                | 70 000            | 840      | 1 200           | * 51417            | 177             | 88                   | 141               | 124                                 | 2               | 9.17      |
| 90  | 120    | 22    | 1                 | 59.5         | 190      | 6 100                 | 19 400            | 1 900    | 2 700           | 51118              | 120             | 92                   | 108               | 102                                 | 1               | 0.687     |
|     | 135    | 35    | 1.1               | 117          | 325      | 11 900                | 33 000            | 1 400    | 2 000           | 51218              | 135             | 93                   | 117               | 108                                 | 1               | 1.7       |
|     | 155    | 50    | 1.5               | 198          | 490      | 20 200                | 50 000            | 1 100    | 1 600           | 51318              | 155             | 93                   | 129               | 116                                 | 1.5             | 3.74      |
|     | 190    | 77    | 2.1               | 305          | 750      | 31 500                | 76 500            | 790      | 1 100           | * 51418            | 187             | 93                   | 149               | 131                                 | 2               | 11        |

<sup>1)</sup> Smallest allowable dimension for chamfer dimension r. 2) Maximum allowable dimension for shaft washer outer dimension d. 3) Smallest allowable dimension for housing washer inner dimension D. Note: Bearing numbers marked " \* " signify bearings where the bearing shaft washer outer diameter is smaller than the housing shaft washer outer diameter. Therefore when using these bearings, it is possible to use the housing bore as is, without providing a ground undercut on the outer diameter section of the bearing shaft washer as shown in the drawing.

B-275

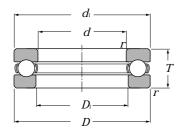


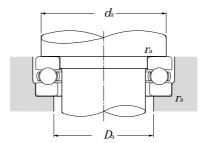




Equivalent bearing load dynamic  $P_a = F_a$ 

static  $P_{0a} = F_a$ 


d 100 ~ 200mm


| Воц | ·                 | dimen          |                             | •                 | Basic Io<br>ic static<br>kN | •                          | static                      | <b>Limiting</b>     |                       | Bearing<br>numbers            | Dimen             |                         |                                  | tment a           |                 | Mass                 |
|-----|-------------------|----------------|-----------------------------|-------------------|-----------------------------|----------------------------|-----------------------------|---------------------|-----------------------|-------------------------------|-------------------|-------------------------|----------------------------------|-------------------|-----------------|----------------------|
| d   | D II              | nm<br>T        | <i>r</i> s min <sup>1</sup> |                   | Coa                         | Ca                         | kgf $\it C_{ m oa}$         | grease              | oil                   |                               | $d_{1s \max^2}$   | $D_{ m 1smin}^{ m 3}$ ) | $d_{\!\scriptscriptstyle a}$ min | $m$ m $D_{a}$ max | r <sub>as</sub> | kg<br>(approx.)      |
| 100 | 135               | 25             | 1                           | 85.0              | 268                         | 8 700                      | 27 300                      | 1 700               | 2 400                 | 51120                         | 135               | 102                     | 121                              | 114               | 1               | 0.987                |
|     | 150               | 38             | 1.1                         | 147               | 410                         | 14 900                     | 42 000                      | 1 300               | 1 800                 | 51220                         | 150               | 103                     | 130                              | 120               | 1               | 2.29                 |
|     | 170               | 55             | 1.5                         | 237               | 595                         | 24 100                     | 60 500                      | 990                 | 1 400                 | 51320                         | 170               | 103                     | 142                              | 128               | 1.5             | 4.88                 |
|     | 210               | 85             | 3                           | 370               | 970                         | 37 500                     | 99 000                      | 710                 | 1 000                 | * 51420                       | 205               | 103                     | 165                              | 145               | 2.5             | 14.7                 |
| 110 | 145               | 25             | 1                           | 87.0              | 288                         | 8 900                      | 29 400                      | 1 600               | 2 300                 | 51122                         | 145               | 112                     | 131                              | 124               | 1               | 1.07                 |
|     | 160               | 38             | 1.1                         | 153               | 450                         | 15 600                     | 46 000                      | 1 200               | 1 800                 | 51222                         | 160               | 113                     | 140                              | 130               | 1               | 2.46                 |
|     | 190               | 63             | 2                           | 267               | 705                         | 27 300                     | 72 000                      | 870                 | 1 200                 | * 51322                       | 187               | 113                     | 158                              | 142               | 2               | 7.67                 |
| 120 | 155               | 25             | 1                           | 89.0              | 310                         | 9 100                      | 31 500                      | 1 500               | 2 200                 | 51124                         | 155               | 122                     | 141                              | 134               | 1               | 1.11                 |
|     | 170               | 39             | 1.1                         | 154               | 470                         | 15 700                     | 48 000                      | 1 200               | 1 700                 | 51224                         | 170               | 123                     | 150                              | 140               | 1               | 2.71                 |
|     | 210               | 70             | 2.1                         | 296               | 805                         | 30 000                     | 82 500                      | 780                 | 1 100                 | * 51324                       | 205               | 123                     | 173                              | 157               | 2               | 10.8                 |
| 130 | 170               | 30             | 1                           | 104               | 350                         | 10 600                     | 36 000                      | 1 300               | 1 900                 | 51126                         | 170               | 132                     | 154                              | 146               | 1               | 1.73                 |
|     | 190               | 45             | 1.5                         | 191               | 565                         | 19 400                     | 57 500                      | 1 000               | 1 500                 | * 51226                       | 187               | 133                     | 166                              | 154               | 1.5             | 4.22                 |
|     | 225               | 75             | 2.1                         | 330               | 960                         | 33 500                     | 97 500                      | 720                 | 1 000                 | * 51326                       | 220               | 134                     | 186                              | 169               | 2               | 12.7                 |
| 140 | 180               | 31             | 1                           | 107               | 375                         | 10 900                     | 38 500                      | 1 300               | 1 800                 | * 51128                       | 178               | 142                     | 164                              | 156               | 1               | 1.9                  |
|     | 200               | 46             | 1.5                         | 193               | 595                         | 19 700                     | 60 500                      | 980                 | 1 400                 | * 51228                       | 197               | 143                     | 176                              | 164               | 1.5             | 4.77                 |
|     | 240               | 80             | 2.1                         | 350               | 1 050                       | 35 500                     | 107 000                     | 670                 | 960                   | * 51328                       | 235               | 144                     | 199                              | 181               | 2               | 15.3                 |
| 150 | 190               | 31             | 1                           | 109               | 400                         | 11 100                     | 41 000                      | 1 200               | 1 800                 | * 51130                       | 188               | 152                     | 174                              | 166               | 1               | 2                    |
|     | 215               | 50             | 1.5                         | 220               | 685                         | 22 400                     | 70 000                      | 900                 | 1 300                 | * 51230                       | 212               | 153                     | 189                              | 176               | 1.5             | 5.87                 |
|     | 250               | 80             | 2.1                         | 360               | 1 130                       | 37 000                     | 115 000                     | 660                 | 940                   | * 51330                       | 245               | 154                     | 209                              | 191               | 2               | 16.1                 |
| 160 | 200               | 31             | 1                           | 112               | 425                         | 11 400                     | 43 500                      | 1 200               | 1 700                 | * 51132                       | 198               | 162                     | 184                              | 176               | 1               | 2.1                  |
|     | 225               | 51             | 1.5                         | 223               | 720                         | 22 800                     | 73 000                      | 870                 | 1 200                 | * 51232                       | 222               | 163                     | 199                              | 186               | 1.5             | 6.32                 |
|     | 270               | 87             | 3                           | 450               | 1 470                       | 45 500                     | 150 000                     | 600                 | 860                   | * 51332                       | 265               | 164                     | 225                              | 205               | 2.5             | 20.7                 |
| 170 | 215               | 34             | 1.1                         | 134               | 510                         | 13 700                     | 52 000                      | 1 100               | 1 600                 | * 51134                       | 213               | 172                     | 197                              | 188               | 1               | 2.77                 |
|     | 240               | 55             | 1.5                         | 261               | 835                         | 26 600                     | 85 000                      | 810                 | 1 200                 | * 51234                       | 237               | 173                     | 212                              | 198               | 1.5             | 7.81                 |
|     | 280               | 87             | 3                           | 465               | 1 570                       | 47 000                     | 160 000                     | 590                 | 840                   | * 51334                       | 275               | 174                     | 235                              | 215               | 2.5             | 21.6                 |
| 180 | 225<br>250<br>300 | 34<br>56<br>95 | 1.1<br>1.5<br>3             | 135<br>266<br>490 | 525<br>875<br>1 700         | 13 700<br>27 100<br>50 000 | 54 000<br>89 000<br>174 000 | 1 100<br>780<br>540 | 1 500<br>1 100<br>780 | * 51136<br>* 51236<br>* 51336 | 222<br>247<br>295 | 183<br>183<br>184       | 207<br>222<br>251                | 198<br>208<br>229 |                 | 2.92<br>8.34<br>27.5 |
| 190 | 240               | 37             | 1.1                         | 170               | 655                         | 17 400                     | 67 000                      | 980                 | 1 400                 | * 51138                       | 237               | 193                     | 220                              | 210               | 1               | 3.75                 |
|     | 270               | 62             | 2                           | 310               | 1 060                       | 31 500                     | 108 000                     | 710                 | 1 000                 | * 51238                       | 267               | 194                     | 238                              | 222               | 2               | 11.3                 |
|     | 320               | 105            | 4                           | 545               | 1 950                       | 55 500                     | 199 000                     | 500                 | 710                   | * 51338                       | 315               | 195                     | 266                              | 244               | 3               | 35                   |
| 200 | 250               | 37             | 1.1                         | 172               | 675                         | 17 500                     | 69 000                      | 960                 | 1 400                 | * 51140                       | 247               | 203                     | 230                              | 220               | 1               | 3.92                 |

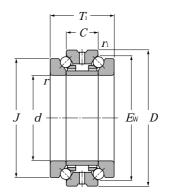
1) Smallest allowable dimension for chamfer dimension r. 2) Maximum allowable dimension for shaft washer outer dimension d. 3) Smallest allowable dimension for housing washer inner dimension D. Note: Bearing numbers marked " \* " signify bearings where the bearing shaft washer outer diameter is smaller than the housing shaft washer outer diameter. Therefore when using these bearings, it is possible to use the housing bore as is, without providing a ground undercut on the outer diameter section of the bearing shaft washer as shown in the drawing.









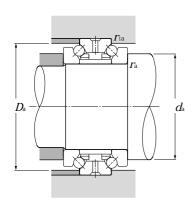

Equivalent bearing load dynamic  $P_a = F_a$ 

static  $P_{\text{oa}} = F_{\text{a}}$ 

d 200 ~ 530mm

| Bou | ·          | dimen     | sions            | dynam        | nic static     | •                | static             | Limiting speeds Bearing numbers |                 |                    | Dimensions      |                   | Abutment and fillet dimensions |                                    |             | Mass         |
|-----|------------|-----------|------------------|--------------|----------------|------------------|--------------------|---------------------------------|-----------------|--------------------|-----------------|-------------------|--------------------------------|------------------------------------|-------------|--------------|
|     | m          | ım        |                  |              | kN             |                  | kgf                | mi                              | n <sup>-1</sup> |                    | m               | m                 | $d_{a}$                        | mm $D_{\!\scriptscriptstyle  m a}$ | <i>T</i> as | kg           |
| d   | D          | T         | <b>r</b> s min ¹ | ) <i>C</i> a | $C_{oa}$       | Ca               | $C_{\mathrm{oa}}$  | grease                          | oil             |                    | $d_{1s \max^2}$ | $D_{ m lsmin}$ 3) | min                            | max                                | max         | (approx.)    |
| 200 | 280<br>340 | 62<br>110 | 2<br>4           | 315<br>595   | 1 110<br>2 220 | 32 000<br>61 000 | 113 000<br>227 000 | 700<br>470                      | 990<br>670      | * 51240<br>* 51340 | 277<br>335      | 204<br>205        | 248<br>282                     | 232<br>258                         | 2<br>3      | 11.8<br>41.8 |
| 220 | 270<br>300 | 37<br>63  | 1.1<br>2         | 177<br>325   | 740<br>1 210   | 18 100<br>33 000 | 75 500<br>123 000  | 920<br>660                      | 1 300<br>950    | * 51144<br>* 51244 | 267<br>297      | 223<br>224        | 250<br>268                     | 240<br>252                         | 1<br>2      | 4.27<br>13   |
| 240 | 300<br>340 | 45<br>78  | 1.5<br>2.1       | 228<br>415   | 935<br>1 650   | 23 200<br>42 500 | 95 000<br>168 000  | 780<br>550                      | 1 100<br>790    | * 51148<br>* 51248 | 297<br>335      | 243<br>244        | 276<br>299                     | 264<br>281                         | 1.5<br>2    | 6.87<br>22.4 |
| 260 | 320<br>360 | 45<br>79  | 1.5<br>2.1       | 232<br>440   | 990<br>1 810   | 23 600<br>45 000 | 101 000<br>184 000 | 750<br>530                      | 1 100<br>760    | * 51152<br>* 51252 | 317<br>355      | 263<br>264        | 296<br>319                     | 284<br>301                         | 1.5<br>2    | 7.38<br>24.2 |
| 280 | 350<br>380 | 53<br>80  | 1.5<br>2.1       | 305<br>460   | 1 270<br>1 970 | 31 000<br>47 000 | 130 000<br>201 000 | 650<br>510                      | 940<br>730      | * 51156<br>* 51256 | 347<br>375      | 283<br>284        | 322<br>339                     | 308<br>321                         | 1.5<br>2    | 11.8<br>26.1 |
| 300 | 380<br>420 | 62<br>95  | 2<br>3           | 355<br>590   | 1 560<br>2 680 | 36 000<br>60 000 | 159 000<br>273 000 | 580<br>440                      | 820<br>630      | * 51160<br>* 51260 | 376<br>415      | 304<br>304        | 348<br>371                     | 332<br>349                         | 2<br>2.5    | 17.2<br>40.6 |
| 320 | 400        | 63        | 2                | 365          | 1 660          | 37 000           | 169 000            | 550                             | 790             | * 51164            | 396             | 324               | 368                            | 352                                | 2           | 18.4         |
| 340 | 420        | 64        | 2                | 375          | 1 760          | 38 000           | 179 000            | 530                             | 760             | * 51168            | 416             | 344               | 388                            | 372                                | 2           | 19.7         |
| 360 | 440        | 65        | 2                | 380          | 1 860          | 39 000           | 190 000            | 510                             | 730             | * 51172            | 436             | 364               | 408                            | 392                                | 2           | 21.1         |
| 380 | 460        | 65        | 2                | 380          | 1 910          | 39 000           | 195 000            | 500                             | 710             | * 51176            | 456             | 384               | 428                            | 412                                | 2           | 22.3         |
| 400 | 480        | 65        | 2                | 390          | 2 010          | 40 000           | 205 000            | 480                             | 690             | * 51180            | 476             | 404               | 448                            | 432                                | 2           | 23.3         |
| 420 | 500        | 65        | 2                | 395          | 2 110          | 40 500           | 215 000            | 470                             | 670             | * 51184            | 495             | 424               | 468                            | 452                                | 2           | 24.4         |
| 440 | 540        | 80        | 2.1              | 515          | 2 850          | 52 500           | 291 000            | 400                             | 580             | * 51188            | 535             | 444               | 499                            | 481                                | 2           | 40           |
| 460 | 560        | 80        | 2.1              | 525          | 3 000          | 53 500           | 305 000            | 390                             | 560             | * 51192            | 555             | 464               | 519                            | 501                                | 2           | 41.6         |
| 480 | 580        | 80        | 2.1              | 525          | 3 100          | 54 000           | 315 000            | 380                             | 550             | * 51196            | 575             | 484               | 539                            | 521                                | 2           | 43.3         |
| 500 | 600        | 80        | 2.1              | 575          | 3 400          | 58 500           | 345 000            | 370                             | 540             | 511/500            | 595             | 504               | 559                            | 541                                | 2           | 45           |
| 530 | 640        | 85        | 3                | 645          | 4 000          | 66 000           | 405 000            | 350                             | 500             | 511/530            | 635             | 534               | 595                            | 575                                | 2.5         | 55.8         |

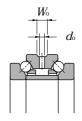
<sup>1)</sup> Smallest allowable dimension for chamfer dimension r. 2) Maximum allowable dimension for shaft washer outer dimension d. 3) Smallest allowable dimension for housing washer inner dimension D. Note: Bearing numbers marked " \* " signify bearings where the bearing shaft washer outer diameter is smaller than the housing shaft washer outer diameter. Therefore when using these bearings, it is possible to use the housing bore as is, without providing a ground undercut on the outer diameter section of the bearing shaft washer as shown in the drawing.




d 25 ~ 120mm

| u       | u 25 ~ 12011111 |            |          |          |                     |            |              |                   |                 |                   |                |                   |                    |                    |
|---------|-----------------|------------|----------|----------|---------------------|------------|--------------|-------------------|-----------------|-------------------|----------------|-------------------|--------------------|--------------------|
|         |                 | Bound      | dary di  | mensi    | ons                 |            |              |                   | nd ratings      |                   | Limitin        | g speeds          | Bearing r          | numbers            |
|         |                 |            | mm       | 1        |                     |            | dynamic<br>k | static<br>N       | dynamic k       | static<br>gf      | n              | nin <sup>-1</sup> |                    |                    |
| small o | dia. large dia. | D          | $T_1$    | С        | $r_{ m smin}^{1}$ ) | Ins min 1) | Ca           | $C_{\mathrm{oa}}$ | Ca              | $C_{\mathrm{oa}}$ | grease         | oil               | small dia.<br>type | large dia.<br>type |
| 2       | 5 27            | 47         | 28       | 14       | 0.6                 | 0.3        | 13.2         | 28.3              | 1 350           | 2 890             | 7 600          | 10 000            | 562005             | 562005M            |
| 30      | 0 32            | 55         | 32       | 16       | 1                   | 0.6        | 14.0         | 32.5              | 1 420           | 3 350             | 6 600          | 8 800             | 562006             | 562006M            |
| 3       | 5 37            | 62         | 34       | 17       | 1                   | 0.6        | 19.7         | 48.5              | 2 010           | 4 950             | 6 000          | 8 100             | 562007             | 562007M            |
| 40      | 0 42            | 68         | 36       | 18       | 1                   | 0.6        | 23.8         | 58.5              | 2 430           | 5 950             | 5 600          | 7 500             | 562008             | 562008M            |
| 4       | 5 47            | 75         | 38       | 19       | 1                   | 0.6        | 26.0         | 69.0              | 2 650           | 7 000             | 5 200          | 6 900             | 562009             | 562009M            |
| 50      | 0 52            | 80         | 38       | 19       | 1                   | 0.6        | 26.8         | 74.0              | 2 730           | 7 550             | 5 000          | 6 700             | 562010             | 562010M            |
| 5       | 5 57            | 90         | 44       | 22       | 1.1                 | 0.6        | 37.0         | 99.0              | 3 800           | 10 100            | 4 400          | 5 900             | 562011             | 562011M            |
| 60      | 0 62            | 95         | 44       | 22       | 1.1                 | 0.6        | 37.5         | 103               | 3 850           | 10 500            | 4 300          | 5 700             | 562012             | 562012M            |
| 6       | 5 67            | 100        | 44       | 22       | 1.1                 | 0.6        | 39.0         | 111               | 3 950           | 11 300            | 4 200          | 5 600             | 562013             | 562013M            |
| 70      | 0 73            | 110        | 48       | 24       | 1.1                 | 0.6        | 47.5         | 140               | 4 850           | 14 300            | 3 800          | 5 100             | 562014             | 562014M            |
| 7       | 5 78            | 115        | 48       | 24       | 1.1                 | 0.6        | 49.0         | 150               | 5 000           | 15 300            | 3 700          | 4 900             | 562015             | 562015M            |
| 80      | 0 83            | 125        | 54       | 27       | 1.1                 | 0.6        | 57.5         | 178               | 5 850           | 18 200            | 3 300          | 4 500             | 562016             | 562016M            |
| 8       | 5 88            | 130        | 54       | 27       | 1.1                 | 0.6        | 58.0         | 184               | 5 950           | 18 800            | 3 300          | 4 400             | 562017             | 562017M            |
| 90      | 93              | 140        | 60       | 30       | 1.5                 | 1          | 67.5         | 216               | 6 850           | 22 000            | 3 000          | 4 000             | 562018             | 562018M            |
| 9       | 5 98            | 145        | 60       | 30       | 1.5                 | 1          | 68.0         | 223               | 6 950           | 22 700            | 2 900          | 3 900             | 562019             | 562019M            |
| 100     | 0 104<br>103    | 140<br>150 | 48<br>60 | 24<br>30 | 1.1<br>1.5          | 0.6<br>1   | 52.0<br>68.5 | 179<br>229        | 5 300<br>7 000  | 18 200<br>23 400  | 2 800<br>2 900 | 3 700<br>3 800    | 562920<br>562020   | 562920M<br>562020M |
| 10      | 5 109<br>109    | 145<br>160 | 48<br>66 | 24<br>33 | 1.1<br>2            | 0.6<br>1   | 53.5<br>78.5 | 188<br>266        | 5 450<br>8 000  | 19 200<br>27 100  | 2 700<br>2 600 | 3 600<br>3 500    | 562921<br>562021   | 562921M<br>562021M |
| 110     | 0 114<br>114    | 150<br>170 | 48<br>72 | 24<br>36 | 1.1<br>2            | 0.6<br>1   | 54.0<br>96.0 | 193<br>315        | 5 500<br>9 750  | 19 700<br>32 500  | 2 700<br>2 400 | 3 600<br>3 300    | 562922<br>562022   | 562922M<br>562022M |
| 120     | 124<br>124      | 165<br>180 | 54<br>72 | 27<br>36 | 1.1<br>2            | 0.6<br>1   | 65.0<br>98.0 | 242<br>335        | 6 600<br>10 000 | 24 700<br>34 500  | 2 400<br>2 400 | 3 200<br>3 200    | 562924<br>562024   | 562924M<br>562024M |

<sup>1 )</sup> Minimum allowable dimension for chamfer dimension r or n. 2 ) Ball's maximum circumscribed circle diameter dimension Note: 1. For small diameter type, the cylindrical bore or tapered bore is provided on the small diameter of double row cylindrical roller bearing series NNU49, NN49, and NN30; for large diameter type (marked with "M"), the tapered bore is provided on the large diameter side.





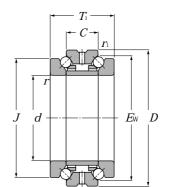

Equivalent bearing load dynamic

dynam  $P_a = F_a$ 

static  $P_{\text{oa}} = F_{\text{a}}$ 



Oil inlet, oil groove dimensions Units mm

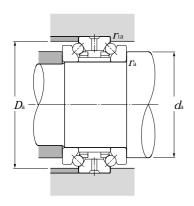

| 0                | r., o g. |            |                  |                |           |  |  |  |
|------------------|----------|------------|------------------|----------------|-----------|--|--|--|
| Nomina           | al outer | Oil groove | width $W_{ m o}$ | Oil in         | let $d_0$ |  |  |  |
| diam<br><i>L</i> |          | Bearing    | g series         | Bearing series |           |  |  |  |
| over up          | to/incl. | 5629       | 5620             | 5629           | 5620      |  |  |  |
|                  | 50       |            | 4.5              |                | 2         |  |  |  |
| 50               | 80       |            | 6                |                | 3         |  |  |  |
| 80               | 150      | 8          | 8                | 4              | 4         |  |  |  |
|                  |          |            |                  |                |           |  |  |  |

| Dimer | Dimensions       |                                  | nent and fi                         | llet dime       | nsions              | Mass (approx.)     |                    |  |
|-------|------------------|----------------------------------|-------------------------------------|-----------------|---------------------|--------------------|--------------------|--|
| m     | ım               |                                  | mr                                  | m               |                     | kį                 | )                  |  |
| J     | $E_{ m W}^{2}$ ) | $d_{\!\scriptscriptstyle a}$ min | $D_{\!\scriptscriptstyle  m a}$ max | r <sub>as</sub> | <i>I</i> ¹as<br>max | small dia.<br>type | large dia.<br>type |  |
|       |                  |                                  |                                     |                 |                     |                    |                    |  |
| 40    | 41.3             | 33                               | 44                                  | 0.6             | 0.3                 | 0.197              | 0.177              |  |
| 47    | 48.5             | 40                               | 50.5                                | 1               | 0.6                 | 0.301              | 0.28               |  |
| 53    | 55               | 45.5                             | 57.5                                | 1               | 0.6                 | 0.394              | 0.35               |  |
| 58.5  | 61               | 50                               | 63.5                                | 1               | 0.6                 | 0.482              | 0.44               |  |
| 65    | 67.5             | 56.5                             | 70.5                                | 1               | 0.6                 | 0.605              | 0.54               |  |
| 70    | 72.5             | 61.5                             | 75.5                                | 1               | 0.6                 | 0.638              | 0.59               |  |
| 78    | 81               | 67.5                             | 84                                  | 1               | 0.6                 | 0.988              | 0.9                |  |
| 83    | 86.1             | 72.5                             | 89                                  | 1               | 0.6                 | 1.06               | 0.96               |  |
| 88    | 91               | 77.5                             | 94                                  | 1               | 0.6                 | 1.08               | 1                  |  |
| 97    | 100              | 85                               | 104                                 | 1               | 0.6                 | 1.53               | 1.4                |  |
| 102   | 105              | 90                               | 109                                 | 1               | 0.6                 | 1.61               | 1.5                |  |
| 110   | 113              | 96.5                             | 119                                 | 1               | 0.6                 | 2.2                | 2                  |  |
| 115   | 118              | 102                              | 124                                 | 1               | 0.6                 | 2.31               | 2.1                |  |
| 123   | 127              | 109                              | 133.5                               | 1.5             | 1                   | 3.05               | 2.7                |  |
| 128   | 132              | 114                              | 138.5                               | 1.5             | 1                   | 3.18               | 2.9                |  |
| 126   | 129              | 114                              | 134.5                               | 1               | 0.6                 | 2.04               | 1.8                |  |
| 133   | 137              | 119                              | 143.5                               | 1.5             | 1                   | 3.32               | 3                  |  |
| 131   | 134              | 119                              | 139.5                               | 1               | 0.6                 | 2.12               | 1.87               |  |
| 142   | 146              | 127                              | 152                                 | 2               | 1                   | 4.19               | 3.7                |  |
| 136   | 139              | 124                              | 144.5                               | 1               | 0.6                 | 2.21               | 1.95               |  |
| 150   | 155              | 133                              | 162                                 | 2               | 1                   | 5.35               | 4.9                |  |
| 150   | 154.5            | 138                              | 159.5                               | 1               | 0.6                 | 3.06               | 2.75               |  |
| 160   | 165              | 143                              | 172                                 | 2               | 1                   | 5.73               | 5.2                |  |

Note: 2. The following bearing series can be assembled and used together: 5629 (M) and NNU49 (K) and NN49 (K); 5620 (M) and NN30 (K).

3. These are high precision bearings manufactured at NTN standard Class 5 or higher.

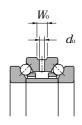





d 130 ~ 320mm

| u 130 ~ 320mm      |                         |            |                |          |                                |                              |            |                   |            |                    |              |                  |                    |                    |
|--------------------|-------------------------|------------|----------------|----------|--------------------------------|------------------------------|------------|-------------------|------------|--------------------|--------------|------------------|--------------------|--------------------|
|                    |                         | Boun       | dary di        | mensi    | ons                            |                              |            |                   | ad ratings |                    | Limiting     | g speeds         | Bearing I          | numbers            |
|                    |                         |            | mn             | า        |                                |                              | dynamic    | static<br>kN      | dynamic    | static<br>kgf      | m            | in <sup>-1</sup> |                    |                    |
| small dia.<br>type | d<br>large dia.<br>type | D          | T <sub>1</sub> | С        | <i>I</i> 's min <sup>1</sup> ) | <b>∏</b> s min <sup>1)</sup> | <i>C</i> a | $C_{\mathrm{oa}}$ | Ca         | Coa                | grease       | oil              | small dia.<br>type | large dia.<br>type |
| 130                | 134                     | 180        | 60             | 30       | 1.5                            | 1                            | 75.0       | 284               | 7 650      | 28 900             | 2 200        | 2 900            | 562926             | 562926M            |
|                    | 135                     | 200        | 84             | 42       | 2                              | 1                            | 139        | 460               | 14 200     | 47 000             | 2 100        | 2 800            | 562026             | 562026M            |
| 140                | 144                     | 190        | 60             | 30       | 1.5                            | 1                            | 76.0       | 297               | 7 750      | 30 500             | 2 100        | 2 800            | 562928             | 562928M            |
|                    | 145                     | 210        | 84             | 42       | 2                              | 1                            | 144        | 495               | 14 600     | 50 500             | 2 000        | 2 700            | 562028             | 562028M            |
| 150                | 155                     | 210        | 72             | 36       | 2                              | 1                            | 107        | 410               | 10 900     | 41 500             | 1 800        | 2 400            | 562930             | 562930M            |
|                    | 155                     | 225        | 90             | 45       | 2.1                            | 1.1                          | 147        | 525               | 15 000     | 53 500             | 1 900        | 2 500            | 562030             | 562030M            |
| 160                | 165                     | 220        | 72             | 36       | 2                              | 1                            | 109        | 430               | 11 100     | 44 000             | 1 800        | 2 300            | 562932             | 562932M            |
|                    | 165                     | 240        | 96             | 48       | 2.1                            | 1.1                          | 172        | 620               | 17 600     | 63 000             | 1 700        | 2 300            | 562032             | 562032M            |
| 170                | 175                     | 230        | 72             | 36       | 2                              | 1                            | 111        | 450               | 11 300     | 46 000             | 1 700        | 2 300            | 562934             | 562934M            |
|                    | 176                     | 260        | 108            | 54       | 2.1                            | 1.1                          | 202        | 735               | 20 600     | 75 000             | 1 600        | 2 100            | 562034             | 562034M            |
| 180                | 186                     | 250        | 84             | 42       | 2                              | 1                            | 156        | 605               | 15 900     | 62 000             | 1 500        | 2 000            | 562936             | 562936M            |
|                    | 187                     | 280        | 120            | 60       | 2.1                            | 1.1                          | 234        | 865               | 23 900     | 88 000             | 1 400        | 1 900            | 562036             | 562036M            |
| 190                | 196                     | 260        | 84             | 42       | 2                              | 1                            | 157        | 625               | 16 000     | 63 500             | 1 500        | 2 000            | 562938             | 562938M            |
|                    | 197                     | 290        | 120            | 60       | 2.1                            | 1.1                          | 236        | 890               | 24 100     | 91 000             | 1 400        | 1 900            | 562038             | 562038M            |
| 200                | 207                     | 280        | 96             | 48       | 2.1                            | 1.1                          | 185        | 735               | 18 800     | 75 000             | 1 300        | 1 800            | 562940             | 562940M            |
|                    | 207                     | 310        | 132            | 66       | 2.1                            | 1.1                          | 271        | 1 030             | 27 700     | 105 000            | 1 300        | 1 700            | 562040             | 562040M            |
| 220                | 227                     | 300        | 96             | 48       | 2.1                            | 1.1                          | 190        | 795               | 19 400     | 81 000             | 1 300        | 1 700            | 562944             | 562944M            |
|                    | 228                     | 340        | 144            | 72       | 3                              | 1.1                          | 335        | 1 270             | 34 000     | 129 000            | 1 200        | 1 500            | 562044             | 562044M            |
| 240                | 247                     | 320        | 96             | 48       | 2.1                            | 1.1                          | 196        | 850               | 20 000     | 87 000             | 1 200        | 1 600            | 562948             | 562948M            |
|                    | 248                     | 360        | 144            | 72       | 3                              | 1.1                          | 340        | 1 350             | 35 000     | 137 000            | 1 100        | 1 500            | 562048             | 562048M            |
| 260                | 269<br>269              | 360<br>400 | 120<br>164     | 60<br>82 | 2.1<br>4                       | 1.1<br>1.5                   | 261<br>405 | 1 130<br>1 710    |            | 116 000<br>174 000 | 1 000<br>980 | 1 400<br>1 300   | 562952<br>562052   | 562952M<br>562052M |
| 280                | 289<br>289              | 380<br>420 | 120<br>164     | 60<br>82 | 2.1<br>4                       | 1.1<br>1.5                   | 265<br>415 | 1 190<br>1 810    |            | 121 000<br>185 000 | 980<br>950   | 1 300<br>1 300   | 562956<br>562056   | 562956M<br>562056M |
| 300                | 310<br>310              | 420<br>460 | 144<br>190     | 72<br>95 | 3<br>4                         | 1.1<br>1.5                   | 335<br>475 | 1 510<br>2 170    |            | 154 000<br>221 000 | 840<br>830   | 1 100<br>1 100   | 562960<br>562060   | 562960M<br>562060M |
| 320                | 330<br>330              | 440<br>480 | 144<br>190     | 72<br>95 | 3<br>4                         | 1.1<br>1.5                   | 340<br>480 | 1 580<br>2 230    |            | 161 000<br>228 000 | 820<br>810   | 1 100<br>1 100   | 562964<br>562064   | 562964M<br>562064M |

<sup>1 )</sup> Minimum allowable dimension for chamfer dimension r or n. 2 ) Ball's maximum circumscribed circle diameter dimension Note: 1. For small diameter type, the cylindrical bore or tapered bore is provided on the small diameter of double row cylindrical roller bearing series NNU49, NN49, and NN30; for large diameter type (marked with "M"), the tapered bore is provided on the large diameter side.





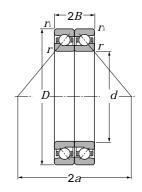

Equivalent bearing load dynamic

dynam  $P_a = F_a$ 

static  $P_{\text{oa}} = F_{\text{a}}$ 



Oil inlet, oil groove dimensions Units mm


| <u> </u> |            |            |          |                |           |  |  |  |  |  |  |
|----------|------------|------------|----------|----------------|-----------|--|--|--|--|--|--|
| Nomin    | al outer   | Oil groove | width Wo | Oil in         | let $d_0$ |  |  |  |  |  |  |
|          | neter<br>D | Bearing    | g series | Bearing series |           |  |  |  |  |  |  |
| over u   | o to/incl. | 5629       | 5620     | 5629           | 5620      |  |  |  |  |  |  |
| 80       | 150        | 8          | 8        | 4              | 4         |  |  |  |  |  |  |
| 150      | 200        | 8          | 12       | 4              | 6         |  |  |  |  |  |  |
| 200      | 210        | 12         | 12       | 6              | 6         |  |  |  |  |  |  |
| 210      | 260        | 12         | 14       | 6              | 6         |  |  |  |  |  |  |
| 260      | 320        | 14         | 16       | 6              | 8         |  |  |  |  |  |  |
| 320      | 400        | 16         | 23       | 8              | 12        |  |  |  |  |  |  |
| 400 480  |            | 22         | 22       | 12             | 12        |  |  |  |  |  |  |

| Dime | ensions        | Abutı                            | ment and fi                      | llet dime       | nsions              | Mass       | (approx.)  |
|------|----------------|----------------------------------|----------------------------------|-----------------|---------------------|------------|------------|
| ı    | mm             |                                  | mı                               | m               |                     | k          | g          |
| J    | $E$ w $^{2}$ ) | $d_{\!\scriptscriptstyle a}$ min | $D_{\!\scriptscriptstyle a}$ max | r <sub>as</sub> | <i>I</i> Դas<br>max | small dia. | large dia. |
| J    | Lw ·           | 111111                           | IIIdX                            | IIIdX           | IIIdX               | type       | type       |
| 163  | 168            | 150                              | 173.5                            | 1.5             | 1                   | 4.11       | 3.7        |
| 177  | 182            | 155                              | 192                              | 2               | 1                   | 8.58       | 7.6        |
| 173  | 178            | 160                              | 183.5                            | 1.5             | 1                   | 4.38       | 3.94       |
| 187  | 192            | 165                              | 202                              | 2               | 1                   | 9.1        | 8.1        |
| 190  | 196.5          | 174                              | 202                              | 2               | 1                   | 6.88       | 6.2        |
| 200  | 206            | 178                              | 215                              | 2               | 1                   | 11.2       | 10         |
| 200  | 206.5          | 184                              | 212                              | 2               | 1                   | 7.26       | 6.53       |
| 212  | 219            | 189                              | 230                              | 2               | 1                   | 13.6       | 11.9       |
| 210  | 216.5          | 194                              | 222                              | 2               | 1                   | 7.64       | 6.88       |
| 230  | 236            | 203                              | 250                              | 2               | 1                   | 18.5       | 16.5       |
| 227  | 234            | 207                              | 242                              | 2               | 1                   | 11.2       | 10         |
| 248  | 255            | 219                              | 270                              | 2               | 1                   | 24.7       | 21.8       |
| 237  | 244            | 217                              | 252                              | 2               | 1                   | 11.7       | 10.5       |
| 258  | 265            | 229                              | 280                              | 2               | 1                   | 25.5       | 23         |
| 252  | 261            | 231                              | 270                              | 2               | 1                   | 16.3       | 14.7       |
| 274  | 282            | 243                              | 300                              | 2               | 1                   | 32.7       | 29.7       |
| 272  | 281            | 251                              | 290                              | 2               | 1                   | 17.7       | 16         |
| 304  | 310            | 267                              | 330                              | 2.5             | 1                   | 42.8       | 38.5       |
| 292  | 301            | 271                              | 310                              | 2               | 1                   | 19         | 17         |
| 322  | 330            | 287                              | 350                              | 2.5             | 1                   | 45.8       | 41.2       |
| 328  | 336            | 299                              | 350                              | 2               | 1                   | 32.9       | 29.6       |
| 354  | 364            | 315                              | 388                              | 3               | 1.5                 | 67         | 60.3       |
| 348  | 356            | 319                              | 370                              | 2               | 1                   | 35         | 31.5       |
| 374  | 384            | 335                              | 408                              | 3               | 1.5                 | 71.1       | 64         |
| 384  | 391            | 349                              | 410                              | 2.5             | 1                   | 55         | 49.5       |
| 406  | 418            | 364                              | 448                              | 3               | 1.5                 | 102        | 91.8       |
| 404  | 411            | 369                              | 430                              | 2.5             | 1                   | 58.1       | 52.3       |
| 426  | 438            | 384                              | 468                              | . 3             | 1.5                 | 108        | 97.2       |

Note: 2. The following bearing series can be assembled and used together: 5629 (M) and NNU49 (K) and NN49 (K); 5620 (M) and NN30 (K).

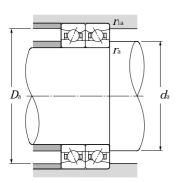
3. These are high precision bearings manufactured at NTN standard Class 5 or higher.



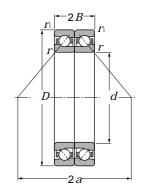


d 25 ~ 120mm

|     | В          | <b>oundary di</b> i<br>mm |                       |           | dynamic<br>kN | Basic loa<br>static | dynamic        | static<br>cgf     | <b>Limiting s</b><br>mir |                | Bearing<br>numbers |
|-----|------------|---------------------------|-----------------------|-----------|---------------|---------------------|----------------|-------------------|--------------------------|----------------|--------------------|
| d   | D          | 2 <i>B</i>                | r <sub>s min</sub> 1) | r₁s min¹) | Ca            | $C_{\mathrm{oa}}$   | $C_{a}$        | $C_{\mathrm{oa}}$ | grease                   | oil            |                    |
| 25  | 47         | 21                        | 0.6                   | 0.3       | 16.2          | 22.1                | 1 650          | 2 260             | 16 000                   | 21 000         | HTA005I            |
| 30  | 55         | 24                        | 1                     | 0.6       | 17.5          | 26.7                | 1 780          | 2 720             | 14 000                   | 18 000         | HTA0061            |
| 35  | 62         | 25.5                      | 1                     | 0.6       | 25.2          | 38.0                | 2 570          | 3 900             | 12 000                   | 16 000         | HTA007I            |
| 40  | 68         | 27                        | 1                     | 0.6       | 27.2          | 45.0                | 2 780          | 4 550             | 11 000                   | 14 000         | HTA0081            |
| 45  | 75         | 28.5                      | 1                     | 0.6       | 27.9          | 48.5                | 2 840          | 4 950             | 9 700                    | 13 000         | HTA0091            |
| 50  | 80         | 28.5                      | 1                     | 0.6       | 29.6          | 55.5                | 3 000          | 5 650             | 8 800                    | 12 000         | HTA010I            |
| 55  | 90         | 33                        | 1.1                   | 0.6       | 32.0          | 64.0                | 3 250          | 6 500             | 8 000                    | 11 000         | HTA011             |
| 60  | 95         | 33                        | 1.1                   | 0.6       | 33.5          | 69.5                | 3 400          | 7 100             | 7 400                    | 9 800          | HTA012             |
| 65  | 100        | 33                        | 1.1                   | 0.6       | 34.0          | 72.0                | 3 450          | 7 350             | 6 900                    | 9 200          | HTA013             |
| 70  | 110        | 36                        | 1.1                   | 0.6       | 41.5          | 91.0                | 4 250          | 9 300             | 6 400                    | 8 500          | HTA014             |
| 75  | 115        | 36                        | 1.1                   | 0.6       | 44.0          | 101                 | 4 500          | 10 300            | 5 900                    | 7 900          | HTA015             |
| 80  | 125        | 40.5                      | 1.1                   | 0.6       | 50.5          | 117                 | 5 150          | 11 900            | 5 600                    | 7 400          | HTA016             |
| 85  | 130        | 40.5                      | 1.1                   | 0.6       | 51.0          | 120                 | 5 200          | 12 300            | 5 200                    | 7 000          | HTA017             |
| 90  | 140        | 45                        | 1.5                   | 1         | 59.5          | 141                 | 6 050          | 14 400            | 5 000                    | 6 600          | HTA018             |
| 95  | 145        | 45                        | 1.5                   | 1         | 60.0          | 146                 | 6 100          | 14 900            | 4 700                    | 6 300          | HTA019             |
| 100 | 140<br>150 | 36<br>45                  | 1.1<br>1.5            | 0.6<br>1  | 47.0<br>62.0  | 121<br>156          | 4 800<br>6 350 | 12 300<br>15 900  | 4 800<br>4 500           | 6 300<br>5 900 | HTA920<br>HTA020   |
| 105 | 145<br>160 | 36<br>49.5                | 1.1<br>2              | 0.6<br>1  | 48.5<br>71.0  | 128<br>181          | 4 950<br>7 250 | 13 000<br>18 400  | 4 500<br>4 200           | 6 000<br>5 600 | HTA921<br>HTA021   |
| 110 | 150<br>170 | 36<br>54                  | 1.1<br>2              | 0.6<br>1  | 49.0<br>88.5  | 131<br>222          | 5 000<br>9 000 | 13 400<br>22 700  | 4 300<br>4 000           | 5 800<br>5 400 | HTA922<br>HTA022   |
| 120 | 165<br>180 | 40.5<br>54                | 1.1<br>2              | 0.6<br>1  | 57.0<br>89.0  | 156<br>228          | 5 800<br>9 050 | 15 900<br>23 300  | 4 000<br>3 700           | 5 300<br>4 900 | HTA924<br>HTA024   |


Minimum allowable dimension for chamfer dimension r or n.

Note: 1. This bearing can be used in place of high speed double direction angular contact thrust ball bearings.


2. These are high precision bearings manufactured at NTN standard Class 5 or higher.

8-282 B-282





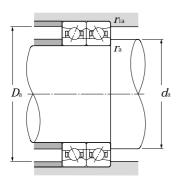
| Abutm                            | ent and fi                       | llet dime       | Load center          | Mass       |           |
|----------------------------------|----------------------------------|-----------------|----------------------|------------|-----------|
| ,                                | mr                               |                 |                      | mm         | kg        |
| $d_{\!\scriptscriptstyle a}$ min | $D_{\!\scriptscriptstyle a}$ max | $r_{ m as}$ max | <i>I</i> ¹las<br>max | 2 <i>a</i> | (approx.) |
|                                  |                                  |                 |                      |            |           |
| 31                               | 43.5                             | 0.6             | 0.3                  | 40.5       | 0.138     |
| 37.5                             | 49                               | 1               | 0.5                  | 47.5       | 0.22      |
| 42.5                             | 56                               | 1               | 0.5                  | 53.5       | 0.274     |
| 47.5                             | 62                               | 1               | 0.5                  | 59         | 0.342     |
| 52.5                             | 69                               | 1               | 0.5                  | 64.5       | 0.438     |
| 57.5                             | 74                               | 1               | 0.5                  | 69         | 0.476     |
| 65                               | 84                               | 1               | 0.6                  | 77.5       | 0.754     |
| 70                               | 89                               | 1               | 0.6                  | 81.5       | 0.808     |
| 75                               | 94                               | 1               | 0.6                  | 85.5       | 0.858     |
| 80                               | 104                              | 1               | 0.6                  | 93.5       | 1.19      |
| 85                               | 109                              | 1               | 0.6                  | 97.5       | 1.26      |
| 90                               | 119                              | 1               | 0.6                  | 106        | 1.73      |
| 95                               | 124                              | 1               | 0.6                  | 110        | 1.82      |
| 102                              | 132.5                            | 1.5             | 0.8                  | 119        | 2.4       |
| 107                              | 137.5                            | 1.5             | 0.8                  | 123        | 2.52      |
| 110                              | 134                              | 1               | 0.6                  | 119        | 1.6       |
| 112                              | 142.5                            | 1.5             | 8.0                  | 127        | 2.62      |
| 115                              | 139                              | 1               | 0.6                  | 123        | 1.66      |
| 119                              | 152.5                            | 2               | 1                    | 136        | 3.38      |
| 120                              | 144                              | 1               | 0.6                  | 127        | 1.72      |
| 124                              | 162.5                            | 2               | 1                    | 144        | 4.22      |
| 130                              | 159                              | 1               | 0.6                  | 140        | 2.4       |
| 134                              | 172.5                            | 2               | 1                    | 153        | 4.5       |



d 130 ~ 320mm

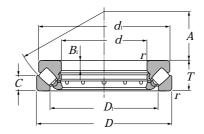
|     | В          | oundary dir |                       |                         | dynamic<br>kN  | static                   | ad ratings<br>dynamic | static<br>kgf    | Limiting s     |                | Bearing<br>numbers |
|-----|------------|-------------|-----------------------|-------------------------|----------------|--------------------------|-----------------------|------------------|----------------|----------------|--------------------|
| d   | D          | 2 <i>B</i>  | r <sub>s min</sub> ¹) | r∕ls min <sup>1</sup> ) | C <sub>a</sub> | $\mathcal{C}_{	ext{oa}}$ | $C_{\rm a}$           | Coa              | grease         | oil            |                    |
| 30  | 180<br>200 | 45<br>63    | 1.5<br>2              | 1                       | 68.0<br>128    | 193<br>325               | 6 950<br>13 000       | 19 600<br>33 000 | 3 600<br>3 400 | 4 800<br>4 500 | HTA926<br>HTA026   |
| 40  | 190        | 45          | 1.5                   | 1                       | 68.0           | 197                      | 6 950                 | 20 100           | 3 300          | 4 500          | HTA928             |
|     | 210        | 63          | 2                     | 1                       | 132            | 345                      | 13 500                | 35 500           | 3 100          | 4 200          | HTA028             |
| 50  | 210        | 54          | 2                     | 1                       | 95.5           | 270                      | 9 750                 | 27 600           | 3 100          | 4 200          | HTA930             |
|     | 225        | 67.5        | 2.1                   | 1.1                     | 136            | 370                      | 13 800                | 37 500           | 2 900          | 3 900          | HTA030             |
| 160 | 220        | 54          | 2                     | 1                       | 97.5           | 284                      | 9 950                 | 29 000           | 2 900          | 3 900          | HTA932             |
|     | 240        | 72          | 2.1                   | 1.1                     | 159            | 435                      | 16 200                | 44 000           | 2 700          | 3 600          | HTA032             |
| 170 | 230        | 54          | 2                     | 1                       | 99.5           | 298                      | 10 100                | 30 500           | 2 700          | 3 600          | HTA934             |
|     | 260        | 81          | 2.1                   | 1.1                     | 182            | 500                      | 18 600                | 51 000           | 2 500          | 3 400          | HTA034             |
| 180 | 250        | 63          | 2                     | 1                       | 150            | 445                      | 15 300                | 45 500           | 2 600          | 3 400          | HTA936             |
|     | 280        | 90          | 2.1                   | 1.1                     | 211            | 585                      | 21 500                | 60 000           | 2 400          | 3 200          | HTA036             |
| 190 | 260        | 63          | 2                     | 1                       | 153            | 470                      | 15 600                | 48 000           | 2 400          | 3 200          | HTA938             |
|     | 290        | 90          | 2.1                   | 1.1                     | 214            | 605                      | 21 800                | 61 500           | 2 200          | 3 000          | HTA038             |
| 200 | 280        | 72          | 2.1                   | 1.1                     | 180            | 555                      | 18 400                | 56 500           | 2 300          | 3 000          | HTA940             |
|     | 310        | 99          | 2.1                   | 1.1                     | 240            | 680                      | 24 400                | 69 000           | 2 100          | 2 800          | HTA040             |
| 220 | 300        | 72          | 2.1                   | 1.1                     | 185            | 595                      | 18 900                | 60 500           | 2 100          | 2 700          | HTA944             |
|     | 340        | 108         | 3                     | 1.1                     | 300            | 860                      | 30 500                | 87 500           | 1 900          | 2 600          | HTA044             |
| 240 | 320        | 72          | 2.1                   | 1.1                     | 190            | 635                      | 19 400                | 64 500           | 1 900          | 2 500          | HTA948             |
|     | 360        | 108         | 3                     | 1.1                     | 310            | 915                      | 31 500                | 93 000           | 1 700          | 2 300          | HTA048             |
| 260 | 360        | 90          | 2.1                   | 1.1                     | 250            | 830                      | 25 400                | 84 500           | 1 700          | 2 300          | HTA952             |
|     | 400        | 123         | 4                     | 1.5                     | 365            | 1 160                    | 37 500                | 118 000          | 1 600          | 2 100          | HTA052             |
| 280 | 380        | 90          | 2.1                   | 1.1                     | 257            | 885                      | 26 200                | 90 500           | 1 600          | 2 100          | HTA956             |
|     | 420        | 123         | 4                     | 1.5                     | 375            | 1 230                    | 38 500                | 125 000          | 1 500          | 2 000          | HTA056             |
| 300 | 420        | 108         | 3                     | 1.1                     | 325            | 1 130                    | 33 500                | 115 000          | 1 400          | 1 900          | HTA960             |
|     | 460        | 142.5       | 4                     | 1.5                     | 430            | 1 470                    | 44 000                | 150 000          | 1 400          | 1 800          | HTA060             |
| 320 | 440        | 108         | 3                     | 1.1                     | 330            | 1 180                    | 34 000                | 120 000          | 1 300          | 1 800          | HTA964             |
|     | 480        | 142.5       | 4                     | 1.5                     | 435            | 1 520                    | 44 000                | 155 000          | 1 300          | 1 700          | HTA064             |

<sup>1 )</sup> Minimum allowable dimension for chamfer dimension r or r.


Note: 1. This bearing can be used in place of high speed double direction angular contact thrust ball bearings.

2. These are high precision bearings manufactured at NTN standard Class 5 or higher.

B-284








| Abutn      | nent and fil | Load center | Mass         |            |              |
|------------|--------------|-------------|--------------|------------|--------------|
|            | mr           | n           |              | mm         | kg           |
| <i>d</i> a | $D_{\rm a}$  | <b>r</b> as | <b>P</b> las | 20         | ()           |
| min        | max          | max         | max          | 2 <i>a</i> | (approx.)    |
| 4.40       | 470.5        | 4.5         | 0.0          | 450        | 0.00         |
| 142        | 172.5        | 1.5         | 0.8          | 153        | 3.26         |
| 144        | 192.5        | 2           | 1            | 170        | 6.66         |
| 152        | 182.5        | 1.5         | 1            | 161        | 3.46         |
| 154        | 202.5        | 2           | 1            | 178        | 7.08         |
|            |              |             |              |            |              |
| 164        | 202.5        | 2           | 1            | 178        | 5.4          |
| 167        | 215          | 2           | 1            | 191        | 8.82         |
| 174        | 212.5        | 2           | 1            | 186        | 5.7          |
| 177        | 230          | 2           | 1            | 204        | 10.6         |
|            | 200          |             | '            | 204        | 10.0         |
| 184        | 222.5        | 2           | 1            | 195        | 6            |
| 187        | 250          | 2           | 1            | 221        | 14.5         |
|            |              |             |              |            |              |
| 194        | 242.5        | 2           | 1            | 212        | 9.38         |
| 197        | 270          | 2           | 1            | 238        | 20.6         |
| 204        | 252.5        | 2           | 1            | 220        | 9.82         |
| 207        | 280          | 2           | 1            | 246        | 21.4         |
|            |              | _           | •            |            |              |
| 217        | 270          | 2           | 1            | 237        | 13.7         |
| 217        | 300          | 2           | 1            | 263        | 27.4         |
|            | 000          | 0           | 4            | 054        | 440          |
| 237        | 290          | 2           | 1            | 254        | 14.8         |
| 240        | 330          | 2.5         | 1            | 289        | 35.8         |
| 257        | 310          | 2           | 1            | 271        | 16           |
| 260        | 350          | 2.5         | 1            | 306        | 38.2         |
|            |              |             |              |            |              |
| 277        | 350          | 2           | 1            | 305        | 27.8         |
| 283        | 388          | 3           | 1.5          | 338        | 56.2         |
| 207        | 270          | 2           | 1            | 222        | 20           |
| 297        | 370          | 2           | 1            | 322        | 28           |
| 303        | 408          | 3           | 1.5          | 355        | 59.6         |
| 320        | 410          | 2.5         | 1            | 356        | 46.6         |
| 323        | 448          | 3           | 1.5          | 390        | 85.6         |
|            |              | -           |              |            | <del>-</del> |
| 340        | 430          | 2.5         | 1            | 373        | 49           |
| 343        | 468          | 3           | 1.5          | 407        | 90           |

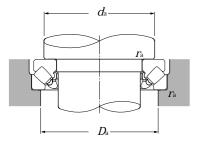




#### d 60 ~ 160mm

| В   | Boundary dimensions |    |                                | Basic load ratings dynamic static dynamic static |          |                  | Limiting speeds   | Bearing<br>numbers | Dimensions |       |       |       |      |                  |
|-----|---------------------|----|--------------------------------|--------------------------------------------------|----------|------------------|-------------------|--------------------|------------|-------|-------|-------|------|------------------|
|     | ı                   | mm |                                | kľ                                               |          | kg               |                   | min <sup>-1</sup>  | namber 5   |       |       | mm    |      |                  |
| d   | D                   | T  | <i>I</i> 's min <sup>1</sup> ) | <i>C</i> a                                       | $C_{oa}$ | $C_{\mathrm{a}}$ | $C_{\mathrm{oa}}$ | oil                |            | $D_1$ | $d_1$ | $B_1$ | С    | $\boldsymbol{A}$ |
| 60  | 130                 | 42 | 1.5                            | 283                                              | 805      | 28 900           | 82 000            | 2 600              | 29412      | 89    | 123   | 15    | 20   | 38               |
| 65  | 140                 | 45 | 2                              | 330                                              | 945      | 33 500           | 96 500            | 2 400              | 29413      | 96    | 133   | 16    | 21   | 42               |
| 70  | 150                 | 48 | 2                              | 365                                              | 1 040    | 37 000           | 106 000           | 2 200              | 29414      | 103   | 142   | 17    | 23   | 44               |
| 75  | 160                 | 51 | 2                              | 415                                              | 1 190    | 42 500           | 122 000           | 2 100              | 29415      | 109   | 152   | 18    | 24   | 47               |
| 80  | 170                 | 54 | 2.1                            | 460                                              | 1 380    | 47 000           | 141 000           | 1 900              | 29416      | 117   | 162   | 19    | 26   | 50               |
| 85  | 150                 | 39 | 1.5                            | 265                                              | 820      | 27 000           | 84 000            | 2 300              | 29317      | 114   | 143.5 | 13    | 19   | 50               |
|     | 180                 | 58 | 2.1                            | 490                                              | 1 480    | 50 000           | 151 000           | 1 800              | 29417      | 125   | 170   | 21    | 28   | 54               |
| 90  | 155                 | 39 | 1.5                            | 285                                              | 915      | 29 100           | 93 500            | 2 300              | 29318      | 117   | 148.5 | 13    | 19   | 52               |
|     | 190                 | 60 | 2.1                            | 545                                              | 1 680    | 56 000           | 172 000           | 1 700              | 29418      | 132   | 180   | 22    | 29   | 56               |
| 100 | 170                 | 42 | 1.5                            | 345                                              | 1 160    | 35 500           | 118 000           | 2 100              | 29320      | 129   | 163   | 14    | 20.8 | 58               |
|     | 210                 | 67 | 3                              | 685                                              | 2 130    | 69 500           | 217 000           | 1 500              | 29420      | 146   | 200   | 24    | 32   | 62               |
| 110 | 190                 | 48 | 2                              | 445                                              | 1 500    | 45 000           | 152 000           | 1 800              | 29322      | 143   | 182   | 16    | 23   | 64               |
|     | 230                 | 73 | 3                              | 845                                              | 2 620    | 86 500           | 267 000           | 1 400              | 29422      | 162   | 220   | 26    | 35   | 69               |
| 120 | 210                 | 54 | 2.1                            | 535                                              | 1 770    | 54 500           | 181 000           | 1 600              | 29324      | 159   | 200   | 18    | 26   | 70               |
|     | 250                 | 78 | 4                              | 975                                              | 3 050    | 99 000           | 310 000           | 1 300              | 29424      | 174   | 236   | 29    | 37   | 74               |
| 130 | 225                 | 58 | 2.1                            | 615                                              | 2 100    | 62 500           | 215 000           | 1 500              | 29326      | 171   | 215   | 19    | 28   | 76               |
|     | 270                 | 85 | 4                              | 1 080                                            | 3 550    | 110 000          | 360 000           | 1 200              | 29426      | 189   | 255   | 31    | 41   | 81               |
| 140 | 240                 | 60 | 2.1                            | 685                                              | 2 360    | 70 000           | 241 000           | 1 400              | 29328      | 183   | 230   | 20    | 29   | 82               |
|     | 280                 | 85 | 4                              | 1 110                                            | 3 750    | 114 000          | 385 000           | 1 200              | 29428      | 199   | 268   | 31    | 41   | 86               |
| 150 | 215                 | 39 | 1.5                            | 340                                              | 1 340    | 34 500           | 136 000           | 1 800              | 29230      | 178   | 208   | 14    | 19   | 82               |
|     | 250                 | 60 | 2.1                            | 675                                              | 2 390    | 68 500           | 243 000           | 1 400              | 29330      | 194   | 240   | 20    | 29   | 87               |
|     | 300                 | 90 | 4                              | 1 280                                            | 4 350    | 131 000          | 445 000           | 1 100              | 29430      | 214   | 285   | 32    | 44   | 92               |
| 160 | 225                 | 39 | 1.5                            | 360                                              | 1 460    | 36 500           | 149 000           | 1 700              | 29232      | 188   | 219   | 14    | 19   | 86               |
|     | 270                 | 67 | 3                              | 820                                              | 2 860    | 84 000           | 292 000           | 1 300              | 29332      | 208   | 260   | 24    | 32   | 92               |
|     | 320                 | 95 | 5                              | 1 500                                            | 5 150    | 153 000          | 525 000           | 1 000              | 29432      | 229   | 306   | 34    | 45   | 99               |

<sup>1 )</sup> Smallest allowable dimension for chamfer dimension  $\emph{r}.$ 


Mass

kg

(approx.)

2.78

3.44



Abutment and fillet dimensions

mm

 $D_{a}$ 

max

108

115

 $r_{
m as}$ 

max

1.5

2

 $d_a$ 

min

90

100

185

205

179

195

220

189

210

230

Equivalent bearing load dynamic

 $P_{\rm a}$  =  $F_{\rm a}$  + 1.2 $F_{\rm r}$ 

static

 $P_{\text{oa}} = F_{\text{a}} + 2.7F_{\text{r}}$ 

when  $\frac{F_{\rm r}}{F_{\rm a}}$  0.55

| 105 | 125 | 2   | 4.19 |
|-----|-----|-----|------|
| 115 | 132 | 2   | 5.07 |
| 120 | 140 | 2   | 6.09 |
| 115 | 135 | 1.5 | 2.94 |
| 130 | 150 | 2   | 7.2  |
| 120 | 140 | 1.5 | 3.08 |
| 135 | 157 | 2   | 8.38 |
| 130 | 150 | 1.5 | 3.94 |
| 150 | 175 | 2.5 | 11.5 |
| 145 | 165 | 2   | 5.78 |
| 165 | 190 | 2.5 | 15   |
| 160 | 180 | 2   | 7.92 |
| 180 | 205 | 3   | 18.6 |
| 170 | 195 | 2   | 9.76 |
| 195 | 225 | 3   | 23.7 |

2

3

1.5

2

3

1.5

2.5

11.4

25.2

4.56

12

30.5

4.88

15.9

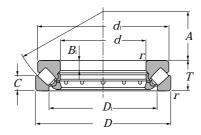
37

205

235

196

215


250

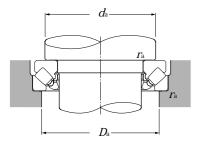
206

235

265





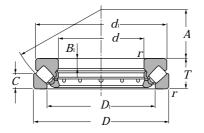

### d 170 ~ 320mm

| В   | oundar | y dimens | sions             | Basic load ratings dynamic static dynamic |                   |             | static            | _     | Bearing numbers |       | Dim   | ension | s  |     |
|-----|--------|----------|-------------------|-------------------------------------------|-------------------|-------------|-------------------|-------|-----------------|-------|-------|--------|----|-----|
| mm  |        |          | kN                |                                           | •                 | kgf         |                   |       | mm              |       |       |        |    |     |
| d   | D      | T        | $r_{ m smin}^{1}$ | Ca                                        | $C_{\mathrm{oa}}$ | $C_{\rm a}$ | $C_{\mathrm{oa}}$ | oil   |                 | $D_1$ | $d_1$ | $B_1$  | С  | A   |
| 170 | 240    | 42       | 1.5               | 425                                       | 1 770             | 43 500      | 180 000           | 1 600 | 29234           | 198   | 233   | 15     | 20 | 92  |
|     | 280    | 67       | 3                 | 855                                       | 3 050             | 87 000      | 310 000           | 1 200 | 29334           | 216   | 270   | 23     | 32 | 96  |
|     | 340    | 103      | 5                 | 1 660                                     | 5 750             | 169 000     | 590 000           | 940   | 29434           | 243   | 324   | 37     | 50 | 104 |
| 180 | 250    | 42       | 1.5               | 450                                       | 1 920             | 45 500      | 196 000           | 1 600 | 29236           | 208   | 243   | 15     | 20 | 97  |
|     | 300    | 73       | 3                 | 995                                       | 3 600             | 102 000     | 365 000           | 1 100 | 29336           | 232   | 290   | 25     | 35 | 103 |
|     | 360    | 109      | 5                 | 1 840                                     | 6 200             | 188 000     | 635 000           | 890   | 29436           | 255   | 342   | 39     | 52 | 110 |
| 190 | 270    | 48       | 2                 | 530                                       | 2 230             | 54 000      | 227 000           | 1 400 | 29238           | 223   | 262   | 15     | 24 | 104 |
|     | 320    | 78       | 4                 | 1 150                                     | 4 250             | 117 000     | 430 000           | 1 100 | 29338           | 246   | 308   | 27     | 38 | 110 |
|     | 380    | 115      | 5                 | 2 010                                     | 6 800             | 205 000     | 695 000           | 840   | 29438           | 271   | 360   | 41     | 55 | 117 |
| 200 | 280    | 48       | 2                 | 535                                       | 2 300             | 54 500      | 234 000           | 1 400 | 29240           | 236   | 271   | 15     | 24 | 108 |
|     | 340    | 85       | 4                 | 1 280                                     | 4 600             | 131 000     | 470 000           | 980   | 29340           | 261   | 325   | 29     | 41 | 116 |
|     | 400    | 122      | 5                 | 2 230                                     | 7 650             | 228 000     | 780 000           | 790   | 29440           | 286   | 380   | 43     | 59 | 122 |
| 220 | 300    | 48       | 2                 | 555                                       | 2 480             | 56 500      | 253 000           | 1 300 | 29244           | 254   | 292   | 15     | 24 | 117 |
|     | 360    | 85       | 4                 | 1 390                                     | 5 200             | 141 000     | 530 000           | 940   | 29344           | 280   | 345   | 29     | 41 | 125 |
|     | 420    | 122      | 6                 | 2 300                                     | 8 100             | 235 000     | 825 000           | 760   | 29444           | 308   | 400   | 43     | 58 | 132 |
| 240 | 340    | 60       | 2.1               | 825                                       | 3 600             | 84 000      | 365 000           | 1 100 | 29248           | 283   | 330   | 19     | 30 | 130 |
|     | 380    | 85       | 4                 | 1 380                                     | 5 250             | 140 000     | 535 000           | 910   | 29348           | 300   | 365   | 29     | 41 | 135 |
|     | 440    | 122      | 6                 | 2 400                                     | 8 700             | 245 000     | 885 000           | 740   | 29448           | 326   | 420   | 43     | 59 | 142 |
| 260 | 360    | 60       | 2.1               | 870                                       | 3 950             | 88 500      | 400 000           | 1 100 | 29252           | 302   | 350   | 19     | 30 | 139 |
|     | 420    | 95       | 5                 | 1 710                                     | 6 800             | 175 000     | 695 000           | 810   | 29352           | 329   | 405   | 32     | 45 | 148 |
|     | 480    | 132      | 6                 | 2 740                                     | 10 000            | 279 000     | 1 020 000         | 670   | 29452           | 357   | 460   | 48     | 64 | 154 |
| 280 | 380    | 60       | 2.1               | 875                                       | 4 050             | 89 000      | 415 000           | 1 000 | 29256           | 323   | 370   | 19     | 30 | 150 |
|     | 440    | 95       | 5                 | 1 800                                     | 7 250             | 184 000     | 740 000           | 790   | 29356           | 348   | 423   | 32     | 46 | 158 |
|     | 520    | 145      | 6                 | 3 350                                     | 12 400            | 340 000     | 1 270 000         | 610   | 29456           | 387   | 495   | 52     | 68 | 166 |
| 300 | 420    | 73       | 3                 | 1 190                                     | 5 350             | 121 000     | 545 000           | 870   | 29260           | 353   | 405   | 21     | 38 | 162 |
|     | 480    | 109      | 5                 | 2 140                                     | 8 250             | 218 000     | 840 000           | 700   | 29360           | 379   | 460   | 37     | 50 | 168 |
|     | 540    | 145      | 6                 | 3 450                                     | 13 200            | 350 000     | 1 340 000         | 590   | 29460           | 402   | 515   | 52     | 70 | 175 |
| 320 | 440    | 73       | 3                 | 1 260                                     | 5 800             | 128 000     | 595 000           | 840   | 29264           | 372   | 430   | 21     | 38 | 172 |
|     | 500    | 109      | 5                 | 2 220                                     | 8 800             | 226 000     | 895 000           | 680   | 29364           | 399   | 482   | 37     | 53 | 180 |
|     | 580    | 155      | 7.5               | 3 700                                     | 14 200            | 375 000     | 1 440 000         | 550   | 29464           | 435   | 555   | 55     | 75 | 191 |

<sup>1 )</sup> Smallest allowable dimension for chamfer dimension  $\emph{r}.$ 








Equivalent bearing load dynamic  $P_a = F_a + 1.2F_r$  static

static  $P_{\text{oa}} = F_{\text{a}} + 2.7F_{\text{r}}$  when  $\frac{F_{\text{r}}}{F_{\text{a}}}$  0.55

|         | butment an       |                   | Mass      |  |  |  |  |
|---------|------------------|-------------------|-----------|--|--|--|--|
|         | mm               |                   | kg        |  |  |  |  |
| $d_{a}$ | $D_{\mathrm{a}}$ | $arGamma_{ m as}$ |           |  |  |  |  |
| min     | max              | max               | (approx.) |  |  |  |  |
| 201     | 218              | 1.5               | 6.02      |  |  |  |  |
| 220     | 245              | 2.5               | 16.6      |  |  |  |  |
| 245     | 285              | 4                 | 45        |  |  |  |  |
| 211     | 228              | 1.5               | 6.27      |  |  |  |  |
| 235     | 260              | 2.5               | 21.2      |  |  |  |  |
| 260     | 300              | 4                 | 52.9      |  |  |  |  |
| 225     | 245              | 2                 | 8.8       |  |  |  |  |
| 250     | 275              | 3                 | 26        |  |  |  |  |
| 275     | 320              | 4                 | 62        |  |  |  |  |
| 235     | 255              | 2                 | 9.14      |  |  |  |  |
| 265     | 295              | 3                 | 31.9      |  |  |  |  |
| 290     | 335              | 4                 | 73.3      |  |  |  |  |
| 260     | 275              | 2                 | 9.94      |  |  |  |  |
| 285     | 315              | 3                 | 34.5      |  |  |  |  |
| 310     | 355              | 5                 | 77.8      |  |  |  |  |
| 285     | 305              | 2                 | 17.5      |  |  |  |  |
| 300     | 330              | 3                 | 36.6      |  |  |  |  |
| 330     | 375              | 5                 | 82.6      |  |  |  |  |
| 305     | 325              | 2                 | 18.6      |  |  |  |  |
| 330     | 365              | 4                 | 52        |  |  |  |  |
| 360     | 405              | 5                 | 108       |  |  |  |  |
| 325     | 345              | 2                 | 19.8      |  |  |  |  |
| 350     | 390              | 4                 | 54.6      |  |  |  |  |
| 390     | 440              | 5                 | 140       |  |  |  |  |
| 355     | 380              | 2.5               | 30.9      |  |  |  |  |
| 380     | 420              | 4                 | 75.8      |  |  |  |  |
| 410     | 460              | 5                 | 147       |  |  |  |  |
| 375     | 400              | 2.5               | 33.5      |  |  |  |  |
| 400     | 440              | 4                 | 79.9      |  |  |  |  |
| 435     | 495              | 6                 | 181       |  |  |  |  |
|         |                  |                   |           |  |  |  |  |

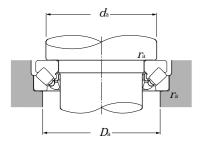




### d 340 ~ 500mm

| Boundary dimensions |    |                   |                   | sions              | Basic load ratings<br>dynamic static dynamic |                            |                               | static                              | Limiting speeds   | Bearing numbers               | Dimensions        |                   |                |                 |                   |
|---------------------|----|-------------------|-------------------|--------------------|----------------------------------------------|----------------------------|-------------------------------|-------------------------------------|-------------------|-------------------------------|-------------------|-------------------|----------------|-----------------|-------------------|
|                     | mm |                   |                   | kN kgf             |                                              | gf                         | min <sup>-1</sup>             |                                     |                   | mm                            |                   |                   |                |                 |                   |
|                     | d  | D                 | T                 | $r_{ m s min}^{1}$ | Ca                                           | $C_{\mathrm{oa}}$          | $C_{\rm a}$                   | $C_{\mathrm{oa}}$                   | oil               |                               | $D_1$             | $d_1$             | $B_1$          | С               | $\boldsymbol{A}$  |
| 34                  | 40 | 460<br>540<br>620 | 73<br>122<br>170  | 3<br>5<br>7.5      | 1 240<br>2 650<br>4 400                      | 5 800<br>10 700<br>17 500  | 126 000<br>270 000<br>445 000 | 590 000<br>1 090 000<br>1 790 000   | 820<br>610<br>500 | 29268<br>29368<br>29468       | 395<br>428<br>462 | 445<br>520<br>590 | 21<br>41<br>61 | 37<br>59<br>82  | 183<br>192<br>201 |
| 36                  | 60 | 500<br>560<br>640 | 85<br>122<br>170  | 4<br>5<br>7.5      | 1 510<br>2 710<br>4 500                      | 7 050<br>11 100<br>18 500  | 154 000<br>276 000<br>460 000 | 720 000<br>1 130 000<br>1 890 000   | 720<br>590<br>490 | 29272<br>29372<br>29472       | 423<br>448<br>480 | 485<br>540<br>610 | 25<br>41<br>61 | 44<br>59<br>82  | 194<br>202<br>210 |
| 38                  | 80 | 520<br>600<br>670 | 85<br>132<br>175  | 4<br>6<br>7.5      | 1 590<br>3 200<br>4 900                      | 7 650<br>13 300<br>19 700  | 162 000<br>325 000<br>500 000 | 780 000<br>1 360 000<br>2 010 000   | 700<br>550<br>470 | 29276<br>29376<br>29476       | 441<br>477<br>504 | 505<br>580<br>640 | 27<br>44<br>63 | 42<br>63<br>85  | 202<br>216<br>230 |
| 40                  | 00 | 540<br>620<br>710 | 85<br>132<br>185  | 4<br>6<br>7.5      | 1 620<br>3 400<br>5 450                      | 7 950<br>14 500<br>22 100  | 165 000<br>345 000<br>555 000 | 810 000<br>1 480 000<br>2 250 000   | 680<br>530<br>440 | 29280<br>29380<br>29480       | 460<br>494<br>534 | 526<br>596<br>680 | 27<br>44<br>67 | 42<br>64<br>89  | 212<br>225<br>236 |
| 42                  | 20 | 580<br>650<br>730 | 95<br>140<br>185  | 5<br>6<br>7.5      | 2 100<br>3 600<br>5 500                      | 10 400<br>15 500<br>22 800 | 214 000<br>365 000<br>560 000 | 1 060 000<br>1 580 000<br>2 330 000 | 620<br>500<br>430 | 29284<br>29384<br>29484       | 489<br>520<br>556 | 564<br>626<br>700 | 30<br>48<br>67 | 46<br>68<br>89  | 225<br>235<br>244 |
| 44                  | 40 | 600<br>680<br>780 | 95<br>145<br>206  | 5<br>6<br>9.5      | 2 150<br>3 800<br>6 400                      | 10 900<br>16 400<br>26 200 | 219 000<br>385 000<br>650 000 | 1 110 000<br>1 680 000<br>2 670 000 | 600<br>480<br>390 | 29288<br>29388<br>29488       | 508<br>548<br>588 | 585<br>655<br>745 | 30<br>49<br>74 | 49<br>70<br>100 | 235<br>245<br>260 |
| 4(                  | 60 | 620<br>710<br>800 | 95<br>150<br>206  | 5<br>6<br>9.5      | 2 150<br>4 200<br>6 600                      | 11 000<br>18 500<br>27 900 | 219 000<br>430 000<br>670 000 | 1 120 000<br>1 880 000<br>2 840 000 | 590<br>460<br>380 | 29292<br>29392<br>29492       | 530<br>567<br>608 | 605<br>685<br>765 | 30<br>51<br>74 | 46<br>72<br>100 | 245<br>257<br>272 |
| 48                  | 80 | 650<br>730<br>850 | 103<br>150<br>224 | 5<br>6<br>9.5      | 2 400<br>4 200<br>7 500                      | 12 000<br>18 700<br>31 500 | 245 000<br>430 000<br>765 000 | 1 220 000<br>1 910 000<br>3 200 000 | 550<br>450<br>350 | 29296<br>29396<br>29496       | 556<br>590<br>638 | 635<br>705<br>810 | 33<br>51<br>81 | 55<br>72<br>108 | 259<br>270<br>280 |
| 50                  | 00 | 670<br>750<br>870 | 103<br>150<br>224 | 5<br>6<br>9.5      | 2 540<br>4 300<br>7 850                      | 13 000<br>19 300<br>33 000 | 259 000<br>435 000<br>805 000 | 1 330 000<br>1 970 000<br>3 350 000 | 530<br>440<br>340 | 292/500<br>293/500<br>294/500 | 574<br>611<br>661 | 654<br>725<br>830 | 33<br>51<br>81 | 55<br>74<br>107 | 268<br>280<br>290 |

<sup>1 )</sup> Smallest allowable dimension for chamfer dimension  $\it{r}.$ 


Mass

kg

(approx.)

34.4





Abutment and fillet dimensions

mm

 $D_{a}$ 

max

 $r_{
m as}$ 

max

2.5

 $d_a$ 

min

Equivalent bearing load dynamic

 $P_{\rm a} = F_{\rm a} + 1.2F_{\rm r}$ 

static

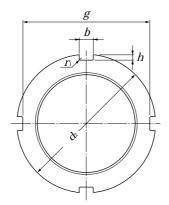
 $P_{\text{oa}} = F_{\text{a}} + 2.7F_{\text{r}}$ 

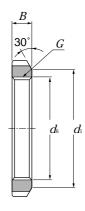
when  $\frac{F_{\rm r}}{F_{\rm a}}$  0.55

| 420 | 455 | 3 | 50.5 |
|-----|-----|---|------|
| 450 | 495 | 4 | 112  |
| 485 | 550 | 6 | 240  |
| 440 | 475 | 3 | 53.4 |
| 480 | 525 | 5 | 143  |
| 510 | 575 | 6 | 267  |
| 460 | 490 | 3 | 55.8 |
| 500 | 550 | 5 | 148  |
| 540 | 610 | 6 | 321  |
| 490 | 525 | 4 | 76.6 |
| 525 | 575 | 5 | 172  |
| 560 | 630 | 6 | 333  |
| 510 | 545 | 4 | 79.6 |
| 550 | 600 | 5 | 195  |
| 595 | 670 | 8 | 428  |
| 530 | 570 | 4 |      |

98.6




## **Locknuts, Lockwashers & Lockplates Contents**


| Locknuts                        | C-  | 2  |
|---------------------------------|-----|----|
| Nuts                            | C-  | 8  |
| Lockwashers                     | C-1 | 12 |
| Lockplates                      | C-1 | 15 |
| Snap rings for rolling bearings | C-1 | 16 |

# Locknuts, Lockwashers & Lockplates

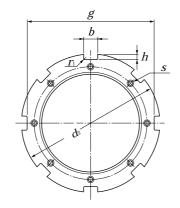


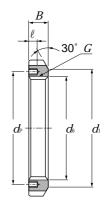
## (For adapter sleeve, withdrawal sleeve and shaft) **Series AN**





| Bearing |            |       |       | Dimens | ions |     |       |    |     | Mass      | Refe<br>bore no. | erence         |
|---------|------------|-------|-------|--------|------|-----|-------|----|-----|-----------|------------------|----------------|
| numbers | thread     |       |       | mm     |      |     |       |    |     | kg        |                  | er washer No.  |
|         | incad      |       |       |        |      |     |       |    | n   | '\9       | or adapte        | or washer ito. |
|         | $G^{1}$    | $d_2$ | $d_1$ | g      | b    | h   | d6    | B  | max | (approx.) |                  |                |
|         |            |       |       |        |      |     |       |    |     |           |                  |                |
| AN00    | M10 × 0.75 | 18    | 13.5  | 14     | 3    | 2   | 10.5  | 4  | 0.4 | 0.005     | -                | AW00           |
| AN01    | M12 × 1    | 22    | 17    | 18     | 3    | 2   | 12.5  | 4  | 0.4 | 0.007     | -                | AW01           |
| AN02    | M15 × 1    | 25    | 21    | 21     | 4    | 2   | 15.5  | 5  | 0.4 | 0.01      | -                | AW02           |
| AN03    | M17 × 1    | 28    | 24    | 24     | 4    | 2   | 17.5  | 5  | 0.4 | 0.013     | -                | AW03           |
| AN04    | M20 × 1    | 32    | 26    | 28     | 4    | 2   | 20.5  | 6  | 0.4 | 0.019     | 04               | AW04           |
| AN05    | M25 × 1.5  | 38    | 32    | 34     | 5    | 2   | 25.8  | 7  | 0.4 | 0.025     | 05               | AW05           |
| AN06    | M30 × 1.5  | 45    | 38    | 41     | 5    | 2   | 30.8  | 7  | 0.4 | 0.043     | 06               | AW06           |
| AN07    | M35 × 1.5  | 52    | 44    | 48     | 5    | 2   | 35.8  | 8  | 0.4 | 0.053     | 07               | AW07           |
| AN08    | M40 × 1.5  | 58    | 50    | 53     | 6    | 2.5 | 40.8  | 9  | 0.5 | 0.085     | 80               | 80WA           |
| AN09    | M45 × 1.5  | 65    | 56    | 60     | 6    | 2.5 | 45.8  | 10 | 0.5 | 0.119     | 09               | AW09           |
| AN10    | M50 × 1.5  | 70    | 61    | 65     | 6    | 2.5 | 50.8  | 11 | 0.5 | 0.148     | 10               | AW10           |
| AN11    | M55 × 2    | 75    | 67    | 69     | 7    | 3   | 56    | 11 | 0.5 | 0.158     | 11               | AW11           |
| AN12    | M60 × 2    | 80    | 73    | 74     | 7    | 3   | 61    | 11 | 0.5 | 0.174     | 12               | AW12           |
| AN13    | M65 × 2    | 85    | 79    | 79     | 7    | 3   | 66    | 12 | 0.5 | 0.203     | 13               | AW13           |
| AN14    | M70 × 2    | 92    | 85    | 85     | 8    | 3.5 | 71    | 12 | 0.5 | 0.242     | 14               | AW14           |
| AN15    | M75 × 2    | 98    | 90    | 91     | 8    | 3.5 | 76    | 13 | 0.5 | 0.287     | 15               | AW15           |
| AN16    | M80 × 2    | 105   | 95    | 98     | 8    | 3.5 | 81    | 15 | 0.6 | 0.397     | 16               | AW16           |
| AN17    | M85 × 2    | 110   | 102   | 103    | 8    | 3.5 | 86    | 16 | 0.6 | 0.451     | 17               | AW17           |
| AN18    | M90 × 2    | 120   | 108   | 112    | 10   | 4   | 91    | 16 | 0.6 | 0.556     | 18               | AW18           |
| AN19    | M95 × 2    | 125   | 113   | 117    | 10   | 4   | 96    | 17 | 0.6 | 0.658     | 19               | AW19           |
| AN20    | M100 × 2   | 130   | 120   | 122    | 10   | 4   | 101   | 18 | 0.6 | 0.698     | 20               | AW20           |
| AN21    | M105 × 2   | 140   | 126   | 130    | 12   | 5   | 106   | 18 | 0.7 | 0.845     | 21               | AW21           |
| AN22    | M110 × 2   | 145   | 133   | 135    | 12   | 5   | 111   | 19 | 0.7 | 0.965     | 22               | AW22           |
| AN23    | M115 × 2   | 150   | 137   | 140    | 12   | 5   | 116   | 19 | 0.7 | 1.01      | -                | AW23           |
| AN24    | M120 × 2   | 155   | 138   | 145    | 12   | 5   | 121   | 20 | 0.7 | 1.08      | 24               | AW24           |
| AN25    | M125 × 2   | 160   | 148   | 150    | 12   | 5   | 126   | 21 | 0.7 | 1.19      | -                | AW25           |
| AN26    | M130 × 2   | 165   | 149   | 155    | 12   | 5   | 131   | 21 | 0.7 | 1.25      | 26               | AW26           |
| AN27    | M135 × 2   | 175   | 160   | 163    | 14   | 6   | 136   | 22 | 0.7 | 1.55      | -                | AW27           |
| AN28    | M140 × 2   | 180   | 160   | 168    | 14   | 6   | 141   | 22 | 0.7 | 1.56      | 28               | AW28           |
| AN29    | M145 × 2   | 190   | 171   | 178    | 14   | 6   | 146   | 24 | 0.7 | 2         | -                | AW29           |
| AN30    | M150 × 2   | 195   | 171   | 183    | 14   | 6   | 151   | 24 | 0.7 | 2.03      | 30               | AW30           |
| AN31    | M155 × 3   | 200   | 182   | 186    | 16   | 7   | 156.5 | 25 | 0.7 | 2.21      | -                | AW31           |
| AN32    | M160 × 3   | 210   | 182   | 196    | 16   | 7   | 161.5 | 25 | 0.7 | 2.59      | 32               | AW32           |
| AN33    | M165 × 3   | 210   | 193   | 196    | 16   | 7   | 166.5 | 26 | 0.7 | 2.43      | -                | AW33           |
| AN34    | M170 × 3   | 220   | 193   | 206    | 16   | 7   | 171.5 | 26 | 0.7 | 2.8       | 34               | AW34           |
| AN36    | M180 × 3   | 230   | 203   | 214    | 18   | 8   | 181.5 | 27 | 0.7 | 3.07      | 36               | AW36           |
| AN38    | M190 × 3   | 240   | 214   | 224    | 18   | 8   | 191.5 | 28 | 0.7 | 3.39      | 38               | AW38           |
| AN40    | M200 × 3   | 250   | 226   | 234    | 18   | 8   | 201.5 | 29 | 0.7 | 3.69      | 40               | AW40           |


 <sup>)</sup> Standard thread shapes and dimensions are as per JIS B0207 (metric thread).
 ) Uses adapter series H31, H2, and H23
 ) Can also use washers with straight inner tabs (code "X").



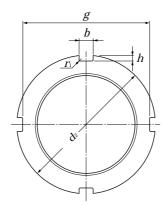

| Reference Shaft withdrawal sleeve No. |                |              |                     |             |              |                  |                    |             |  |  |  |
|---------------------------------------|----------------|--------------|---------------------|-------------|--------------|------------------|--------------------|-------------|--|--|--|
| A1.100                                | 411040         | A1104        | 411044              | 4110        | 41100        | 4110             | 41100              | mm          |  |  |  |
| AH30                                  | AH240          | AH31         | AH241               | AH2         | AH32         | AH3              | AH23               | (for abott) |  |  |  |
|                                       |                |              |                     |             |              |                  |                    | (for shaft) |  |  |  |
|                                       |                |              |                     |             |              |                  |                    | 4.0         |  |  |  |
| -                                     | -              | -            | -                   | -           | -            | -                | -                  | 10          |  |  |  |
| -                                     | -              | -            | -                   | -           | -            | -                | -                  | 12          |  |  |  |
| -                                     | -              | -            | -                   | -           | -            | -                | -                  | 15          |  |  |  |
| -                                     | -              | -            | -                   | -           | -            | -                | -                  | 17          |  |  |  |
| -                                     | -              | -            | -                   | -           | -            | -                | -                  | 20          |  |  |  |
| -                                     | -              | -            | -                   | -           | -            | -                | -                  | 25          |  |  |  |
| -                                     | -              | -            | -                   | -           | -            | -                | -                  | 30          |  |  |  |
| -                                     | -              | -            | -                   | -           | -            | -                | -                  | 35          |  |  |  |
| -                                     | -              | -            | -                   | -<br>A11200 | -            | -                | -                  | 40          |  |  |  |
| -                                     | -              | -            | -                   | AH208       | -            | AH 308           | AH 2308            | 45          |  |  |  |
| -                                     | -              | -            | -                   | AH209       | -            | AH 309           | AH 2309            | 50          |  |  |  |
| -                                     | -              | -            | -                   | AH210       | -            | AHX310           | AHX2310            | 55          |  |  |  |
| -                                     | -              | -            | -                   | AH211       | -            | AHX311           | AHX2311            | 60          |  |  |  |
| -                                     | -              | -            | -                   | AH212       | -            | AHX312           | AHX2312            | 65          |  |  |  |
| -                                     | -              | -            | -                   | -           | -            | -                | -                  | 70<br>75    |  |  |  |
| -                                     | -              | -            | -                   | AH213       | -            | AH 313           | AH 2313            | 75          |  |  |  |
| -                                     | -              | -            | -                   | AH214       | -            | AH 314           | AHX2314            | 80          |  |  |  |
| -                                     | -              | -            | -                   | AH215       | -            | AH 315           | AHX2315            | 85          |  |  |  |
| -                                     | -              | -            | -                   | AH216       | -            | AH 316           | AHX2316            | 90          |  |  |  |
| -                                     | -              | -            | -                   | AH217       | -<br>AUV0040 | AHX317           | AHX2317            | 95          |  |  |  |
| -                                     | -              | -            | -                   | AH218       | AHX3218      | AHX318           | AHX2318            | 100         |  |  |  |
| -                                     | -              | -            | -                   | AH219       | -            | AHX319           | AHX2319            | 105         |  |  |  |
| -                                     | -              | -            | -                   | AH220       | AHX3220      | AHX320           | AHX2320            | 110         |  |  |  |
| -                                     | -              | -<br>AUV0400 | AH24122             | AH221       | -            | AHX321           | -                  | 115         |  |  |  |
| -                                     | -              | AHX3122      | -                   | AH222       | -            | AHX322           | -                  | 120         |  |  |  |
| -<br>AUV2024                          | AH24024        | -<br>AUV2424 | -                   | -<br>A11004 | AHX3222      | -<br>AUV224      | AHX2322            | 125         |  |  |  |
| AHX3024                               | -              | AHX3124      | AH24124             | AH224       |              | AHX324           |                    | 130         |  |  |  |
| -<br>AUV2026                          | AH24026        | -<br>AUV2426 | -<br>A H 2 4 4 2 6  | -<br>-      | AHX3224      | -<br>AUV226      | AHX2324            | 135         |  |  |  |
| AHX3026                               | -<br>A H2 4020 | AHX3126      | AH24126             | AH226       | -<br>AHV2226 | AHX326           | -<br>AUV2226       | 140         |  |  |  |
| -<br>AHX3028                          | AH24028        | -<br>AHX3128 | -<br>AH24128        | -<br>AH228  | AHX3226      | -<br>AHX328      | AHX2326            | 145         |  |  |  |
| ANA3020<br>-                          | -              |              | АП24120             | АП220<br>-  | -<br>AUV2020 |                  | -                  | 150         |  |  |  |
|                                       | AH24030        | -            | -<br>A LI 2 4 4 2 0 |             | AHX3228<br>- | -                | AHX2328            | 155         |  |  |  |
| AHX3030                               | -              | -<br>AUV2420 | AH24130<br>-        | AH230<br>-  |              | -<br>AHX330      | -<br>AUV2220       | 160<br>165  |  |  |  |
|                                       |                | AHX3130<br>- |                     |             | AHX3230<br>- | AHX330<br>-      | AHX2330            | 165<br>170  |  |  |  |
| AH 3032<br>AH 3034                    | AH24032        |              | AH24132             | AH232       | -<br>AH 3232 | -<br>AH 332      | -<br>AH 2332       | 170<br>180  |  |  |  |
|                                       | AH24034        | AH 3132      | AH24134             | AH234       |              | AH 332<br>AH 334 | AH 2332<br>AH 2334 | 190         |  |  |  |
| AH 3036<br>-                          | AH24036        | AH 3134      | AH24136             | AH236       | AH 3234      |                  |                    |             |  |  |  |
| -                                     | AH24038        | AH 3136      | AH24138             | -           | AH 3236      | -                | AH 2336            | 200         |  |  |  |

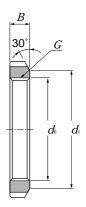


## (For adapter sleeve, withdrawal sleeve and shaft) **Series AN**





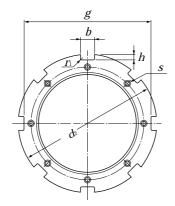

| Bearing<br>numbers | Dimensions Ma |       |       |     |    |    |       |    |          |    |                   | Mass             |           |
|--------------------|---------------|-------|-------|-----|----|----|-------|----|----------|----|-------------------|------------------|-----------|
|                    | thread        |       |       |     |    | r  | mm    |    |          |    | thread            |                  | kg        |
|                    | $G^{1}$ )     | $d_2$ | $d_1$ | g   | b  | h  | $d_6$ | В  | n<br>max | 1  | S <sup>2</sup> )  | $d_{\mathbb{P}}$ | (approx.) |
|                    |               |       |       |     |    |    |       |    |          |    |                   |                  |           |
| AN 44              | Tr220 × 4     | 280   | 250   | 260 | 20 | 10 | 222   | 32 | 8.0      | 15 | M 8 × 1.25        | 238              | 5.2       |
| AN 48              | Tr240 × 4     | 300   | 270   | 280 | 20 | 10 | 242   | 34 | 8.0      | 15 | M 8 × 1.25        | 258              | 5.95      |
| AN 52              | Tr260 × 4     | 330   | 300   | 306 | 24 | 12 | 262   | 36 | 8.0      | 18 | $M10 \times 1.5$  | 281              | 8.05      |
| AN 56              | Tr280 × 4     | 350   | 320   | 326 | 24 | 12 | 282   | 38 | 8.0      | 18 | $M10 \times 1.5$  | 301              | 9.05      |
| AN 60              | Tr300 × 4     | 380   | 340   | 356 | 24 | 12 | 302   | 40 | 8.0      | 18 | $M10 \times 1.5$  | 326              | 11.8      |
| AN 64              | Tr320 × 5     | 400   | 360   | 376 | 24 | 12 | 322.5 | 42 | 8.0      | 18 | $M10 \times 1.5$  | 345              | 13.1      |
| AN 68              | Tr340 × 5     | 440   | 400   | 410 | 28 | 15 | 342.5 | 55 | 1        | 21 | $M12 \times 1.75$ | 372              | 23.1      |
| AN 72              | Tr360 × 5     | 460   | 420   | 430 | 28 | 15 | 362.5 | 58 | 1        | 21 | $M12 \times 1.75$ | 392              | 25.1      |
| AN 76              | Tr380 × 5     | 490   | 450   | 454 | 32 | 18 | 382.5 | 60 | 1        | 21 | $M12 \times 1.75$ | 414              | 30.9      |
| AN 80              | Tr400 × 5     | 520   | 470   | 484 | 32 | 18 | 402.5 | 62 | 1        | 27 | $M16 \times 2$    | 439              | 36.9      |
| AN 84              | Tr420 × 5     | 540   | 490   | 504 | 32 | 18 | 422.5 | 70 | 1        | 27 | $M16 \times 2$    | 459              | 43.5      |
| AN 88              | Tr440 × 5     | 560   | 510   | 520 | 36 | 20 | 442.5 | 70 | 1        | 27 | $M16 \times 2$    | 477              | 45.3      |
| AN 92              | Tr460 × 5     | 580   | 540   | 540 | 36 | 20 | 462.5 | 75 | 1        | 27 | M16 × 2           | 497              | 50.4      |
| AN 96              | Tr480 × 5     | 620   | 560   | 580 | 36 | 20 | 482.5 | 75 | 1        | 27 | M16 × 2           | 527              | 62.2      |
| AN100              | Tr500 × 5     | 630   | 580   | 584 | 40 | 23 | 502.5 | 80 | 1        | 27 | M16 × 2           | 539              | 63.3      |

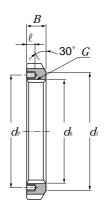

Standard thread shapes and dimensions are as per JIS B0216 (metric trapezoidal screw thread).
 Thread dimensions are as per JIS B0205 (metric coarse screw thread).
 Applied to adapter series H31, H32, and H23

| bore no. <sup>3)</sup> of adapter | Reference<br>lock-<br>plate No. | Shaft<br>mm<br>(for shaft) |
|-----------------------------------|---------------------------------|----------------------------|
| 44                                | AL 44                           | 220                        |
| 48                                | AL 44                           | 240                        |
| 52                                | AL 52                           | 260                        |
| 56                                | AL 52                           | 280                        |
| 60                                | AL 60                           | 300                        |
| 64                                | AL 64                           | 320                        |
| 68                                | AL 68                           | 340                        |
| 72                                | AL 68                           | 360                        |
| 76                                | AL 76                           | 380                        |
| 80                                | AL 80                           | 400                        |
| 84                                | AL 80                           | 420                        |
| 88                                | AL 88                           | 440                        |
| 92                                | AL 88                           | 460                        |
| 96                                | AL 88                           | 480                        |
| 96                                | AL 96                           | 480                        |
| /500                              | AL100                           | 500                        |



## (For adapter sleeve and shaft) **Series ANL**



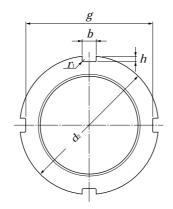

| Bearing<br>numbers |                 |       |       | Dimer | sions |   |       |    |     | Mass      | Re<br>bore no. <sup>2)</sup> | ference<br>lock-3) | shaft       |
|--------------------|-----------------|-------|-------|-------|-------|---|-------|----|-----|-----------|------------------------------|--------------------|-------------|
| Hullibers          | thread          |       |       | m     | m     |   |       |    |     | kg        | of adapter                   | washer no.         | mm          |
|                    |                 |       |       |       |       |   |       |    | n   |           |                              |                    |             |
|                    | $G^{1}$ )       | $d_2$ | $d_1$ | g     | b     | h | $d_6$ | В  | max | (approx.) |                              |                    | (for shaft) |
|                    |                 |       |       |       |       |   |       |    |     |           |                              |                    |             |
| ANL24              | $M120 \times 2$ | 145   | 133   | 135   | 12    | 5 | 121   | 20 | 0.7 | 0.78      | 24                           | AWL24              | 120         |
| ANL26              | $M130 \times 2$ | 155   | 143   | 145   | 12    | 5 | 131   | 21 | 0.7 | 0.88      | 26                           | AWL26              | 130         |
| ANL28              | $M140 \times 2$ | 165   | 151   | 153   | 14    | 6 | 141   | 22 | 0.7 | 0.99      | 28                           | AWL28              | 140         |
| ANL30              | $M150 \times 2$ | 180   | 164   | 168   | 14    | 6 | 151   | 24 | 0.7 | 1.38      | 30                           | AWL30              | 150         |
| ANL32              | $M160 \times 3$ | 190   | 174   | 176   | 16    | 7 | 161.5 | 25 | 0.7 | 1.56      | 32                           | AWL32              | 160         |
| ANL34              | $M170 \times 3$ | 200   | 184   | 186   | 16    | 7 | 171.5 | 26 | 0.7 | 1.72      | 34                           | AWL34              | 170         |
| ANL36              | $M180 \times 3$ | 210   | 192   | 194   | 18    | 8 | 181.5 | 27 | 0.7 | 1.95      | 36                           | AWL36              | 180         |
| ANL38              | $M190 \times 3$ | 220   | 202   | 204   | 18    | 8 | 191.5 | 28 | 0.7 | 2.08      | 38                           | AWL38              | 190         |
| ANL40              | $M200 \times 3$ | 240   | 218   | 224   | 18    | 8 | 201.5 | 29 | 0.7 | 2.98      | 40                           | AWL40              | 200         |

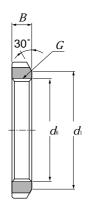
Standard thread shapes and dimensions are as per JIS B0207 (metric fine thread).
 Applied to adapter series H30.
 Applicable also to washers with straight inner tabs (code "X").








| Bearing |           |       |       |     |    |    |       |    |          |    |                        | Mass                         |           |
|---------|-----------|-------|-------|-----|----|----|-------|----|----------|----|------------------------|------------------------------|-----------|
| numbers | thread    |       |       |     |    | r  | nm    |    |          |    | thread                 |                              | kg        |
|         | $G^{1}$ ) | $d_2$ | $d_1$ | g   | b  | h  | $d_6$ | В  | n<br>max | 1  | <i>s</i> <sup>2)</sup> | $d_{\!\scriptscriptstyle p}$ | (approx.) |
|         |           |       |       |     |    |    |       |    |          |    |                        |                              |           |
| ANL 44  | Tr220 × 4 | 260   | 242   | 242 | 20 | 9  | 222   | 30 | 0.8      | 12 | M 6 × 1                | 229                          | 3.09      |
| ANL 48  | Tr240 × 4 | 290   | 270   | 270 | 20 | 10 | 242   | 34 | 0.8      | 15 | M 8 × 1.25             | 253                          | 5.16      |
| ANL 52  | Tr260 × 4 | 310   | 290   | 290 | 20 | 10 | 262   | 34 | 0.8      | 15 | M 8 × 1.25             | 273                          | 5.67      |
| ANL 56  | Tr280 × 4 | 330   | 310   | 310 | 24 | 10 | 282   | 38 | 0.8      | 15 | M 8 × 1.25             | 293                          | 6.78      |
| ANL 60  | Tr300 × 4 | 360   | 336   | 336 | 24 | 12 | 302   | 42 | 8.0      | 15 | M 8 × 1.25             | 316                          | 9.62      |
| ANL 64  | Tr320 × 5 | 380   | 356   | 356 | 24 | 12 | 322.5 | 42 | 8.0      | 15 | M 8 × 1.25             | 335                          | 9.94      |
| ANL 68  | Tr340 × 5 | 400   | 376   | 376 | 24 | 12 | 342.5 | 45 | 1        | 15 | M 8 × 1.25             | 355                          | 11.7      |
| ANL 72  | Tr360 × 5 | 420   | 394   | 394 | 28 | 13 | 362.5 | 45 | 1        | 15 | M 8 × 1.25             | 374                          | 12        |
| ANL 76  | Tr380 × 5 | 450   | 422   | 422 | 28 | 14 | 382.5 | 48 | 1        | 18 | $M10 \times 1.5$       | 398                          | 14.9      |
| ANL 80  | Tr400 × 5 | 470   | 442   | 442 | 28 | 14 | 402.5 | 52 | 1        | 18 | $M10 \times 1.5$       | 418                          | 16.9      |
| ANL 84  | Tr420 × 5 | 490   | 462   | 462 | 32 | 14 | 422.5 | 52 | 1        | 18 | $M10 \times 1.5$       | 438                          | 17.4      |
| ANL 88  | Tr440 × 5 | 520   | 490   | 490 | 32 | 15 | 442.5 | 60 | 1        | 21 | $M12 \times 1.75$      | 462                          | 26.2      |
| ANL 92  | Tr460 × 5 | 540   | 510   | 510 | 32 | 15 | 462.5 | 60 | 1        | 21 | $M12 \times 1.75$      | 482                          | 29.6      |
| ANL 96  | Tr480 × 5 | 560   | 530   | 530 | 36 | 15 | 482.5 | 60 | 1        | 21 | $M12 \times 1.75$      | 502                          | 28.3      |
| ANL100  | Tr500 × 5 | 580   | 550   | 550 | 36 | 15 | 502.5 | 68 | 1        | 21 | $M12 \times 1.75$      | 522                          | 33.6      |


Standard thread shapes and dimensions are as per JIS B0216 (metric trapezoidal screw thread).
 Thread dimensions are as per JIS B0205 (metric coarse screw thread).
 Applied to adapter series H30.

| bore no. <sup>3)</sup> of adapter                  | Reference<br>lock-<br>plate no.                                      | shaft<br>mm<br>(for shaft)                                  | Bearing<br>numbers                                             |
|----------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|
| 44<br>48<br>52<br>56<br>60<br>64<br>68<br>72<br>76 | ALL44<br>ALL48<br>ALL56<br>ALL60<br>ALL64<br>ALL64<br>ALL72<br>ALL76 | 220<br>240<br>260<br>280<br>300<br>320<br>340<br>360<br>380 | ANL 44 ANL 48 ANL 52 ANL 56 ANL 60 ANL 64 ANL 68 ANL 72 ANL 76 |
| 80<br>84<br>88<br>92<br>96<br>/500                 | ALL76<br>ALL84<br>ALL88<br>ALL88<br>ALL96<br>ALL96                   | 400<br>420<br>440<br>460<br>480<br>500                      | ANL 80<br>ANL 84<br>ANL 88<br>ANL 92<br>ANL 96<br>ANL100       |

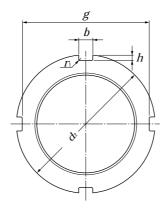


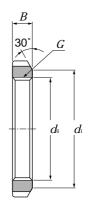
## (For withdrawal and shaft) Series HN





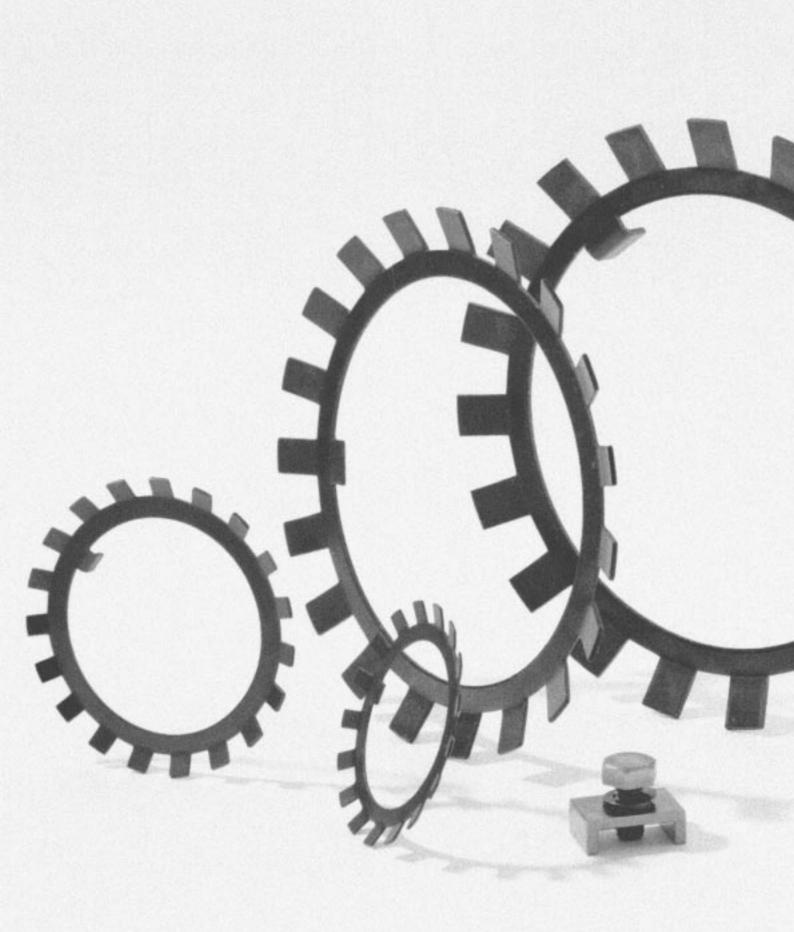
| Bearing<br>number |           |         |       | Dimer | sions | 3  |       |    |     | Mass      |          | Reference       |            |
|-------------------|-----------|---------|-------|-------|-------|----|-------|----|-----|-----------|----------|-----------------|------------|
|                   | thread    |         |       | m     | m     |    |       |    |     | kg        | wi       | thdrawal sleeve | no.        |
|                   |           |         |       |       |       |    |       |    | n   |           | AH240    | AH31            | AH241      |
|                   | $G^{1}$   | $d_{2}$ | $d_1$ | g     | b     | h  | $d_6$ | В  | max | (approx.) |          |                 |            |
|                   |           |         |       |       |       |    |       |    |     |           |          |                 |            |
| HN 42             | Tr210 × 4 | 270     | 238   | 250   | 20    | 10 | 212   | 30 | 8.0 | 4.75      | AH24040  | AH 3138         | AH24140    |
| HN 44             | Tr220 × 4 | 280     | 250   | 260   | 20    | 10 | 222   | 32 | 8.0 | 5.35      | -        | AH 3140         | -          |
| HN 46             | Tr230 × 4 | 290     | 260   | 270   | 20    | 10 | 232   | 34 | 8.0 | 5.8       | AH24044H | -               | AH24144H   |
| HN 48             | Tr240 × 4 | 300     | 270   | 280   | 20    | 10 | 242   | 34 | 8.0 | 6.2       | -        | AH 3144         | -          |
| HN 50             | Tr250 × 4 | 320     | 290   | 300   | 20    | 10 | 252   | 36 | 8.0 | 7         | AH24048H | -               | -          |
| HN 52             | Tr260 × 4 | 330     | 300   | 306   | 24    | 12 | 262   | 36 | 8.0 | 8.55      | -        | AH 3148         | AH24148H   |
| HN 54             | Tr270 × 4 | 340     | 310   | 316   | 24    | 12 | 272   | 38 | 8.0 | 9.2       | AH24052H | -               | -          |
| HN 56             | Tr280 × 4 | 350     | 320   | 326   | 24    | 12 | 282   | 38 | 8.0 | 10        | -        | -               | AH24152H   |
| HN 58             | Tr290 × 4 | 370     | 330   | 346   | 24    | 12 | 292   | 40 | 0.8 | 11.8      | AH24056H | AH 3152         | -          |
| HN 60             | Tr300 × 4 | 380     | 340   | 356   | 24    | 12 | 302   | 40 | 0.8 | 12        | -        | -               | AH24156H   |
| HN 62             | Tr310 × 5 | 390     | 350   | 366   | 24    | 12 | 312.5 | 42 | 8.0 | 13.4      | AH24060H | AH 3156         | -          |
| HN 64             | Tr320 × 5 | 400     | 360   | 376   | 24    | 12 | 322.5 | 42 | 8.0 | 13.5      | -        | -               | AH24160H   |
| HN 66             | Tr330 × 5 | 420     | 380   | 390   | 28    | 15 | 332.5 | 52 | 1   | 20.4      | AH24064H | AH 3160         | -          |
| HN 68             | Tr340 × 5 | 440     | 400   | 410   | 28    | 15 | 342.5 | 55 | 1   | 24.5      | -        | -               | AH24164H   |
| HN 70             | Tr350 × 5 | 450     | 410   | 420   | 28    | 15 | 352.5 | 55 | 1   | 25.2      | -        | AH 3164         | -          |
| HN 72             | Tr360 × 5 | 460     | 420   | 430   | 28    | 15 | 362.5 | 58 | 1   | 27.5      | -        | -               | AH24168H   |
| HN 74             | Tr370 × 5 | 470     | 430   | 440   | 28    | 15 | 372.5 | 58 | 1   | 28.2      | -        | AH 3168         | -          |
| HN 76             | Tr380 × 5 | 490     | 450   | 454   | 32    | 18 | 382.5 | 60 | 1   | 33.5      | -        | -               | AH24172H   |
| HN 80             | Tr400 × 5 | 520     | 470   | 484   | 32    | 18 | 402.5 | 62 | 1   | 40        | -        | AH 3172         | AH24176H   |
| HN 84             | Tr420 × 5 | 540     | 490   | 504   | 32    | 18 | 422.5 | 70 | 1   | 46.9      | -        | AH 3176         | AH24180H   |
| HN 88             | Tr440 × 5 | 560     | 510   | 520   | 36    | 20 | 442.5 | 70 | 1   | 48.5      | -        | AH 3180         | AH24184H   |
| HN 92             | Tr460 × 5 | 580     | 540   | 540   | 36    | 20 | 462.5 | 75 | 1   | 55        | -        | AH 3184         | AH24188H   |
| HN 96             | Tr480 × 5 | 620     | 560   | 580   | 36    | 20 | 482.5 | 75 | 1   | 67        | -        | AHX3188         | AH24192H   |
| HN100             | Tr500 × 5 | 630     | 590   | 590   | 40    | 23 | 502.5 | 80 | 1   | 69        | -        | -               | AH24196H   |
| HN102             | Tr510 × 6 | 650     | 590   | 604   | 40    | 23 | 513   | 80 | 1   | 75        | -        | AHX3192         | -          |
| HN106             | Tr530 × 6 | 670     | 610   | 624   | 40    | 23 | 533   | 80 | 1   | 78        | -        | AHX3196         | AH241/500H |
| HN110             | Tr550 × 6 | 700     | 640   | 654   | 40    | 23 | 553   | 80 | 1   | 92.5      | -        | AHX31/500       | -          |


<sup>1 )</sup> Standard thread shapes and dimensions are as per **JIS B0216** (metric trapezoidal screw thread).



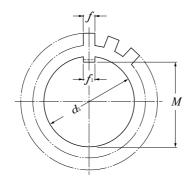

|             | Reference          |                  |
|-------------|--------------------|------------------|
| wit         | hdrawal sleeve     | no.              |
| AH22        | AH32               | AH23             |
|             |                    |                  |
| AH2238      | AH 3238            | AH2338           |
| AH2240      | AH 3240            | AH2340           |
| -           | -                  | -                |
| AH2244      | -                  | AH2344           |
| -<br>AH2248 | -                  | -<br>AH2348      |
| -<br>-      | -                  | -<br>-           |
| -           | -                  | -                |
| AH2252      | -                  | AH2352           |
| -<br>AU2256 | -                  | -<br>A LI 22 E C |
| AH2256      | -                  | AH2356           |
| AH2260      | AH 3260            | -                |
| -           | -                  | -                |
| AH2264      | AH 3264            | -                |
| -           | -                  | -                |
| -           | AH 3268            | -                |
| _           | AH 3272            | _                |
| -           | AH 3276            | -                |
| -           | AH 3280            | -                |
| -           | AH 3284<br>AHX3288 | -                |
| -           | AHX3288            | -                |
| -           | AHX3292            | -                |
| -           | AHX3296            | -                |
| -           | AHX32/500          | -                |
|             |                    |                  |

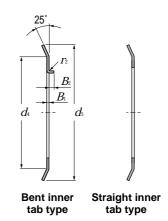



## (For withdrawal and shaft) Series HNL






| Bearing |           |       |       | Dimen | sions | ;  |       |    |     | Mass      |          | Reference            |       |
|---------|-----------|-------|-------|-------|-------|----|-------|----|-----|-----------|----------|----------------------|-------|
| numbers |           |       |       |       |       |    |       |    |     |           |          |                      |       |
|         | thread    |       |       | m     | m     |    |       |    |     | kg        |          | withdrawal sleeve no |       |
|         |           |       |       |       |       |    |       |    | n   |           | AH30     | AH24D                | AH2   |
|         | $G^{1}$   | $d_2$ | $d_1$ | g     | b     | h  | $d_6$ | B  | max | (approx.) |          |                      |       |
|         |           |       |       |       |       |    |       |    |     |           |          |                      |       |
| HNL 41  | Tr205 × 4 | 250   | 232   | 234   | 18    | 8  | 207   | 30 | 8.0 | 3.43      | AH 3038  | -                    | AH238 |
| HNL 43  | Tr215 × 4 | 260   | 242   | 242   | 20    | 9  | 217   | 30 | 8.0 | 3.72      | AH 3040  | -                    | AH240 |
| HNL 47  | Tr235 × 4 | 280   | 262   | 262   | 20    | 9  | 237   | 34 | 0.8 | 4.6       | AH 3044  | -                    | AH244 |
| HNL 52  | Tr260 × 4 | 310   | 290   | 290   | 20    | 10 | 262   | 34 | 0.8 | 5.8       | AH 3048  | -                    | AH248 |
| HNL 56  | Tr280 × 4 | 330   | 310   | 310   | 24    | 10 | 282   | 38 | 8.0 | 6.72      | AH 3052  | -                    | AH252 |
| HNL 60  | Tr300 × 4 | 360   | 336   | 336   | 24    | 12 | 302   | 42 | 8.0 | 9.6       | AH 3056  | -                    | AH256 |
| HNL 64  | Tr320 × 5 | 380   | 356   | 356   | 24    | 12 | 322.5 | 42 | 1   | 10.3      | AH 3060  | -                    | -     |
| HNL 69  | Tr345 × 5 | 410   | 384   | 384   | 28    | 13 | 347.5 | 45 | 1   | 11.5      | AH 3064  | -                    | -     |
| HNL 72  | Tr360 × 5 | 420   | 394   | 394   | 28    | 13 | 362.5 | 45 | 1   | 12.1      | -        | AH24068H             | -     |
| HNL 73  | Tr365 × 5 | 430   | 404   | 404   | 28    | 13 | 367.5 | 48 | 1   | 14.2      | AH 3068  | -                    | -     |
| HNL 76  | Tr380 × 5 | 450   | 422   | 422   | 28    | 14 | 382.5 | 48 | 1   | 16        | -        | AH24072H             | -     |
| HNL 77  | Tr385 × 5 | 450   | 422   | 422   | 28    | 14 | 387.5 | 48 | 1   | 15        | AH 3072  | -                    | -     |
| HNL 80  | Tr400 × 5 | 470   | 442   | 442   | 28    | 14 | 402.5 | 52 | 1   | 18.5      | -        | AH24076H             | -     |
| HNL 82  | Tr410 × 5 | 480   | 452   | 452   | 32    | 14 | 412.5 | 52 | 1   | 19        | AH 3076  | -                    | -     |
| HNL 84  | Tr420 × 5 | 490   | 462   | 462   | 32    | 14 | 422.5 | 52 | 1   | 19.4      | -        | AH24080H             | -     |
| HNL 86  | Tr430 × 5 | 500   | 472   | 472   | 32    | 14 | 432.5 | 52 | 1   | 19.8      | AH 3080  | -                    | -     |
| HNL 88  | Tr440 × 5 | 520   | 490   | 490   | 32    | 15 | 442.5 | 60 | 1   | 27        | -        | AH24084H             | -     |
| HNL 90  | Tr450 × 5 | 520   | 490   | 490   | 32    | 15 | 452.5 | 60 | 1   | 23.8      | AH 3084  | -                    | -     |
| HNL 92  | Tr460 × 5 | 540   | 510   | 510   | 32    | 15 | 462.5 | 60 | 1   | 28        | -        | AH24088H             | -     |
| HNL 94  | Tr470 × 5 | 540   | 510   | 510   | 32    | 15 | 472.5 | 60 | 1   | 25        | AHX3088  | -                    | -     |
| HNL 96  | Tr480 × 5 | 560   | 530   | 530   | 36    | 15 | 482.5 | 60 | 1   | 29.5      | -        | AH24092H             | -     |
| HNL 98  | Tr490 × 5 | 580   | 550   | 550   | 36    | 15 | 492.5 | 60 | 1   | 34        | AHX3092  | -                    | -     |
| HNL100  | Tr500 × 5 | 580   | 550   | 550   | 36    | 15 | 502.5 | 68 | 1   | 35        | -        | AH24096H             | -     |
| HNL104  | Tr520 × 6 | 600   | 570   | 570   | 36    | 15 | 523   | 68 | 1   | 37        | AHX3096  | -                    | -     |
| HNL106  | Tr530 × 6 | 630   | 590   | 590   | 40    | 20 | 533   | 68 | 1   | 47        | -        | AH240/500H           | -     |
| HNL108  | Tr540 × 6 | 630   | 590   | 590   | 40    | 20 | 543   | 68 | 1   | 43.5      | AHX30/50 | 0 -                  | -     |
|         |           |       |       |       |       |    |       |    |     |           |          |                      |       |


<sup>1 )</sup> Standard thread shapes and dimensions are as per **JIS B0216** (metric trapezoidal screw thread).





## Series AW

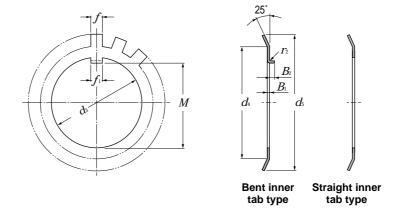




| Bearing             | numbers                 |     |       |    | Dimen      | nsions |       |            |           |                   | No.of tak | os Mass              |
|---------------------|-------------------------|-----|-------|----|------------|--------|-------|------------|-----------|-------------------|-----------|----------------------|
|                     |                         |     |       |    |            |        |       |            |           |                   |           |                      |
| hant inner          | atraight innar          |     |       |    | m          | m      |       |            | hant inna | r tab tıma        |           | kg                   |
| bent inner tab type | straight inner tab type | d₃  | M     | fi | $B_1$      | f      | $d_4$ | $d_5$      | $r_2$     | or tab type $B_2$ |           | 100 pieces (approx.) |
| iab type            | tab type                | CI3 | 1VI   | 11 | <b>D</b> ı | 1      | U4    | <b>U</b> 5 | 12        | Dί                |           | (арргох.)            |
|                     |                         |     |       | _  |            |        |       |            |           | _                 | _         |                      |
| AW00                | AW00X                   | 10  | 8.5   | 3  | 1          | 3      | 13.5  | 21         | 0.5       | 2                 | 9         | 0.131                |
| AW01                | AW01X                   | 12  | 10.5  | 3  | 1          | 3      | 17    | 25         | 0.5       | 2                 | 11        | 0.192                |
| AW02                | AW02X                   | 15  | 13.5  | 4  | 1          | 4      | 21    | 28         | 1         | 2.5               | 13        | 0.253                |
| AW03                | AW03X                   | 17  | 15.5  | 4  | 1          | 4      | 24    | 32         | 1         | 2.5               | 13        | 0.313                |
| AW04                | AW04X                   | 20  | 18.5  | 4  | 1          | 4      | 26    | 36         | 1         | 2.5               | 13        | 0.35                 |
| AW05                | AW05X                   | 25  | 23    | 5  | 1.2        | 5      | 32    | 42         | 1         | 2.5               | 13        | 0.64                 |
| AW06                | AW06X                   | 30  | 27.5  | 5  | 1.2        | 5      | 38    | 49         | 1         | 2.5               | 13        | 0.78                 |
| AW07                | AW07X                   | 35  | 32.5  | 6  | 1.2        | 5      | 44    | 57         | 1         | 2.5               | 15        | 1.04                 |
| AW08                | X80WA                   | 40  | 37.5  | 6  | 1.2        | 6      | 50    | 62         | 1         | 2.5               | 15        | 1.23                 |
| AW09                | AW09X                   | 45  | 42.5  | 6  | 1.2        | 6      | 56    | 69         | 1         | 2.5               | 17        | 1.52                 |
| AW10                | AW10X                   | 50  | 47.5  | 6  | 1.2        | 6      | 61    | 74         | 1         | 2.5               | 17        | 1.6                  |
| AW11                | AW11X                   | 55  | 52.5  | 8  | 1.2        | 7      | 67    | 81         | 1         | 4                 | 17        | 1.96                 |
| AW12                | AW12X                   | 60  | 57.5  | 8  | 1.5        | 7      | 73    | 86         | 1.2       | 4                 | 17        | 2.53                 |
| AW13                | AW13X                   | 65  | 62.5  | 8  | 1.5        | 7      | 79    | 92         | 1.2       | 4                 | 19        | 2.9                  |
| AW14                | AW14X                   | 70  | 66.5  | 8  | 1.5        | 8      | 85    | 98         | 1.2       | 4                 | 19        | 3.34                 |
| AW15                | AW15X                   | 75  | 71.5  | 8  | 1.5        | 8      | 90    | 104        | 1.2       | 4                 | 19        | 3.56                 |
| AW16                | AW16X                   | 80  | 76.5  | 10 | 1.8        | 8      | 95    | 112        | 1.2       | 4                 | 19        | 4.64                 |
| AW17                | AW17X                   | 85  | 81.5  | 10 | 1.8        | 8      | 102   | 119        | 1.2       | 4                 | 19        | 5.24                 |
| AW18                | AW18X                   | 90  | 86.5  | 10 | 1.8        | 10     | 108   | 126        | 1.2       | 4                 | 19        | 6.23                 |
| AW19                | AW19X                   | 95  | 91.5  | 10 | 1.8        | 10     | 113   | 133        | 1.2       | 4                 | 19        | 6.7                  |
| AW20                | AW20X                   | 100 | 96.5  | 12 | 1.8        | 10     | 120   | 142        | 1.2       | 6                 | 19        | 7.65                 |
| AW21                | AW21X                   | 105 | 100.5 | 12 | 1.8        | 12     | 126   | 145        | 1.2       | 6                 | 19        | 8.26                 |
| AW22                | AW22X                   | 110 | 105.5 | 12 | 1.8        | 12     | 133   | 154        | 1.2       | 6                 | 19        | 9.4                  |
| AW23                | AW23X                   | 115 | 110.5 | 12 | 2          | 12     | 137   | 159        | 1.5       | 6                 | 19        | 10.8                 |
| AW24                | AW24X                   | 120 | 115   | 14 | 2          | 12     | 138   | 164        | 1.5       | 6                 | 19        | 10.5                 |
| AW25                | AW25X                   | 125 | 120   | 14 | 2          | 12     | 148   | 170        | 1.5       | 6                 | 19        | 11.8                 |
| AW26                | AW26X                   | 130 | 125   | 14 | 2          | 12     | 149   | 175        | 1.5       | 6                 | 19        | 11.3                 |
| AW27                | AW27X                   | 135 | 130   | 14 | 2          | 14     | 160   | 185        | 1.5       | 6                 | 19        | 14.4                 |
| AW28                | AW28X                   | 140 | 135   | 16 | 2          | 14     | 160   | 192        | 1.5       | 8                 | 19        | 14.2                 |
| AW29                | AW29X                   | 145 | 140   | 16 | 2          | 14     | 171   | 202        | 1.5       | 8                 | 19        | 16.8                 |
| AW30                | AW30X                   | 150 | 145   | 16 | 2          | 14     | 171   | 205        | 1.5       | 8                 | 19        | 15.5                 |
| AW31                | AW31X                   | 155 | 147.5 | 16 | 2.5        | 16     | 182   | 212        | 1.5       | 8                 | 19        | 20.9                 |
| AW32                | AW32X                   | 160 | 154   | 18 | 2.5        | 16     | 182   | 217        | 1.5       | 8                 | 19        | 22.2                 |
| AW33                | AW33X                   | 165 | 157.5 | 18 | 2.5        | 16     | 193   | 222        | 1.5       | 8                 | 19        | 24.1                 |
| AW34                | AW34X                   | 170 | 164   | 18 | 2.5        | 16     | 193   | 232        | 1.5       | 8                 | 19        | 24.7                 |
| AW36                | AW36X                   | 180 | 174   | 20 | 2.5        | 18     | 203   | 242        | 1.5       | 8                 | 19        | 26.8                 |
| AW38                | AW38X                   | 190 | 184   | 20 | 2.5        | 18     | 214   | 252        | 1.5       | 8                 | 19        | 27.8                 |
| AW40                | AW40X                   | 200 | 194   | 20 | 2.5        | 18     | 226   | 262        | 1.5       | 8                 | 19        | 29.3                 |
|                     |                         |     |       |    |            |        |       |            |           |                   |           |                      |

<sup>1 )</sup> Uses adapter series **H31, H2, H32, H3**, and **H23**.



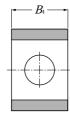

| bore no. <sup>1)</sup> of adapter                                                                                                                              | Reference<br>locknut no.                                                                                                                                                                                                             | shaft<br>mm<br>(for shaft)      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| -<br>-<br>04<br>05<br>06<br>07<br>08<br>09<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>-<br>24<br>-<br>26<br>-<br>28<br>- | AN00<br>AN01<br>AN02<br>AN03<br>AN04<br>AN05<br>AN06<br>AN07<br>AN08<br>AN10<br>AN11<br>AN12<br>AN13<br>AN14<br>AN15<br>AN16<br>AN17<br>AN18<br>AN19<br>AN20<br>AN21<br>AN22<br>AN23<br>AN24<br>AN25<br>AN26<br>AN27<br>AN28<br>AN29 |                                 |
| 30<br>-<br>32<br>-<br>34                                                                                                                                       | AN30<br>AN31<br>AN32<br>AN33<br>AN34                                                                                                                                                                                                 | 150<br>155<br>160<br>165<br>170 |
| 36<br>38<br>40                                                                                                                                                 | AN36<br>AN38<br>AN40                                                                                                                                                                                                                 | 180<br>190<br>200               |

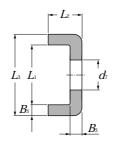
| Allowal | ole washe         | er dimen                   | sions | Units mm                                              |       |  |  |  |
|---------|-------------------|----------------------------|-------|-------------------------------------------------------|-------|--|--|--|
|         | l bore dia. $d_3$ | for distance<br>tab to bor |       | Dimension tolerance for width of inner tab $\Delta n$ |       |  |  |  |
|         | up to/incl        | High                       | Low   | High                                                  | Low   |  |  |  |
| 6       | 50                | + 0.3                      | 0     | + 0.2                                                 | - 0.2 |  |  |  |
| 50      | 80                | + 0.3                      | 0     | + 0.5                                                 | - 0.5 |  |  |  |
| 80      | 120               | + 0.5                      | 0     | + 0.7                                                 | - 0.7 |  |  |  |
| 120     | 200               | + 0.5                      | 0     | + 1                                                   | - 1   |  |  |  |

Above table is applicable to AWL series.

Note: Narrow slit type adapter sleeves appended with the **H2**, **H3**,and **H23** series code suffix "X", use straight inner tab washers (marked with "X"); wide slit type adapter sleeves without the suffix "X" can either straight or bent inner tab washers.

## **Series AWL**





| Bearing             | numbers                 |       |     |    | Di    | mensi | ons   |       |            | N          | O.of ta  | bs Mass          | Refe                     | rence          |             |
|---------------------|-------------------------|-------|-----|----|-------|-------|-------|-------|------------|------------|----------|------------------|--------------------------|----------------|-------------|
| bent inner tab type | straight inner tab type |       |     |    |       | mm    |       |       | bent inner | r tab type | <b>;</b> | kg<br>100 pieces | bore no.1)<br>of adapter | locknut<br>no. | shaft<br>mm |
| tab type            | tab type                | $d_3$ | M   | fi | $B_1$ | f     | $d_4$ | $d_5$ | <b>r</b> 2 | $B_2$      |          | (approx.)        |                          |                | (for shaft) |
|                     |                         |       |     |    |       |       |       |       |            |            |          |                  |                          |                |             |
| AWL24               | AWL24X                  | 120   | 115 | 14 | 2     | 12    | 133   | 155   | 1.5        | 6          | 19       | 7.7              | 24                       | ANL24          | 120         |
| AWL26               | AWL26X                  | 130   | 125 | 14 | 2     | 12    | 143   | 165   | 1.5        | 6          | 19       | 8.7              | 26                       | ANL26          | 130         |
| AWL28               | AWL28X                  | 140   | 135 | 16 | 2     | 14    | 151   | 175   | 1.5        | 8          | 19       | 10.9             | 28                       | ANL28          | 140         |
| AWL30               | AWL30X                  | 150   | 145 | 16 | 2     | 14    | 164   | 190   | 1.5        | 8          | 19       | 11.3             | 30                       | ANL30          | 150         |
| AWL32               | AWL32X                  | 160   | 154 | 18 | 2.5   | 16    | 174   | 200   | 1.5        | 8          | 19       | 16.2             | 32                       | ANL32          | 160         |
| AWL34               | AWL34X                  | 170   | 164 | 18 | 2.5   | 16    | 184   | 210   | 1.5        | 8          | 19       | 19               | 34                       | ANL34          | 170         |
| AWL36               | AWL36X                  | 180   | 174 | 20 | 2.5   | 18    | 192   | 220   | 1.5        | 8          | 19       | 18               | 36                       | ANL36          | 180         |
| AWL38               | AWL38X                  | 190   | 184 | 20 | 2.5   | 18    | 202   | 230   | 1.5        | 8          | 19       | 20.5             | 38                       | ANL38          | 190         |
| AWL40               | AWL40X                  | 200   | 194 | 20 | 2.5   | 18    | 218   | 250   | 1.5        | 8          | 19       | 21.4             | 40                       | ANL40          | 200         |

1 ) Uses adapter series **H31**, **H32**, and **H23**. Note: Wide slit type adapter sleeves without the suffix "X" can use either straight or bent inner tab washers.

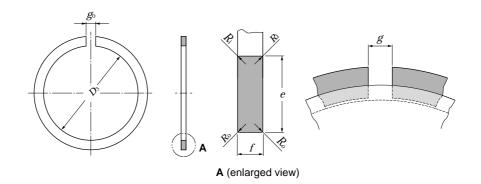


## Series AL, ALL





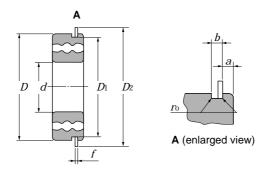
| Bearing<br>numbers | <i>B</i> <sub>3</sub> | $B_4$ | $oldsymbol{Dimen}$ mi |    | $L_1$ | $L_3$ | Mass<br>kg<br>100 pieces<br>(approx.) | Reference locknut no. |
|--------------------|-----------------------|-------|-----------------------|----|-------|-------|---------------------------------------|-----------------------|
| AL 44              | 4                     | 20    | 12                    | 9  | 22.5  | 30.5  | 2.6                                   | AN44,AN48             |
| AL 44<br>AL 52     | 4                     | 24    | 12                    | 12 | 25.5  | 33.5  | 3.39                                  | AN52,AN56             |
| AL 60              | 4                     | 24    | 12                    | 12 | 30.5  | 38.5  | 3.79                                  | AN60                  |
| AL 64              | 5                     | 24    | 15                    | 12 | 31    | 41    | 5.35                                  | AN64                  |
| AL 68              | 5                     | 28    | 15                    | 14 | 38    | 48    | 6.65                                  | AN68,AN72             |
| AL 76              | 5                     | 32    | 15                    | 14 | 40    | 50    | 7.96                                  | AN76                  |
| AL 80              | 5                     | 32    | 15                    | 18 | 45    | 55    | 8.2                                   | AN80,AN84             |
| AL 88              | 5                     | 36    | 15                    | 18 | 43    | 53    | 9                                     | AN88,AN92             |
| AL 96              | 5                     | 36    | 15                    | 18 | 53    | 63    | 10.4                                  | AN96                  |
| AL100              | 5                     | 40    | 15                    | 18 | 45    | 55    | 10.5                                  | AN100                 |


Note: Series AL uses series H31,H32,and H23 adapters.

| Bearing<br>numbers |       |       | <b>Dime</b> n |       |       |       | <b>Mass</b><br>kg<br>100 pieces | Reference    |
|--------------------|-------|-------|---------------|-------|-------|-------|---------------------------------|--------------|
|                    | $B_3$ | $B_4$ | $L_2$         | $d_7$ | $L_1$ | $L_3$ | (approx.)                       |              |
|                    |       |       |               |       |       |       |                                 |              |
| ALL44              | 4     | 20    | 12            | 7     | 13.5  | 21.5  | 2.12                            | ANL44        |
| ALL48              | 4     | 20    | 12            | 9     | 17.5  | 25.5  | 2.29                            | ANL48,ANL52  |
| ALL56              | 4     | 24    | 12            | 9     | 17.5  | 25.5  | 2.92                            | ANL56        |
| ALL60              | 4     | 24    | 12            | 9     | 20.5  | 28.5  | 3.16                            | ANL60        |
| ALL64              | 5     | 24    | 15            | 9     | 21    | 31    | 4.56                            | ANL64,ANL68  |
| ALL72              | 5     | 28    | 15            | 9     | 20    | 30    | 5.03                            | ANL72        |
| ALL76              | 5     | 28    | 15            | 12    | 24    | 34    | 5.28                            | ANL76,ANL80  |
| ALL84              | 5     | 32    | 15            | 12    | 24    | 34    | 6.11                            | ANL84        |
| ALL88              | 5     | 32    | 15            | 14    | 28    | 38    | 6.45                            | ANL88,ANL92  |
| ALL96              | 5     | 36    | 15            | 14    | 28    | 38    | 7.29                            | ANL96,ANL100 |

Note: Series ALL uses series H30 adapters.

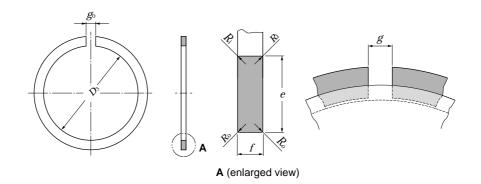



## Snap rings for dimension series 18 and 19 bearings



| Bearing No.      |              |          | nsional<br>e of bore       | ļ.           |              |              |              | snap     | ring fitted    | nominal       |                |                                     | Reference      | ;           | applicable   | e bearing             |
|------------------|--------------|----------|----------------------------|--------------|--------------|--------------|--------------|----------|----------------|---------------|----------------|-------------------------------------|----------------|-------------|--------------|-----------------------|
|                  |              | tolerand | ce of $\Delta D_3$         |              |              |              |              |          | le groove      | bearing outer |                |                                     | thickness      |             | dimension 18 | on series<br>19       |
|                  | $D_3$        |          |                            |              |              |              | f            | ď        | outer diameter |               | D              | D                                   | variation      | ď           | nomino       | l hooring             |
|                  | <i>D</i> 3   | Upper    | Lower                      | max          | e<br>min     | max          | <i>I</i> min | g        | $D_2$ max      | D             | $R_{ m i}$ min | $R_{\!\scriptscriptstyle  m O}$ min | $V_{ m f}$ max | $g_{\circ}$ |              | l bearing<br>ameter d |
| ND4000           | 20.5         | 0        | 0.0                        | 2.00         | 4.05         | 0.7          | 0.0          | 0        | 04.0           | 20            | 0.0            | 0.4                                 | 0.00           | ,           |              | 40                    |
| NR1022           | 20.5         | 0        | - 0.3                      | 2.00         | 1.85         | 0.7          | 0.6          | 2        | 24.8           | 22            | 0.2            | 0.1                                 | 0.06           | 1           | -            | 10                    |
| NR1024           | 22.5         | 0        | - 0.3                      | 2.00         | 1.85         | 0.7          | 0.6          | 2        | 26.8           | 24            | 0.2            | 0.1                                 | 0.06           | 1           | -            | 12                    |
| NR1028           | 26.4         | 0        | - 0.3                      | 2.05         | 1.90         | 0.85         | 0.75         | 3        | 30.8           | 28            | 0.25           | 0.15                                | 0.06           | 2           | -            | 15                    |
| NR1030<br>NR1032 | 28.3         | 0        | - 0.3                      | 2.05         | 1.90         | 0.85         | 0.75         | 3        | 32.8           | 30            | 0.25           | 0.15                                | 0.06           | 2           | -            | 17                    |
| NR1032<br>NR1034 | 30.3<br>32.3 | 0        | - 0.3<br>- 0.3             | 2.05         | 1.90<br>1.90 | 0.85<br>0.85 | 0.75<br>0.75 | 3        | 34.8<br>36.8   | 32<br>34      | 0.25<br>0.25   | 0.15<br>0.15                        | 0.06<br>0.06   | 2           | 20<br>22     | -                     |
| NR1034           | 35.3         | 0<br>0   | - 0.3                      | 2.05<br>2.05 | 1.90         | 0.85         | 0.75         | 3<br>3   | 39.8           | 37            | 0.25           | 0.15                                | 0.06           | 2           | 25           | 20                    |
| NR1037           | 37.3         | 0        | - 0.3                      | 2.05         | 1.90         | 0.85         | 0.75         | 3        | 41.8           | 39            | 0.25           | 0.15                                | 0.06           | 2           | -            | 22                    |
| NR1039           | 38.3         | 0        | - 0.3                      | 2.05         | 1.90         | 0.85         | 0.75         | 3        | 42.8           | 40            | 0.25           | 0.15                                | 0.06           | 2           | -<br>28      | -                     |
| NR1040           | 40.3         | 0        | - 0.4                      | 2.05         | 1.90         | 0.85         | 0.75         | 3        | 44.8           | 42            | 0.25           | 0.15                                | 0.06           | 2           | 30           | 25                    |
| NR1044           | 42.3         | 0        | - 0.4                      | 2.05         | 1.90         | 0.85         | 0.75         | 4        | 46.8           | 44            | 0.25           | 0.15                                | 0.06           | 2.5         | 32           | -                     |
| NR1045           | 43.3         | 0        | - 0.4                      | 2.05         | 1.90         | 0.85         | 0.75         | 4        | 47.8           | 45            | 0.25           | 0.15                                | 0.06           | 2.5         | -            | 28                    |
| NR1047           | 45.3         | 0        | - 0.4                      | 2.05         | 1.90         | 0.85         | 0.75         | 4        | 49.8           | 47            | 0.25           | 0.15                                | 0.06           | 2.5         | 35           | 30                    |
| NR1052           | 50.3         | 0        | - 0.4                      | 2.05         | 1.90         | 0.85         | 0.75         | 4        | 54.8           | 52            | 0.25           | 0.15                                | 0.06           | 2.5         | 40           | 32                    |
| NR1055           | 53.3         | 0        | - 0.4                      | 2.05         | 1.90         | 0.85         | 0.75         | 4        | 57.8           | 55            | 0.25           | 0.15                                | 0.06           | 2.5         | -            | 35                    |
| NR1058           | 56.3         | 0        | - 0.6                      | 2.05         | 1.90         | 0.85         | 0.75         | 4        | 60.8           | 58            | 0.25           | 0.15                                | 0.06           | 2.5         | 45           | -                     |
| NR1062           | 60.2         | 0        | - 0.6                      | 2.05         | 1.90         | 0.85         | 0.75         | 4        | 64.8           | 62            | 0.25           | 0.15                                | 0.06           | 2.5         | -            | 40                    |
| NR1065           | 63.2         | 0        | - 0.6                      | 2.05         | 1.90         | 0.85         | 0.75         | 4        | 67.8           | 65            | 0.25           | 0.15                                | 0.06           | 2.5         | 50           | -                     |
| NR1068           | 66.2         | 0        | - 0.6                      | 2.05         | 1.90         | 0.85         | 0.75         | 5        | 70.8           | 68            | 0.25           | 0.15                                | 0.06           | 3           | -            | 45                    |
| NR1072           | 70.2         | 0        | - 0.6                      | 2.05         | 1.90         | 0.85         | 0.75         | 5        | 74.8           | 72            | 0.25           | 0.15                                | 0.06           | 3           | 55           | 50                    |
| NR1078           | 75.7         | 0        | - 0.6                      | 3.25         | 3.10         | 1.12         | 1.02         | 5        | 82.7           | 78            | 0.4            | 0.3                                 | 0.06           | 3           | 60           | -                     |
| NR1080           | 77.4         | 0        | - 0.6                      | 3.25         | 3.10         | 1.12         | 1.02         | 5        | 84.4           | 80            | 0.4            | 0.3                                 | 0.06           | 3           | -            | 55                    |
| NR1085           | 82.4         | 0        | - 0.6                      | 3.25         | 3.10         | 1.12         | 1.02         | 5        | 89.4           | 85            | 0.4            | 0.3                                 | 0.06           | 3           | 65           | 60                    |
| NR1090           | 87.4         | 0        | - 0.6                      | 3.25         | 3.10         | 1.12         | 1.02         | 5        | 94.4           | 90            | 0.4            | 0.3                                 | 0.06           | 3           | 70           | 65                    |
| NR1095           | 92.4         | 0        | - 0.6                      | 3.25         | 3.10         | 1.12         | 1.02         | 5        | 99.4           | 95            | 0.4            | 0.3                                 | 0.06           | 3           | 75           | -                     |
| NR1100           | 97.4         | 0        | - 0.6                      | 3.25         | 3.10         | 1.12         | 1.02         | 5        | 104.4          | 100           | 0.4            | 0.3                                 | 0.06           | 3           | 80           | 70                    |
| NR1105           | 101.9        | 0        | - 0.8                      | 4.04         | 3.89         | 1.12         | 1.02         | 5        | 110.7          | 105           | 0.4            | 0.3                                 | 0.06           | 3           | -            | 75                    |
| NR1110           | 106.9        | 0        | - 0.8                      | 4.04         | 3.89         | 1.12         | 1.02         | 5        | 115.7          | 110           | 0.4            | 0.3                                 | 0.06           | 3           | 85           | 80                    |
| NR1115           | 111.9        | 0        | - 0.8                      | 4.04         | 3.89         | 1.12         | 1.02         | 5        | 120.7          | 115           | 0.4            | 0.3                                 | 0.06           | 3           | 90           | -                     |
| NR1120           | 116.9        | 0        | - 0.8                      | 4.04         | 3.89         | 1.12         | 1.02         | 7        | 125.7          | 120           | 0.4            | 0.3                                 | 0.06           | 4           | 95           | 85                    |
| NR1125           | 121.8        | 0        | - 0.8                      | 4.04         | 3.89         | 1.12         | 1.02         | 7        | 130.7          | 125           | 0.4            | 0.3                                 | 0.06           | 4           | 100          | 90                    |
| NR1130           | 126.8        | 0        | - 0.8                      | 4.04         | 3.89         | 1.12         | 1.02         | 7        | 135.7          | 130           | 0.4            | 0.3                                 | 0.06           | 4           | 105          | 95                    |
| NR1140           | 136.8        | 0        | - 1.0                      | 4.04         | 3.89         | 1.7          | 1.6          | 7        | 145.7          | 140           | 0.6            | 0.5                                 | 0.06           | 4           | 110          | 100                   |
| NR1145           | 141.8        | 0        | - 1.0                      | 4.04         | 3.89         | 1.7          | 1.6          | 7        | 150.7          | 145           | 0.6            | 0.5                                 | 0.06           | 4           | 120          | 105                   |
| NR1150           | 146.8        | 0        | - 1.2<br>- 1.2             | 4.04         | 3.89         | 1.7          | 1.6          | 7        | 155.7          | 150           | 0.6            | 0.5                                 | 0.06           | 4           | 120          | 110                   |
| NR1165           | 161<br>171   | 0        |                            | 4.85         | 4.70         | 1.7          | 1.6          | 7        | 171.5          | 165           | 0.6            | 0.5                                 | 0.06           | 4           | 130          | 120                   |
| NR1175<br>NR1180 | 171<br>176   | 0        | - 1.2<br>- 1.2             | 4.85<br>4.85 | 4.70<br>4.70 | 1.7<br>1.7   | 1.6<br>1.6   | 10<br>10 | 181.5<br>186.5 | 175<br>180    | 0.6<br>0.6     | 0.5<br>0.5                          | 0.06<br>0.06   | 6           | 140          | -<br>130              |
| NR1190           | 186          | 0<br>0   | - 1.2<br>- 1.4             | 4.85         | 4.70         | 1.7          | 1.6          | 10       | 196.5          | 190           | 0.6            | 0.5                                 | 0.06           | 6<br>6      | -<br>150     | 140                   |
| NR1200           | 196          | 0        | - 1. <del>4</del><br>- 1.4 | 4.85         | 4.70         | 1.7          | 1.6          | 10       | 206.5          | 200           | 0.6            | 0.5                                 | 0.06           | 6           | 160          | -                     |
| 1411 1200        | 100          | U        | 1.4                        | ┯.05         | 7.70         | 1.7          | 1.0          | 10       | 200.0          | 200           | 0.0            | 0.5                                 | 0.00           | U           | 100          | -                     |

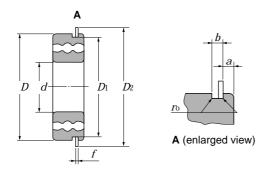



## Groove



|   |                  | Groove | diameter |      | Dimensio | n series |      | Groove | width | Knuckle<br>radius |
|---|------------------|--------|----------|------|----------|----------|------|--------|-------|-------------------|
|   | bearing<br>outer |        |          | 18   |          | 1:       | 9    |        |       | radius            |
|   | diameter<br>D    |        | $D_1$    |      | Groove   |          |      | j      | b     | $r_{\circ}$       |
|   | D                | max    | min      | max  | min      | max      | min  | max    | min   | max               |
| ı |                  |        |          |      |          |          |      |        |       |                   |
|   | 22               | 20.8   | 20.5     | -    | -        | 1.05     | 0.90 | 1.05   | 0.8   | 0.2               |
|   | 24               | 22.8   | 22.5     | -    | -        | 1.05     | 0.90 | 1.05   | 0.8   | 0.2               |
|   | 28               | 26.7   | 26.4     | -    | -        | 1.30     | 1.15 | 1.20   | 0.95  | 0.25              |
|   | 30               | 28.7   | 28.4     | -    | -        | 1.30     | 1.15 | 1.20   | 0.95  | 0.25              |
|   | 32               | 30.7   | 30.4     | 1.30 | 1.15     | -        | -    | 1.20   | 0.95  | 0.25              |
|   | 34               | 32.7   | 32.4     | 1.30 | 1.15     | -        | -    | 1.20   | 0.95  | 0.25              |
|   | 37               | 35.7   | 35.4     | 1.30 | 1.15     | 1.70     | 1.55 | 1.20   | 0.95  | 0.25              |
|   | 39               | 37.7   | 37.4     | -    | -        | 1.70     | 1.55 | 1.20   | 0.95  | 0.25              |
|   | 40               | 38.7   | 38.4     | 1.30 | 1.15     | -        | -    | 1.20   | 0.95  | 0.25              |
|   | 42               | 40.7   | 40.4     | 1.30 | 1.15     | 1.70     | 1.55 | 1.20   | 0.95  | 0.25              |
|   | 44               | 42.7   | 42.4     | 1.30 | 1.15     | -        | -    | 1.20   | 0.95  | 0.25              |
|   | 45               | 43.7   | 43.4     | -    | -        | 1.70     | 1.55 | 1.20   | 0.95  | 0.25              |
|   | 47               | 45.7   | 45.4     | 1.30 | 1.15     | 1.70     | 1.55 | 1.20   | 0.95  | 0.25              |
|   | 52               | 50.7   | 50.4     | 1.30 | 1.15     | 1.70     | 1.55 | 1.20   | 0.95  | 0.25              |
|   | 55               | 53.7   | 53.4     | -    | -        | 1.70     | 1.55 | 1.20   | 0.95  | 0.25              |
|   | 58               | 56.7   | 56.4     | 1.30 | 1.15     | -        | -    | 1.20   | 0.95  | 0.25              |
|   | 62               | 60.7   | 60.3     | -    | -        | 1.70     | 1.55 | 1.20   | 0.95  | 0.25              |
|   | 65               | 63.7   | 63.3     | 1.30 | 1.15     | -        | -    | 1.20   | 0.95  | 0.25              |
|   | 68               | 66.7   | 66.3     | -    | -        | 1.70     | 1.55 | 1.20   | 0.95  | 0.25              |
|   | 72               | 70.7   | 70.3     | 1.70 | 1.55     | 1.70     | 1.55 | 1.20   | 0.95  | 0.25              |
|   | 78               | 76.2   | 75.8     | 1.70 | 1.55     | -        | -    | 1.6    | 1.3   | 0.4               |
|   | 80               | 77.9   | 77.5     | -    | -        | 2.1      | 1.9  | 1.6    | 1.3   | 0.4               |
|   | 85               | 82.9   | 82.5     | 1.70 | 1.55     | 2.1      | 1.9  | 1.6    | 1.3   | 0.4               |
|   | 90               | 87.9   | 87.5     | 1.70 | 1.55     | 2.1      | 1.9  | 1.6    | 1.3   | 0.4               |
|   | 95               | 92.9   | 92.5     | 1.70 | 1.55     | -        | -    | 1.6    | 1.3   | 0.4               |
|   | 100              | 97.9   | 97.5     | 1.70 | 1.55     | 2.5      | 2.3  | 1.6    | 1.3   | 0.4               |
|   | 105              | 102.6  | 102.1    | -    | -        | 2.5      | 2.3  | 1.6    | 1.3   | 0.4               |
|   | 110              | 107.6  | 107.1    | 2.1  | 1.9      | 2.5      | 2.3  | 1.6    | 1.3   | 0.4               |
|   | 115              | 112.6  | 112.1    | 2.1  | 1.9      | -        | -    | 1.6    | 1.3   | 0.4               |
|   | 120              | 117.6  | 117.1    | 2.1  | 1.9      | 3.3      | 3.1  | 1.6    | 1.3   | 0.4               |
|   | 125              | 122.6  | 122.1    | 2.1  | 1.9      | 3.3      | 3.1  | 1.6    | 1.3   | 0.4               |
|   | 130              | 127.6  | 127.1    | 2.1  | 1.9      | 3.3      | 3.1  | 1.6    | 1.3   | 0.4               |
|   | 140              | 137.6  | 137.1    | 2.5  | 2.3      | 3.3      | 3.1  | 2.2    | 1.9   | 0.6               |
|   | 145              | 142.6  | 142.1    | -    | -        | 3.3      | 3.1  | 2.2    | 1.9   | 0.6               |
|   | 150              | 147.6  | 147.1    | 2.5  | 2.3      | 3.3      | 3.1  | 2.2    | 1.9   | 0.6               |
|   | 165              | 161.8  | 161.3    | 3.3  | 3.1      | 3.7      | 3.5  | 2.2    | 1.9   | 0.6               |
|   | 175              | 171.8  | 181.3    | 3.3  | 3.1      | -        | -    | 2.2    | 1.9   | 0.6               |
|   | 180              | 176.8  | 176.3    | -    | -        | 3.7      | 3.5  | 2.2    | 1.9   | 0.6               |
|   | 190              | 186.8  | 186.3    | 3.3  | 3.1      | 3.7      | 3.5  | 2.2    | 1.9   | 0.6               |
|   | 200              | 196.8  | 196.5    | 3.3  | 3.1      | -        | -    | 2.2    | 1.9   | 0.6               |
|   |                  |        |          |      |          |          |      |        |       |                   |




## Snap rings for diameter series 0, 2, 3 and 4 bearings



| Bearing No. | t              |         | nsional<br>ce of bo | re           |                   |              |              |        | ring fitted<br>de groove | nominal<br>bearing          |              |             | Re                    | eference    | ар         | plicab<br>mensi |          | . •      |
|-------------|----------------|---------|---------------------|--------------|-------------------|--------------|--------------|--------|--------------------------|-----------------------------|--------------|-------------|-----------------------|-------------|------------|-----------------|----------|----------|
|             |                | toleran | ce of $\Delta D$    | 3            |                   |              |              | 111511 | snap ring                | outer                       |              |             | thickness             |             | 0          | 2               | 3        | 4        |
|             | $D_3$          |         |                     | $\epsilon$   | ,                 |              | f            | g      | outer diameter $D_2$     | $\frac{\text{diameter}}{D}$ | r $R_{ m i}$ | $R_{\circ}$ | variation $V_{\rm f}$ | $g_{\circ}$ | ne         | omina           | bear     | ing      |
|             |                | Upper   | Lower               | max          | min               | max          | min          | U      | max                      |                             | min          | min         | max                   | U           | Ol         | uter dia        | amete    | er d     |
| NR 30       | 27.9           | 0       | - 0.4               | 3.25         | 3.10              | 1.12         | 1.02         | 3      | 34.7                     | 30                          | 0.4          | 0.3         | 0.06                  | 2           | _          | 10              | 9        | 8        |
| NR 32       | 29.9           | 0       | - 0.4               | 3.25         | 3.10              | 1.12         | 1.02         | 3      | 36.7                     | 32                          | 0.4          | 0.3         | 0.06                  | 2           | 15         | 12              | _        | 9        |
| NR 35       | 32.9           | 0       | - 0.4               | 3.25         | 3.10              | 1.12         | 1.02         | 3      | 39.7                     | 35                          | 0.4          | 0.3         | 0.06                  | 2           | 17         | 15              | 10       | -        |
| NR 37       | 34.5           | 0       | - 0.4               | 3.25         | 3.10              | 1.12         | 1.02         | 3      | 41.3                     | 37                          | 0.4          | 0.3         | 0.06                  | 2           | -          | -               | 12       | 10       |
| NR 40       | 37.8           | 0       | - 0.4               | 3.25         | 3.10              | 1.12         | 1.02         | 3      | 44.6                     | 40                          | 0.4          | 0.3         | 0.06                  | 2           | -          | 17              | -        | -        |
| NR 42       | 39.5           | 0       | - 0.5               | 3.25         | 3.10              | 1.12         | 1.02         | 3      | 46.3                     | 42                          | 0.4          | 0.3         | 0.06                  | 2           | 20         | -               | 15       | 12       |
| NR 44       | 41.5           | 0       | - 0.5               | 3.25         | 3.10              | 1.12         | 1.02         | 3      | 48.3                     | 44                          | 0.4          | 0.3         | 0.06                  | 2           | 22         | -               | -        | -        |
| NR 47       | 44.3           | 0       | - 0.5               | 4.04         | 3.89              | 1.12         | 1.02         | 4      | 52.7                     | 47                          | 0.4          | 0.3         | 0.06                  | 2.5         | 25         | 20              | 17       | -        |
| NR 50       | 47.3           | 0       | - 0.5               | 4.04         | 3.89              | 1.12         | 1.02         | 4      | 55.7                     | 50                          | 0.4          | 0.3         | 0.06                  | 2.5         | -          | 22              | -        | -        |
| NR 52       | 49.4           | 0       | - 0.5               | 4.04         | 3.89              | 1.12         | 1.02         | 4      | 57.9                     | 52                          | 0.4          | 0.3         | 0.06                  | 2.5         | 28         | 25              | 20       | 15       |
| NR 55       | 52.3           | 0       | - 0.5               | 4.04         | 3.89              | 1.12         | 1.02         | 4      | 60.7                     | 55                          | 0.4          | 0.3         | 0.06                  | 2.5         | 30         | -               | -        | -        |
| NR 56       | 53.2           | 0       | - 0.6               | 4.04         | 3.89              | 1.12         | 1.02         | 4      | 61.7                     | 56                          | 0.4          | 0.3         | 0.06                  | 2.5         | -          | -               | 22       | -        |
| NR 58       | 55.2           | 0       | - 0.6               | 4.04         | 3.89              | 1.12         | 1.02         | 4      | 63.7                     | 58                          | 0.4          | 0.3         | 0.06                  | 2.5         | 32         | 28              | -        | -        |
| NR 62       | 59.0           | 0       | - 0.6               | 4.04         | 3.89              | 1.7          | 1.6          | 4      | 67.7                     | 62                          | 0.6          | 0.5         | 0.06                  | 2.5         | 35         | 30              | 25       | 17       |
| NR 65       | 62.0           | 0       | - 0.6               | 4.04         | 3.89              | 1.7          | 1.6          | 4      | 70.7                     | 65                          | 0.6          | 0.5         | 0.06                  | 2.5         | -          | 32              | -        | -        |
| NR 68       | 64.2           | 0       | - 0.6               | 4.85         | 4.70              | 1.7          | 1.6          | 5      | 74.6                     | 68                          | 0.6          | 0.5         | 0.06                  | 3           | 40         | -               | 28       | -        |
| NR 72       | 68.2           | 0       | - 0.6               | 4.85         | 4.70              | 1.7          | 1.6          | 5      | 78.6                     | 72                          | 0.6          | 0.5         | 0.06                  | 3           | -          | 35              | 30       | 20       |
| NR 75       | 71.2           | 0       | - 0.6               | 4.85         | 4.70              | 1.7          | 1.6          | 5      | 81.6                     | 75                          | 0.6          | 0.5         | 0.06                  | 3           | 45         | -               | 32       | -        |
| NR 80       | 76.2           | 0       | - 0.6               | 4.85         | 4.70              | 1.7          | 1.6          | 5      | 86.6                     | 80                          | 0.6          | 0.5         | 0.06                  | 3           | 50         | 40              | 35       | 25       |
| NR 85       | 81.2           | 0       | - 0.6               | 4.85         | 4.70              | 1.7          | 1.6          | 5      | 91.6                     | 85                          | 0.6          | 0.5         | 0.06                  | 3           | -          | 45              | -        | -        |
| NR 90       | 86.2           | 0       | - 0.6               | 4.85         | 4.70              | 2.46         | 2.36         | 5      | 96.5                     | 90                          | 0.6          | 0.5         | 0.06                  | 3           | 55         | 50              | 40       | 30       |
| NR 95       | 91.2           | 0       | - 0.6               | 4.85         | 4.70              | 2.46         | 2.36         | 5      | 101.6                    | 95                          | 0.6          | 0.5         | 0.06                  | 3           | 60         | -               | -        | -        |
| NR100       | 96.2           | 0       | - 0.8               | 4.85         | 4.70              | 2.46         | 2.36         | 5      | 106.5                    | 100                         | 0.6          | 0.5         | 0.06                  | 3           | 65         | 55              | 45       | 35       |
| _           | 106.2          | 0       | - 0.8               | 4.85         | 4.70              | 2.46         | 2.36         | 5      | 116.6                    | 110                         | 0.6          | 0.5         | 0.06                  | 3           | 70         | 60              | 50       | 40       |
| _           | 111.2          | 0       | - 0.8               | 4.85         | 4.70              | 2.46         | 2.36         | 5      | 121.6                    | 115                         | 0.6          | 0.5         | 0.06                  | 3           | 75         | -               | -        | -        |
|             | 114.6          | 0       | - 0.8               | 7.21         | 7.06              | 2.82         | 2.72         | 7      | 129.7                    | 120                         | 0.6          | 0.5         | 0.06                  | 4           | -          | 65              | 55       | 45       |
|             | 119.6          | 0       | - 0.8               | 7.21         | 7.06              | 2.82         | 2.72         | 7      | 134.7                    | 125                         | 0.6          | 0.5         | 0.06                  | 4           | 80         | 70              | -        | -        |
|             | 124.6          | 0       | - 0.8               | 7.21         | 7.06              | 2.82         | 2.72         | 7      | 139.7                    | 130                         | 0.6          | 0.5         | 0.06                  | 4           | 85         | 75              | 60       | 50       |
| _           | 134.6          | 0       | - 1.2               | 7.21         | 7.06              | 2.82         | 2.72         | 7      | 149.7                    | 140                         | 0.6          | 0.5         | 0.06                  | 4           | 90         | 80              | 65       | 55       |
| _           | 139.6          | 0       | - 1.2               | 7.21         | 7.06              | 2.82         | 2.72         | 7      | 154.7                    | 145                         | 0.6          | 0.5         | 0.06                  | 4           | 95         | -               | -        | -        |
|             | 144.5          | 0       | - 1.2<br>- 1.2      | 7.21<br>7.21 | 7.06              | 2.82<br>2.82 | 2.72<br>2.72 | 7<br>7 | 159.7<br>169.7           | 150                         | 0.6          | 0.5         | 0.06                  | 4           | 100        | 85              | 70<br>75 | 60<br>65 |
|             | 154.5<br>162.9 | 0       |                     | 7.21<br>9.60 | 7.06<br>9.45      | 2.82<br>3.1  | 3.0          | 10     | 169.7<br>182.9           | 160<br>170                  | 0.6          | 0.5<br>0.5  | 0.06                  | 4<br>6      | 105        | 90<br>95        | 75<br>80 | 65       |
| _           | 162.9          | 0<br>0  | - 1.2<br>- 1.2      | 9.60         | 9.45<br>9.45      | 3.1          | 3.0          | 10     | 182.9                    | 180                         | 0.6<br>0.6   | 0.5         | 0.06<br>0.06          | 6           | 110<br>120 | 100             | 80<br>85 | -<br>70  |
|             | 182.8          | 0       | - 1.2<br>- 1.4      | 9.60         | 9.45<br>9.45      | 3.1<br>3.1   | 3.0          | 10     | 202.9                    | 190                         | 0.6          | 0.5         | 0.06                  | 6           | 120        | 100             | 90       | 70<br>75 |
|             | 192.8          | 0       | - 1.4<br>- 1.4      | 9.60         | 9.45<br>9.45      | 3.1          | 3.0          | 10     | 202.9                    | 200                         | 0.6          | 0.5         | 0.06                  | 6           | 130        | 110             | 95       | 80       |
| NINZUU      | 132.0          | U       | - 1.4               | 9.00         | ə. <del>4</del> 0 | J. I         | 5.0          | 10     | ۷۱۷.۶                    | 200                         | 0.0          | 0.5         | 0.00                  | U           | 130        | 110             | 90       | 00       |
|             |                |         |                     |              |                   |              |              |        |                          |                             |              |             |                       |             |            |                 |          |          |



## Groove



| Nominal          | Groove o | diameter            |      | Dimensio            | n series |      | Groove | width    | Knuckle<br>radius |
|------------------|----------|---------------------|------|---------------------|----------|------|--------|----------|-------------------|
| bearing<br>outer |          |                     | O    | )                   | 2, 3     | 3, 4 |        |          | radius            |
| diameter         | 7        | 2                   |      | Groove <sub>I</sub> |          | •    | ;      | L        |                   |
| D                | max      | $\mathcal{O}_1$ min | max  | <i>a</i> min        | nax      | min  | max    | )<br>min | $arGamma_0$ max   |
|                  |          |                     |      |                     |          |      |        |          |                   |
| 30               | 28.17    | 27.91               | _    | _                   | 2.06     | 1.90 | 1.65   | 1.35     | 0.4               |
| 32               | 30.15    | 29.90               | 2.06 | 1.90                | 2.06     | 1.90 | 1.65   | 1.35     | 0.4               |
| 35               | 33.17    | 32.92               | 2.06 | 1.90                | 2.06     | 1.90 | 1.65   | 1.35     | 0.4               |
| 37               | 34.77    | 34.52               | -    | -                   | 2.06     | 1.90 | 1.65   | 1.35     | 0.4               |
| 40               | 38.10    | 37.85               | -    | -                   | 2.06     | 1.90 | 1.65   | 1.35     | 0.4               |
| 42               | 39.75    | 39.50               | 2.06 | 1.90                | 2.06     | 1.90 | 1.65   | 1.35     | 0.4               |
| 44               | 41.75    | 41.50               | 2.06 | 1.90                | -        | -    | 1.65   | 1.35     | 0.4               |
| 47               | 44.60    | 44.35               | 2.06 | 1.90                | 2.46     | 2.31 | 1.65   | 1.35     | 0.4               |
| 50               | 47.60    | 47.35               | -    | -                   | 2.46     | 2.31 | 1.65   | 1.35     | 0.4               |
| 52               | 49.73    | 49.48               | 2.06 | 1.90                | 2.46     | 2.31 | 1.65   | 1.35     | 0.4               |
| 55               | 52.60    | 52.35               | 2.08 | 1.88                | -        | -    | 1.65   | 1.35     | 0.4               |
| 56               | 53.60    | 53.35               | -    | -                   | 2.46     | 2.31 | 1.65   | 1.35     | 0.4               |
| 58               | 55.60    | 55.35               | 2.08 | 1.88                | 2.46     | 2.31 | 1.65   | 1.35     | 0.4               |
| 62               | 59.61    | 59.11               | 2.08 | 1.88                | 3.28     | 3.07 | 2.2    | 1.9      | 0.6               |
| 65               | 62.60    | 62.10               | -    | -                   | 3.28     | 3.07 | 2.2    | 1.9      | 0.6               |
| 68               | 64.82    | 64.31               | 2.49 | 2.29                | 3.28     | 3.07 | 2.2    | 1.9      | 0.6               |
| 72               | 68.81    | 68.30               | -    | -                   | 3.28     | 3.07 | 2.2    | 1.9      | 0.6               |
| 75               | 71.83    | 71.32               | 2.49 | 2.29                | 3.28     | 3.07 | 2.2    | 1.9      | 0.6               |
| 80               | 76.81    | 76.30               | 2.49 | 2.29                | 3.28     | 3.07 | 2.2    | 1.9      | 0.6               |
| 85               | 81.81    | 81.31               | -    | -                   | 3.28     | 3.07 | 2.2    | 1.9      | 0.6               |
| 90               | 86.79    | 86.28               | 2.87 | 2.67                | 3.28     | 3.07 | 3.0    | 2.7      | 0.6               |
| 95               | 91.82    | 91.31               | 2.87 | 2.67                | -        | -    | 3.0    | 2.7      | 0.6               |
| 100              | 96.80    | 96.29               | 2.87 | 2.67                | 3.28     | 3.07 | 3.0    | 2.7      | 0.6               |
| 110              | 106.81   | 106.30              | 2.87 | 2.67                | 3.28     | 3.07 | 3.0    | 2.7      | 0.6               |
| 115              | 111.81   | 111.30              | 2.87 | 2.67                | -        | -    | 3.0    | 2.7      | 0.6               |
| 120              | 115.21   | 114.71              | -    | -                   | 4.06     | 3.86 | 3.4    | 3.1      | 0.6               |
| 125              | 120.22   | 119.71              | 2.87 | 2.67                | 4.06     | 3.86 | 3.4    | 3.1      | 0.6               |
| 130              | 125.22   | 124.71              | 2.87 | 2.67                | 4.06     | 3.86 | 3.4    | 3.1      | 0.6               |
| 140              | 135.23   | 134.72              | 3.71 | 3.45                | 4.90     | 4.65 | 3.4    | 3.1      | 0.6               |
| 145              | 140.23   | 139.73              | 3.71 | 3.45                | -        | -    | 3.4    | 3.1      | 0.6               |
| 150              | 145.24   | 144.73              | 3.71 | 3.45                | 4.90     | 4.65 | 3.4    | 3.1      | 0.6               |
| 160              | 155.22   | 154.71              | 3.71 | 3.45                | 4.90     | 4.65 | 3.4    | 3.1      | 0.6               |
| 170              | 163.65   | 163.14              | 3.71 | 3.45                | 5.69     | 5.44 | 3.8    | 3.5      | 0.6               |
| 180              | 173.66   | 173.15              | 3.71 | 3.45                | 5.69     | 5.44 | 3.8    | 3.5      | 0.6               |
| 190              | 183.64   | 183.13              | -    | -                   | 5.69     | 5.44 | 3.8    | 3.5      | 0.6               |
| 200              | 193.65   | 193.14              | 5.69 | 5.44                | 5.69     | 5.44 | 3.8    | 3.5      | 0.6               |

## **Catalog List and Appendix Table Contents**

| Catalog list D-                                                                                 | 2  |
|-------------------------------------------------------------------------------------------------|----|
| Appendix table 1: Boundary dimensions of radial bearings (Tapered roller bearings not included) | 4  |
| Appendix table 2: Comparison of SI, CGS and gravity units D-                                    | 6  |
| Appendix table 3: Conversion to SI unit                                                         | 7  |
| Appendix table 4: Tenth power multiples of SI unit D-                                           | 7  |
| Appendix table 5: Dimensional tolerance for shafts D-                                           | 8  |
| Appendix table 6: Dimensional tolerance for housing bore D-                                     | 10 |
| Appendix table 7: Basic tolerance                                                               | 12 |
| Appendix table 8: Viscosity conversion table D-                                                 | 13 |
| Appendix table 9: Kgf to N conversion table D-                                                  | 14 |
| Appendix table 10: US customary to metric conversion table D-                                   | 15 |
| Appendix table 11: Hardness conversion table (reference) D-                                     | 16 |
| Appendix table 12: Greek alphabet list                                                          | 17 |

## **Catalog List & Appendix Table**



| CATALOG TITLES                                                         | CATALOG No.    |
|------------------------------------------------------------------------|----------------|
| BALL AND ROLLER BEARINGS                                               |                |
| Ball and Roller Bearings                                               | 2202/C/E/I/P/S |
| Large Bearings                                                         | 2250/E/P       |
| Miniature and Extra Small Ball Bearings                                | 3013/E         |
| Miniature Molded Rubber Bearings                                       | 3014/E         |
| Ball Bearings Shield and Seal Types                                    | 3015/E         |
| Care and Maintenance of Bearings                                       | 3017/E/S/P     |
| HL Bearings                                                            | 3020/E         |
| Bearings with Solid Grease                                             | 3022/E/S/P     |
| Large Size, Long Operating Life Bearing-EA type                        | 3024/E/P       |
| Tapered Roller Bearings ECO-Top                                        | 3026/E/S/C     |
| Self-Aligning Spherical Roller Bearings LH Series                      | 3027/E/S/C     |
| Bearings for Clean Environment                                         | 3028/E         |
| Insulated Bearings-Resin Coated Type                                   | 3204/E         |
| Type E Spherical Roller Bearings                                       | 3701/E         |
| Sealed Self-Aligning Roller Bearings-WA Type                           | 3702/E/S       |
| Spherical Roller Bearings-UA Type                                      | 3710/E         |
| HUB BEARINGS                                                           | 4601/E         |
| Aerospace Bearings                                                     | 8102/E         |
| Precision Rolling Bearings for Machine Tools                           | 8401/E         |
| Super High-speed Precision Bearings for Main Spindles of Machine Tools | 8403/E         |
| NEEDLE ROLLER BEARINGS                                                 |                |
| Needle Roller Bearings                                                 | 2300/E/I/P/S   |
| Miniature Cam Followers                                                | 3601/E         |
| CONSTANT VELOCITY JOINTS                                               |                |
| Constant Velocity Joints for Automobiles                               | 5601/JE        |
| TRI-Ball Joint / Constant Velocity Joints                              | 5602/E         |
| Constant Velocity Joints for Industrial Machines                       | 5603/E         |
| BEARING UNITS                                                          |                |
| Bearing Units                                                          | 2400/E/I/S     |
| Bearing Units with Ductile Cast Iron Housing                           | 3901/E         |
| Bearing Units Steel Series                                             | 3902/E         |
| Bearing Units Stainless Series                                         | 3903/E         |
| Bearing Units Plastic Housing Series                                   | 3904/E         |
| Triple-Sealed Bearings for Bearing Units                               | 3905/E         |

| CATALOG TITLES                                                   | CATALOG No.  |
|------------------------------------------------------------------|--------------|
| PLUMMER BLOCKS                                                   |              |
| Plummer Blocks                                                   | 2500E/S      |
| PRECISION BALL SCREWS                                            |              |
| Precision Ball Screws                                            | 6000/E       |
| Rolled Ball Screws                                               | 6206/E       |
| PARTS FEEDER                                                     |              |
| Parts Feeder                                                     | 7018/E       |
| NTN Parts Feeder with Standard Attachments (for Bolts or Washer) | 7016/E       |
| CLUTCHES                                                         |              |
| One-way Clutches (Overrunning Clutches)                          | 6402/E       |
| PLAIN BEARINGS                                                   |              |
| "BEAREE" NTN Engineering Plastics                                | 5100/E       |
| Miniature Plastic Sliding Screws                                 | 5112/E       |
| NTN "BEARPHITE" Oil Impregnated Sintered Bearings                | 5202/E       |
| Spherical Plain Bearings                                         | 5301/E       |
| HANDBOOK                                                         |              |
| Bearing Units Handbook                                           | 9011/E/S     |
| Rolling Bearings Handbook                                        | 9012/E       |
| Needle Roller Bearings Handbook                                  | 9013/E       |
| GUIDE BOOK                                                       |              |
| Parts Feeder Guide Book                                          | 7019/E       |
| Automotive Products Guide Book                                   | 8021/E/D/F/C |
| New Products Guide                                               | 9208/E/C     |
| Food Machinery Component Guide                                   | 9209/E       |
| Product Catalog for Paper Manufacturing Machinery                | 9210/E       |
| Steel Manufacturing Machinery Product Guide Book                 | 9211/E       |
| ELECTRONIC CATALOG                                               |              |
| NTN Electronic Catalog (CD-ROM for Windows)                      | 7903/E       |
| NTN Autoparts Catalog (CD-ROM for Windows)                       | 7905/E       |
| Reference Kit Program -Bearing Interchange- (CD-ROM for Windows) | 7907/E       |
| OTHERS                                                           |              |
| Bearing Handling                                                 | 9103/E/P/S   |

C:Chinese E:English F:French D:Germany I:Italian K:Korean S:Spanish T:Thai TC: Taipei Chinese

Note : The above are basic numbers. Renewal of the suffix by a revision.  $\,$ 

Appendix table 1: Boundary dimensions of radial bearings (Tapered roller bearings not included)-1

| Sing           | le row<br>bearing    | radial                    | 67            |                   |            |                      |                           |                | 68<br>78        |                  |                   |                |                   |                |                   | ì                        | Ė                    |                | 69<br>79        |                |                 | iiig           |                          |                  |                   |                     |                   |                           | 160            | 60<br>70       |                   |                |                |                |                   |                               |
|----------------|----------------------|---------------------------|---------------|-------------------|------------|----------------------|---------------------------|----------------|-----------------|------------------|-------------------|----------------|-------------------|----------------|-------------------|--------------------------|----------------------|----------------|-----------------|----------------|-----------------|----------------|--------------------------|------------------|-------------------|---------------------|-------------------|---------------------------|----------------|----------------|-------------------|----------------|----------------|----------------|-------------------|-------------------------------|
| Doul<br>ball   | ole row<br>bearing   | radial<br>gs              |               |                   |            |                      |                           |                |                 |                  |                   |                |                   |                |                   |                          |                      |                |                 |                |                 |                |                          |                  |                   |                     |                   |                           |                |                |                   |                |                |                |                   |                               |
| Need<br>bear   | dle roll             | er                        |               |                   |            |                      |                           |                |                 | N28              | N38               | NN48<br>NA48   |                   |                |                   |                          |                      |                | N19             | N29            | NN39            |                | NA59                     | NA69             |                   |                     |                   |                           |                | N10            | N20               | NN30           | NN40           |                |                   |                               |
| Sphe           | erical re            | oller                     |               |                   |            |                      |                           |                |                 |                  |                   |                |                   |                |                   |                          |                      |                |                 |                | 239             |                |                          |                  |                   |                     |                   |                           |                |                |                   | 230            | 240            |                |                   |                               |
| bea            | ring                 | Di:                       | T             |                   | eries      |                      | Nominal                   |                | Dia             |                  | er s              |                |                   |                |                   |                          | Nominal              |                |                 | Dia            |                 |                | eries                    |                  |                   |                     |                   | Nominal                   |                |                | Diam              |                |                |                |                   |                               |
|                | neter<br>d           | outside<br>diameter<br>of | 17            | 27                | on se      | 17~37                | outside<br>diameter<br>of | 08             | 18              | 28               | imen<br>38        | 48             |                   | 68             | 08                | 18~68                    | outside              | 09             | 19              | 29             | 39              |                | on se                    | 69               | na                | 10 ~ 30             | 49 ~ 69           | outside<br>diameter<br>of | 00             | 10             |                   | 30             | sion<br>40     |                |                   | 00 10~60                      |
| Number         | Dimension            | bearing $D$               |               |                   | dth B      | Chamfer              | 10.00                     | 00             |                 |                  | nal w             |                | _                 | 00             | Cha               | mfer<br>nsion            | bearing              |                |                 |                | nal w           |                | _                        | 00               | С                 | hamf                | er<br>ion         | bearing $D$               | 00             | 1.0            |                   |                | widt           |                |                   | Chamfer dimension             |
|                | 0.6                  | 2                         | 0.8           |                   |            | 0.05                 | 2.5                       |                | 1               |                  | 1.4               |                |                   |                | S                 | min<br>0.05              |                      |                |                 |                |                 |                |                          |                  |                   | s mi                | in                | D                         |                |                |                   |                |                |                |                   | s min                         |
| 2              | 1.5<br>2             |                           | 1<br>1<br>1.2 |                   | 1.8<br>2   | 0.05<br>0.05<br>0.05 | 4                         |                | 1<br>1.2<br>1.5 |                  | 1.5<br>2<br>2.3   |                |                   |                |                   | 0.05<br>0.05<br>0.08     | 5                    |                | 1.6<br>2<br>2.3 |                | 2.3<br>2.6<br>3 |                |                          |                  |                   | 0.1<br>0.15<br>0.15 |                   | 6<br>7                    |                | 2.5<br>2.8     |                   | 3<br>3.5       |                |                |                   | 0.15<br>0.15                  |
|                | 2.5                  | 5                         | 1.5           |                   | 2.3        | 0.08                 | 6                         |                | 1.8             |                  | 2.6               |                |                   |                |                   | 0.08                     | 7                    |                | 2.5             |                | 3.5             |                |                          |                  |                   | 0.15                |                   | 8                         |                | 2.8            |                   | 4              |                |                |                   | 0.15                          |
| 4              | 4                    | 7                         | 2 2 2         | 2.5<br>2.5<br>2.5 | 3 3        | 0.08<br>0.08<br>0.08 | 9                         |                | 2<br>2.5<br>3   | 3.5<br>4         | 3<br>4<br>5       |                |                   |                |                   | 0.1<br>0.1<br>0.15       | 11<br>13             |                | 3<br>4<br>4     |                | 5<br>6          | 10             |                          |                  |                   | 0.15<br>0.15<br>0.2 | 5                 | 7<br>12<br>14             |                | 3<br>4<br>5    |                   | 5<br>6<br>7    |                |                |                   | 0.15<br>0.2                   |
| 7              | 6                    | 10                        | 2.5<br>2.5    | 3                 | 3.5<br>3.5 | 0.1<br>0.1           | 13<br>14                  |                | 3.5<br>3.5      | 5                | 6                 |                |                   |                |                   | 0.15<br>0.15             | 15                   |                | 5<br>5          |                | 7 7             | 10<br>10       |                          |                  |                   | 0.2                 |                   | 17                        |                | 6              | 8                 | 9<br>10        |                |                |                   | 0.2<br>0.3<br>0.3             |
| 8              |                      | 12<br>14                  | 2.5           |                   | 3.5<br>4.5 | 0.1<br>0.1           | 16<br>17                  |                | 4               | 5<br>5           | 6                 | 8              |                   |                |                   | 0.2<br>0.2               | 19<br>20             |                | 6               |                | 9               | 11<br>11       |                          |                  |                   | 0.3                 | 0.2<br>0.3        | 22<br>24                  |                | 7              | 9                 | 11<br>12       | 14<br>15       | 19<br>20       |                   | 0.3                           |
| 01             | 10<br>12             | 15<br>18                  | 3             |                   | 4.5<br>5   | 0.1                  | 19<br>21                  |                | 5<br>5          | 6                | 7<br>7            | 9              |                   |                |                   | 0.3                      | 22<br>24             |                | 6               | 8<br>8         | 10<br>10        | 13<br>13       | 16<br>16                 | 22<br>22         |                   | 0.3                 | 0.3               | 26<br>28                  | 7              | 8<br>8         | 10<br>10          | 12<br>12       | 16<br>16       | 21<br>21       | 29<br>29          | 0.3                           |
| 02             |                      | 21                        | 4             |                   | 5<br>5     | 0.2                  | 24                        |                | 5<br>5          | 6                | 7                 | 9              |                   |                |                   | 0.3                      | 30                   |                | 7               | 8.5            | 10              | 13             | 18                       | 23               |                   | 0.3                 | 0.3               | 32                        | 8              | 10             | 11                | 13<br>14       | 17<br>18       | 23<br>24       |                   | 0.3 0.3                       |
| 04/22          | 20                   | 27                        | 4             |                   | 5          | 0.2                  | 32<br>34                  | 4              | 7<br>7          | 8                | 10<br>10          | 12             | 16<br>16          | 22<br>22       | 0.3               | 0.3                      | 37<br>39             | 7<br>7         | 9               | 11             | 13<br>13        | 17<br>17       | 23<br>23                 | 30<br>30         | 0.3               | 0.3                 | 0.3               | 42<br>44                  | 8<br>8         | 12<br>12       | 14<br>14          | 16<br>16       | 22<br>22       | 30<br>30       | 40<br>40          | 0.3 0.6<br>0.3 0.6            |
| /28            |                      | 32                        | 4             |                   | 5          | 0.2                  | 37<br>40                  | 4              | 7<br>7          | 8                | 10<br>10          | 12             | 16<br>16          | 22<br>22       |                   |                          | 42<br>45             | 7<br>7         | 9               | 11<br>11       | 13<br>13        | 17<br>17       | 23<br>23                 | 30<br>30         | 0.3               |                     | 0.3               | 47<br>52                  | 8              | 12<br>12       | 14<br>15          | 16<br>18       | 22<br>24       | 30<br>32       |                   | 0.3 0.6<br>0.3 0.6            |
| /32            |                      | 37                        | 4             |                   | 5          | 0.2                  | 42<br>44                  | 4              | 7<br>7<br>7     | 8                | 10<br>10          | 12             | 16<br>16          | 22<br>22       |                   | 0.3                      | 47<br>52             | 7<br>7         | 9<br>10         | 11<br>13       | 13<br>15        | 17<br>20       | 23<br>27                 | 30<br>36         | 0.3               |                     | 0.3<br>0.6        | 55<br>58                  | 9              | 13<br>13       | 16<br>16          | 19<br>20       | 25<br>26       | 34<br>35       |                   | 0.3 1<br>0.3 1                |
| 07<br>08<br>09 | 40                   |                           | 5             |                   |            | 0.3                  | 47<br>52<br>58            | 4<br>4<br>4    | 7<br>7<br>7     | 8<br>8<br>8      | 10<br>10<br>10    | 12<br>12<br>13 | 16<br>16          | 22<br>22<br>23 | 0.3               | 0.3                      | 55<br>62             | 7<br>8<br>8    | 10<br>12<br>12  | 13<br>14<br>14 | 15<br>16<br>16  | 20<br>22<br>22 | 27<br>30                 | 36<br>40<br>40   | 0.3               | 0.6                 | 0.6               | 62<br>68<br>75            | 9<br>9<br>10   | 14<br>15<br>16 | 17<br>18<br>19    | 20<br>21<br>23 | 27<br>28<br>30 | 36<br>38       | 50                | 0.3 1                         |
| 10             |                      |                           |               |                   |            |                      | 65                        | 5              | 7               | 10               | 12                | 15             | 18<br>20          | 27             |                   |                          | 68<br>72             | 8              | 12              | 14             | 16              | 22             | 30                       | 40               | 0.3               |                     | 0.6               | 80                        | 10             | 16             | 19                | 23             | 30             | 40<br>40       |                   | 0.3 1                         |
| 11             | 60                   |                           |               |                   |            |                      | 72<br>78<br>85            | 7<br>7         | 9<br>10<br>10   | 11<br>12         | 13<br>14          | 17<br>18<br>20 | 23<br>24<br>27    | 30<br>32<br>36 | 0.3               | 0.3                      | 80<br>85<br>90       | 9 9            | 13<br>13        | 16<br>16<br>16 | 19<br>19<br>19  | 25<br>25<br>25 | 34<br>34<br>34           | 45<br>45<br>45   | 0.3               | 1                   | 1<br>1<br>1       | 90<br>95<br>100           | 11<br>11       | 18<br>18<br>18 | 22<br>22<br>22    | 26<br>26<br>26 | 35<br>35<br>35 | 46<br>46<br>46 | 63                | 0.6 1.1                       |
| 13             |                      |                           |               |                   |            |                      | 90                        | 7<br>8         | 10              | 13<br>13         | 15<br>15          | 20             | 27                | 36             |                   |                          | 100                  | 10             | 13<br>16        | 19             | 23              | 30             | 40                       | 54               | 0.6<br>0.6        |                     | 1                 | 110                       | 11<br>13       | 20             | 24                | 30             | 40             | 54             |                   | 0.6 1.1<br>0.6 1.1            |
| 15             | 80                   |                           |               |                   |            |                      | 95<br>100                 | 8              | 10<br>10        | 13<br>13         | 15<br>15          | 20<br>20       | 27<br>27          | 36<br>36       |                   | 0.6                      | 105<br>110           | 10<br>10       | 16<br>16        | 19<br>19       | 23<br>23        | 30<br>30       | 40<br>40                 |                  | 0.6               |                     | 1                 | 115<br>125                | 13<br>14       | 20<br>22       | 24<br>27          | 30<br>34       | 40<br>45       | 54<br>60       | 80                | 0.6 1.1<br>0.6 1.1            |
| 17<br>18<br>19 | 90                   |                           |               |                   |            |                      | 110<br>115<br>120         | 9              | 13<br>13<br>13  | 16<br>16<br>16   | 19<br>19<br>19    | 25<br>25<br>25 | 34<br>34<br>34    | 45<br>45<br>45 | 0.3               | 1                        | 120<br>125<br>130    | 11<br>11<br>11 | 18<br>18<br>18  | 22<br>22<br>22 | 26<br>26<br>26  | 35<br>35<br>35 | 46<br>46<br>46           | 63<br>63<br>63   | 0.6<br>0.6<br>0.6 | 1.1<br>1.1<br>1.1   | 1.1<br>1.1<br>1.1 | 130<br>140<br>145         | 14<br>16<br>16 | 22<br>24<br>24 | 27<br>30<br>30    | 34<br>37<br>37 | 45<br>50<br>50 | 60<br>67<br>67 | 90                | 0.6 1.1<br>1 1.5<br>1 1.5     |
| 20             | 100                  |                           |               |                   |            |                      | 125                       | 9              | 13              | 16               | 19                | 25             | 34                | 45             | 0.3               | 1                        | 140                  | 13             | 20              | 24             | 30              | 40             | 54                       | 71               | 0.6               | 1.1                 | 1.1               | 150                       | 16             | 24             | 30                | 37             | 50             | 67             | 100               | 1 1.5                         |
| 21<br>22<br>24 |                      |                           |               |                   |            |                      | 130<br>140<br>150         | 9<br>10<br>10  | 13<br>16<br>16  | 16<br>19<br>19   | 19<br>23<br>23    | 25<br>30<br>30 | 34<br>40<br>40    | 45<br>54<br>54 |                   | 1                        | 145<br>150<br>165    | 13<br>13<br>14 | 20<br>20<br>22  | 24<br>24<br>27 | 30<br>30<br>34  | 40<br>40<br>45 | 54<br>54<br>60           | 71<br>71<br>80   | 0.6               | 1.1<br>1.1<br>1.1   | 1.1<br>1.1<br>1.1 | 160<br>170<br>180         | 18<br>19<br>19 | 26<br>28<br>28 | 33<br>36<br>36    | 41<br>45<br>46 | 56<br>60<br>60 | 75<br>80<br>80 |                   | 1 2<br>1 2<br>1 2<br>1.1 2    |
| 26             | 130                  |                           |               |                   |            |                      | 165                       | 11             | 18              | 22               | 26                | 35             | 46                | 63             | 0.6               | 1.1                      | 180                  | 16             | 24              | 30             | 37              | 50             | 67                       | 90               | 1                 | 1.5                 | 1.5               | 200                       | 22             | 33             | 42                | 52             | 69             | 95             | 125               |                               |
| 28<br>30<br>32 | 150                  |                           |               |                   |            |                      | 175<br>190<br>200         | 11<br>13<br>13 | 18<br>20<br>20  | 22<br>24<br>24   | 26<br>30<br>30    | 35<br>40<br>40 | 46<br>54<br>54    | 63<br>71<br>71 | 0.6<br>0.6<br>0.6 | 1.1                      | 190<br>210<br>220    | 16<br>19<br>19 | 24<br>28<br>28  | 30<br>36<br>36 | 37<br>45<br>45  | 50<br>60<br>60 | 67<br>80<br>80           | 90<br>109<br>109 | 1                 | 1.5<br>2<br>2       | 2                 | 210<br>225<br>240         | 22<br>24<br>25 | 33<br>35<br>38 | 42<br>45<br>48    | 53<br>56<br>60 | 69<br>75<br>80 |                | 136               | 1.1 2<br>1.1 2.1<br>1.5 2.1   |
| 34             | 170                  |                           |               |                   |            |                      | 215<br>225                | 14<br>14       | 22<br>22        | 27<br>27         | 34<br>34          | 45<br>45       | 60<br>60          | 80<br>80       | 0.6               | 1.1                      | 230<br>250           | 19<br>22       | 28<br>33        | 36<br>42       | 45<br>52        | 60<br>69       | 80                       | 109<br>125       | 1.1               | 2                   |                   | 260<br>280                | 28<br>31       | 42<br>46       | 54<br>60          | 67             | 90             | 122            | 160<br>180        | 1.5 2.1                       |
|                | 190<br>200           |                           |               |                   |            |                      | 240<br>250                | 16<br>16       | 24<br>24        | 30<br>30         | 37<br>37          | 50<br>50       | 67<br>67          | 90<br>90       |                   | 1.5<br>1.5               | 260<br>280           | 22<br>25       | 33<br>38        | 42<br>48       | 52<br>60        | 69<br>80       | 95<br>109                | 125              | 1.1<br>1.5        | 2 2 1               | 2<br>2.1          | 290<br>310                | 31<br>34       | 46<br>51       | 60<br>66          | 75<br>82       |                |                | 180<br>200        |                               |
| 44             | 220<br>240           |                           |               |                   |            |                      | 270<br>300                | 16<br>19       | 24<br>28        | 30<br>36         | 37<br>45          | 50<br>60       | 67<br>80          | 90<br>100      | 1                 | 1.5<br>2<br>2            | 300<br>320           | 25<br>25       | 38<br>38        | 48<br>48       | 60<br>60        | 80<br>80       | 109<br>109               | 145<br>145       | 1.5<br>1.5        | 2.1<br>2.1          | 2.1<br>2.1        | 340<br>360                | 37<br>37       | 56<br>56       | 72<br>72          | 90<br>92       | 118<br>118     | 160<br>160     | 218<br>218        | 2.1 3<br>2.1 3                |
|                | 260                  |                           |               |                   |            |                      | 320                       | 19<br>22       | 28<br>33        | 36<br>42         | 45<br>52          | 60             |                   | 100<br>125     |                   |                          | 360                  | 31             | 46<br>46        | 60             |                 |                | 136<br>136               |                  |                   |                     | 2.1               | 400                       |                | 65<br>65       |                   |                |                |                | 250<br>250        |                               |
| 60<br>64       | 300<br>320           |                           |               |                   |            |                      | 380<br>400                | 25<br>25       | 38<br>38        | 48<br>48         | 60<br>60          | 80<br>80       | 109<br>109        | 145<br>145     | 1.5<br>1.5        | 2.1<br>2.1               | 420<br>440           | 37<br>37       | 56<br>56        | 72<br>72       | 90<br>90        | 118<br>118     | 160<br>160<br>160<br>160 | 218<br>218       | 2.1               | 3                   | 3                 | 460<br>480                | 50<br>50       | 74<br>74       | 95<br>95          | 118<br>121     | 160<br>160     | 218<br>218     | 290<br>290        |                               |
|                | 340<br>360           |                           |               |                   |            |                      | 420<br>440                | 25<br>25       | 38<br>38        | 48<br>48         | 60<br>60          | 80<br>80       | 109<br>109        | 145<br>145     | 1.5               | 2.1                      | 460<br>480           | 37<br>37       | 56<br>56        | 72<br>72       | 90              | 118<br>118     | 160<br>160               | 218<br>218       | 2.1               | 3                   |                   | 520<br>540                |                | 82<br>82       | 106<br>106        | 133<br>134     | 180<br>180     | 243<br>243     | 325<br>325        | 4 4<br>4 4<br>4 5<br>4 5      |
| 80             | 380<br>400           |                           |               |                   |            |                      | 480<br>500                | 31<br>31       | 46<br>46        | 60<br>60         |                   | 100            | 136<br>136        | 180            | 2                 | 2.1<br>2.1<br>2.1<br>2.1 | 520<br>540           | 44<br>44       | 65<br>65        | 82<br>82       | 106             | 140            | 190<br>190               | 250              |                   | 4<br>4              | 4<br>4            | 560<br>600                |                | 90             | 106<br>118        | 148            | 200            | 272            | 355               | 4 5<br>5 5                    |
| 88             | 420<br>440<br>460    |                           |               |                   |            |                      | 520<br>540<br>580         | 31<br>31<br>37 | 46<br>46<br>56  | 60<br>60<br>72   | 75                | 100            | 136<br>136<br>160 | 180            | 2 2 2 1           | 2.1                      | 560<br>600<br>620    | 50<br>50       | 65<br>74<br>74  | 95<br>95       | 106<br>118      | 140<br>160     | 190<br>218<br>218        | 250<br>290       | 4                 | 4<br>4<br>4         |                   | 620<br>650<br>680         | 63<br>67<br>71 | 94             | 122               | 157            | 212            | 280            | 355<br>375<br>400 | 5 6                           |
| 96             | 480                  |                           |               |                   |            |                      | 600                       | 37             | 56              | 72               | 90                | 118            | 160               | 218            | 2.1               | 3                        | 650                  | 54             | 78              | 100            | 128             | 170            | 230                      | 308              | 4                 | 5                   | 5                 | 700                       | 71             | 100            | 128               | 165            | 218            | 300            | 400               |                               |
| /500<br>/530   | 500<br>530           |                           |               |                   |            |                      | 620<br>650                | 37<br>37       | 56<br>56<br>56  | 72<br>72<br>72   | 90<br>90          | 118<br>118     | 160<br>160<br>160 | 218<br>218     | 2.1<br>2.1        | 3                        | 670<br>710           | 54<br>57<br>60 | 78<br>82        | 100<br>106     | 128<br>136      | 170<br>180     | 230<br>243<br>258        | 308<br>325       | 4                 | 5<br>5<br>5         | 5<br>5            | 720<br>780<br>820         | 71<br>80       | 100<br>112     | 128<br>145        | 167<br>185     | 218<br>250     | 300<br>335     | 400<br>450<br>462 | 5 6<br>6 6                    |
| /600           | 560<br>600           |                           |               |                   |            |                      | 680<br>730                | 37<br>42       | 60              | 78               | 98                | 128            | 175               | 236            | 3                 | 3                        | 750<br>800           | 63             | 90              | 118            | 150             | 200            | 272                      | 355              | 5                 | 5                   | 5                 | 870                       | 85             | 118            | 155               | 200            | 272            | 365            | 488               |                               |
| /670           | 630<br>670<br>710    |                           |               |                   |            |                      | 780<br>820                | 48<br>48<br>50 | 69<br>69<br>74  | 88<br>88         | 112               | 150            | 200<br>200<br>218 | 272            | 3                 | 4                        | 850<br>900           | 71<br>73       | 100             | 128<br>136     | 165<br>170      | 218<br>230     | 300<br>308<br>325        | 400<br>412       | 5                 | 6                   | 6                 | 920<br>980                | 92<br>100      | 128<br>136     | 170<br>180        | 212<br>230     | 290<br>308     | 388<br>425     | 515<br>560<br>580 | 6 7.5<br>6 7.5                |
| /750           | 750<br>800           |                           |               |                   |            |                      | 920<br>980                | 54<br>57       | 78              | 95<br>100<br>106 | 128<br>136        | 170            | 230               | 308            | 4 4 4             | 4<br>5<br>5              | 950<br>1000<br>1060  | 80             | 112             | 145            | 185             | 250            | 325<br>335<br>355        | 450              | 6                 | 6<br>6              | 6                 | 1090                      | 109            | 150            | 195               | 250            | 335            | 462            | 615               | 6 7.5<br>7.5 7.5<br>7.5 7.5   |
| /850           | 850                  |                           |               |                   |            |                      | 1030                      | 57             | 82              | 106              | 136               | 180            | 243               | 325            |                   |                          | 1120                 | 85             | 118             | 155            | 200             | 272            | 365                      | 488              | 6                 | 6                   | 6                 | 1220                      | 118            | 165            | 212               | 272            | 365            | 500            | 670               | 7.5 7.5                       |
| /950           | 900<br>950<br>1000   |                           |               |                   |            |                      | 1090<br>1150<br>1220      | 60<br>63<br>71 | 63              | 118              | 140<br>150<br>165 | 200            | 272               | 355            | 5<br>5<br>5       | 5<br>5<br>5<br>6<br>6    | 1180<br>1250<br>1320 | 95<br>103      | 132             | 175            | 224             | 300            | 375<br>400<br>438        | 545              | 6<br>6            | 6<br>7.5<br>7.5     | 6<br>7.5<br>7.5   | 1300                      | 132            | 180            | 236               | 300            | 412            | 560            | 730               | 7.5 7.5<br>7.5 7.5<br>7.5 7.5 |
| /1060          | 1060                 |                           |               |                   |            |                      | 1280                      | 71             |                 |                  | 165<br>165        |                |                   |                |                   |                          | 1400                 | 109            | 150             | 195            | 250             | 335            | 462                      | 615              | 7.5               | 7.5                 | 7.5               | 1500                      | 140            | 195            | 250               | 325            | 438            | 600            | 800               | 9.5 9.5                       |
| /1180          | 1120<br>1180<br>1250 |                           |               |                   |            |                      | 1360<br>1420<br>1500      | 78<br>78<br>80 | 106             | 140              | 180<br>180<br>185 | 243            | 325               | 438            | 5<br>5<br>6       | 6<br>6<br>6              | 1540                 | 115            | 160             | 206            | 272             | 355            | 462<br>488<br>515        | 650              | 7.5<br>7.5<br>7.5 | 7.5                 | 7.5               | 1580<br>1660<br>1750      | 155            | 212            | 265<br>272<br>290 | 355            | 475            | 650            | 825<br>875        | 9.5 9.5<br>9.5 9.5<br>9.5     |
| /1320          | 1320<br>1400         |                           |               |                   |            |                      | 1600<br>1700              | 88<br>95       | 122             | 165              | 206<br>224        | 280            | 375               | 500            | 6                 | 6<br>6<br>6<br>7.5       | 1720<br>1820         | 128            | 175             | 230            | 300<br>315      | 400            | 545                      | 710              | 7.5               | 7.5<br>9.5          | 7.5               | 1850<br>1950              |                | 230            | 300<br>315        | 400            | 530            |                |                   | 12<br>12                      |
| /1500          | 1500<br>1600         |                           |               |                   |            |                      | 1820<br>1950              |                |                 |                  | 243<br>265        |                |                   |                |                   | 7.5                      | 1950<br>2060         |                |                 |                | 335<br>345      |                |                          |                  |                   | 9.5<br>9.5          |                   | 2120<br>2240              |                | 272<br>280     | 355<br>365        | 462<br>475     | 615<br>630     |                |                   | 12<br>12                      |
| /1700<br>/1800 | 1700<br>1800         |                           |               |                   |            |                      | 2060<br>2180              |                | 160<br>165      | 206<br>218       | 272<br>290        | 355<br>375     |                   |                |                   | 7.5<br>9.5               | 2180<br>2300         |                | 212<br>218      | 280<br>290     | 355<br>375      | 475<br>500     |                          |                  |                   | 9.5<br>12           | 9.5<br>12         | 2360<br>2500              |                | 290            | 375<br>400        | 500            | 650            |                |                   | 15<br>15                      |
|                | 1900                 |                           |               |                   |            |                      | 2300<br>2430              |                | 175<br>190      |                  | 300<br>325        |                |                   |                |                   | 9.5<br>9.5               | 2430                 |                | 230             | 308            | 400             | 530            |                          |                  |                   | 12                  | 12                |                           |                |                |                   |                |                |                |                   |                               |
| /2000          | 2000                 |                           |               |                   |            |                      | 2430                      |                | 130             | 230              | 325               | 425            |                   |                |                   | 9.5                      |                      |                |                 |                |                 |                |                          |                  |                   |                     |                   |                           |                |                |                   |                |                |                |                   |                               |

Appendix table 1: Boundary dimensions of radial bearings (Tapered roller bearings not included)-2

| ball b                       | e row i                              | s                               |                            |                            |                                 |                            |                                 |                                 |                               |                                      |                            | 62<br>72                   |                            |                   | 1,32                                 |                                 |                                   |                                  |                                      |                            | 63<br>73                        |                               |                                 | 633                                |                   |                                 |                                      | 64<br>74                       |                                 |                               |
|------------------------------|--------------------------------------|---------------------------------|----------------------------|----------------------------|---------------------------------|----------------------------|---------------------------------|---------------------------------|-------------------------------|--------------------------------------|----------------------------|----------------------------|----------------------------|-------------------|--------------------------------------|---------------------------------|-----------------------------------|----------------------------------|--------------------------------------|----------------------------|---------------------------------|-------------------------------|---------------------------------|------------------------------------|-------------------|---------------------------------|--------------------------------------|--------------------------------|---------------------------------|-------------------------------|
| ball b                       | le row<br>earing<br>drical r         | S                               |                            |                            |                                 | NN31                       |                                 |                                 |                               |                                      |                            | 12<br>N2                   |                            | 42<br>22<br>N22   | 52<br>32<br>N32                      |                                 |                                   |                                  |                                      |                            | 13<br>N3                        |                               | 43<br>23<br>N23                 | 53<br>33<br>N33                    |                   |                                 |                                      | N4                             |                                 |                               |
| Need                         | le rolle                             |                                 |                            |                            |                                 |                            |                                 |                                 |                               |                                      |                            |                            |                            |                   |                                      |                                 |                                   |                                  |                                      |                            |                                 |                               |                                 |                                    |                   |                                 |                                      |                                |                                 |                               |
| Non                          | ngs<br>ninal                         | лю                              |                            | Dian                       | netei                           | 231                        |                                 | 1                               |                               |                                      |                            | Dia                        | ame                        |                   | <b>232</b><br>eries                  | 2                               |                                   |                                  |                                      | Dia                        | <b>213</b><br>amet              | er si                         | 223<br>eries                    | . 3                                |                   |                                 | Diar                                 | nete                           | seri                            | es 4                          |
| dian                         | re<br>eter                           | Nominal<br>outside              |                            |                            | imer                            |                            |                                 |                                 |                               | Nominal<br>outside                   |                            |                            |                            |                   | on se                                |                                 |                                   |                                  | Nominal<br>outside                   |                            |                                 |                               |                                 | serie                              | <br>!S            |                                 | Nominal<br>outside                   | Din                            | nensi                           | ion                           |
| Nun                          | Dimer                                | diameter<br>of                  | 01                         | 11                         | 21                              | 31                         | 41                              | 01                              | 11 ~ 41                       | diameter<br>of                       | 82                         | 02                         | 12                         | 22                | 32                                   | 42                              |                                   | 02 ~ 42                          | diameter<br>of                       | 83                         | 03                              | 13                            | 23                              | 33                                 |                   | 03 ~ 33                         | diameter<br>of                       | 04                             | 24                              | Chamfer                       |
| Number                       | nsion                                | bearing $D$                     |                            | Non                        | ninal                           | widt                       | th <i>B</i>                     |                                 | Chamfer<br>dimension<br>s min | bearing $D$                          |                            | Non                        | ninal                      | wid               | th $B$                               |                                 | Cha<br>dime<br>s                  | mfer<br>nsion<br>min             | bearing $D$                          | N                          | omir                            | nal w                         | idth                            | В                                  |                   | mfer<br>nsion<br>min            | D                                    | Non<br>wid                     | inal<br>Ith<br>B                | dimension<br>s min            |
| 1                            |                                      |                                 |                            |                            |                                 |                            |                                 |                                 |                               |                                      |                            |                            |                            |                   |                                      |                                 |                                   |                                  |                                      |                            |                                 |                               |                                 |                                    |                   |                                 |                                      |                                |                                 |                               |
| 2                            |                                      |                                 |                            |                            |                                 |                            |                                 |                                 |                               |                                      |                            |                            |                            |                   |                                      |                                 |                                   |                                  |                                      |                            |                                 |                               |                                 |                                    |                   |                                 |                                      |                                |                                 |                               |
| 3<br>4<br>5<br>6<br>7        | 3<br>4<br>5<br>6<br>7                |                                 |                            |                            |                                 |                            |                                 |                                 |                               | 10<br>13<br>16<br>19<br>22           | 2.5<br>3<br>3.5<br>4<br>5  | 4<br>5<br>5<br>6<br>7      |                            |                   | 5<br>7<br>8<br>10<br>11              |                                 | 0.1<br>0.15<br>0.15<br>0.2<br>0.3 | 0.15<br>0.2<br>0.3<br>0.3<br>0.3 | 13<br>16<br>19<br>22<br>26           |                            | 5<br>5<br>6<br>7<br>9           |                               | 11<br>13                        | 7<br>9<br>10<br>13<br>15           |                   | 0.2<br>0.3<br>0.3<br>0.3<br>0.3 |                                      |                                |                                 |                               |
| 8<br>9<br>00<br>01<br>02     | 8<br>9<br>10<br>12<br>15             |                                 |                            |                            |                                 |                            |                                 |                                 |                               | 24<br>26<br>30<br>32<br>35           | 5<br>6<br>7<br>7<br>8      | 8<br>9<br>10<br>11         |                            | 14                | 12<br>13<br>14.3<br>15.9<br>15.9     |                                 | 0.3<br>0.3<br>0.3<br>0.3<br>0.3   | 0.3<br>0.3<br>0.6<br>0.6<br>0.6  | 28<br>30<br>35<br>37<br>42           | 9<br>9<br>9                | 9<br>10<br>11<br>12<br>13       |                               | 13<br>14<br>17<br>17<br>17      | 15<br>16<br>19<br>19<br>19         | 0.3<br>0.3<br>0.3 | 0.3<br>0.6<br>0.6<br>1          | 30<br>32<br>37<br>42<br>52           | 10<br>11<br>12<br>13<br>15     | 14<br>15<br>16<br>19<br>24      | 0.6<br>0.6<br>1               |
| 03<br>04<br>/22<br>05<br>/28 | 17<br>20<br>22<br>25<br>28           |                                 |                            |                            |                                 |                            |                                 |                                 |                               | 40<br>47<br>50<br>52<br>58           | 8<br>9<br>9<br>10<br>10    | 12<br>14<br>14<br>15<br>16 |                            | 18<br>18          | 17.5<br>20.6<br>20.6<br>20.6<br>23   | 27<br>27                        | 0.3<br>0.3<br>0.3<br>0.3<br>0.6   | 0.6<br>1<br>1<br>1               | 47<br>52<br>56<br>62<br>68           | 10<br>10<br>11<br>12<br>13 | 14<br>15<br>16<br>17<br>18      |                               | 19<br>21<br>21<br>24<br>24      | 22.2<br>22.2<br>25<br>25.4<br>30   | 0.6<br>0.6        | 1<br>1.1<br>1.1<br>1.1<br>1.1   | 62<br>72<br>80                       | 17<br>19<br>21                 | 29<br>33<br>36                  |                               |
| 06<br>/32<br>07<br>08<br>09  | 30<br>32<br>35<br>40<br>45           |                                 |                            |                            |                                 |                            |                                 |                                 |                               | 62<br>65<br>72<br>80<br>85           | 10<br>11<br>12<br>13<br>13 | 16<br>17<br>17<br>18<br>19 |                            | 21<br>23<br>23    | 23.8<br>25<br>27<br>30.2<br>30.2     | 33<br>37<br>40                  | 0.6<br>0.6<br>0.6<br>0.6<br>0.6   | 1<br>1.1<br>1.1<br>1.1           | 72<br>75<br>80<br>90<br>100          | 13<br>14<br>14<br>16<br>17 | 19<br>20<br>21<br>23<br>25      |                               | 27<br>28<br>31<br>33<br>36      | 32<br>34.9<br>36.5                 | 0.6<br>0.6<br>1   | 1.1<br>1.5<br>1.5<br>1.5        | 90<br>100<br>110<br>120              | 23<br>25<br>27<br>29           | 40<br>43<br>46<br>50            | 1.5<br>2                      |
| 10<br>11<br>12<br>13<br>14   | 50<br>55<br>60<br>65<br>70           |                                 |                            |                            |                                 |                            |                                 |                                 |                               | 90<br>100<br>110<br>125<br>125       | 13<br>14<br>16<br>18<br>18 | 20<br>21<br>22<br>23<br>24 |                            |                   | 30.2<br>33.3<br>36.5<br>38.1<br>39.7 | 45<br>50<br>56                  | 1<br>1<br>1                       | 1.1<br>1.5<br>1.5<br>1.5<br>1.5  | 110<br>120<br>130<br>140<br>150      | 19<br>21<br>22<br>24<br>25 | 27<br>29<br>31<br>33<br>35      |                               | 43<br>46<br>48                  | 44.4<br>49.2<br>54<br>58.7<br>63.5 | 1.1<br>1.1<br>1.1 | 2<br>2<br>2.1<br>2.1<br>2.1     | 130<br>140<br>150<br>160<br>180      | 31<br>33<br>35<br>37<br>42     |                                 | 2.1<br>2.1<br>2.1<br>2.1<br>3 |
| 15<br>16<br>17<br>18<br>19   | 75<br>80<br>85<br>90<br>95           | 150<br>160                      |                            |                            |                                 |                            | 60<br>65                        |                                 | 2 2                           | 130<br>140<br>150<br>160<br>170      | 18<br>19<br>21<br>22<br>24 | 25<br>26<br>28<br>30<br>32 |                            | 33<br>36<br>40    | 41.3<br>44.4<br>49.2<br>52.4<br>55.6 | 60<br>65<br>69                  |                                   | 1.5<br>2<br>2<br>2<br>2.1        | 160<br>170<br>180<br>190<br>200      | 27<br>28<br>30<br>30<br>33 | 37<br>39<br>41<br>43<br>45      |                               | 55<br>58<br>60<br>64<br>67      | 68.3<br>68.3<br>73<br>73<br>77.8   | 1.5<br>2<br>2     | 2.1<br>2.1<br>3<br>3            | 190<br>200<br>210<br>225<br>240      | 45<br>48<br>52<br>54<br>55     | 77<br>80<br>86<br>90<br>95      | 4                             |
| 20<br>21<br>22<br>24<br>26   | 105<br>110<br>120                    | 165<br>175<br>180<br>200<br>210 | 21<br>22<br>22<br>25<br>25 | 30<br>33<br>33<br>38<br>38 | 39<br>42<br>42<br>48<br>48      | 52<br>56<br>56<br>62<br>64 | 65<br>69<br>69<br>80<br>80      | 1.1<br>1.1<br>1.1<br>1.5<br>1.5 | 2<br>2<br>2<br>2<br>2         | 180<br>190<br>200<br>215<br>230      | 25<br>27<br>28             | 34<br>36<br>38<br>40<br>40 | 42<br>46                   | 50<br>53<br>58    | 60.3<br>65.1<br>69.8<br>76<br>80     | 85                              | 1.5<br>1.5<br>1.5                 | 2.1<br>2.1<br>2.1<br>2.1<br>3    | 215<br>225<br>240<br>260<br>280      | 36<br>37<br>42<br>44<br>48 | 47<br>49<br>50<br>55<br>58      | 51<br>53<br>57<br>62<br>66    | 77                              |                                    | 2.1<br>3          | 3<br>3<br>3<br>4                | 250<br>260<br>280<br>310<br>340      | 58<br>60<br>65<br>72<br>78     | 98<br>100<br>108<br>118<br>128  | 4<br>4<br>5                   |
| 28<br>30<br>32<br>34<br>36   | 140<br>150<br>160<br>170<br>180      | 270<br>280                      | 27<br>31<br>34<br>34<br>37 | 40<br>46<br>51<br>51<br>56 | 50<br>60<br>66<br>66<br>72      | 68<br>80<br>86<br>88<br>96 | 85<br>100<br>109<br>109<br>118  | 1.5<br>2<br>2<br>2<br>2.1       | 2.1<br>2.1<br>2.1<br>2.1<br>3 | 250<br>270<br>290<br>310<br>320      |                            | 42<br>45<br>48<br>52<br>52 | 50<br>54<br>58<br>62<br>62 | 73<br>80<br>86    | 88<br>96<br>104<br>110<br>112        | 109<br>118<br>128<br>140<br>140 |                                   | 3<br>3<br>4<br>4                 | 300<br>320<br>340<br>360<br>380      | 50                         | 62<br>65<br>68<br>72<br>75      | 70<br>75<br>79<br>84<br>88    | 102<br>108<br>114<br>120<br>126 | 128<br>136<br>140                  | 4                 | 4<br>4<br>4<br>4                | 360<br>380<br>400<br>420<br>440      | 82<br>85<br>88<br>92<br>95     | 145                             | 5<br>5<br>5                   |
| 38<br>40<br>44<br>48<br>52   | 190<br>200<br>220<br>240<br>260      | 340<br>370<br>400               | 42<br>44<br>48<br>50<br>57 | 60<br>65<br>69<br>74<br>82 | 78<br>82<br>88<br>95<br>106     | 120<br>128                 | 128<br>140<br>150<br>160<br>180 | 3<br>3<br>4<br>4                | 3<br>4<br>4<br>4              | 340<br>360<br>400<br>440<br>480      |                            | 55<br>58<br>65<br>72<br>80 | 65<br>70<br>78<br>85<br>90 | 98<br>108<br>120  | 120<br>128<br>144<br>160<br>174      | 150<br>160<br>180<br>200<br>218 |                                   | 4<br>4<br>4<br>4<br>5            | 400<br>420<br>460<br>500<br>540      |                            | 78<br>80<br>88<br>95<br>102     | 92<br>97<br>106<br>114<br>123 | 132<br>138<br>145<br>155<br>165 | 165<br>180                         |                   | 5 5 5 5 6                       | 460<br>480<br>540<br>580<br>620      | 98<br>102<br>115<br>122<br>132 | 155<br>160<br>180<br>190<br>206 | 6<br>6<br>6<br>7.5            |
| 60<br>64<br>68               | 280<br>300<br>320<br>340<br>360      | 500<br>540<br>580               | 63<br>71<br>78             | 90<br>100<br>106           | 106<br>118<br>128<br>140<br>140 | 160<br>176<br>190          | 200<br>218<br>243               | 5<br>5<br>5                     | 55555                         | 500<br>540<br>580<br>620<br>650      |                            | 92                         | 98<br>105<br>118           | 140<br>150<br>165 | 192<br>208<br>224                    | 218<br>243<br>258<br>280<br>290 |                                   | 5<br>5<br>5<br>6<br>6            | 580<br>620<br>670<br>710<br>750      |                            | 109                             |                               | 185<br>200<br>212               | 236<br>258<br>272                  |                   | 7.5<br>7.5                      | 670<br>710<br>750<br>800<br>850      | 155<br>164                     | 236<br>250<br>265               | 7.5<br>9.5<br>9.5             |
| 80<br>84<br>88               | 380<br>400<br>420<br>440<br>460      | 650<br>700<br>720               | 80<br>88<br>88             | 122<br>122                 | 140<br>145<br>165<br>165<br>175 | 224<br>226                 | 250<br>280<br>280               | 6<br>6                          | 6                             | 680<br>720<br>760<br>790<br>830      |                            | 103<br>109<br>112          | 140<br>150<br>155          | 195<br>200        | 240<br>256<br>272<br>280<br>296      | 335<br>345                      |                                   | 6<br>6<br>7.5<br>7.5<br>7.5      | 780<br>820<br>850<br>900<br>950      |                            | 128<br>136<br>136<br>145<br>155 | 190<br>200                    | 243<br>250<br>265               | 308<br>315<br>345                  |                   | 7.5<br>9.5<br>9.5               | 900<br>950<br>980<br>1030<br>1060    | 200<br>206<br>212              | 315<br>325<br>335               | 12<br>12<br>12                |
| /500<br>/530<br>/560         | 500<br>530<br>560                    | 830<br>870<br>920               | 106<br>109<br>115          | 145<br>150<br>160          | 180<br>190<br>195<br>206<br>218 | 264<br>272<br>280          | 325<br>335<br>355               | 6<br>7.5<br>7.5<br>7.5<br>7.5   | 7.5<br>7.5<br>7.5             | 870<br>920<br>980<br>1030<br>1090    |                            | 136<br>145<br>150          | 185<br>200<br>206          | 243<br>258<br>272 | 336<br>355                           | 450<br>475                      |                                   | 7.5<br>7.5<br>9.5<br>9.5<br>9.5  | 1030<br>1090                         |                            | 160<br>170<br>180<br>190<br>200 | 243<br>258                    | 300<br>325<br>335               | 388<br>412<br>438                  |                   | 12<br>12<br>12                  | 1120<br>1150<br>1220<br>1280<br>1360 | 236<br>250<br>258              | 375<br>400<br>412               | 15<br>15<br>15                |
| /670<br>/710<br>/750         | 670<br>710<br>750                    | 1090<br>1150<br>1220            | 136<br>140<br>150          | 185<br>195<br>206          | 230<br>243<br>250<br>272<br>272 | 336<br>345<br>365          | 412<br>438<br>475               | 9.5<br>9.5                      | 7.5<br>9.5<br>9.5             | 1150<br>1220<br>1280<br>1360<br>1420 |                            | 175<br>180                 | 243<br>250<br>265          | 315<br>325<br>345 | 475                                  | 545<br>560<br>615               |                                   |                                  | 1280<br>1360<br>1420<br>1500<br>1600 |                            | 206<br>218<br>224<br>236<br>258 | 300<br>308<br>325             | 400<br>412<br>438               | 515<br>530<br>560                  |                   |                                 | 1420<br>1500                         |                                |                                 |                               |
| /900<br>/950<br>/1000        | 900<br>950<br>1000                   | 1420<br>1500<br>1580            | 165<br>175<br>185          | 230<br>243<br>258          | 290<br>300<br>315<br>335<br>345 | 412<br>438<br>462          | 515<br>545<br>580               | 12                              | 12<br>12                      | 1500<br>1580<br>1660<br>1750         |                            | 206<br>218<br>230<br>243   | 300<br>315                 | 388<br>412        | 515<br>530                           | 710                             |                                   | 15                               | 1700<br>1780<br>1850<br>1950         |                            | 272<br>280<br>290<br>300        | 388<br>400                    | 500<br>515                      | 650<br>670                         |                   | 19<br>19<br>19                  |                                      |                                |                                 |                               |
| /1180<br>/1250<br>/1320      | 1120<br>1180<br>1250<br>1320<br>1400 | 1850<br>1950<br>2060            |                            | 290<br>308<br>325          | 365<br>388<br>400<br>425<br>450 | 500<br>530<br>560          | 670<br>710<br>750               |                                 | 15<br>15<br>15<br>15          |                                      |                            |                            |                            |                   |                                      |                                 |                                   |                                  |                                      |                            |                                 |                               |                                 |                                    |                   |                                 |                                      |                                |                                 |                               |
| /1500                        | 1500                                 | 2300                            |                            | 355                        | 462                             | 600                        | 800                             |                                 | 19                            |                                      |                            |                            |                            |                   |                                      |                                 |                                   |                                  |                                      |                            |                                 |                               |                                 |                                    |                   |                                 |                                      |                                |                                 |                               |

### Appendix table 2: Comparison of SI, CGS and gravity units-1

| Unit system Quantity | Length $L$ | Mass M     | Time T | Acceleration | Force | Stress  | Pressure | Energy  |
|----------------------|------------|------------|--------|--------------|-------|---------|----------|---------|
| SI                   | m          | kg         | S      | m/s²         | Ν     | Pa      | Pa       | J       |
| CGS system           | cm         | g          | S      | Gal          | dyn   | dyn/cm² | dyn/cm²  | erg     |
| Gravitation system   | m          | kgf • s²/m | S      | m/s²         | kgf   | kgf/m²  | kgf/m²   | kgf ⋅ m |

### Appendix table 3: SI-customary unit conversion table-1

| Quantity                | Unit designation                         | Symbol                  | Conversion rate to SI      | SI unit designation               | Symbol          |
|-------------------------|------------------------------------------|-------------------------|----------------------------|-----------------------------------|-----------------|
|                         | Degree                                   | ٥                       | /180                       |                                   |                 |
| Angle                   | Minute                                   |                         | /10 800                    | Radian                            | rad             |
|                         | Second                                   | (sec)                   | /648 000                   |                                   |                 |
|                         | Meter                                    | m                       | 1                          |                                   |                 |
| Length                  | Micron                                   | μ                       | 10 <sup>-6</sup>           | Meter                             | m               |
|                         | Angstrom                                 | Å                       | 10 <sup>-10</sup>          |                                   |                 |
|                         | Square meter                             | m²                      | 1                          |                                   |                 |
| Area                    | Are                                      | а                       | 10 <sup>2</sup>            | Square meter                      | m <sup>2</sup>  |
|                         | Hectare                                  | ha                      | 10⁴                        | •                                 |                 |
|                         | Cubic meter                              | m³                      | 1                          |                                   |                 |
| Volume                  | Liter                                    | R.L                     | 10 <sup>-3</sup>           | Cubic meter                       | m³              |
|                         | Kilogram                                 | kg                      | 1                          |                                   |                 |
| Mass                    | Ton                                      | t t                     | 10 <sup>3</sup>            | Kilogram                          | kg              |
| Mass                    | Kilogram force / square second per meter | kgf • s²/m              | 9.806 65                   | Kilogram                          | l Kg            |
|                         | Second                                   | kgi * 5/iii<br>S        | 1                          |                                   |                 |
|                         | Minute                                   | s<br>min                | 60                         |                                   |                 |
| Time                    |                                          |                         | 3 600                      | Second                            | s               |
|                         | Hour                                     | h                       |                            |                                   |                 |
|                         | Day                                      | d                       | 86 400                     |                                   |                 |
| Speed                   | Meters per second                        | m/s                     | 1                          | Meters per second                 | m/s             |
|                         | Knot                                     | kn                      | 1 852/3 600                |                                   |                 |
| Frequency and vibration |                                          | s <sup>-1</sup> ( pps ) | 1                          | Hertz                             | Hz              |
|                         | Revolutions per minute (rpm)             | rpm( r/min )            | 1/60                       | Per second                        | S <sup>-1</sup> |
| Angular speed           | Radians per second                       | rad/s                   | 1                          | Radians per second                | rad/s           |
| Acceleration            | Meters per square second                 | m/s²                    | 1                          | Meters per second square          | m/s²            |
| 71000101411011          | G                                        | G                       | 9.806 65                   | motore per cocoria oquare         | 111/0           |
|                         | Kilogram force                           | kgf                     | 9.806 65                   |                                   |                 |
| Force                   | Ton force                                | tf                      | 9 806.65                   | Newton                            | N               |
|                         | Dyne                                     | dyn                     | 10 <sup>-5</sup>           |                                   |                 |
| Force moment            | Kilogram force / meter                   | kgf • m                 | 9.806 65                   | Newton meter                      | Ν·m             |
| Inertia moment          | Kilogram force / meter / square second   | kgf • m • s²            | 9.806 65                   | Kilogram / square meter           | kg ⋅ m²         |
| Stress                  | Kilogram force per square meter          | kgf/m²                  | 9.806 65                   | Pascal or newton per square meter | Pa or N/m²      |
|                         | Kilogram force per square meter          | kgf/m²                  | 9.806 65                   |                                   |                 |
|                         | Meter water column                       | mH₂O                    | 9 806.65                   |                                   |                 |
| _                       | Meter of mercury                         | mHg                     | 101 325/0.76               | Bassal                            | D-              |
| Pressure                | Torr                                     | Torr                    | 101 325/760                | Pascal                            | Pa              |
|                         | Atmosphere                               | atm                     | 101 325                    |                                   |                 |
|                         | Bar                                      | bar                     | 10 <sup>5</sup>            |                                   |                 |
|                         | Erg                                      | erg                     | 10 <sup>-7</sup>           |                                   |                 |
|                         | IT calorie                               | calı⊤                   | 4.186 8                    |                                   |                 |
| Energy                  | Kilogram force / meter                   | kgf • m                 | 9.806 65                   | Joule                             | J               |
| Liloigy                 | Kilowatt hour                            | kW • h                  | 3.600 × 10 <sup>6</sup>    |                                   |                 |
|                         | Metric horsepower per hour               | PS · h                  | 2.647 79 × 10 <sup>6</sup> |                                   |                 |
|                         | Watt                                     | W                       | 2.047 79 x 10              |                                   |                 |
| Dower rate and name     |                                          | PS                      | II -                       | Watt                              | W               |
| Power rate and power    | Metric horsepower                        | _                       | 735.5                      | vvali                             | l vv            |
|                         | Kilogram force / meter per second        | kgf • m/s               | 9.806 65                   |                                   |                 |

### Appendix table 2: Comparison of SI, CGS and gravity units-2

| Unit system Quantity | Power rate | Temperature | Viscosity  | Dynamic viscosity | Magnetic flux | Flux density | Magnetic field strength |
|----------------------|------------|-------------|------------|-------------------|---------------|--------------|-------------------------|
| SI                   | W          | K           | Pa·s       | m²/s              | Wb            | Т            | A/m                     |
| CGS system           | erg/s      | C           | Р          | St                | Mx            | Gs           | Oe                      |
| Gravitation system   | kgf • m/s  | c           | kgf • s/m² | m²/s              |               |              |                         |

### Appendix table 3: SI-customary unit conversion table-2

| Quantity                | Unit designation                         | Symbol     | Conversion rate to SI   | SI unit designation     | Symbol |
|-------------------------|------------------------------------------|------------|-------------------------|-------------------------|--------|
|                         | Poise                                    | Р          | 10 <sup>-1</sup>        |                         |        |
| Viscosity               | Centipoise                               | cР         | 10 <sup>-3</sup>        | Pascal second           | Pa⋅s   |
|                         | Kilogram force / square second per meter | kgf • s/m² | 9.806 65                |                         |        |
| Dynamic viscosity       | Stoke                                    | St         | 10-4                    | Square meter per second | m²/s   |
| Dynamic viscosity       | Centistoke                               | cSt        | 10 <sup>-6</sup>        | Square meter per second | 111/5  |
| Temperature             | Degree                                   | °C         | +273.15                 | Kelvin                  | K      |
| Radioactive             | Curie                                    | Ci         | $3.7 \times 10^{10}$    | Becquerel               | Bq     |
| Dosage                  | Roentgen                                 | R          | 2.58 × 10 <sup>-4</sup> | Coulombs per kilogram   | C/kg   |
| Absorption dosage       | Rad                                      | rad        | 10 <sup>-2</sup>        | Gray                    | Gy     |
| Dosage equivalent       | Rem                                      | rem        | 10 <sup>-2</sup>        | Sievert                 | Sv     |
| Magnetic flux           | Maxwell                                  | Mx         | 10 <sup>-8</sup>        | Weber                   | Wb     |
| Flux density            | Gamma                                    |            | 10 <sup>-9</sup>        | Tesla                   | Т      |
| Flux delisity           | Gauss                                    | Gs         | 10 <sup>-4</sup>        | lesia                   | '      |
| Magnetic field strength | Oersted                                  | Oe         | 10 <sup>3</sup> /4      | Amperes per meter       | A/m    |
| Quantity of electricity | Coulomb                                  | С          | 1                       | Coulomb                 | С      |
| Potential difference    | Volt                                     | V          | 1                       | Volt                    | V      |
| Electric resistance     | Ohm                                      |            | 1                       | Ohm                     |        |
| Current                 | Ampere                                   | Α          | 1                       | Ampere                  | Α      |

### Appendix table 4: Tenth power multiples of SI unit

| Multiples of     | Pre   | efix   | Multiples of                           | Pre   | efix   |
|------------------|-------|--------|----------------------------------------|-------|--------|
| unit             | Name  | Symbol | unit                                   | Name  | Symbol |
| 10 <sup>18</sup> | Exa   | Е      | 10 <sup>-1</sup>                       | Deci  | d      |
| 10 <sup>15</sup> | Peta  | Р      | 10 <sup>-2</sup>                       | Centi | С      |
| 10 <sup>12</sup> | Tera  | Т      | 10 <sup>-3</sup>                       | Mili  | m      |
| 10°              | Giga  | G      | 10 <sup>-6</sup>                       | Micro | μ      |
| 10 <sup>6</sup>  | Mega  | M      | 10 <sup>-9</sup>                       | Nano  | n      |
| 10 <sup>3</sup>  | Kilo  | k      | 10 <sup>-12</sup>                      | Pico  | р      |
| 10 <sup>2</sup>  | Hecto | h      | 10 <sup>-15</sup><br>10 <sup>-18</sup> | Femto | f      |
| 10               | Deca  | da     | 10 <sup>-18</sup>                      | Ato   | а      |

Appendix table 5: Dimensional tolerance for shafts

|            | meter<br>ision | a1             | 13                 | C              | :12     | d            | 6            | e     | 6            | е            | 13      | f    | 5            |       | f6           | 9    | 15           | ç    | <b>J</b> 6   |
|------------|----------------|----------------|--------------------|----------------|---------|--------------|--------------|-------|--------------|--------------|---------|------|--------------|-------|--------------|------|--------------|------|--------------|
| over       | nm<br>incl.    | high           | low                | hiah           | low     | high         | low          | high  | low          | high         | low     | high | low          | high  | low          | high | low          | hiah | low          |
|            |                |                |                    |                |         |              |              |       |              |              |         |      |              |       |              |      |              |      |              |
| 3<br>6     | 6<br>10        | - 270<br>- 280 | - 450<br>- 500     | - 70<br>- 80   |         | - 30<br>- 40 | - 38<br>- 49 | - 25  | - 28<br>- 34 | - 20<br>- 25 |         | _    | - 15<br>- 19 |       | - 18<br>- 22 | - 4  | - 9<br>- 11  | - 4  | - 12<br>- 14 |
| 10         | 18             | - 290          | - 560              | - 95           | - 275   | - 50         | - 61         | - 32  |              |              |         | _    | - 24         |       |              | _    | - 11<br>- 14 | _    | - 17         |
| 18         | 30             | - 300          | - 630              | - 110          | -       |              | - 78         |       |              | _            | - 370   | _    | - 29         |       | - 33         | _    |              | _    | - 20         |
| 30         | 40             | - 310          |                    | - 120          |         |              |              |       |              |              |         |      |              |       |              |      |              |      |              |
| 40         | 50             | - 320          | - 710              | - 130          |         | - 80         | - 96         | - 50  | - 66         | - 50         | - 440   | - 25 | - 36         | - 25  | - 41         | - 9  | - 20         | - 9  | - 25         |
| 50         | 65             | - 340          | - 800              | - 140          | - 440   | 100          | 110          | - 60  | 70           | 60           | - 520   | 20   | 42           | 20    | 40           | 10   | 22           | 10   | - 29         |
| 65         | 80             | - 360          | - 820              | - 150          | - 450   | - 100        | - 119        | - 60  | - 79         | - 60         | - 520   | - 30 | - 43         | - 30  | - 49         | - 10 | - 23         | - 10 | - 29         |
| 80         | 100            | - 380          | - 920              | - 170          |         | - 120        | - 142        | - 72  | - 94         | - 72         | - 612   | - 36 | - 51         | - 36  | - 58         | _ 12 | - 27         | - 12 | - 34         |
| 100        | 120            | - 410          | - 950              | - 180          | - 530   | 120          | 172          | - 12  | - 34         | - 12         | - 012   | - 30 | - 01         | - 50  | - 50         | - 12 | - 21         | - 12 | - 54         |
| 120        | 140            | - 460          | - 1 090            | - 200          | - 600   |              |              |       |              |              |         |      |              |       |              |      |              |      |              |
| 140        | 160            | - 520          | - 1 150            | - 210          | - 610   | - 145        | - 170        | - 85  | - 110        | - 85         | - 715   | - 43 | - 61         | - 43  | - 68         | - 14 | - 32         | - 14 | - 39         |
| 160        | 180            | - 580          | - 1 210            | - 230          |         |              |              |       |              |              |         |      |              |       |              |      |              |      |              |
| 180<br>200 | 200<br>225     | - 740          | - 1 380<br>- 1 460 | - 240<br>- 260 |         | 170          | 100          | - 100 | 120          | 100          | - 820   | E0.  | 70           | 50    | 70           | 15   | 25           | 15   | - 44         |
| 225        | 250            | - 820          | - 1 540            | - 280          | -       | - 170        | - 199        | - 100 | - 129        | - 100        | - 620   | - 50 | - 70         | - 50  | - 79         | - 13 | - 33         | - 15 | - 44         |
| 250        | 280            | - 920          | - 1 730            | - 300          |         |              |              |       |              |              |         |      |              |       |              |      |              |      |              |
| 280        | 315            | - 1 050        | - 1 860            | - 330          |         | - 190        | - 222        | - 110 | - 142        | - 110        | - 920   | - 56 | - 79         | - 56  | - 88         | - 17 | - 40         | - 17 | - 49         |
| 315        | 355            | - 1 200        | - 2 090            | - 360          | - 930   | 240          | 246          | 105   | 161          | 105          | - 1 015 | 60   | 07           | 60    | 00           | 10   | 42           | 40   | F 4          |
| 355        | 400            | - 1 350        | - 2 240            | - 400          | - 970   | - 210        | - 240        | - 125 | - 101        | - 125        | - 1 015 | - 62 | - 07         | - 62  | - 96         | - 10 | - 43         | - 10 | - 54         |
| 400        | 450            |                |                    |                | - 1 070 | - 230        | - 270        | - 135 | - 175        | - 135        | - 1 105 | - 68 | - 95         | - 68  | - 108        | - 20 | - 47         | - 20 | - 60         |
| 450        | 500            | - 1 650        | - 2 620            | - 480          | - 1 110 | 200          | 210          | 100   | 170          | 100          | 1 100   | - 00 |              | - 00  | 100          |      |              |      |              |
| 500        | 560            | _              | -                  | -              | -       | - 260        | - 304        | - 145 | - 189        | -            | -       | -    | -            | - 76  | - 120        | -    | -            | - 22 | - 66         |
| 560        | 630<br>710     |                |                    |                |         |              |              |       |              |              |         |      |              |       |              |      |              |      |              |
| 630<br>710 | 800            | -              | -                  | -              | -       | - 290        | - 340        | - 160 | - 210        | -            | -       | -    | -            | - 80  | - 130        | -    | -            | - 24 | - 74         |
| 800        | 900            |                |                    |                |         |              |              |       |              |              |         |      |              |       |              |      |              |      |              |
| 900        | 1 000          | -              | -                  | -              | -       | - 320        | - 376        | - 170 | - 226        | -            | -       | -    | -            | - 86  | - 142        | -    | -            | - 26 | - 82         |
| 1 000      | 1 120          |                |                    |                |         | 252          | 440          | 405   | 004          |              |         |      |              | 00    | 404          |      |              | 00   | 0.4          |
| 1 120      | 1 250          | -              | -                  | -              | -       | - 350        | - 416        | - 195 | - 261        | -            | -       | -    | -            | - 98  | - 164        | -    | -            | - 28 | - 94         |
| 1 250      | 1 400          | _              | _                  | _              | _       | - 300        | - 468        | - 220 | - 202        | _            | _       | _    | _            | - 110 | - 188        | _    |              | - 30 | - 108        |
| 1 400      | 1 600          |                |                    |                |         | - 590        | 400          | - 220 | 230          |              |         |      |              | - 110 | - 100        |      | _            | - 50 | 100          |

| Dia            | meter          |      |            |        | _      |      |      |        | _      |      | _              |      |     |      |     |      |     |      | _    |
|----------------|----------------|------|------------|--------|--------|------|------|--------|--------|------|----------------|------|-----|------|-----|------|-----|------|------|
| div            | rision         |      | j5         | j      | s5     | j    | 6    | į įs   | 66     | j    | j7             | k4   | 4   | k    | 5   | k6   | 5   | m    | 5    |
| over r         | nm<br>incl.    | high | low        | high   | low    | high | low  | high   | low    | high | low            | high | low | high | low | high | low | high | low  |
| 3              | 6              | +3   | - 2        | + 2.5  | - 2.5  | + 6  | - 2  | + 4    | - 4    | + 8  | - 4            | + 5  | + 1 | + 6  | + 1 | + 9  | + 1 | + 9  | + 4  |
| 6              | 10             | + 4  | - 2        | + 3    | - 3    | + 7  | - 2  | + 4.5  | - 4.5  | + 10 | - 5            | + 5  | + 1 | + 7  | + 1 | + 10 | + 1 | + 12 | + 6  |
| 10             | 18             | +5   | - 3        | + 4    | - 4    | + 8  | - 3  | + 5.5  | - 5.5  | + 12 | - 6            | + 6  | + 1 | + 9  | + 1 | + 12 | + 1 | + 15 | + 7  |
| 18             | 30             | +5   | - 4        | + 4.5  | - 4.5  | + 9  | - 4  | + 6.5  | - 6.5  | + 13 | <del>-</del> 8 | + 8  | + 2 | + 11 | + 2 | + 15 | + 2 | + 17 | + 8  |
| 30<br>40       | 40<br>50       | +6   | - 5        | + 5.5  | - 5.5  | + 11 | - 5  | + 8    | - 8    | + 15 | <b>-</b> 10    | + 9  | + 2 | + 13 | + 2 | + 18 | + 2 | + 20 | + 9  |
| 50<br>65       | 65<br>80       | +6   | <b>–</b> 7 | + 6.5  | - 6.5  | + 12 | - 7  | + 9.5  | - 9.5  | + 18 | <b>-</b> 12    | + 10 | + 2 | + 15 | + 2 | + 21 | + 2 | + 24 | + 11 |
| 80             | 100            |      |            |        |        |      |      |        |        |      |                |      |     |      |     |      |     |      |      |
| 100            | 120            | +6   | <b>-</b> 9 | + 7.5  | - 7.5  | + 13 | - 9  | + 11   | - 11   | + 20 | <b>-</b> 15    | + 13 | + 3 | + 18 | + 3 | + 25 | + 3 | + 28 | + 13 |
| 120            | 140            |      |            | _      | _      |      |      |        |        |      |                |      | _   |      | _   |      | _   |      |      |
| 140<br>160     | 160<br>180     | +7   | - 11       | + 9    | - 9    | + 14 | - 11 | + 12.5 | - 12.5 | + 22 | <b>-</b> 18    | + 15 | + 3 | + 21 | + 3 | + 28 | + 3 | + 33 | + 15 |
| 180            | 200            |      |            |        |        |      |      |        |        |      |                |      |     |      |     |      |     |      |      |
| 200            | 225            | +7   | - 13       | + 10   | - 10   | + 16 | - 13 | + 14.5 | - 14.5 | + 25 | - 21           | + 18 | + 4 | + 24 | + 4 | + 33 | + 4 | + 37 | + 17 |
| 225            | 250            |      |            |        |        |      |      |        |        |      |                |      |     |      |     |      |     |      |      |
| 250            | 280            | +7   | - 16       | + 11.5 | - 11.5 | + 16 | - 16 | + 16   | - 16   | + 26 | - 26           | + 20 | + 4 | + 27 | + 4 | + 36 | + 4 | + 43 | + 20 |
| 280            | 315            |      |            |        |        |      |      |        |        |      |                |      |     |      | -   |      |     |      |      |
| 315<br>355     | 355<br>400     | +7   | - 18       | + 12.5 | - 12.5 | + 18 | - 18 | + 18   | - 18   | + 29 | - 28           | + 22 | + 4 | + 29 | + 4 | + 40 | + 4 | + 46 | + 21 |
| 400<br>450     | 450<br>500     | +7   | - 20       | + 13.5 | - 13.5 | + 20 | - 20 | + 20   | - 20   | + 31 | <b>-</b> 32    | + 25 | + 5 | + 32 | + 5 | + 45 | + 5 | + 50 | + 23 |
| 500            | 560<br>560     |      |            |        |        |      |      |        |        |      |                |      |     |      |     |      |     |      |      |
| 560            | 630            | -    | -          | -      | -      | -    | -    | + 22   | - 22   | -    | -              | -    | -   | -    | -   | + 44 | 0   | -    | -    |
| 630            | 710            |      |            |        |        |      |      | . 05   | 0.5    |      |                |      |     |      |     | . 50 |     |      |      |
| 710            | 800            | -    | -          | -      | -      | -    | -    | + 25   | - 25   | -    | -              | -    | -   | -    | -   | + 50 | 0   | -    | -    |
| 800            | 900            | _    | _          | _      | _      | _    | _    | + 28   | - 28   | _    | _              | _    | _   | _    | _   | + 56 | 0   | _    | _    |
| 900            | 1 000          |      |            |        |        |      |      |        |        |      |                |      |     |      |     |      |     |      |      |
| 1 000<br>1 120 | 1 120<br>1 250 | -    | -          | -      | -      | -    | -    | + 33   | - 33   | -    | -              | -    | -   | -    | -   | + 66 | 0   | -    | -    |
| 1 250          | 1 400          |      |            |        |        |      |      |        |        |      |                |      |     |      |     |      |     |      |      |
| 1 400          | 1 600          | -    | -          | -      | -      | -    | -    | + 39   | - 39   | -    | -              | -    | -   | -    | -   | + 78 | 0   | -    | -    |

| Unit | μ | m |
|------|---|---|
|------|---|---|

|   |     | h4         |      | h5         |      | h6           |      | h7           |      | h8           |      | h9           |      | h10          |      | h11            |      | h13            |         | js4       | Diamete           | r division        |
|---|-----|------------|------|------------|------|--------------|------|--------------|------|--------------|------|--------------|------|--------------|------|----------------|------|----------------|---------|-----------|-------------------|-------------------|
| h | igh | low        | higl | n low      | high | n low        | high | low          | high | low          | high | low          | high | low          | high | low            | high | low            | high    | n low     | over              | incl.             |
| ( | )   | - 4<br>- 4 | 0    | - 5<br>- 6 | 0    | - 8<br>- 9   | 0    | - 12<br>- 15 | 0    | - 18<br>- 22 | 0    | - 30<br>- 36 | 0    | - 48<br>- 58 | 0    | - 75<br>- 90   | 0    | - 180<br>- 220 | + 2     | 2 - 2     | 3<br>6            | 6<br>10           |
| ( | )   | - 5<br>- 6 | 0    | - 8<br>- 9 | 0    | - 11<br>- 13 | 0    | - 18<br>- 21 | 0    | - 27<br>- 33 | 0    | - 43<br>- 52 | 0    | - 70<br>- 84 | 0    | - 110<br>- 130 | 0    | - 270<br>- 330 | + 2 + 3 |           | 10<br>18          | 18<br>30          |
| ( | )   | - 7        | 0    | - 11       | 0    | - 16         | 0    | - 25         | 0    | - 39         | 0    | - 62         | 0    | - 100        | 0    | - 160          | 0    | - 390          | + 3     | 3.5 - 3.5 | 30<br>40          | 40<br>50          |
| ( | )   | - 8        | 0    | - 13       | 0    | - 19         | 0    | - 30         | 0    | - 46         | 0    | - 74         | 0    | - 120        | 0    | - 190          | 0    | - 460          | + 4     | 1 - 4     | 50<br>65          | 65<br>80          |
| ( | )   | - 10       | 0    | - 15       | 0    | - 22         | 0    | - 35         | 0    | - 54         | 0    | - 87         | 0    | - 140        | 0    | - 220          | 0    | - 540          | + 5     | 5 - 5     | 80<br>100         | 100<br>120        |
| ( | )   | - 12       | 0    | - 18       | 0    | - 25         | 0    | - 40         | 0    | - 63         | 0    | - 100        | 0    | - 160        | 0    | - 250          | 0    | - 630          | + 6     | 6 - 6     | 120<br>140<br>160 | 140<br>160<br>180 |
| ( | )   | - 14       | 0    | - 20       | 0    | - 29         | 0    | - 46         | 0    | - 72         | 0    | - 115        | 0    | - 185        | 0    | - 290          | 0    | - 720          | + 7     | 7 - 7     | 180<br>200<br>225 | 200<br>225<br>250 |
| ( | )   | - 16       | 0    | - 23       | 0    | - 32         | 0    | - 52         | 0    | - 81         | 0    | - 130        | 0    | - 210        | 0    | - 320          | 0    | - 810          | + 8     | 3 - 8     | 250<br>280        | 280<br>315        |
| ( | )   | - 18       | 0    | - 25       | 0    | - 36         | 0    | - 57         | 0    | - 89         | 0    | - 140        | 0    | - 230        | 0    | - 360          | 0    | - 890          | + 9     | 9 - 9     | 315<br>355        | 355<br>400        |
| ( | )   | - 20       | 0    | - 27       | 0    | - 40         | 0    | - 63         | 0    | - 97         | 0    | - 155        | 0    | - 250        | 0    | - 400          | 0    | - 970          | + 10    | - 10      | 400<br>450        | 450<br>500        |
|   | -   | -          | -    | -          | 0    | - 44         | 0    | - 70         | 0    | - 110        | 0    | - 175        | 0    | - 280        | 0    | - 440          | 0    | -              | -       |           | 500<br>560        | 560<br>630        |
|   | -   | -          | -    | -          | 0    | - 50         | 0    | - 80         | 0    | - 125        | 0    | - 200        | 0    | - 320        | 0    | - 500          | 0    | -              | -       |           | 630<br>710        | 710<br>800        |
|   | -   | -          | -    | -          | 0    | - 56         | 0    | - 90         | 0    | - 140        | 0    | - 230        | 0    | - 360        | 0    | - 560          | 0    | -              | -       |           | 800<br>900        | 900<br>1 000      |
|   | -   | -          | -    | -          | 0    | - 66         | 0    | - 105        | 0    | - 165        | 0    | - 260        | 0    | - 420        | 0    | - 660          | 0    | -              | -       | -         | 1 000<br>1 120    | 1 120<br>1 250    |
|   | -   | -          | -    | -          | 0    | - 78         | 0    | - 125        | 0    | - 195        | 0    | - 310        | 0    | - 500        | 0    | - 780          | 0    | -              | -       |           | 1 250<br>1 400    | 1 400<br>1 600    |

Unit  $\mu\,m$ 

| m                            | 6                        | n                            | 5                           | n                            | 6                        | р                            | 5                            | F                            | 6                            |                              | ·6                           | r                            | 7                            | E                      | Basic t              | oleran           | се                   | Diamete<br>m       |                     |
|------------------------------|--------------------------|------------------------------|-----------------------------|------------------------------|--------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------|----------------------|------------------|----------------------|--------------------|---------------------|
| high                         | low                      | high                         | low                         | high                         | low                      | high                         | low                          | high                         | low                          | high                         | low                          | high                         | low                          | IT2                    | IT3                  | IT5              | IT7                  | over               | incl.               |
| + 12<br>+ 15<br>+ 18<br>+ 21 | + 4<br>+ 6<br>+ 7<br>+ 8 | + 13<br>+ 16<br>+ 20<br>+ 24 | + 8<br>+ 10<br>+ 12<br>+ 15 | + 16<br>+ 19<br>+ 23<br>+ 28 | + 8<br>+10<br>+12<br>+15 | + 17<br>+ 21<br>+ 26<br>+ 31 | + 12<br>+ 15<br>+ 18<br>+ 22 | + 20<br>+ 24<br>+ 29<br>+ 35 | + 12<br>+ 15<br>+ 18<br>+ 22 | + 23<br>+ 28<br>+ 34<br>+ 41 | + 15<br>+ 19<br>+ 23<br>+ 28 | + 27<br>+ 34<br>+ 41<br>+ 49 | + 15<br>+ 19<br>+ 23<br>+ 28 | 1.5<br>1.5<br>2<br>2.5 | 2.5<br>2.5<br>3<br>4 | 5<br>6<br>8<br>9 | 12<br>15<br>18<br>21 | 3<br>6<br>10<br>18 | 6<br>10<br>18<br>30 |
| + 25                         | + 9                      | + 28                         | + 17                        | + 33                         | + 17                     | + 37                         | + 26                         | + 42                         | + 26                         | + 50                         | + 34                         | + 59                         | + 34                         | 2.5                    | 4                    | 11               | 25                   | 30<br>40           | 40<br>50            |
| + 30                         | + 11                     | + 33                         | + 20                        | + 39                         | + 20                     | + 45                         | + 32                         | + 51                         | + 32                         | + 60<br>+ 62                 | + 41<br>+ 43                 | + 71<br>+ 73                 | + 41<br>+ 43                 | 3                      | 5                    | 13               | 30                   | 50<br>65           | 65<br>80            |
| + 35                         | + 13                     | + 38                         | + 23                        | + 45                         | + 23                     | + 52                         | + 37                         | + 59                         | + 37                         | + 73<br>+ 76                 | + 51<br>+ 54                 | + 86<br>+ 89                 | + 51<br>+ 54                 | 4                      | 6                    | 15               | 35                   | 80<br>100          | 100<br>120          |
| + 40                         | + 15                     | + 45                         | + 27                        | + 52                         | + 27                     | + 61                         | + 43                         | + 68                         | + 43                         | + 88<br>+ 90<br>+ 93         | + 63<br>+ 65<br>+ 68         | + 103<br>+ 105<br>+ 108      | + 63<br>+ 65<br>+ 68         | 5                      | 8                    | 18               | 40                   | 120<br>140<br>160  | 140<br>160<br>180   |
| + 46                         | + 17                     | + 51                         | + 31                        | + 60                         | + 31                     | + 70                         | + 50                         | + 79                         | + 50                         | + 106<br>+ 109<br>+ 113      | + 77<br>+ 80<br>+ 84         | + 123<br>+ 126<br>+ 130      | + 77<br>+ 80<br>+ 84         | 7                      | 10                   | 20               | 46                   | 180<br>200<br>225  | 200<br>225<br>250   |
| + 52                         | + 20                     | + 57                         | + 34                        | + 66                         | + 34                     | + 79                         | + 56                         | + 88                         | + 56                         | + 126<br>+ 130               | + 94<br>+ 98                 | + 146<br>+ 150               | + 94<br>+ 98                 | 8                      | 12                   | 23               | 52                   | 250<br>280         | 280<br>315          |
| + 57                         | + 21                     | + 62                         | + 37                        | + 73                         | + 37                     | + 87                         | + 62                         | + 98                         | + 62                         | + 144<br>+ 150               | + 108<br>+ 114               | + 165<br>+ 171               | + 108<br>+ 114               | 9                      | 13                   | 25               | 57                   | 315<br>355         | 355<br>400          |
| + 63                         | + 23                     | + 67                         | + 40                        | + 80                         | + 40                     | + 95                         | + 68                         | + 108                        | + 68                         | + 166<br>+ 172               | + 126<br>+ 132               | + 189<br>+ 195               | + 126<br>+ 132               | 10                     | 15                   | 27               | 63                   | 400<br>450         | 450<br>500          |
| + 70                         | + 26                     | -                            | -                           | + 88                         | + 44                     | -                            | -                            | + 122                        | + 78                         | + 194<br>+ 199               | + 150<br>+ 155               | + 220<br>+ 225               | + 150<br>+ 155               | -                      | -                    | -                | 70                   | 500<br>560         | 560<br>630          |
| + 80                         | + 30                     | -                            | -                           | + 100                        | + 50                     | -                            | -                            | + 138                        | + 88                         | + 225<br>+ 235               | + 175<br>+ 185               | + 255<br>+ 265               | + 175<br>+ 185               | •                      | -                    | -                | 80                   | 630<br>710         | 710<br>800          |
| + 90                         | + 34                     | -                            | -                           | + 112                        | + 56                     | -                            | -                            | + 156                        | + 100                        | + 266<br>+ 276               | + 210<br>+ 220               | + 300<br>+ 310               | + 210<br>+ 220               | -                      | -                    | -                | 90                   | 800<br>900         | 900<br>1 000        |
| + 106                        | + 40                     | -                            | -                           | + 132                        | + 66                     | -                            | -                            | + 186                        | + 120                        | + 316<br>+ 326               | + 250<br>+ 260               | + 355<br>+ 365               | + 250<br>+ 260               | -                      | -                    | -                | 105                  | 1 000<br>1 120     | 1 120<br>1 250      |
| + 126                        | + 48                     | -                            | -                           | + 156                        | + 78                     | -                            | -                            | + 218                        | + 140                        | + 378<br>+ 408               | + 300<br>+ 330               | + 425<br>+ 455               | + 300<br>+ 330               | -                      | -                    | -                | 125                  | 1 250<br>1 400     | 1 400<br>1 600      |

- 550

Appendix table 6: Dimensional tolerance for housing bore

| Diame<br>divisi    | on                  | E                            | 7                            | Е     | 10                           | Е                               | 11           | Е     | 12           | F            | 6                            | F            | 7                            | F            | 8                            | G                            | 6                        | G                            | 7                        | H6                                 |
|--------------------|---------------------|------------------------------|------------------------------|-------|------------------------------|---------------------------------|--------------|-------|--------------|--------------|------------------------------|--------------|------------------------------|--------------|------------------------------|------------------------------|--------------------------|------------------------------|--------------------------|------------------------------------|
| over               | n<br>incl.          | high                         | low                          | high  | low                          | high                            | low          | high  | low          | high         | low                          | high         | low                          | high         | low                          | high                         | low                      | high                         | low                      | high low                           |
| 3<br>6<br>10<br>18 | 6<br>10<br>18<br>30 | + 32<br>+ 40<br>+ 50<br>+ 61 | + 20<br>+ 25<br>+ 32<br>+ 40 | + 102 | + 20<br>+ 25<br>+ 32<br>+ 40 | + 95<br>+ 115<br>+ 142<br>+ 170 | + 25<br>+ 32 |       | + 25<br>+ 32 | + 22<br>+ 27 | + 10<br>+ 13<br>+ 16<br>+ 20 | + 28<br>+ 34 | + 10<br>+ 13<br>+ 16<br>+ 20 | + 35<br>+ 43 | + 10<br>+ 13<br>+ 16<br>+ 20 | + 12<br>+ 14<br>+ 17<br>+ 20 | + 4<br>+ 5<br>+ 6<br>+ 7 | + 16<br>+ 20<br>+ 24<br>+ 28 | + 4<br>+ 5<br>+ 6<br>+ 7 | + 8 0<br>+ 9 0<br>+ 11 0<br>+ 13 0 |
| 30<br>40           | 40<br>50            | + 75                         | + 50                         | + 150 | + 50                         | + 210                           | + 50         | + 300 | + 50         | + 41         | + 25                         | + 50         | + 25                         | + 64         | + 25                         | + 25                         | + 9                      | + 34                         | + 9                      | +16 0                              |
| 50<br>65           | 65<br>80            | + 90                         | + 60                         | + 180 | + 60                         | + 250                           | + 60         | + 360 | + 60         | + 49         | + 30                         | + 60         | + 30                         | + 76         | + 30                         | + 29                         | + 10                     | + 40                         | + 10                     | +19 0                              |
| 80<br>100          | 100<br>120          | + 107                        | + 72                         | + 212 | + 72                         | + 292                           | + 72         | + 422 | + 72         | + 58         | + 36                         | + 71         | + 36                         | + 90         | + 36                         | + 34                         | + 12                     | + 47                         | + 12                     | +22 0                              |
| 120<br>140<br>160  | 140<br>160<br>180   | + 125                        | + 85                         | + 245 | + 85                         | + 335                           | + 85         | + 485 | + 85         | + 68         | + 43                         | + 83         | + 43                         | + 106        | + 43                         | + 39                         | + 14                     | + 54                         | + 14                     | + 25 0                             |
| 180<br>200<br>225  | 200<br>225<br>250   | + 146                        | + 100                        | + 285 | + 100                        | + 390                           | + 100        | + 560 | + 100        | + 79         | + 50                         | + 96         | + 50                         | + 122        | + 50                         | + 44                         | + 15                     | + 61                         | + 15                     | +29 0                              |
| 250<br>280         | 280<br>315          | + 162                        | + 110                        | + 320 | + 110                        | + 430                           | + 110        | + 630 | + 110        | + 88         | + 56                         | + 108        | + 56                         | + 137        | + 56                         | + 49                         | + 17                     | + 69                         | + 17                     | + 32 0                             |
| 315<br>355         | 355<br>400          | + 182                        | + 125                        | + 355 | + 125                        | + 485                           | + 125        | + 695 | + 125        | + 98         | + 62                         | + 119        | + 62                         | + 151        | + 62                         | + 54                         | + 18                     | + 75                         | + 18                     | + 36 0                             |
| 400<br>450         | 450<br>500          | + 198                        | + 135                        | + 385 | + 135                        | + 535                           | + 135        | + 765 | + 135        | + 108        | + 68                         | + 131        | + 68                         | + 165        | + 68                         | + 60                         | + 20                     | + 83                         | + 20                     | +40 0                              |
| 500<br>560         | 560<br>630          | + 215                        | + 145                        | -     | -                            | •                               | -            | -     | -            | + 120        | + 76                         | + 146        | + 76                         | + 186        | + 76                         | + 66                         | + 22                     | + 92                         | + 22                     | + 44 0                             |
| 630<br>710         | 710<br>800          | + 240                        | + 160                        | -     | -                            | •                               | -            | -     | -            | + 130        | + 80                         | + 160        | + 80                         | + 205        | + 80                         | + 74                         | + 24                     | + 104                        | + 24                     | +50 0                              |
| 800<br>900 1       | 900                 | + 260                        | + 170                        | -     | -                            | ı                               | -            | -     | -            | + 142        | + 86                         | + 176        | + 86                         | + 226        | + 86                         | + 82                         | + 26                     | + 116                        | + 26                     | + 56 0                             |
| 1 000 1<br>1 120 1 |                     | + 300                        | + 195                        | -     | -                            | -                               | -            | -     | -            | + 164        | + 98                         | + 203        | + 98                         | + 263        | + 98                         | + 94                         | + 28                     | + 133                        | + 28                     | +66 0                              |
| 1 250 1<br>1 400 1 |                     | + 345                        | + 220                        | -     | -                            | -                               | -            | -     | -            | + 188        | +110                         | + 235        | + 110                        | + 305        | + 110                        | + 108                        | + 30                     | + 155                        | + 30                     | +78 0                              |
| 1 600 1<br>1 800 2 | 800                 | + 390                        | + 240                        | -     | -                            | 1                               | -            | -     | -            | + 212        | + 120                        | + 270        | + 120                        | + 350        | + 120                        | + 124                        | + 32                     | + 182                        | + 32                     | + 92 0                             |

Unit  $\mu m$ Diameter K6 K7 M6 M7 N7 P6 **P7** R6 R7 N6 division high high high high low high low over incl high low low low high low high low high high low low low 20 24 29 23 28 + 3 5 7 9 8 6 7 9 10 18 +2+2 12 15 15 18 21 26 25 31 6 5 10 3 16 4 19 12 9 16 13 34 10 9 23 16 20 - 15 20 12 n 5 18 30 41 24 37 17 21 15 - 18 30 40 40 + 3 - 13 + 7 18 20 0 25 - 12 28 8 33 - 21 37 17 42 29 42 25 50 50 60 30 50 65 35 54 - 21 - 5 24 0 - 30 - 14 33 - 9 39 - 26 45 65 32 80 37 56 62 80 100 44 66 38 73 +4 -18 + 10 25 0 - 10 - 30 52 - 24 6 28 35 - 16 38 45 59 \_ \_ 100 120 47 69 41 76 120 140 56 81 48 88 +4 - 21 + 12 28 8 33 0 40 - 20 45 - 36 61 28 58 83 - 12 52 68 160 180 61 86 53 93 68 97 60 106 200 225 180 200 - 109 100 +5 - 24 +13 33 8 37 0 46 - 22 - 51 - 14 60 - 41 - 70 - 33 225 250 104 67 113 75 250 280 85 - 126 280 - 117 + 5 - 27 + 16 36 \_ 9 41 0 -52 - 25 57 - 14 66 - 47 79 36 89 - 130 315 - 121 78 97 133 87 - 144 315 355 40 - 10 46 0 57 41 + 17 - 26 62 73 51 87 +7 - 29 - 16 98 355 400 103 93 - 139 - 150 - 103 400 - 113 - 166 450 - 153 + 8 - 32 + 18 45 - 10 50 0 63 - 27 - 17 80 55 - 95 - 45 - 108 450 500 119 - 159 - 109 - 172 500 560 560 - 150 - 194 - 150 - 220 0 0 - 70 - 26 70 - 26 96 - 44 - 122 78 - 44 - 88 - 44 - 114 78 - 148 630 155 - 199 - 155 225 630 710 175 225 - 175 - 225 0 - 50 0 - 80 - 30 80 - 30 - 100 - 50 - 100 - 50 - 130 88 - 138 88 - 168 800 710 185 - 235 - 185 - 265 900 210 - 266 - 210 - 300 0 - 90 - 34 90 - 34 - 124 - 56 - 112 - 156 - 100 - 190 - 56 - 56 - 146 - 100 900 1 000 220 - 276 - 220 - 310 250 316 - 250 - 355 1 000 1 120 0 - 66 0 - 105 - 40 - 106 - 40 - 145 - 66 - 132 - 66 - 171 120 - 186 120 - 225 1 120 1 250 260 - 326 - 260 - 365 300 - 300 - 425 1 250 1 400 - 378 - 78 0 - 125 - 48 - 126 - 48 - 173 - 78 - 78 - 140 - 213 - 140 - 265 - 156 - 203 1 400 1 600 330 408 - 330 - 455 1 600 1 800 370 - 462 - 370 - 520 - 92 0 - 150 - 58 - 150 - 58 - 208 - 92 - 184 - 92 - 242 - 170 - 262 - 170 - 320 1 800 2 000 400 - 492 - 400

| U | Init | μ | m |
|---|------|---|---|
|   |      |   |   |

| H7                                   | H8                                   | H9                                   | H10                                  | H11                                    | H13                                      | J6                                       | Js6           | J7        | Js7                                                | K5                                  | Diameter<br>division<br>mm    |
|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|------------------------------------------|------------------------------------------|---------------|-----------|----------------------------------------------------|-------------------------------------|-------------------------------|
| high low                               | high low                                 | high low                                 | high low      | high low  | high low                                           | high low                            | over incl.                    |
| + 12 0<br>+ 15 0<br>+ 18 0<br>+ 21 0 | + 18 0<br>+ 22 0<br>+ 27 0<br>+ 33 0 | + 30 0<br>+ 36 0<br>+ 43 0<br>+ 52 0 | + 48 0<br>+ 58 0<br>+ 70 0<br>+ 84 0 | + 75 0<br>+ 90 0<br>+ 110 0<br>+ 130 0 | + 180 0<br>+ 220 0<br>+ 270 0<br>+ 330 0 | + 5 - 3<br>+ 5 - 4<br>+ 6 - 5<br>+ 8 - 5 |               | +10 - 8   | + 6 - 6<br>+ 7.5 - 7.5<br>+ 9 - 9<br>+ 10.5 - 10.5 | 0 - 5<br>+1 - 5<br>+2 - 6<br>+1 - 8 | 3 6<br>6 10<br>10 18<br>18 30 |
| + 25 0                               | + 39 0                               | + 62 0                               | + 100 0                              | + 160 0                                | +390 0                                   | +10 -6                                   | + 8 - 8       | + 14 - 11 | + 12.5 - 12.5                                      | +2 - 9                              | 30 40<br>40 50                |
| + 30 0                               | + 46 0                               | + 74 0                               | + 120 0                              | + 190 0                                | + 460 0                                  | +13 -6                                   | + 9.5 - 9.5   | + 18 - 12 | + 15 - 15                                          | +3 -10                              | 50 65<br>65 80                |
| + 35 0                               | + 54 0                               | + 87 0                               | + 140 0                              | +220 0                                 | +540 0                                   | +16 -6                                   | +11 -11       | +22 -13   | + 17.5 - 17.5                                      | +2 -13                              | 80 100<br>100 120             |
| + 40 0                               | + 63 0                               | +100 0                               | + 160 0                              | + 250 0                                | +630 0                                   | +18 -7                                   | + 12.5 - 12.5 | + 26 - 14 | + 20 - 20                                          | +3 -15                              | 120 140<br>140 160<br>160 180 |
| + 46 0                               | + 72 0                               | +115 0                               | + 185 0                              | + 290 0                                | +720 0                                   | +22 -7                                   | + 14.5 - 14.5 | +30 -16   | +23 -23                                            | +2 -18                              | 180 200<br>200 225<br>225 250 |
| + 52 0                               | + 81 0                               | +130 0                               | +210 0                               | + 320 0                                | +810 0                                   | + 25 - 7                                 | + 16 - 16     | + 36 - 16 | + 26 - 26                                          | +3 -20                              | 250 280<br>280 315            |
| + 57 0                               | + 89 0                               | +140 0                               | +230 0                               | + 360 0                                | +890 0                                   | + 29 - 7                                 | + 18 - 18     | + 39 - 18 | + 28.5 - 28.5                                      | +3 -22                              | 315 355<br>355 400            |
| + 63 0                               | + 97 0                               | + 155 0                              | + 250 0                              | +400 0                                 | +970 0                                   | +33 -7                                   | + 20 - 20     | + 43 - 20 | + 31.5 - 31.5                                      | +2 -25                              | 400 450<br>450 500            |
| + 70 0                               | +110 0                               | + 175 0                              | + 280 0                              | + 440 0                                | - 0                                      |                                          | + 22 - 22     |           | + 35 - 35                                          |                                     | 500 560<br>560 630            |
| + 80 0                               | + 125 0                              | +200 0                               | + 320 0                              | + 500 0                                | - 0                                      |                                          | + 25 - 25     |           | + 40 - 40                                          |                                     | 630 710<br>710 800            |
| + 90 0                               | + 140 0                              | +230 0                               | + 360 0                              | + 560 0                                | - 0                                      |                                          | + 28 - 28     |           | + 45 - 45                                          |                                     | 800 900<br>900 1 000          |
| + 105 0                              | + 165 0                              | + 260 0                              | + 420 0                              | +660 0                                 | - 0                                      |                                          | + 33 - 33     |           | + 52.5 - 52.5                                      |                                     | 1 000 1 120<br>1 120 1 250    |
| + 125 0                              | + 195 0                              | +310 0                               | + 500 0                              | +780 0                                 | - 0                                      |                                          | + 39 - 39     |           | + 62.5 - 62.5                                      |                                     | 1 250 1 400<br>1 400 1 600    |
| + 150 0                              | + 230 0                              | +370 0                               | +600 0                               | + 920 0                                | - 0                                      |                                          | + 46 - 46     |           | + 75 - 75                                          |                                     | 1 600 1 800<br>1 800 2 000    |



## Appendix table 7: Basic tolerance

Unit  $\mu$  m

| Арренаіх | table 11 Bac       | Siste to fortune |     |     |        |               |       |     |     |     |      |  |
|----------|--------------------|------------------|-----|-----|--------|---------------|-------|-----|-----|-----|------|--|
|          | ter division<br>mm |                  |     |     | IT bas | sic tolerance | class |     |     |     |      |  |
| over     | incl.              | IT1              | IT2 | IT3 | IT4    | IT5           | IT6   | IT7 | IT8 | IT9 | IT10 |  |
|          | 3                  | 0.8              | 1.2 | 2   | 3      | 4             | 6     | 10  | 14  | 25  | 40   |  |
| 3        | 6                  | 1                | 1.5 | 2.5 | 4      | 5             | 8     | 12  | 18  | 30  | 48   |  |
| 6        | 10                 | 1                | 1.5 | 2.5 | 4      | 6             | 9     | 15  | 22  | 36  | 58   |  |
| 10       | 18                 | 1.2              | 2   | 3   | 5      | 8             | 11    | 18  | 27  | 43  | 70   |  |
| 18       | 30                 | 1.5              | 2.5 | 4   | 6      | 9             | 13    | 21  | 33  | 52  | 84   |  |
| 30       | 50                 | 1.5              | 2.5 | 4   | 7      | 11            | 16    | 25  | 39  | 62  | 100  |  |
| 50       | 80                 | 2                | 3   | 5   | 8      | 13            | 19    | 30  | 46  | 74  | 120  |  |
| 80       | 120                | 2.5              | 4   | 6   | 10     | 15            | 22    | 35  | 54  | 87  | 140  |  |
| 120      | 180                | 3.5              | 5   | 8   | 12     | 18            | 25    | 40  | 63  | 100 | 160  |  |
| 180      | 250                | 4.5              | 7   | 10  | 14     | 20            | 29    | 46  | 72  | 115 | 185  |  |
| 250      | 315                | 6                | 8   | 12  | 16     | 23            | 32    | 52  | 81  | 130 | 210  |  |
| 315      | 400                | 7                | 9   | 13  | 18     | 25            | 36    | 57  | 89  | 140 | 230  |  |
| 400      | 500                | 8                | 10  | 15  | 20     | 27            | 40    | 63  | 97  | 155 | 250  |  |
| 500      | 630                | 9                | 11  | 16  | 22     | 30            | 44    | 70  | 110 | 175 | 280  |  |
| 630      | 800                | 10               | 13  | 18  | 25     | 35            | 50    | 80  | 125 | 200 | 320  |  |
| 800      | 1 000              | 11               | 15  | 21  | 29     | 40            | 56    | 90  | 140 | 230 | 360  |  |
| 1 000    | 1 250              | 13               | 18  | 24  | 34     | 46            | 66    | 105 | 165 | 260 | 420  |  |
| 1 250    | 1 600              | 15               | 21  | 29  | 40     | 54            | 78    | 125 | 195 | 310 | 500  |  |
| 1 600    | 2 000              | 18               | 25  | 35  | 48     | 65            | 92    | 150 | 230 | 370 | 600  |  |
| 2 000    | 2 500              | 22               | 30  | 41  | 57     | 77            | 110   | 175 | 280 | 440 | 700  |  |
| 2 500    | 3 150              | 26               | 36  | 50  | 69     | 93            | 135   | 210 | 330 | 540 | 860  |  |

### Appendix table 8: Viscosity conversion table

| Kinematic                       | Saybolt      | Redwood    | Engler     |  |  |
|---------------------------------|--------------|------------|------------|--|--|
| viscosity<br>mm <sup>2</sup> /s | SUS (second) | R"(second) | E (degree) |  |  |
| 2.7                             | 35           | 32.2       | 1.18       |  |  |
| 4.3                             | 40           | 36.2       | 1.32       |  |  |
| 5.9                             | 45           | 40.6       | 1.46       |  |  |
| 7.4                             | 50           | 44.9       | 1.60       |  |  |
| 8.9                             | 55           | 49.1       | 1.75       |  |  |
| 10.4                            | 60           | 53.5       | 1.88       |  |  |
| 11.8                            | 65           | 57.9       | 2.02       |  |  |
| 13.1                            | 70           | 62.3       | 2.15       |  |  |
| 14.5                            | 75           | 67.6       | 2.31       |  |  |
| 15.8                            | 80           | 71.0       | 2.42       |  |  |
| 17.0                            | 85           | 75.1       | 2.55       |  |  |
| 18.2                            | 90           | 79.6       | 2.68       |  |  |
| 19.4                            | 95           | 84.2       | 2.81       |  |  |
| 20.6                            | 100          | 88.4       | 2.95       |  |  |
| 23.0                            | 110          | 97.1       | 3.21       |  |  |
| 25.0                            | 120          | 105.9      | 3.49       |  |  |
| 27.5                            | 130          | 114.8      | 3.77       |  |  |
| 29.8                            | 140          | 123.6      | 4.04       |  |  |
| 32.1                            | 150          | 132.4      | 4.32       |  |  |
| 34.3                            | 160          | 141.1      | 4.59       |  |  |
| 36.5                            | 170          | 150.0      | 4.88       |  |  |
| 38.8                            | 180          | 158.8      | 5.15       |  |  |
| 41.0                            | 190          | 167.5      | 5.44       |  |  |
| 43.2                            | 200          | 176.4      | 5.72       |  |  |
| 47.5                            | 220          | 194.0      | 6.28       |  |  |
| 51.9                            | 240          | 212        | 6.85       |  |  |
| 56.5                            | 260          | 229        | 7.38       |  |  |
| 60.5                            | 280          | 247        | 7.95       |  |  |
| 64.9                            | 300          | 265        | 8.51       |  |  |
| 70.3                            | 325          | 287        | 9.24       |  |  |
| 75.8                            | 350          | 309        | 9.95       |  |  |
| 81.2                            | 375          | 331        | 10.7       |  |  |
| 86.8                            | 400          | 353        | 11.4       |  |  |
| 92.0                            | 425          | 375        | 12.1       |  |  |
| 97.4                            | 450          | 397        | 12.8       |  |  |

| Kinematic                       | Saybolt      | Redwood    | Engler     |
|---------------------------------|--------------|------------|------------|
| viscosity<br>mm <sup>2</sup> /s | SUS (second) | R"(second) | E (degree) |
| 103                             | 475          | 419        | 13.5       |
| 108                             | 500          | 441        | 14.2       |
| 119                             | 550          | 485        | 15.6       |
| 130                             | 600          | 529        | 17.0       |
| 141                             | 650          | 573        | 18.5       |
| 152                             | 700          | 617        | 19.9       |
| 163                             | 750          | 661        | 21.3       |
| 173                             | 800          | 705        | 22.7       |
| 184                             | 850          | 749        | 24.2       |
| 195                             | 900          | 793        | 25.6       |
| 206                             | 950          | 837        | 27.0       |
| 217                             | 1 000        | 882        | 28.4       |
| 260                             | 1 200        | 1 058      | 34.1       |
| 302                             | 1 400        | 1 234      | 39.8       |
| 347                             | 1 600        | 1 411      | 45.5       |
| 390                             | 1 800        | 1 587      | 51         |
| 433                             | 2 000        | 1 763      | 57         |
| 542                             | 2 500        | 2 204      | 71         |
| 650                             | 3 000        | 2 646      | 85         |
| 758                             | 3 500        | 3 087      | 99         |
| 867                             | 4 000        | 3 526      | 114        |
| 974                             | 4 500        | 3 967      | 128        |
| 1 082                           | 5 000        | 4 408      | 142        |
| 1 150                           | 5 500        | 4 849      | 156        |
| 1 300                           | 6 000        | 5 290      | 170        |
| 1 400                           | 6 500        | 5 730      | 185        |
| 1 510                           | 7 000        | 6 171      | 199        |
| 1 630                           | 7 500        | 6 612      | 213        |
| 1 740                           | 8 000        | 7 053      | 227        |
| 1 850                           | 8 500        | 7 494      | 242        |
| 1 960                           | 9 000        | 7 934      | 256        |
| 2 070                           | 9 500        | 8 375      | 270        |
| 2 200                           | 10 000       | 8 816      | 284        |
|                                 |              |            |            |
|                                 |              |            |            |

Appendix table 9: Kgf to N conversion table

| ••     |       |        |        |    |        |         |    |                 |
|--------|-------|--------|--------|----|--------|---------|----|-----------------|
| kgf    |       | N      | kgf    |    | N      | kgf     |    | N               |
| 0.1020 | 1     | 9.8066 | 3.4670 | 34 | 333.43 | 6.8321  | 67 | 657.04          |
| 0.2039 | 2     | 19.613 | 3.5690 | 35 | 343.23 | 6.9341  | 68 | 666.85          |
| 0.3059 | 3     | 29.420 | 3.6710 | 36 | 353.04 | 7.0361  | 69 | 676.66          |
| 0.4079 | 4     | 39.227 | 3.7730 | 37 | 362.85 | 7.1380  | 70 | 686.46          |
| 0.5099 | 5     | 49.033 | 3.8749 | 38 | 372.65 | 7.2400  | 71 | 696.27          |
| 0.6118 | 6     | 58.840 | 3.9769 | 39 | 382.46 | 7.3420  | 72 | 706.08          |
| 0.7138 | 7     | 68.646 | 4.0789 | 40 | 392.27 | 7.4440  | 73 | 715.88          |
| 0.8158 | 8     | 78.453 | 4.1808 | 41 | 402.07 | 7.5459  | 74 | 725.69          |
| 0.9177 | 9     | 88.260 | 4.2828 | 42 | 411.88 | 7.6479  | 75 | 735.50          |
| 1.0197 | 10    | 98.066 | 4.3848 | 43 | 421.68 | 7.7499  | 76 | 745.30          |
| 1.1217 | 11    | 107.87 | 4.4868 | 44 | 431.49 | 7.8518  | 77 | 755.11          |
| 1.2237 | 12    | 117.68 | 4.5887 | 45 | 441.30 | 7.9538  | 78 | 764.92          |
| 1.3256 | 13    | 127.49 | 4.6907 | 46 | 451.10 | 8.0558  | 79 | 774.72          |
| 1.4276 | 14    | 137.29 | 4.7927 | 47 | 460.91 | 8.1578  | 80 | 784.53          |
| 1.5296 | 15    | 147.10 | 4.8946 | 48 | 470.72 | 8.2597  | 81 | 794.34          |
| 1.6316 | 16    | 156.91 | 4.9966 | 49 | 480.52 | 8.3617  | 82 | 804.14          |
| 1.7335 | 17    | 166.71 | 5.0986 | 50 | 490.33 | 8.4637  | 83 | 813.95          |
| 1.8355 | 18    | 176.52 | 5.2006 | 51 | 500.14 | 8.5656  | 84 | 823.76          |
| 1.9375 | 19    | 186.33 | 5.3025 | 52 | 509.94 | 8.6676  | 85 | 833.56          |
| 2.0394 | 20    | 196.13 | 5.4045 | 53 | 519.75 | 8.7696  | 86 | 843.37          |
| 2.1414 | 21    | 205.94 | 5.5065 | 54 | 529.56 | 8.8716  | 87 | 853.18          |
| 2.2434 | 22    | 215.75 | 5.6085 | 55 | 539.36 | 8.9735  | 88 | 862.98          |
| 2.3454 | 23    | 225.55 | 5.7104 | 56 | 549.17 | 9.0755  | 89 | 872.79          |
| 2.4473 | 24    | 235.36 | 5.8124 | 57 | 558.98 | 9.1775  | 90 | 882.60          |
| 2.5493 | 25    | 245.17 | 5.9144 | 58 | 568.78 | 9.2794  | 91 | 892.40          |
| 2.6513 | 26    | 254.97 | 6.0163 | 59 | 578.59 | 9.3814  | 92 | 902.21          |
| 2.7532 | 27    | 264.78 | 6.1183 | 60 | 588.40 | 9.4834  | 93 | 912.02          |
| 2.8552 | 28    | 274.59 | 6.2203 | 61 | 598.20 | 9.5854  | 94 | 921.82          |
| 2.9572 | 29    | 284.39 | 6.3223 | 62 | 608.01 | 9.6873  | 95 | 931.63          |
| 3.0592 | 30    | 294.20 | 6.4242 | 63 | 617.82 | 9.7893  | 96 | 941.44          |
| 3.1611 | 31    | 304.01 | 6.5262 | 64 | 627.62 | 9.8913  | 97 | 951.24          |
| 3.2631 | 32    | 313.81 | 6.6282 | 65 | 637.43 | 9.9932  | 98 | 961.05          |
| 3.3651 | 33    | 323.62 | 6.7302 | 66 | 647.24 | 10.0952 | 99 | 970.86          |
| (      | مام ک |        | <br>   |    |        |         |    | 1kaf = 0.80665N |

( How to read the table ) If for example you want to convert 10 kgf to N, find "10" in the middle column of the first set of columns on the right. Look in the N column directly to the right of "10," and you will see that 10 kgf equals 98.066 N. Oppositely, to convert 10 N to kgf, look in the kgf column to the right of "10" and you will see that 10 N equals 1.0197 kgf.

1kgf = 9.80665N 1N = 0.101972kgf

Appendix table 10: Inch-millimetre conversion table

| i                            | nch                                          |                                  | 4.11                                           |                                                |                                                | 4.0                                                 |                                                     |                                                     |                                                     |                                                     | <b>.</b>                                            |
|------------------------------|----------------------------------------------|----------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| fraction                     | decimal                                      | 0"                               | 1"                                             | 2"                                             | 3"                                             | 4"                                                  | 5"                                                  | 6"                                                  | 7"                                                  | 8"                                                  | 9"                                                  |
| 1/64<br>1/32<br>3/64<br>1/16 | 0.015625<br>0.031250<br>0.046875<br>0.062500 | 0.397<br>0.794<br>1.191<br>1.588 | 25.400<br>25.797<br>26.194<br>26.591<br>26.988 | 50.800<br>51.197<br>51.594<br>51.991<br>52.388 | 76.200<br>76.597<br>76.994<br>77.391<br>77.788 | 101.600<br>101.997<br>102.394<br>102.791<br>103.188 | 127.000<br>127.397<br>127.794<br>128.191<br>128.588 | 152.400<br>152.797<br>153.194<br>153.591<br>153.988 | 177.800<br>178.197<br>178.594<br>178.991<br>179.388 | 203.200<br>203.597<br>203.994<br>204.391<br>204.788 | 228.600<br>228.997<br>229.394<br>229.791<br>230.188 |
| 5/64                         | 0.078125                                     | 1.984                            | 27.384                                         | 52.784                                         | 78.184                                         | 103.584                                             | 128.984                                             | 154.384                                             | 179.784                                             | 205.184                                             | 230.584                                             |
| 3/32                         | 0.093750                                     | 2.381                            | 27.781                                         | 53.181                                         | 48.581                                         | 103.981                                             | 129.381                                             | 154.781                                             | 180.181                                             | 205.581                                             | 230.981                                             |
| 7/64                         | 0.109375                                     | 2.778                            | 28.178                                         | 53.578                                         | 78.978                                         | 104.378                                             | 129.778                                             | 155.178                                             | 180.578                                             | 205.978                                             | 231.378                                             |
| 1/ 8                         | 0.125000                                     | 3.175                            | 28.575                                         | 53.975                                         | 79.375                                         | 104.775                                             | 130.175                                             | 155.575                                             | 180.975                                             | 206.375                                             | 231.775                                             |
| 9/64                         | 0.140625                                     | 3.572                            | 28.972                                         | 54.372                                         | 79.772                                         | 105.172                                             | 130.572                                             | 155.972                                             | 181.372                                             | 206.772                                             | 232.172                                             |
| 5/32                         | 0.156250                                     | 3.969                            | 29.369                                         | 54.769                                         | 80.169                                         | 105.569                                             | 130.969                                             | 156.369                                             | 181.769                                             | 207.169                                             | 232.569                                             |
| 11/64                        | 0.171875                                     | 4.366                            | 29.766                                         | 55.166                                         | 80.566                                         | 105.966                                             | 131.366                                             | 156.766                                             | 182.166                                             | 207.566                                             | 232.966                                             |
| 3/16                         | 0.187500                                     | 4.762                            | 30.162                                         | 55.562                                         | 80.962                                         | 106.362                                             | 131.762                                             | 157.162                                             | 182.562                                             | 207.962                                             | 233.362                                             |
| 13/64                        | 0.203125                                     | 5.159                            | 30.559                                         | 55.959                                         | 81.359                                         | 106.759                                             | 132.159                                             | 157.559                                             | 182.959                                             | 208.359                                             | 233.759                                             |
| 7/32                         | 0.218750                                     | 5.556                            | 30.956                                         | 56.356                                         | 81.756                                         | 107.156                                             | 132.556                                             | 157.956                                             | 183.356                                             | 208.756                                             | 234.156                                             |
| 15/64                        | 0.234375                                     | 5.953                            | 31.353                                         | 56.753                                         | 82.153                                         | 107.553                                             | 132.953                                             | 158.353                                             | 183.753                                             | 209.153                                             | 234.553                                             |
| 1/ 4                         | 0.250000                                     | 6.350                            | 31.750                                         | 57.150                                         | 82.550                                         | 107.950                                             | 133.350                                             | 158.750                                             | 184.150                                             | 209.550                                             | 234.950                                             |
| 17/64                        | 0.265625                                     | 6.747                            | 32.147                                         | 57.547                                         | 82.947                                         | 108.347                                             | 133.747                                             | 159.147                                             | 184.547                                             | 209.947                                             | 235.347                                             |
| 9/32                         | 0.281250                                     | 7.144                            | 32.544                                         | 57.944                                         | 83.344                                         | 108.744                                             | 134.144                                             | 159.544                                             | 184.944                                             | 210.344                                             | 235.744                                             |
| 19/64                        | 0.296875                                     | 7.541                            | 32.941                                         | 58.341                                         | 83.741                                         | 109.141                                             | 134.541                                             | 159.941                                             | 185.341                                             | 210.741                                             | 236.141                                             |
| 5/16                         | 0.312500                                     | 7.938                            | 33.338                                         | 58.738                                         | 84.138                                         | 109.538                                             | 134.938                                             | 160.338                                             | 185.738                                             | 211.138                                             | 236.538                                             |
| 21/64                        | 0.328125                                     | 8.334                            | 33.734                                         | 59.134                                         | 84.534                                         | 109.934                                             | 135.334                                             | 160.734                                             | 186.134                                             | 211.534                                             | 236.934                                             |
| 11/32                        | 0.343750                                     | 8.731                            | 34.131                                         | 59.531                                         | 84.931                                         | 110.331                                             | 135.731                                             | 161.131                                             | 186.531                                             | 211.931                                             | 237.331                                             |
| 23/64                        | 0.359375                                     | 9.128                            | 34.528                                         | 59.928                                         | 85.328                                         | 110.728                                             | 136.128                                             | 161.528                                             | 186.928                                             | 212.328                                             | 237.728                                             |
| 3/ 8                         | 0.375000                                     | 9.525                            | 34.925                                         | 60.325                                         | 85.725                                         | 111.125                                             | 136.525                                             | 161.925                                             | 187.325                                             | 212.725                                             | 238.125                                             |
| 25/64                        | 0.390625                                     | 9.922                            | 35.322                                         | 60.722                                         | 86.122                                         | 111.522                                             | 136.922                                             | 162.322                                             | 187.722                                             | 213.122                                             | 238.522                                             |
| 13/32                        | 0.406250                                     | 10.319                           | 35.719                                         | 61.119                                         | 86.519                                         | 111.919                                             | 137.319                                             | 162.719                                             | 188.119                                             | 213.519                                             | 238.919                                             |
| 27/64                        | 0.421875                                     | 10.716                           | 36.116                                         | 61.516                                         | 86.916                                         | 112.316                                             | 137.716                                             | 163.116                                             | 188.516                                             | 213.916                                             | 239.316                                             |
| 7/16                         | 0.437500                                     | 11.112                           | 36.512                                         | 61.912                                         | 87.312                                         | 112.721                                             | 138.112                                             | 163.512                                             | 188.912                                             | 214.312                                             | 239.712                                             |
| 29/64                        | 0.453125                                     | 11.509                           | 36.909                                         | 62.309                                         | 87.709                                         | 113.109                                             | 138.509                                             | 163.909                                             | 189.309                                             | 214.709                                             | 240.109                                             |
| 15/32                        | 0.468750                                     | 11.906                           | 37.306                                         | 62.706                                         | 88.106                                         | 113.506                                             | 138.906                                             | 164.306                                             | 189.706                                             | 215.106                                             | 240.506                                             |
| 31/64                        | 0.484375                                     | 12.303                           | 37.703                                         | 63.103                                         | 88.503                                         | 113.903                                             | 139.303                                             | 164.703                                             | 190.103                                             | 215.503                                             | 240.903                                             |
| 1/ 2                         | 0.500000                                     | 12.700                           | 38.100                                         | 63.500                                         | 88.900                                         | 114.300                                             | 139.700                                             | 165.100                                             | 190.500                                             | 215.900                                             | 241.300                                             |
| 33/64                        | 0.515625                                     | 13.097                           | 38.497                                         | 63.897                                         | 89.297                                         | 114.697                                             | 140.097                                             | 165.497                                             | 190.897                                             | 216.297                                             | 241.697                                             |
| 17/32                        | 0.531250                                     | 13.494                           | 38.894                                         | 64.294                                         | 89.694                                         | 115.094                                             | 140.494                                             | 165.894                                             | 191.294                                             | 216.694                                             | 242.094                                             |
| 35/64                        | 0.546875                                     | 13.891                           | 39.291                                         | 64.691                                         | 90.091                                         | 115.491                                             | 140.891                                             | 166.291                                             | 191.691                                             | 217.091                                             | 242.491                                             |
| 9/16                         | 0.562500                                     | 14.288                           | 39.688                                         | 65.088                                         | 90.488                                         | 115.888                                             | 141.283                                             | 166.688                                             | 192.088                                             | 217.488                                             | 242.888                                             |
| 37/64                        | 0.578125                                     | 14.684                           | 40.084                                         | 65.484                                         | 90.884                                         | 116.284                                             | 141.684                                             | 167.084                                             | 192.484                                             | 217.884                                             | 243.284                                             |
| 19/32                        | 0.593750                                     | 15.081                           | 40.481                                         | 65.881                                         | 91.281                                         | 116.681                                             | 142.081                                             | 167.481                                             | 192.881                                             | 218.281                                             | 243.681                                             |
| 39/64                        | 0.609375                                     | 15.478                           | 40.878                                         | 66.278                                         | 91.678                                         | 117.078                                             | 142.478                                             | 167.878                                             | 193.278                                             | 218.678                                             | 244.078                                             |
| 5/ 8                         | 0.625000                                     | 15.875                           | 41.275                                         | 66.675                                         | 92.075                                         | 117.475                                             | 142.875                                             | 168.275                                             | 193.675                                             | 219.075                                             | 244.475                                             |
| 41/64                        | 0.640625                                     | 16.272                           | 41.672                                         | 67.072                                         | 92.472                                         | 117.872                                             | 143.272                                             | 168.672                                             | 194.072                                             | 219.472                                             | 244.872                                             |
| 21/32                        | 0.656250                                     | 16.669                           | 42.069                                         | 67.469                                         | 92.869                                         | 118.269                                             | 143.669                                             | 169.069                                             | 194.469                                             | 219.869                                             | 245.269                                             |
| 43/64                        | 0.671875                                     | 17.066                           | 42.466                                         | 67.866                                         | 93.266                                         | 118.666                                             | 144.066                                             | 169.466                                             | 194.866                                             | 220.266                                             | 245.666                                             |
| 11/16                        | 0.687500                                     | 17.462                           | 42.862                                         | 68.262                                         | 93.662                                         | 119.062                                             | 144.462                                             | 169.862                                             | 195.262                                             | 220.662                                             | 246.062                                             |
| 45/64                        | 0.703125                                     | 17.859                           | 43.259                                         | 68.659                                         | 94.059                                         | 119.459                                             | 144.859                                             | 170.259                                             | 195.659                                             | 221.056                                             | 246.459                                             |
| 23/32                        | 0.718750                                     | 18.256                           | 43.656                                         | 69.056                                         | 94.456                                         | 119.856                                             | 145.256                                             | 170.656                                             | 196.056                                             | 221.456                                             | 246.856                                             |
| 47/64                        | 0.734375                                     | 18.653                           | 44.053                                         | 69.453                                         | 94.853                                         | 120.253                                             | 145.653                                             | 171.053                                             | 196.453                                             | 221.853                                             | 247.253                                             |
| 3/4                          | 0.750000                                     | 19.050                           | 44.450                                         | 69.850                                         | 95.250                                         | 120.650                                             | 146.050                                             | 171.450                                             | 196.850                                             | 222.250                                             | 247.650                                             |
| 49/64                        | 0.765625                                     | 19.447                           | 44.847                                         | 70.247                                         | 95.647                                         | 121.047                                             | 146.447                                             | 171.847                                             | 197.247                                             | 222.647                                             | 248.047                                             |
| 25/32                        | 0.781250                                     | 19.844                           | 45.244                                         | 70.644                                         | 96.044                                         | 121.444                                             | 146.844                                             | 172.244                                             | 197.644                                             | 223.044                                             | 248.444                                             |
| 51/64                        | 0.796875                                     | 20.241                           | 45.641                                         | 71.041                                         | 96.441                                         | 121.841                                             | 147.241                                             | 172.641                                             | 198.041                                             | 223.441                                             | 248.841                                             |
| 13/16                        | 0.812500                                     | 20.638                           | 46.038                                         | 71.438                                         | 96.838                                         | 122.238                                             | 147.638                                             | 173.038                                             | 198.438                                             | 223.838                                             | 249.238                                             |
| 53/64                        | 0.828125                                     | 21.034                           | 46.434                                         | 71.834                                         | 97.234                                         | 122.634                                             | 148.034                                             | 173.434                                             | 198.834                                             | 224.234                                             | 249.634                                             |
| 27/32                        | 0.843750                                     | 21.431                           | 46.831                                         | 72.231                                         | 97.631                                         | 123.031                                             | 148.431                                             | 173.831                                             | 199.231                                             | 224.631                                             | 250.031                                             |
| 55/64                        | 0.859375                                     | 21.828                           | 47.228                                         | 72.628                                         | 98.028                                         | 123.428                                             | 148.828                                             | 174.228                                             | 199.628                                             | 225.028                                             | 250.428                                             |
| 7/ 8                         | 0.875000                                     | 22.225                           | 47.625                                         | 73.025                                         | 98.425                                         | 123.825                                             | 149.225                                             | 174.625                                             | 200.025                                             | 225.425                                             | 250.825                                             |
| 57/64                        | 0.890625                                     | 22.622                           | 48.022                                         | 73.422                                         | 98.822                                         | 124.222                                             | 149.622                                             | 175.022                                             | 200.422                                             | 225.822                                             | 251.222                                             |
| 39/32                        | 0.906250                                     | 23.019                           | 48.419                                         | 73.819                                         | 99.219                                         | 124.619                                             | 150.019                                             | 175.419                                             | 200.819                                             | 226.219                                             | 251.619                                             |
| 59/64                        | 0.921875                                     | 23.416                           | 48.816                                         | 74.216                                         | 99.616                                         | 125.016                                             | 150.416                                             | 175.816                                             | 201.216                                             | 226.616                                             | 252.016                                             |
| 15/16                        | 0.937500                                     | 23.812                           | 49.212                                         | 74.612                                         | 100.012                                        | 125.412                                             | 150.812                                             | 176.212                                             | 201.612                                             | 227.012                                             | 252.412                                             |
| 61/64                        | 0.953125                                     | 24.209                           | 49.609                                         | 75.009                                         | 100.409                                        | 125.809                                             | 151.209                                             | 176.609                                             | 202.009                                             | 227.409                                             | 252.809                                             |
| 31/32                        | 0.968750                                     | 24.606                           | 50.006                                         | 75406                                          | 100.806                                        | 126.206                                             | 151.606                                             | 177.006                                             | 202.406                                             | 227.806                                             | 253.206                                             |
| 63/64                        | 0.984375                                     | 25.003                           | 50.403                                         | 75.803                                         | 101.203                                        | 126.603                                             | 152.003                                             | 177.403                                             | 202.803                                             | 228.203                                             | 253.603                                             |

Appendix table 11: Hardness conversion table (reference)

| Rockwell hardness           |                                 | Brinell h               | ardness                         | Rockwell                             |                            |                            |
|-----------------------------|---------------------------------|-------------------------|---------------------------------|--------------------------------------|----------------------------|----------------------------|
| C scale<br>1471.0N {150kgf} | Picker's hardness               | Standard<br>steel balls | Tungsten carbide steel balls    | A scale<br>588.4N {60kgf}            | B scale<br>980.7N {100kgf} | Shore hardness             |
| 68<br>67<br>66              | 940<br>900<br>865               |                         |                                 | 85.6<br>85.0<br>84.5                 |                            | 97<br>95<br>92             |
| 65<br>64<br>63<br>62<br>61  | 832<br>800<br>772<br>746<br>720 |                         | 739<br>722<br>705<br>688<br>670 | 83.9<br>83.4<br>82.8<br>82.3<br>81.8 |                            | 91<br>88<br>87<br>85<br>83 |
| 60<br>59<br>58<br>57<br>56  | 697<br>674<br>653<br>633<br>613 |                         | 654<br>634<br>615<br>595<br>577 | 81.2<br>80.7<br>80.1<br>79.6<br>79.0 |                            | 81<br>80<br>78<br>76<br>75 |
| 55<br>54<br>53<br>52<br>51  | 595<br>577<br>560<br>544<br>528 | 500<br>487              | 560<br>543<br>525<br>512<br>496 | 78.5<br>78.0<br>77.4<br>76.8<br>76.3 |                            | 74<br>72<br>71<br>69<br>68 |
| 50                          | 513                             | 475                     | 481                             | 75.9                                 |                            | 67                         |
| 49                          | 498                             | 464                     | 469                             | 75.2                                 |                            | 66                         |
| 48                          | 484                             | 451                     | 455                             | 74.7                                 |                            | 64                         |
| 47                          | 471                             | 442                     | 443                             | 74.1                                 |                            | 63                         |
| 46                          | 458                             | 432                     | 432                             | 73.6                                 |                            | 62                         |
| 45                          | 446                             | 421                     | 421                             | 73.1                                 |                            | 60                         |
| 44                          | 434                             | 409                     | 409                             | 72.5                                 |                            | 58                         |
| 43                          | 423                             | 400                     | 400                             | 72.0                                 |                            | 57                         |
| 42                          | 412                             | 390                     | 390                             | 71.5                                 |                            | 56                         |
| 41                          | 402                             | 381                     | 381                             | 70.9                                 |                            | 55                         |
| 40                          | 392                             | 371                     | 371                             | 70.4                                 | (109.0)                    | 54                         |
| 39                          | 382                             | 362                     | 362                             | 69.9                                 |                            | 52                         |
| 38                          | 372                             | 353                     | 353                             | 69.4                                 |                            | 51                         |
| 37                          | 363                             | 344                     | 344                             | 68.9                                 |                            | 50                         |
| 36                          | 354                             | 336                     | 336                             | 68.4                                 |                            | 49                         |
| 35                          | 345                             | 327                     | 327                             | 67.9                                 | (108.5)                    | 48                         |
| 34                          | 336                             | 319                     | 319                             | 67.4                                 | (108.0)                    | 47                         |
| 33                          | 327                             | 311                     | 311                             | 66.8                                 | (107.5)                    | 46                         |
| 32                          | 318                             | 301                     | 301                             | 66.3                                 | (107.0)                    | 44                         |
| 31                          | 310                             | 294                     | 294                             | 65.8                                 | (106.0)                    | 43                         |
| 30                          | 302                             | 286                     | 286                             | 65.3                                 | (105.5)                    | 42                         |
| 29                          | 294                             | 279                     | 279                             | 64.7                                 | (104.5)                    | 41                         |
| 28                          | 286                             | 271                     | 271                             | 64.3                                 | (104.0)                    | 41                         |
| 27                          | 279                             | 264                     | 264                             | 63.8                                 | (103.0)                    | 40                         |
| 26                          | 272                             | 258                     | 258                             | 63.3                                 | (102.5)                    | 38                         |
| 25                          | 266                             | 253                     | 253                             | 62.8                                 | (101.5)                    | 38                         |
| 24                          | 260                             | 247                     | 247                             | 62.4                                 | (101.0)                    | 37                         |
| 23                          | 254                             | 243                     | 243                             | 62.0                                 | 100.0                      | 36                         |
| 22                          | 248                             | 237                     | 237                             | 61.5                                 | 99.0                       | 35                         |
| 21                          | 243                             | 231                     | 231                             | 61.0                                 | 98.5                       | 35                         |
| 20                          | 238                             | 226                     | 226                             | 60.5                                 | 97.8                       | 34                         |
| (18)                        | 230                             | 219                     | 219                             |                                      | 96.7                       | 33                         |
| (16)                        | 222                             | 212                     | 212                             |                                      | 95.5                       | 32                         |
| (14)                        | 213                             | 203                     | 203                             |                                      | 93.9                       | 31                         |
| (12)                        | 204                             | 194                     | 194                             |                                      | 92.3                       | 29                         |
| (10)                        | 196                             | 187                     | 187                             |                                      | 90.7                       | 28                         |
| ( 8)                        | 188                             | 179                     | 179                             |                                      | 89.5                       | 27                         |
| ( 6)                        | 180                             | 171                     | 171                             |                                      | 87.1                       | 26                         |
| ( 4)                        | 173                             | 165                     | 165                             |                                      | 85.5                       | 25                         |
| ( 2)                        | 166                             | 158                     | 158                             |                                      | 83.5                       | 24                         |
| ( 0)                        | 160                             | 152                     | 152                             |                                      | 81.7                       | 24                         |

Note 1: Quoted from hardness conversion table (SAE J417)

## Appendix table 12: Greek alphabet list

| Upright    | lta        | ılic       | Reading |
|------------|------------|------------|---------|
| Upper case | Upper case | Lower case |         |
|            |            |            | Alpha   |
|            |            |            | Beta    |
|            |            |            | Gamma   |
|            |            |            | Delta   |
| Е          | E          | ε          | Epsilon |
|            |            |            | Zeta    |
|            |            |            | Eta     |
|            |            |            | Theta   |
|            |            |            | lota    |
|            |            |            | Карра   |
|            |            |            | Lambda  |
|            |            | μ          | Mu      |
|            |            |            | Nu      |
|            |            |            | Xi      |
|            |            |            | Omicron |
|            |            |            | Pi      |
|            |            |            | Rho     |
|            |            |            | Sigma   |
|            |            |            | Tau     |
|            |            |            | Upsolon |
|            |            |            | Phi     |
|            |            |            | Khi     |
|            |            |            | Psi     |
|            |            |            | Omega   |