

Cuscinetti a rullini

PROGRAMMA DEI CUSCINETTI

Warranty

NTN warrants, to the original purchaser only, that the delivered product which is the subject of this sale (a) will conform to drawings and specifications mutually established in writing as applicable to the contract, and (b) be free from defects in material or fabrication. The duration of this warranty is one year from date of delivery. If the buyer discovers within this period a failure of the product to conform to drawings or specifications, or a defect in material or fabrication, it must promptly notify NTN in writing. In no event shall such notification be received by NTN later than 13 months from the date of delivery. Within a reasonable time after such notification, NTN will, at its option, (a) correct any failure of the product to conform to drawings, specifications or any defect in material or workmanship, with either replacement or repair of the product, or (b) refund, in part or in whole, the purchase price. Such replacement and repair, excluding charges for labor, is at NTN's expense. All warranty service will be performed at service centers designated by NTN. These remedies are the purchaser's exclusive remedies for breach of warranty.

NTN does not warrant (a) any product, components or parts not manufactured by NTN, (b) defects caused by failure to provide a suitable installation environment for the product, (c) damage caused by use of the product for purposes other than those for which it was designed, (d) damage caused by disasters such as fire, flood, wind, and lightning, (e) damage caused by unauthorized attachments or modification, (f) damage during shipment, or (g) any other abuse or misuse by the purchaser.

THE FOREGOING WARRANTIES ARE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

In no case shall NTN be liable for any special, incidental, or consequential damages based upon breach of warranty, breach of contract, negligence, strict tort, or any other legal theory, and in no case shall total liability of NTN exceed the purchase price of the part upon which such liability is based. Such damages include, but are not limited to, loss of profits, loss of savings or revenue, loss of use of the product or any associated equipment, cost of capital, cost of any substitute equipment, facilities or services, downtime, the claims of third parties including customers, and injury to property. Some states do not allow limits on warranties, or on remedies for breach in certain transactions. In such states, the limits in this paragraph and in paragraph (2) shall apply to the extent allowable under case law and statutes in such states.

Any action for breach of warranty or any other legal theory must be commenced within 15 months following delivery of the goods.

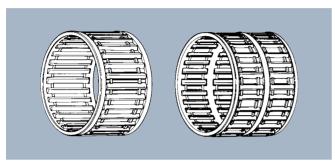
Unless modified in a writing signed by both parties, this agreement is understood to be the complete and exclusive agreement between the parties, superceding all prior agreements, oral or written, and all other communications between the parties relating to the subject matter of this agreement. No employee of NTN or any other party is authorized to make any warranty in addition to those made in this agreement.

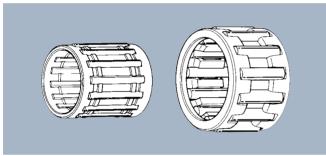
This agreement allocates the risks of product failure between NTN and the purchaser. This allocation is recognized by both parties and is reflected in the price of the goods. The purchaser acknowledges that it has read this agreement, understands it, and is bound by its terms.

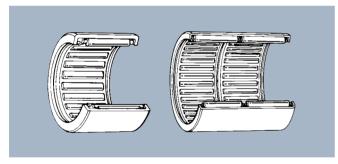
Although care has been taken to assure the accuracy of the data compiled in this catalog, NTN does not assume any liability to any company or person for errors or omissions.

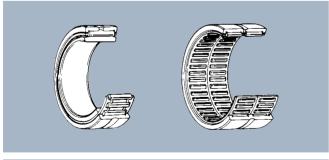
NTN Cuscinetti a rullini

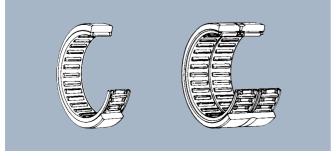
INDICE DELL'APPENDICE TECNICA


Classificazione e caratteristiche dei cuscinetti	4. Calcolo del carico sul cuscinetto
	4.1 Carichi agenti sull'albero ······A-19
2. Scelta del cuscinetto ·······A-10	4.2 Distribuzione del carico sul cuscinetto ···A-2
Diagramma di flusso per la scelta del cuscinetto	4.3 Carico medio ····································
2.2 Tipi di cuscinetti ······A-12	teorica del cuscinetto ············A-23
3. Coefficienti di carico e durata ···A-14	5. Appellativi dei cuscinetti ··········A-24
3.1 Durata del cuscinetto ······A-14	
3.2 Durata di base e coefficiente di carico dinamico di base	6. Tolleranze dei cuscinetti ············A-23 6.1 Precisione dimensionale e
3.3 Applicazioni e durata richiesta ······A-15	di rotazione ············A-2
3.4 Fattori di correzione della durata ·······A-15	6.2 Dimensione degli smussi e tolleranze
3.5 Durata del cuscinetto in presenza di movimento di oscillazione	o valori ammessi dei fori conici ·······A-3·
3.6 Durata dei cuscinetti per	7. Accoppiamenti dei cuscinetti ···A-32
movimenti lineari ···············A-17	7.1 Interferenza ·······A-32
3.7 Coefficiante di carico statico ············A-173.8 Carico satico equivalente ammesso ······A-17	7.2 Necessità di un accoppiamento adeguato ················A-32
	7.3 Scelta dell'accoppiamento ············A-32
	7.4 Pressione specifica nelle superfici di accoppiamento ···········A-38
	7.5 Interferenza necessaria e forza di smontaggio ·······A-39


8. Giuoco del cuscinetto e precarico ················A-40	14. Esecuzione di alberi ed alloggiamenti
8.1 Giuoco interno del cuscinetto ·······A-40	14.1 Bloccaggio dei cuscinetti ·······A-57
8.2 Scelta del giuoco del cuscinetto······A-40	14.2 Dimensioni delle sedi dei cuscinetti ····A-58
9. Numero di giri ammesso ··········A-42	14.3 Precisione degli alberi e degli alloggiamenti
10. Attrito ed aumento di temperatura ···········A-43	14.5 Disallineamento ammesso per cuscinetti ·············A-59
10.1 Attrito A-43 10.2 Aumento di temperatura A-43	14.6 Disallineamento ammesso del cuscinettoA-59
11. Lubrificazione······A-44	15. Manipolazione dei cuscinetti ·················A-60
11.1 Lubrificazione dei cuscinetti volventi ··· A-44 11.2 Sistemi di lubrificazione e relative caratteristiche ·······················A-44	15.1 Conservazione dei cuscinetti ··········A-60 15.2 Montaggio ···················A-60
11.3 Lubrificazione a grasso ···········A-44 11.4 Grasso solido	15.3 Prove di funzionamento dopo montaggio
(per cuscinetti con grasso solido) ······A-48 11.5 Lubrificazione ad olio······A-48	15.4 Smontaggio del cuscinetto ·······A-62
12. Sistemi di tenuta esterni ········A-52	16. Danneggiamento dei cuscinetti e misure correttive ···········A-63
13. Materiali dei cuscinetti ············A-55	
13.1 Materiali degli anelli e dei corpi volventi ··········A-55	
13.2 Materiali delle gabbie······A-56	


1. Classificazione e caratteristiche dei cuscinetti


I cuscinetti a rullini sono caratterizzati da un ingombro radiale relativamente piccolo e da corpi volventi la cui larghezza è notevolmente maggiore del loro diametro.


In confronto ad altri tipi di cuscinetti volventi, i cuscinetti a rullini hanno una sezione di altezza limitata e, relativamente al loro volume hanno capacità di carico e rigidezza significative.Inoltre, poichè le forza d'inerzia che

agiscono nei cuscinetti a rullini sono limitate, essi rappresentano la scelta ideale per i movimenti di oscillazione.

I cuscinetti a rullini contribuiscono alla progettazione di macchine compatte e leggere. Inoltre essi hanno la possibilità di sostituire le boccole a strisciamento.

La NTN offre i seguenti tipi di cuscinetti a rullini.

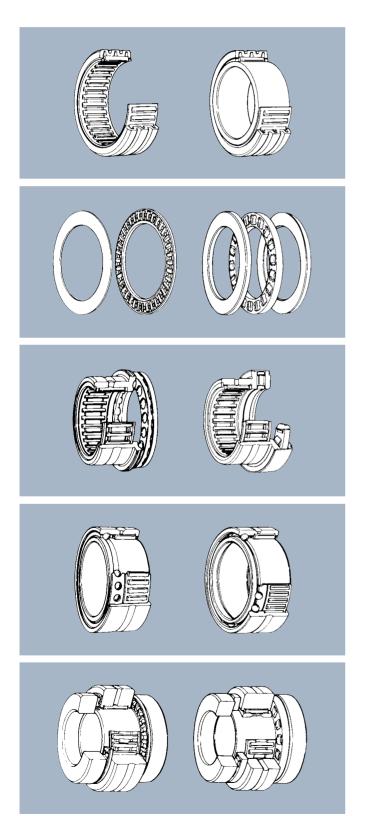
Gabbie a rullini

La gabbia a rullini, il componente principale dei cuscinetti a rullini, è costituita dai rullini e da una gabbia che sopporta i rullini stessi. L'eliminazione degli anelli esterno ed interno e l'impiego delle superfici dell'albero e dell'alloggiamento come piste volventi, permette la realizzazione di un cuscinetto in un componente meccanico compatto dove lo spazio rappresenta la maggiore esigenza. Le gabbie a rullini sono disponibili sia ad una che a due corone di corpi volventi.

Gabbie a rullini per imbiellaggi

Le gabbie di questo tipo vengono impiegate per i supporti delle bielle nei compressori alternativi e nei motori a combustione interna compatti e di dimensioni medie. Le gabbie in esame sono ottimizzate specificatamente per condizioni operative gravose che prevedono: elevato regime di rotazione, accelerazioni repentine, elevate temperature e scarsa lubrificazione. Le gabbie in oggetto sono in esecuzione sia per il bottone di manovella (estremità maggiore) che per lo spinotto (estremità minore). Per applicazione nel bottone di manovella sono disponibili delle gabbie in due metà.

Astucci a rullini


Gli astucci a rullini sono costituiti da una gabbia a rullini e da un anello esterno prodotto in lamiera di acciaio mediante profondo stampaggio di precisione. L'astuccio a rullini, tra i cuscinetti a rullini con anello esterno, rappresenta il cuscinetto avente la minima sezione trasversale ed è disponibile sia in esecuzione aperta che con fondello. E' inoltre disponibile una esecuzione protetta munita di anelli di tenuta integrali.

Cuscinetti a rullini

I cuscinetti a rullini sono costituiti da una gabbia a rullini inserita in un anello esterno ricavato da lavorazione meccanica. La gabbia a rullini è guidata assialmente tra le superfici interne dei bordi dell'anello esterno o da quelle degli anelli riportati nell'anello interno stesso. La gabbia a rullini, che non può essere separata dall'anello esterno, può operare sia su di un anello interno che direttamente sull'albero, quando sulla superficie di quest'ultimo possa essere ricavata la pista volvente. I cuscinetti a rullini sono anche disponibili in esecuzione protetta mediante anelli di tenuta integrali.

Cuscinetti a rullini senza bordi, separabili

Nella serie in oggetto l'anello esterno è privo di bordi od anelli riportati e quindi la gabbia può essere sfilata. Tale esecuzione permette un montaggio agevole. I cuscinetti sono disponibili con e senza anello interno.

Cuscinetti a rullini con giuoco registrabile

L'anello esterno dei cuscinetti con giuoco registrabile può venire compresso assialmente al fine di poter eseguire una regolazione fine del giuoco radiale. I cuscinetti in oggetto possono essere forniti con e senza anello interno.

Cuscinetti assiali

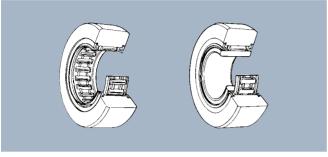
I cuscinetti assiali sono disponibili sia come cuscinetti assiali a rullini che come cuscinetti assiali a rulli cilindrici. I cuscinetti in oggetto sono idonei al sopporto di spinte assiali monodirezionali.

Cuscinetti combinati radio-assiali

I cuscinetti combinati radio-assiali sono costituiti da un cuscinetto a rullini per il supporto dei carichi radiali e da un cuscinetto assiale per il supporto delle spinte assiali. Come cuscinetto assiale è disponibile sia l'esecuzione a sfere che quella a rulli cilindrici.

Cuscinetti combinati a rullini ed a sfere a contatto obliquo.

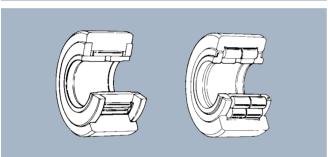
Il cuscinetto a rullini della serie in oggetto sopporta i carichi radiali mentre il cuscinetto a sfere sopporta prevalentemente le spinte assiali. Il cuscinetto a sfere può essere del tipo obliquo od a tre punti di contatto.


Cuscinetti combinati con parte assiale a doppio effetto

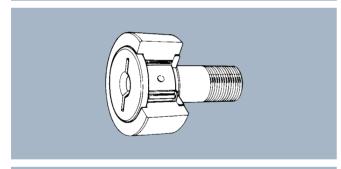
I cuscinetti combinati in oggetto sono caratterizzati da una disposizione particolare nella quale il cuscinetto a rullini che sopporta i carichi radiali, è interposto tra due cuscinetti assiali a rulli cilindrici, ciascuno dei quali sopporta una spinta assiale. Tale disposizione di cuscinetti ha la possibilità di sopportare delle spinte assiali di maggiore entità e dirette in entrambi i sensi. I cuscinetti di questa serie vengono impiegati come supporto delle viti a ricircolazione di sfere delle macchine utensili.

Le rotelle sono dei cuscinetti a rullini od a rulli cilindrici aventi un anello esterno a parete spessa. Esse vengono usate come rulli per camme, rulli di guida, rulli per eccentrici o per bilancieri.

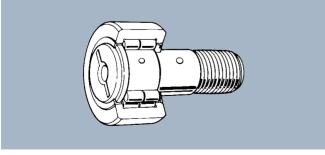
L'esecuzione con perno prende il nome di perno folle ed ha applicazioni analoghe a quelle delle rotelle.


Sono disponibili le seguenti esecuzioni.

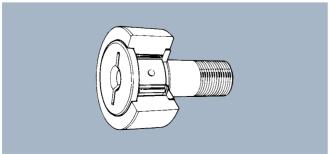
Rotelle senza guida assiale


Gli anelli interni e quelli esterni delle rotelle in esame sono privi di bordi o di anelli di spalleggiamento riportati. Ciò significa che l'anello esterno è privo di guida assiale. Per tale motivo l'albero deve essere munito di una ralla assiale e di una flangia per la guida dell'anello esterno stesso.

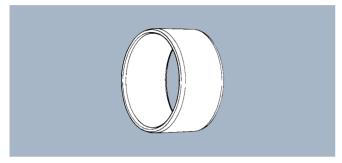
La superficie esterna dell'anello esterno può essere in esecuzione cilindrica o sferica.


Rotelle con guida assiale

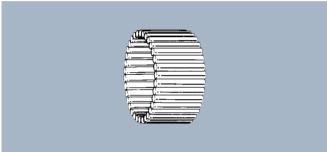
L'anello esterno viene guidato dai bordi o da anelli di spalleggiamento. Normalmente la superficie esterna dell'anello esterno è di forma sferica; è comunque disponibile l'esecuzione con anello esterno cilindrico.


Perni folli a rullini

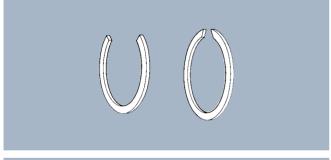
Nei cuscinetti in oggetto un perno sostituisce l'anello interno. Il perno, dal lato opposto alla pista volvente, porta una filettatura che ne agevola il montaggio. I corpi volventi sono costituiti da rullini. I perni folli a rullini sono disponibili sia a pieno riempimento che con gabbia.


Perni folli a rulli cilindrici

I perni folli in oggetto sono privi di gabbia e sono muniti di un pieno riempimento di rulli cilindrici a due corone. I perni folli in esame sono adatti a sopportare sia dei carichi radiali che dei carichi assiali di elevata entità.


Perni folli con eccentrico

I perni folli con eccentrico permettono un agevole posizionamento radiale nei cofronti della pista sulla quale devono operare. La NTN fornisce i seguenti componenti per i cuscinetti a rullini.

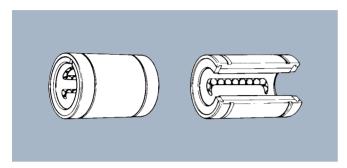

Anelli interni

Gli anelli interni vengono usati nei casi in cui la pista volvente non può essere ricavata sull'albero. Essi sono disponibili sia con dimensioni metriche che con dimensioni in pollici.

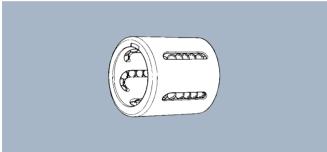
Rullini

I rullini sono disponibili con superfici laterali piane e superfici laterali sferiche. L'esecuzione normale dei rullini prevede delle tolleranze di precisione.

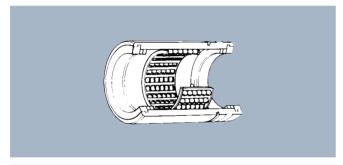
Anelli elastici


Gli anelli elastici vengono impiegati per posizionare assialmente gli anelli interni e quelli esterni dei cuscinetti a rullini o le gabbie a rullini stesse. Sono disponibili sia gli anelli elastici per alberi che quelli per alloggiamento.

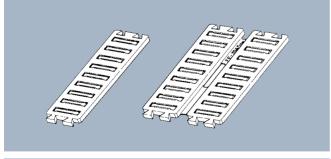
Anelli di tenuta


Gli anelli di tenuta in esecuzione speciale sono conformi all'altezza ridotta della sezione trasversale dei cuscinetti a rullini.

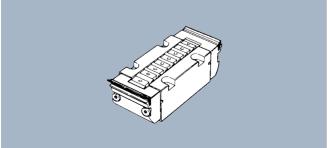
La pagina presente descrive i vari tipi di cuscinetti NTN per movimenti lineari


Manicotti a sfere massicci

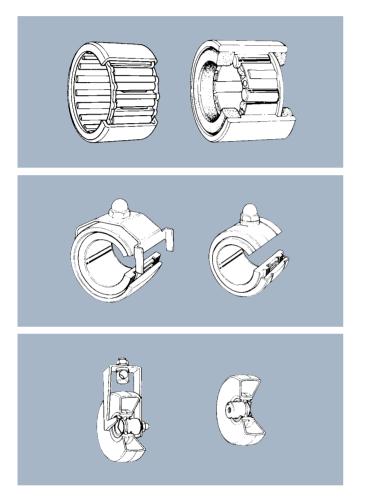
I manicotti in oggetto, ricavati da lavorazione meccanica, sono muniti di sfere che rotolano su di un albero: essi sono idonei agli spostamenti lineari illimitati.


Astucci a sfere in lamiera stampata

Come le precedenti, gli astucci a sfere in lamiera stampata sono idonei ad operare su di un albero e permettono degli spostamenti lineari illimitati. Il loro anello esterno in lamiera di acciaio è ricavato da profondo stampaggio di precisione e permette un'altezza limitata della sezione trasversale.


Manicotti a sfere per traslazione e rotazione

Il cuscinetto in oggetto ha la capacità di operare su di un albero in presenza di un movimento di rotazione e di un movimento di traslazione alterno.


Gabbie piane

Gli elementi in oggetto costituiscono un componente dei gruppi per movimenti lineari e sono costituiti da rullini inseriti in una gabbia piana. Le gabbie piane vengono impiegate per movimenti rettilinei alterni su piste piane.

Pattini a rulli

I pattini a rulli possono operare in presenza di movimenti lineari illimitati e sono caratterizzati da una ricircolazione di rulli cilindrici. La pagina presente descrive i seguenti prodotti speciali NTN.

Ruote libere

Le ruote libere in oggetto sono dotate di un sistema ad arpionismo realizzato nell'anello interno. In fase di disinnesto esse oppongono la minima resistenza e la coppia trasmessa, in relazione al volume, è relativamente elevata. Le varianti delle ruote libere in esame possono incorporare un cuscinetto per il supporto dei carichi radiali. Sono anche disponibili dei gruppi integrati con ruote dentate o puleggie.

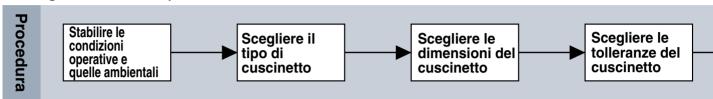
Cuscinetti per cilindri inferiori

Il cuscinetto a rullini in oggetto è stato progettato per il supporto dei cilindri inferiori dei filatoi.

Rulli tenditori per macchine tessili

Il componente in oggetto è realizzato mediante una puleggia di precisione, in lamiera stampata, forzata sullo anello esterno di un cuscinetto a sfere. I rulli tenditori in esame vengono usati nelle filatoi e nelle macchine per ritorcitura.

Scelta del tipo di cuscinetto e configurazione


2. Scelta del cuscinetto

I cuscinetti volventi sono disponibili in una varietà di tipi, configurazioni e dimensioni. Scegliendo il cuscinetto adatto ad una specifica applicazione, è importante considerare molteplici fattori come il calcolo dei vari angoli e tolleranze, che permetteranno il montaggio adeguato. Nella **tabella 2.1**

è riportato un confronto tra le prestazioni caratteristiche di ciascun tipo di cuscinetto.

Come linea di guida generale, la procedura di base per la scelta del cuscinetto più adatto è illustrata dal diagramma di flusso sotto riportato.

2.1 Diagramma di flusso per la scelta del cuscinetto

Elementi di conferma

- Funzione e costruzione dei componenti per alloggiare il cuscinetto
- La posizione del cuscinetto
- Carico sul cuscinetto (direzione ed ampiezza)
- Regime di rotazione
- Vibrazioni ed urti
- Temperatura del cuscinetrto (ambiente e generata dall'attrito)
- Condizioni operative (possibilità di corrosione, grado di contaminazione, condizioni di lubrificazione)

- Tipi di cuscinetti (riferimento a pag. A-12, 13)
- Carico sul cuscinetto (ampiezza, direzione, vibrazioni, presenza di carichi ad urto) (Riferimento a pag. A-21)
- Regime di rotazione ammesso (Riferimento a pag. A-42)
- Tolleranze del cuscinetto (Riferimento a pag. A-27)
- Disallineamento ammesso degli anelli interno/esterno (Riferimento a pag. A-59)
- Esigenze di monteggio e smontaggio (Rferimento a pag. A-60)
- Reperibilita del cuscinetto e costi

- Prevedere la durata della macchina che alloggia il cuscinetto (riferimanto a pag. A-15)
- Fattore di sicurezza (riferimento a pag. A-18)
- Numero di giri ammesso (riferimento a pag. A-42)
- Carico assiale ammesso (riferimento a pag. A-17)
- Tolleranza di eccentricità dell'albero (rferimento apag. A-27)
- Numero di giri ammesso (riferimento a pag. A-42)
- Fluttuazioni della coppia

(1) Limiti dimensionali

Normalmente lo spazio disponibile per I cuscinetti è limitato. Nella maggior parte dei casi il diametro dell'albero (o diametro del foro del cuscinetto) è una funzione delle esigenze di altre parti della macchina. Perciò i tipi e le dimensioni dei cuscinetti vengono stabiliti in funzione dei diametri dei fori normalizzati dei cuscinetti. Per tale motivo, tutte le tabelle dimensionali sono ordinate secondo i diametri dei fori. Esiste un'ampia gamma di tipi e di dimensioni di cuscinetti normalizzati; il tipo adatto ad una particolare applicazione usualmente può essere trovato nelle tabelle citate.

(2) Carico sul cuscinetto

Le caratteristiche, l'entità e la direzione dei carichi agenti su di un cuscinetto sono estremamente variabili. In generale, i coefficienti di carico indicati nelle tabelle dimensionali dei cuscinetti, indicano le capacità di carico di questi ultimi. Comunque, determinando il tipo di cuscinetto idoneo, si rende necessario considerare se il carico agente sia puramente radiale, puramente assiale, combinato, ecc. Se si prendono in esame dei cuscinetti a sfere e dei cuscinetti a rulli della stessa serie

dimensionale, si deve tener presente che i cuscinetti a rulli hanno una capacità di carico maggiore e che possono operare in presenza di maggiori vibrazioni e carichi ad urto.

(3) Regime di rotazione

Il regime di rotazione ammesso dei cuscinetti dipende dal tipo di cuscinetto, dalla propria dimensione, dalla propria precisione, dal tipo di gabbia, dal carico e dalle condizioni di lubrificazione e di raffreddamento.

I numeri di giri ammessi, indicati nelle tabelle dimensionali per la lubrificazione a grasso e ad olio, si riferiscono ai cuscinetti **NTN** normali.

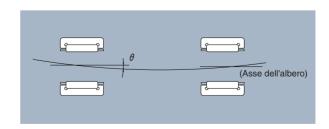
(4) Tolleranze dei cuscinetti

La precisione dimensionale e quella di rotazione dei cuscinetti sono regolate dalle norme ISO e JIS. Per i gruppi che richiedono un'elevata precisione di rotazione dell'albero od un funzionamento ad alta velocità sono raccomandati i cuscinetti nella classe di tollaranza 5 o superiore. Per elevate tolleranze di rotazione sono raccomandati i cuscinetti a rullini con anelli ricavati da lavorazione meccanica.

- Materiale e forma dell'albero e dello alloggiamento (riferimento a pag. A-55, 57)
- Accoppiamento (riferimento a pag. A-32)
- Differenza di temperatura tra l'anello intterno e quello esterno (riferimento a pag. A-41)
- Disallineamento ammesso dell'anello interno/esterno (riferimento a pag. A-59)
- Carico (ampiezza, natura) (riferimento a pag. A-19)
- Numero di giri ammesso (riferimento a pag. A-42)

- Numero di giri ammesso (riferimento a pag. A-42)
- Livello sonoro
- Vibrazioni e carichi ad urto
- Coppie agenti
- Tipo e metodo di lubrificazione (riferimento a pag. A-44)
- Temperatura di funzionamento (riferimento a pag A-44)
- Numero di giri ammesso (riferimento a pag A-42)
- Tipo e metodo di lubrificazione (riferimento a pag A-44)
- Sistema di tenuta (riferimento a pag A-52)
- Manutanzione e controllo (riferimento a pag A-60)
- Condizioni operative (alta/bassa temperatura vuoto, sostanze farmaceutiche,ecc)
- Esigenze di elevata affidabilità
- Dimensioni connesse al montaggio (riferimento a pag. A-58)
- Procedure di montaggio e smontaggio) (riferimento a paq. A-60)

(5) Rigidità


In condizioni di carico si manifestano delle deformazioni elastiche in corrispondenza delle superfici di contatto dei corpi volventi e delle piste. In determinati gruppi meccanici si rende necessario ridurre al minimo tali deformazioni. I cuscinetti a rulli sono più rigidi di quelli a sfere e quindi sono raccomandati per i gruppi sopra citati. Inoltre, in alcuni casi ai cuscinetti viene conferito un carico iniziale (precarico) al fine di poter aumentare la rigidità di supporto.

(6) Disallineamento dell'anello interno e dell'anello esterno

Le infllessioni dell'albero , i diversi livelli di precisione tra l'albero e l'alloggiamento, gli errori di montaggio, ecc. sono la causa di un determinato grado di disallineamento tra l'anello interno e quello esterno del cuscinetto. Per i casi in cui il grado di disallineamento è relativamente elevato, la scelta più appropriata è quella dei cuscinetti orientabili a sfere, dei cuscinetti orientabili a rulli o dei gruppi aventi caratteristiche autoallineanti. (vedere la fig. 2.1)

(8) Montaggio e smontaggio

Alcune applicazioni richiedono frequenti smontaggi e successivi rimontaggi al fine di permettere controlli e riparazioni. Per tali applicazioni, i cuscinetti aventi gli anelli interni/esterni separabili come i cuscinetti a rullini sono i più appropriati.

Disallineamento ammesso							
Cuscinetti a rullini 1/2,000							
Cuscinetti assiali	1/10,000						

Fig. 2.1

2.2 Tipi di cuscinetti

La **tabella 2.1** riporta i tipi e le caratteristiche dei cuscinetti a rullini.

I cuscinetti a rullini sono disponibili in un'ampia gamma di dimensioni. La scelta di un particolare cuscinetto richiede una conoscenza approfondita della struttura e delle caratteristiche dei diversi cuscinetti e della loro corretta applicazione. Nessun cuscinetto, indipendentemente dal fatto di quanto sia ben costruito, permetterà le proprie complete prestazioni se non viene scelto con cura ed usato in modo corretto. Quando si

sceglie un cuscinetto si devono considerare i seguenti punti.

- (1) L'entità, direzione ed il tipo di carico che verrà applicato al cuscinetto
- (2) Il regime di rotazione e le relative caratteristiche (anello interno rotante, anello esterno rotante) e l'applicazione su di un albero orizzontale o verticale
- (3) La durata richiesta I cuscinetto ed il carico massimo ammesso

Tabella 2.1 Classificazione e caratteristiche dei cuscinetti

Tabella 2.1 Classificazione e caratteristiche dei cuscinetti										
Categoria		Gabbie a rullini	Cuscinetti a rullini massicci	Cuscinetti a rullini senza bordi	Cuscinetti a rullini con giuoco registrabile	Astucci a rullini	Cuscinetti combinati radiali a rullini ed assiali a sfere	Cuscinetti combinati radiali a rullini ed assiali a rulli cilindrici	Cuscinetti a rullini combinati con cuscinetti obliqui a sfere	
	Illustrazione		F F	THE THE	<u> </u>					
	Serie Caratteristiche di applicazione	K K··ZW KMJ PK KBK	NK··+IR NK··R NA48 NA49R NA59 NA69 MR··+MI	NAO NAO··ZW RNAO RNAO··ZW	RNA49··S NA49··S	HK··(+IR) BK··(+IR) HMK··(+IR) DCL··(+MI)	NKX NKX··+IR NKX··Z NKX··Z+IR	NKXR NKXR··+IR NKXR··Z NKXR··Z+IR	NKIA59	
Carico	Radiale Assiale	†	†	†	†	†	†			
Velocità	(Alta velocità) Adatto per impiego ad alta velocità Adeguato per impiego ad alta velocità Non adatto per impiego ad alta velocità X					Δ	_	\triangle		
Precisione	(Elevata precisione) Adatto per impiego ad alta velocità Adeguato per impiego ad alta velocità Non adatto per impiego ad alta velocità					×	\triangle	\triangle	\triangle	
Pratica di montaggio	Semplice Abbastanza semplice Difficoltosa ×	\triangle			\triangle	\triangle		\triangle		
	Applicazioni principali	Cambi per motori	Tutte le macchine	Macchine industriali, macchine da stampa, ecc	Macchine da produzione in generale	Macchine costruzione, con ingranaggi Macchine in genere	Macchine d costruzione ingranaggi Macchine ir genere	, con	Macchine da costruzione in genere	

- (4) Le condizioni della temperatura ambiente intorno al cuscinetto
- (5) La precisione richiesta
- (6) L'entità dell'attrito e del livello sonoro
- (7) Lubrificazione e sistemi di tenuta
- (8) Montaggio e smontaggio del cuscinetto
- (9) Materiali e precisione di finitura dell'albero e dell'alloggiamento
- (10) Spazio disponibile per l'installazione del cuscinetto

Cuscinetti a rullini combinati Cuscinetti radiali a rullini combinati con combinati con cuscinetti a sfere a tre punti di contatto	Cuscinetti a rullini combinati con cuscinetti assiali a rulli a doppio effetto	Cuscinetti assiali a rulli	Rotelle (separabili)	Rotelle (non separabili)	Perni folli	Gabbie piane	Manicotti a sfere massicce (Serie KD)	Astucci a sfere in lamiera imbutita	Manicotti a sfere massicce (Serie KLM)	Pattini a rulli
						£000000000		E		
NKIB59	AXN ARN	811 812 893 AXK11 AS WS GS	NA22∙ •LL RNA22• •LL	NATR NATV NUTR	KR··(LL) KRV··(LL) NUKR CR	FF FF••ZW BF RF	KD KD··LL	КН	KLM KLM··S KLM··P KLM··(LL)	RLM
		-	†	†	†	†	†	†	†	†
		Δ	\triangle	\triangle	Δ			\triangle		Δ
\triangle		\triangle	\triangle	\triangle	\triangle			\triangle		
\triangle	\triangle	Δ				Δ	Δ	Δ	Δ	
	ine da one, ecc	Pompe, macchine da costruzione, macchinario in genere.	Macchinario in genere		nario in Illi di guida	Macchinario da produzione in genere macchine da costruzione ecc.	Macchine da stampa, ecc.	proc maccl	Macchinario d duzione in ger hine da costru robotica, ecc.	nere, uzione

3. Capacità di carico e durata

3.1 Durata del cuscinetto

Durante il funzionamento, anche se il cuscinetto lavora in condizioni normali, sia le superfici delle piste che quelle dei corpi volventi sono costantemente soggette a ripetute sollecitazioni di compressione che causano lo sfaldamento delle superfici stesse. Tale sfaldamento, che può eventualmente causare il cedimento del cuscinetto, è una conseguenza della fatica del materiale. La durata effettiva di un cuscinetto è comunemente definita in termini del numero totale di giri che un cuscinetto può compiere prima che si manifesti lo sfaldamento delle superfici delle piste o di quelle dei corpi volventi.

Altre cause di cedimento di un cuscinetto sono di frequente attribuite a problemi tipo: grippaggio, abrasione, rottura, scheggiatura, corrosione, ossidazione, ecc. Comunque le cosidette "cause" del cedimento del cuscinetto sono originate da un montaggio non idoneo, da lubrificazione insufficiente o impropria, da tenuta errata o da una scelta non accurata del cuscinetto stesso.

Le "cause " sopra citate di cedimento del cuscinetto sono considerate separatamente dall'aspetto dello sfaldamento superficiale poichè possono essere evitate prendendo le dovute precauzioni e non sono una semplice conseguenza della fatica del materiale.

3.2 Durata nominale e coefficiente di carico dinamico

Quando un gruppo di cuscinetti, similmente identici, è soggetto allo stesso carico ed alle stesse condizioni operative evidenzia un'ampia diversità delle singole durate a fatica.

Tale disparità di "vita" può essere attribuita al diverso comportamento a fatica del materiale stesso. Quando si calcola la durata del cuscinetto la disparità di durata di cui sopra è considerata statisticamente e quindi la durata nominale viene definita come sotto riportato.

La durata nominale è basata su di un modello statistico del 90% che è espresso come il numero totale di giri che il 90% dei cuscinetti di uno stesso gruppo, soggetto alle identiche condizioni operative, raggiunge o supera prima che si manifesti lo sfaldamento delle superfici, causato dalla fatca del materiale. Per i cuscinetti operanti ad una velocità fissa e costante la durata nominale (col 90% di affidabilità) è espressa dal numero totale di ore di funzionamento.

Il coefficiente di carico dinamico esprime la capacità di carico di un cuscinetto e corrisponde al carico costante che un cuscinetto può sopportare per un milione di giri (coefficiente di carico dinamico). Per i cuscinetti radiali tale coefficiente esprime un carico puramente radiale e, per i cuscinetti assiali, corrisponde ad un carico puramente assiale. I coefficienti di carico, indicati nelle tabelle dei cuscinetti del presente catalogo, sono validi per i cuscinetti costruiti con lo specifico materiale standard NTN e con l'impiego delle tecniche normali di produzione. Preghiamo di consultare la NTN per i. coefficienti di carico dei cuscinetti costruiti con materiali

speciali o con particolari tecniche di produzione.

La relazione tra la durata nominale, il coefficiente di carico dinamico ed il carico sul cuscinetto è espressa dalla formula (3.1).

$$L_{10} = \left(\frac{C}{P}\right)^{p} \cdots \cdots (3.1)$$

dove

p= 10/3.....Per i cuscinetti a rulli p= 3.....Per i cuscinetti a sfere

 L_{10} : Durata nominale 10 6 , cicli

C: Coefficiente di carico dinamico, N (C_r : cuscinetti radiali, C_a : cuscinetti assiali)

P: Carico dinamico equivalente

(P_r : cuscinetti radiali, P_a : cuscinetti assiali)

La durata nominale può anche essere espressa in termini di ore di funzionamento ed è calcolata come indicato dalla formula (3.2).

$$L_{10h} = 500 f_h^p \cdots (3.2)$$

$$f_{\rm h} = f_{\rm n} \frac{C}{P} \quad \cdots \qquad (3.3)$$

$$f_{\rm n} = (\frac{33.3}{n})^{1/p} \cdots (3.4)$$

dove:

 L_{10h} : Durata nominale, h f_h : Fattore di durata

 f_n : Fattore del numero di giri n: regime di rotazione, r/ min

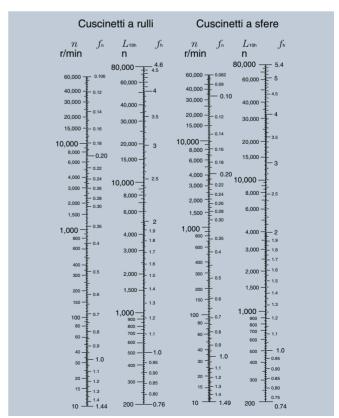


Fig. 3.1 Grafico della durata nominale

La formula (3.2) può anche essere espressa come indicato nella (3.5).

$$L_{10h} = \frac{10^6}{60 n} \left(\frac{C}{P} \right)^p \dots (3.5)$$

La relazione tra la velocità di rotazione n ed il fattore di velocità f_n , come pure la relazione tra la durata nominale L_{10h} ed il fattore di durata f_n sono indicate nella **fig. 3.1**.

Quando più cuscinetti montati in una macchina od in un equipaggiamento si vogliono considerare come un'unità a sè stante, si possono eseguire i calcoli di durata secondo la formula (3.6). La durata totale dei cuscinetti dell'unità è un valore nominale che esprime la durata della unità stessa prima che anche un solo cuscinetto ceda per fatica del gruppo volvente.

$$L = \frac{1}{\left(\frac{1}{L_1^e} + \frac{1}{L_2^e} + \dots + \frac{1}{L_n^e}\right)^{1/e}} \dots (3.6)$$

dove:

e = 10/9......per i cuscinetti a sfere e = 9/8.....per i cuscinetti a rulli L: Durata totale nominale dell'unità completa, h L_1 , L_2 ··· L_n : Durata nominale di ciascun cuscinetto, 1, 2, ···n, h

3.3 Applicazioni e durata richiesta

Quando si sceglie un cuscinetto è essenziale che la sua durata sia stabilita in relazione alle condizioni operative.

La durata necessaria di un cuscinetto è normalmente determinata dal tipo di macchina nella quale il cuscinetto deve essere montato, dal servizio richiesto alla macchina e dalle esigenze della affidabilità operativa. Una guida in generale riguardante le esigenze di durata è riportata nella **tabella 3.1**. La durata a fatica costituisce un fattore importante nel determinare la dimensione di un

un fattore importante nel determinare la dimensione di un cuscinetto; comunque, accanto alla durata del cuscinetto, si deve tenere anche in considerazione la resistenza e la rigidità dell'albero e dell'alloggiamento.

3.4 Fattori correttivi della durata nominale

La durata nominale di un cuscinetto (con fattore di affidabilità del 90%) può essere calcolata con le formule indicate precedentemente nel paragrafo 3.2. Comunque. in alcune applicazioni, può essere richiesto un fattore di durata superiore al 90%. Al fine di poter soddisfare tale esigenza è prevista la possibilità di estendere la durata di un cuscinetto impiegando un materiale migliorato di conseguenza oppure speciali tecniche di produzione. Inoltre, dalla teoria della lubrificazione elastoidrodinamica, risulta chiaramente che tutte le condizioni operative (lubrificazione, temperatura, velocità, ecc.) esercitano un'influenza sulla vita del cuscinetto. Le reali condizioni operative possono essere valutate mediante l'uso dei fattori correttivi nel calcolo della vita del cuscinetto. L'impiego dei fattori corretivi, come prescritto dalla norma ISO 281, permette di ottenere la durata corretta.

$$L_{\text{na}} = a_1 \cdot a_2 \cdot a_3 \cdot (C/P)^p \cdot \cdots \cdot (3.7)$$
 dove.

 Lna: durata nominale corretta in milioni di giri (10⁶) (corretta mediante i fattori di affidabilità, materiale e condizioni operative)

 $a_{\rm 1}$: Fattore correttivo relativo all'affidabilità

 a_2 : Fattore correttivo relativo al materiale

as: Fattore correttivo relativo alle condizioni operative

Tabella 3.1 Requisiti di durata delle diverse applicazioni

Classificazione	Classificazione Applicazione e fattore di durata $L_{10\mathrm{h}}$					
del servizio	~4	4~12	12~30	30~60	60~	
Macchine usate per brevi periodi o usate solo occasionalmente	Applicazioni in utensili elettrici e casalinghi manuali	Macchine agricole e per ufficio				
Brevi periodi d'uso od uso intermittente ma con esigenze di elevata affidabilità	Apparecchiature mediche, strumenti di misura	Motori per condizionatori d'aria domestici, macchine da costruzione, elevatori, gru	Puleggie per gru			
Macchine di uso non costante, ma usate per lunghi periodi	Autovetture, veicoli a due ruote	Piccoli motori, autobus/autocarri, oragani di comando, macchine per la lavorazione del legno	Mandrini, motori industriali, frantoi, vagli	Organi di comando principale, cilindri per calandre per plastica/gomma macchine da stampa		
Macchine di uso costante oltre le otto ore la giorno		Laminatoi, scale mobili, convogliatori, centrifughe	Assi di veicoli ferroviari, condizionatori d'aria, grandi motori, compressori, pompe	Assi di locomotive, motori di trazione, elevatori minerari, volani per presse	Macchine per carta, gruppi di propulsione per mezzi navali	
Funzionamento continuo di 24 ore, non interrompibile					 Impianti di fornitura idrica, pompe e ventilatori per uso minerario, generatori di corrente 	

3.4.1 Fattore di correzione al relativo all'affidabilità

I valori del fattore di correzione relativo all'affidabilità a_1 (per un fattore di affidabilità superiore al 90%) si possono rilevare dalla **tabella 3.2**.

Table 3.2 Fattore correttivo a_1 relativo all'affidabilità

Affidabilità %	$L_{ m n}$	Fattore di affidabilità a_1
90	L_{10}	1.00
95	L_{5}	0.62
96	L_4	0.53
97	L_3	0.44
98	L_2	0.33
99	L_1	0.21

3.4.2 Fattore di correzione q_2 relativo al materiale

La durata di un cuscinetto è influenzata dal tipo e dalla qualità del materiale e così pure dal processo di produzione del cuscinetto stesso. Per tali motivi la durata viene corretta mediante l'uso del fattore a_2 .

I coefficienti di carico dinamico riportati nel presente catalogo corrispondono sia al materiale che al processo di produzione normale **NTN** perciò, il fattore di correzione a_2 . è uguale ad 1. Se vengono impiegati materiali diversi o diversi procedimenti produttivi, il fattore a_2 . può essere superiore ad 1.

I cuscinetti NTN possono essere usati generalmente sino a 120°C. In caso di finzionamento a temperature maggiori, i cuscinetti devono subire un trattamento termico (stabilizzazione), al fine di evitare che si manifestino delle variazioni dimensionali inammissibili che sono causate da modifiche della micro-struttura. Questo speciale trattamento termico può causare la riduzione della vita del cuscinetto poichè cambia la sua durezza.

3.4.3 Fattore di correzione a_3 relativo alle condizioni operative

Il fattore di correzione a_3 relativo alle condizioni operative, viene impiegato per tener conto delle condizioni come la lubrificazione, la temperatura di funzionamento ed altre che hanno un effetto sulla durata del cuscinetto.

In linea di massima, quando le condizioni di lubrificazione sono soddisfacenti, il fattore a_3 ha il valore di uno quando tali condizioni sono eccezionalmente favorevoli e tutte le altre condizioni operative sono normali, il fattore di correzione a_3 può avere un valore superiore ad uno.

Comunque, quando le condizioni della lubrificazione sono particolarmente sfavorevoli e la formazione di un flim di olio sulle superfici di contatto tra le piste ed i corpi volventi è insufficiente, il valore di a_3 diventa inferiore ad uno. Tale insufficiente formazione di un film d'olio può essere causata, per esempio, da una viscosità dell'olio lubrificante troppo bassa in relazione alla temperatura di funzionamento (inferiore a 13 mm²/sec per i cuscinetti a sfere; inferiore a 20 mm²/sec per i cuscinetti a rulli), o da un regime di rotazione eccezionalmente limitato (n_r /min x d_p mm inferiore a 10 000). Nel caso di cuscinetti

funzionanti in condizioni operative speciali si prega di consultare l'assistenza tecnica NTN.

Coll'aumentare della temperatura, la durezza del materiale del cuscinetto diminuisce con la conseguente diminuzione della durata del cuscinetto stesso.

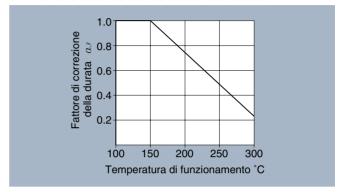


Fig. 3.2 Valore di correzione della durata per la temperatura di funzionamento

3.5 Durata del cuscinetto in presenza di movimento oscillante

La durata di un cuscinetto radiale in presenza di movimento oscillante può essere calcolata co la formula (3.8).

$$L_{\rm osc} = \Omega L_{\rm Rot} \cdots (3.8)$$

dove:

Lose : durata del cuscinetto oscillante

L_{Rot}: durata nominale con un numero di giri assunto pari ai cili di oscillazione

 Ω : fattore di oscillazione (la **Fig. 3.3** indica la relazione tra il semiangolo di oscillazione β ed Ω)

La **Fig. 3.3** è valida solo nel caso in cui l'ampiezza supera un certo valore (l'angolo critico è $2 \beta c$). L'angolo critico è determinato dall'esecuzione interna del cuscinetto, in particolare dal numero di corpi volventi presenti in ciascuna corona. I valori dell'angolo critico sono riportati nella **Tabella 3.3**.

Quando l'ampiezza dell'oscillazione è inferiore all'angolo critico la durata può essere inferiore a quella calcolata secondo i valori indicati dalla **fig. 3.3**. E' più sicuro calcolare la durata mediante il fattore Ω , corrispondente all'angolo critico. Per quanto riguarda l'angolo critico di ciascun cuscinetto , si prega di consultare l'assistenza tecnica **NTN**.

Quando l'ampiezza di oscillazione 2 β è limitata, risulta difficoltosa la formazione di un completo film di lubrificante sulle superfici di contatto tra gli anelli ed i corpi volventi e quindi si può manifestare la "fretting corrosion" o corrosione da contatto. Perciò è necessario impiegare la massima cura nella scelta del tipo di cuscinetto , il tipo di lubrificazione e di lubrificante.

Tabella 3.3 Angolo critico

Numero di corpi volventi	Semiangolo critico 2βc
10	10°
25	4°
40	2.6°

Fig. 3.3 Relazione tra l'angolo β ed il fattore Ω

3.6 Durata di un cuscinetto per movimento lineare

Per un cuscinetto per movimento lineare come un manicotto a sfere e una gabbia piana od un pattino a rulli, la relazione tra la distanza percorsa assialmente, il carico sul cuscinetto ed il coefficiente di carico sono espressi dalla formula (3.9) e (3.10).

Quando i corpi volventi sono sfere:

$$L = 50 \times (\frac{Cr}{Pr})^3 \cdots (3.9)$$

Quando i corpi volventi sono rulli o rullini:

$$L = 100 \times \left(\frac{Cr}{Pr}\right)^{\frac{10}{3}} \cdots (3.10)$$

dove:

 $\begin{array}{lll} L & : \mbox{Percorrenza} & \mbox{km} \\ Cr & : \mbox{Coefficiente di carico} & \mbox{N [kgf]} \\ Pr & : \mbox{Carico sul cuscinetto} & \mbox{N [kgf]} \end{array}$

Fig. 3.4 Grafico della relazione tra Cr/Pr e L. Se il ciclo e la distanza percorsa nell'ambito di un particolare movimento rimane costante, la durata nominale del cuscinetto può essere determinata dalle formule (3.11) e (3.12).

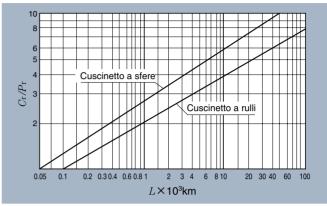


Fig. 3.4 Durata di un cuscinetto per movimento assiale

$$L_{\rm h} = \frac{50 \times 10^3}{10 \cdot {\rm S}} \left(\frac{C_{\rm r}}{P_{\rm r}}\right)^3 \cdots (3.11)$$

$$L_{\rm h} = \frac{50 \times 10^3}{10 \cdot {
m S}} \left(\frac{C{
m r}}{P{
m r}} \right)^{\frac{10}{3}} \cdots (3.12)$$

dove:

Lh: Durata di funzionamento, h

S: Percorso per unità di tempo, m/min S = 2.L·n

L: Lunghezza della corsa, m n: Carico durante il ciclo, N $\{kgf\}$

3.7 Coefficiente di carico statico

Quando i cuscinetti volventi in stato di quiete sono soggetti ad un carico statico, essi subiscono una parziale deformazione permanente delle superfici nei punti di contatto tra i corpi volventi e le relative piste. L'entità della deformazione aumenta col crescere del carico e,se quest'ultimo eccede determinati limiti, viene pregiudicato il funzionamento regolare del cuscinetto.

L'esperienza ha dimostrato che una deformazione permanente pari a 0,00001 volte il diametro del corpo volvente, che si manifesta nel punto più sollecitato tra le pista ed i corpi volventi, può essere tollerata senza che venga pregiudicata l'efficienza di funzionamento.

Il coefficiente di carico statico si riferisce ad un carico statico limite in seguito al quale si manifesta una deformazione permanente di una specificà entità. Quanto detto vale per un puro carico radiale per i cuscinetti radiali ed un puro carico assiale per i cuscinetti assiali. I valori del carico massimo applicato per la sollecitazione di contatto che si manifesta tra il corpo volvente e le relative piste, sono indicati di seguito.

Per i cuscinetti a rulli 4,000 Mpa Per i cuscinetti a sfere 4,200 Mpa

3.8 Carico statico equivalente ammesso

Generalmente il carico statico equivalente che può essere permesso è limitato dal coefficiente di carico statico, come specificato nel paragrafo 3.7. Comunque, a seconda delle esigenze riguardanti l'attrito e la silenziosità di funzionamento, tali limiti possono essere superiori od inferiori al coefficiente di carico statico.

Con la formula seguente (3.13) e dalla **Tabella 3.4** può essere determinato il fattore S_0 in relazione al massimo carico statico equivalente.

$$S_0 = C_0 / P_0 \cdots$$
 (3.13)

dove:

 S_0 : Fattore di sicurezza

 $\mathit{C}_{^{\circ}}$: Coefficiente di carico statico, N

(cuscinetti radiali $C_{\rm or}$, cuscinetti assiali: $C_{\rm oa}$)

 $P_{0\,\mathrm{max}}$: Massimo carico statico equivalente, N

(cuscinetti radiali P_{or} , cuscinetti assiali: C_{oa})

Tabella 3.4 Valori minimi del fattore di sicurezza S_0

Condizioni operative	Cuscinetti a rulli	Cuscinetti a sfere
Esigenza di elevata precisione di rotazione	3	2
Esigenza di normale precisione di rotazione (Applicazioni universali)	1.5	1
Precisione di rotazione limitata è permesso il deterioramento (Bassa velocità, carico elevato, ecc.)	1	0.5

Note 1: Per gli astucci a rullini il valore minimo di S_0 è 3.

^{2:} Quando sono presenti vibrazioni e/o urti, il valore massimo di P_0 deve essere calcolato considerando un fattore del carico basato sul carico ad urto.

4. Calcolo del carico sul cuscinetto

4.1 Carichi agenti sugli alberi

Al fine di poter calcolare i carichi sui cuscinetti devono essere determinate le forze che agiscono sull'albero sopportato dai cuscinetti stessi. Tali forze includono il peso del gruppo rotante (il peso proprio dell'albero e dei componenti su di esso montati), le forze derivanti dal processo di lavorazione della macchina ed i carichi conseguenti alla trasmissione della potenza.

Il valore teorico delle forze sopra citate può essere calcolato.; comunque, vi sono molti casi nei quali i carichi gravanti sui cuscinetti sono normalmente determinati in base alla natura del carico che agisce sull'albero principale di trasmissione della potenza.

4.1.1 Carichi trasmessi dagli ingranaggi

I carichi trasmessi dagli ingranaggi possono essere divisi in tre tipi principali a seconda della direzione nella quale i carichi stessi sono applicati: carico tangenziale (K_1) , carico radiale (K_3) e carico assiale (K_3) . L'entità e la direzione di tali carichi è diversa a seconda del tipo di ingranaggio impiegato. I metodi di calcolo dei carichi, indicati nel presente catalogo, sono per due tipologie generali di ingranaggi: ingranaggi per alberi paralleli ed ingranaggi per alberi ad assi coincidenti. Per quanto riguarda i metodi di calcolo di altri sistemi di trasmissione ad ingranaggi preghiamo di consultare la **NTN**.

Le forze che agiscono sugli alberi paralleli comandati dalle ruote a dentatura esterna diritta ed elicoidale, sono illustrate nelle **figure 4.1, 4.2** e **4.3**. Il valore dei carichi può essere determinato usando le formule da (4.1) a (4.4).

strate nelle **figure 4.1, 4.2** e **4.3**. Il valore dei carichi pere determinato usando le formule da (4.1) a (4.4).
$$K_{\rm t} = \frac{19.1 \times 10^6 \cdot H}{D_{\rm p} \cdot n} \qquad \text{N}$$

$$= \frac{1.95 \times 10^6 \cdot H}{D_{\rm p} \cdot n} \qquad \text{kgf}$$

$$K_{\rm s} = K_{\rm t} \cdot \tan \alpha \quad \text{(Dentatura diritta)} \quad \cdots \qquad \text{(4.2a)}$$

$$= K_{\rm t} \cdot \frac{\tan \alpha}{\cos \beta}$$
 (Dentatura elicoidale) \cdots (4.2b)

$$K_r = \sqrt{K_t^2 + K_s^2}$$
(4.3)

$$K_a = K_t \cdot \tan \beta$$
 (Dentatura elicoidale) · · · · · (4.4)

dove:

 $K_{\rm t}$: Carico tangenziale (forza tangenziale), N

 K_s : Carico radiale (forza di separazione), N

 K_r: Carico normale sull'albero (forza risultante della forza tangenziale e di quella di separazione) , N

Ka : Carico parallelo all'albero, N

H: Potenza trasmessa, kW

n: Regime di rotazione, r/min

Dp: Diametro primitivo della ruota dentata, mm

 α : Angolo di pressione di ingranamento

 β : Angolo dell'elica dell'ingranaggio

Poichè il carico reale dll'ingranaggio è comprensivo di vibrazioni e sollecitazioni ad urto, i valori teorici ottenuti con le formule di cui sopra devono essere corretti mediante il fattore relativo agli ingranaggi f_z , come indicato nella **Tabella 4.1**

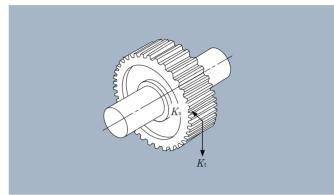


Fig. 4.1 Carichi trasmessi dalle ruote a denti diritti

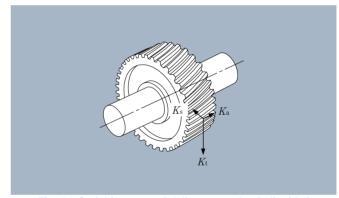


Fig. 4.2 Carichi trasmessi dalle ruote a denti elicoidali

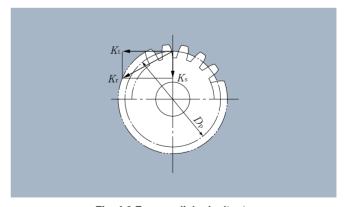


Fig. 4.3 Forza radiale risultante

Tabella 4.1 Fattore degli ingranaggi $f_{\rm z}$

Tipo di ingranaggi	$f_{ m z}$
Ingranaggi di precisione rettificati (Errori di passo e di profilo del dente inferiori a 0,02 mm)	1.05 ~1.1
Ingranaggi da lavorazione normale (Errori di passo e di profilo del dente inferiori a 0,1 mm)	1.1 ~1.3

(2) Carichi agenti sugli alberi ad assi coincidenti

I carichi agenti negli ingranaggi conici a denti diritti ed in quelli conici a spirale dagli alberi ad assi coincidenti sono illustrati dalle **Figure 4.4** e **4.5**. I metodi di calcolo dei carichi per tali ingranaggi sono indicati dalla **tabella 4.2**.

Per il calcolo delle forze di ingranamento degli ingranaggi conici a denti diritti porre l'angolo di spirale $\beta = 0$.

I simboli usati nella Tabella 4.2 sono i seguenti:

 $K_{\rm t}$: Carico tangenziale (forza tangenziale), N $K_{\rm s}$: Carico radiale (forza di separazione), N

 $K_{\rm a}$: Carico parallelo all'albero, N H : Potenza trasmessa, kW n : regime di rotazione, r/min

 D_{pm} : Diametro primitivo medio della ruota, mm α : Angolo di pressione di ingranamento β : Angolo della spirale dell'ingranaggio δ : Semiangolo primitivo del cono

In generale, la relazione tra i carichi della corona e quelli del pignone, a causa della intersezione ad angolo retto dei due alberi, è la seguente

$$K_{\text{sp}} = K_{\text{ag}} \cdot (4.5)$$

 $K_{\text{ab}} = K_{\text{sg}} \cdot (4.6)$

dove:

 K_{sp} , K_{sg} : Forza di separazione del pignone e

della corona , N

 K_{ap} , K_{ag} : Spinta assiale del pignone e della corona, N

Per gli ingranaggi conici a spirale, la direzione dei carichi varia a seconda della direzione dell'angolo della spirale, il senso di rotazione, e quale sia la ruota conduttrice e quella condotta. Le direzioni della forza di separazione (K_s) e quella del carico assiale (K_a) illustrate nella **fig. 4.5** sono da considerarsi positive. Le direzioni del senso di rotazione e dell'angolo della spirale sono definite osservando le ruote dentate dalla estremità maggiore. Il senso di rotazione della **fig. 4.5** è assunto come orario (destro).

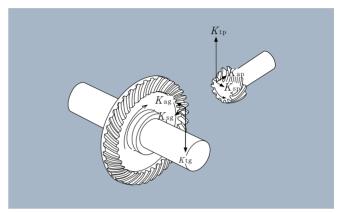


Fig. 4.4 Carichi degli ingranaggi conici

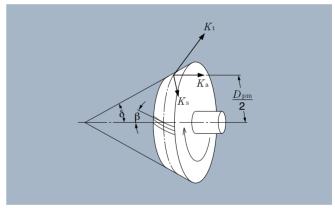


Fig. 4.5 Schema della ruota conica

Tabella 4.2 Carichi agenti negli ingranaggi conici

Dimensioni in N

Dignone	Senso di rotazione		Antiorario	Orario	Antiorario
Pignone	Senso dell'elica	Destro	Sinistro	Destro	Sinistro
Carico tangenziale	$K_{ m t}$		$K_{t} = \frac{19.1 \times 10^{6} \cdot H}{D_{pm} \cdot n}$	$\left\{\frac{1.95\times10^6\cdot H}{D_{\rm pm}\cdot n}\right\}$	
Forza di	Lato conduttore	$K_{\rm s}=K_{\rm t}$ $\left[\tan lpha \frac{{ m co}}{{ m co}} \right]$	$\frac{s\delta}{s\beta}$ +tan β sin δ	$K_{\rm s} = K_{\rm t} \left[\tan \alpha \frac{{ m co}}{{ m co}} \right]$	$\frac{s \delta}{s \beta}$ - $tan \beta sin \delta$
separazione Ks	Lato condotto	$K_{\rm s}=K_{\rm t}$ $\left[\tan \alpha \frac{\rm co}{\rm co}\right]$	$\frac{s\delta}{s\beta}$ - $\tan\beta\sin\delta$	$K_{\rm s}=K_{\rm t}$ $\left[\tan \alpha \frac{\rm co}{\rm co}\right]$	$\frac{s\delta}{s\beta} + \tan\beta\sin\delta$
Carico assiale Ka	Lato conduttore	$K_{\rm a}=K_{\rm t}$ $\left[{ an } lpha $	$\frac{n \delta}{s \beta}$ - $\tan \beta \cos \delta$	$K_{\rm a} = K_{\rm t} \left[\tan \alpha \frac{\rm sin}{\rm co} \right]$	$\frac{1}{8} \frac{\delta}{\beta} + \tan \beta \cos \delta$
	Lato condotto	$K_{\rm a} = K_{\rm t} \left[\tan \alpha \frac{\rm sin}{\rm co} \right]$	$\frac{n\delta}{s\beta}$ + $tan\beta$ COS δ	$K_{\rm a} = K_{\rm t} \left[\tan \alpha \frac{\rm sin}{\rm co} \right]$	$\frac{n\delta}{s\beta}$ - $tan\betacos\delta$

4.1.2 Carichi dei comandi a cinghia/catena

Quando si trasmette una potenza tramite di una catena o di una cinghia, il carico tangenziale del pignone o sulla puleggia può essere calcolato con la formula (4.7).

$$K_{t} = \frac{19.1 \times 10^{6} \cdot H}{D_{p} \cdot n} \qquad N$$

$$= \frac{1.95 \times 10^{6} \cdot H}{D_{p} \cdot n} \qquad \{kgf\}$$

dove:

Kt : Carico tangenziale del pignone o della puleggia, N

H: Potenza trasmessa, kW

D_p: Diametro primitivo del pignone o della puleggia, mm

Ai comandi a cinghia, si conferisce un precarico al fine di poter permettere una tensione costante e sufficiente alla cinghia ed alla puleggia. Tenendo conto dell tensione iniziale, si calcolano poi i carichi agenti sulla puleggia mediante la formula (4.8). Per i comandi a catena, può essere usata la stessa formula purchè si tenga conto delle vibrazioni e dei carichi ad urto.

$$K_{\rm r} = f_{\rm b} \cdot K_{\rm t} \cdots$$
 (4.8)

dove:

 $K_{\rm F}$: Carico radiale sul pignone o sulla puleggia, N $f_{\rm b}$: Fattore per cinghia o catena (**Tabella 4.3**)

Tabella 4.3 Fattore f b per catene o cinghie

Tipo di catena o cinghia	f_{b}
Catena (singola)	1.2~1.5
Cinghia trapezoidale	1.5~2.0
Cinghia dentata	1.1~1.3
Cinghia piatta (con tendicinghia)	2.5~3.0
Cinghia piatta	3.0~4.0

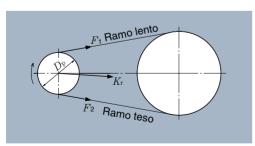


Fig. 4.6 Carichi delle catene/cinghie

4.1.3 Fattore del carico

A causa delle notevoli differenze da una macchina all'altra, la maggior parte delle macchine è soggetta a vibrazioni e ad urti. Al fine di poter calcolare i carichi sui cuscinetti tenendo conto della situazione sopra citata, viene usualmente usata la formula seguente (4.9). Con questa formula il valore teorico viene moltiplicato per un fattore del carico che deriva dalla nostra esperienza.

dove:

F ∶ Carico sul cuscinetto, N fw ∶ Fattore del carico

Fc: Forza teorica, N

La **tabella 4.4** riporta i fattori del carico $F_{\rm w}$ che vengono adottati generalmente e che permettono di determinare l'entità dell'urto creato dalla macchina.

Tabella 4.4 Fattore del carico $f_{\rm w}$

Entità, dell'urto	$f_{ m w}$	Applicazione
Urti molto limitati o assenti	1.0~1.2	Macchine elettriche, macchine utensili, strumenti di misura.
Urti leggeri	1.2~1.5	Veicoli ferroviari, autovetture, laminatoi, macchine per la lavorazione dei metalli, macchine per la produzione di carta, macchine per la miscelazione della gomma, macchine da stampa, aerei, macchine tessili, unità elettriche, macchine per ufficio.
Urti gravosi	1.5~3.0	Frantoi, macchine agricole, macchine da costruzione, gru.

4.2 Distribuzione dei carichi sui cuscinetti

Sia la tensione statica che qualsiasi altro sforzo agente sugli alberi viene distribuito sui cuscinetti.

Per esempio, la **fig. 4.7** illustra un albero di un gruppo di trasmissione ad ingranaggi; il carico applicato su ciascun cuscinetto può essere calcolato usando le formule (4.10) e (4.11).

$$F_{\rm rA} = \frac{a+b}{b} F_{\rm I} + \frac{d}{a+b} F_{\rm I} \qquad (4.10)$$

$$F_{\text{rB}} = -\frac{a}{b}F_{\text{I}} + \frac{c}{c+d}F_{\text{I}} \cdots \cdots (4.11)$$

dove:

 $F_{\rm rA}$: Carico radiale sul cuscinetto A, N $F_{\rm rB}$: Carico radiale sul cuscinetto B, N

FI, FI: Carichi radiali sull'albero,

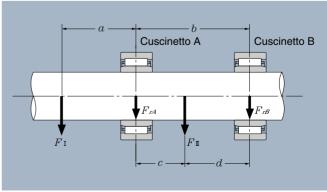


Fig. 4.7 Albero porta ingranaggio

4.3 Carico medio

In circostanze normali il carico agente sui cuscinetti montati in una macchina, in molti casi, varia secondo un periodo fisso od un programma prestabilito. In tali casi, per una semplificazione del calcolo, il carico sui cuscinetti può essere convertito in valore medio $(F_{\rm m})$ che è in grado di conferire la stessa durata del carico variabile.

(1) Carico variabile ad intervalli

Il carico medio sui cuscinetti, $F_{\rm m}$, conseguente ad una condizione di carico variabile ad intervalli, viene calcolato con la formula (4.12). $F_{\rm 1}$, $F_{\rm 2}$ $F_{\rm n}$ sono i carichi agenti sul cuscinetto; $n_{\rm 1}$, $n_{\rm 2}$ $n_{\rm n}$ e $t_{\rm 1}$, $t_{\rm 2}$ $t_{\rm n}$ sono rispettivamente i regimi di rotazione dei cuscinetti ed i tempi operativi.

$$F_{m} = \left(\frac{\sum (F_{i}^{p} n_{i} t_{i})}{\sum (n_{i} t_{i})}\right)^{1/p} \dots (4.12)$$

dove:

p=10/3 Per i cuscinetti a rulli p=3 Per i cuscinetti a sfere

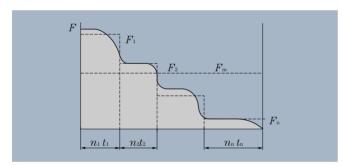


Fig. 4.8 Carico variabile ad intervalli

(2) Variazioni periodiche del carico

Dove è possibile esprimere la funzione F(t) in termini di cicli di carico rispetto al tempo t, il carico medio risulta della formula (4.13).

$$F_{\text{m}} = \left[\frac{1}{t_{\text{o}}} \int_{0}^{t_{\text{o}}} F(t)^{p} d \right]^{1/p} \cdots$$
 (4.13)

dove:

p=3 Per i cuscinetti a sfere p=10/3 Per i cuscinetti a rulli

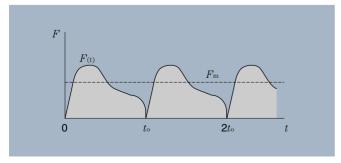


Fig. 4.9 Variazione periodica del carico

(3) Carico variabile linearmente

Il carico medio, F_m , può essere approssimato con la formula (4.14).

$$F_{\rm m} = \frac{F_{\rm min} + 2F_{\rm max}}{3} \cdots (4.14)$$

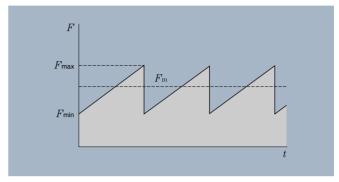


Fig 4.10 Carico variabile linearmente

(4) Carico variabile sinusoidalmente

Il carico medio, $F_{\rm m}$, può essere approssimato con le formule (4.15) e (4.16).

(a)
$$F_{\rm m} = 0.75 F_{\rm max} \cdots (4.15)$$

(b)
$$F_{\rm m} = 0.65 F_{\rm max} \cdots (4.16)$$

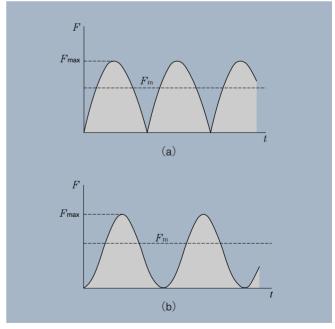


Fig. 4.11 Carico variabile sinusoidalmente

4.4 Esempio di calcolo della durata teorica del cuscinetto

I valori calcolati in questo paragrafo della durata nominale del cuscinetto sono ottenuti trascurando l'effetto degli errori di montaggio, delle tolleranze del cuscinetto, della lubrificazione e simili.

(Es. 1)

Determinare la durata dell'astuccio a rullini HMK5030 operante al regime n di 1,500 giri/min e soggetto ad un carico radiale $F_{\rm r}$ di 9.8 kN (1,000 kgf).

Dalla pagina B-36, il coefficiente di carico dinamico $C_{\rm r}$ dell'astuccio HMK5030 è 58.5 kN (5,950 kgf). Perciò, dalla formula (3.5) la sua durata $L_{\rm 10h}$ risulta:

$$L_{10h} = \frac{10^6}{60n} \left(\frac{C_r}{P_r}\right)^P = \frac{10^6}{60 \times 1500} \times \left(\frac{58.5}{9.8}\right)^{\frac{10}{3}} = 4,287 \text{ h.}$$

Una durata approssimata del cuscinetto L_{10h} può essere determinata dalla **Fig. 3.1**. Poichè il fattore di velocità f_h di un cuscinetto operante ad un regime n di 1,500 giri/min può essere calcolato con la formula (3.3), il suo valore risulta:

$$f_h = f_n \frac{C_r}{P_r} = 0.32 \times \frac{58.5}{9.8} = 1.91$$

Dalla **Fig. 3.1** la durata del cuscinetto L_{10h} , relativa al fattore f_h calcolato, risulta approssimativamente di 4,300 h ed è virtualmente identica a quella calcolata precedentemente.

(Es. 2)

Se un cuscinetto assiale a rulli (tipo B11 o B12) viene usato con un carico assiale $F_{\rm a}$ di 14.7 kN (1,500 kgf) ad un regime di rotazione n di 1,100 giri/min e la sua durata $L_{\rm 10h}$ deve superare le 8,000 ore, quale sarà il cuscinetto ottimale da scegliere?

Dalla **fig. 3.1** si rileva che il fattore f_h per una durata L_{10h} di 8,000 h è pari a 2.3; il fattore di velocità per n pari a 1,100 giri/min è di 0.35. Perciò, dalla formula (3.3) il coefficiente di carico dinamico necessario C_a è:

$$C_a = \frac{f_h}{f_n} P_a = \frac{2.3}{0.35} \times 14.7 = 96.6 \text{kN}$$

Dalla pag B-120, il cuscinetto più compatto che soddisfa le esigenze sopra esposte è il tipo **81211** (C_a = 121 kN o 12,300 kgf).

(Es. 3)

L'albero di una ruota a dentatura diritta (il cui diametro primitivo $D_{\rm P}$ è di 100 mm, e l'angolo di pressione α di 20°) illustrato nella **fig. 4.12** è sopportato da due cuscinetti, NA4905R (24 kN o 2,450 kgf) e NA5905 (30.5 kN o 3,150 kgf). Se la potenza trasmessa H è di 80 kW ed il regime di rotazione n è di 3,000 giri/min, determinare la durata nominale di ciascun cuscinetto.

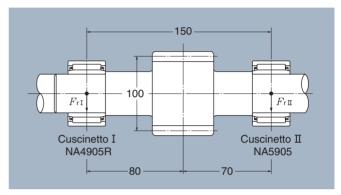


Fig. 4.12 Schema della ruota dentata

I carichi agenti sulla ruota dentata possono essere calcolati con le formule (4.1), (4.2a) e (4.3).

$$\mathit{K}_{t} = \frac{19.1 \times 10^{6} \times \mathit{H}}{\mathit{D}_{p} \cdot \mathit{n}} = \frac{19.1 \times 10^{6} \times 80}{100 \times 3000} = 5093 \text{N} = 5.09 \text{kN } \{519 \text{kgf}\}$$

 $K_s = K_t \cdot \tan \alpha = 5.09 \times \tan 20^\circ = 1.85 \text{kN } \{189 \text{kgf}\}$

$$K_r = \sqrt{K_t^2 + K_s^2} = \sqrt{5.09^2 + 1.85^2} = 5.42 \text{kN} \{553 \text{kgf}\}$$

I carichi radiali agenti sui cuscinetti I e II sono i seguenti.

$$F_{\rm rI} = \frac{70}{150} K_{\rm r} = \frac{70}{150} \times 5.42 = 2.53 \text{kN} \{258 \text{kgf}\}$$

$$F_{\rm rII} = \frac{80}{150} K_{\rm r} = \frac{80}{150} \times 5.42 = 2.89 \text{kN } \{295 \text{kgf}\}$$

La durata nominale dei cuscinetto può essere espressa dalle formule (3.5):

$$L_{\rm hl} = \frac{10^6}{60 \times 3000} \times (\frac{24}{2.53})^{\frac{10}{3}} = 10,039 \text{ hrs}$$

$$L_{\rm h2} = \frac{10^6}{60 \times 3000} \times (\frac{30.5}{2.89})^{\frac{10}{3}} = 14,324 \text{ hrs}$$

Dalle formule (3.6), la durata $L_{\rm h}$ dei cuscinetti che sopportano l'albero è:

$$\mathit{L}_{h} = \frac{1}{\left(\frac{1}{\mathit{L}_{h1}}^{e} + \frac{1}{\mathit{L}_{h2}}^{e}\right)^{\frac{1}{e}}} = \frac{1}{\left(\frac{1}{10039^{\frac{9}{8}}} + \frac{1}{14324^{\frac{9}{8}}}\right)^{\frac{9}{9}}} = 6,363 \text{ h}$$

5. Appellativi dei cuscinetti

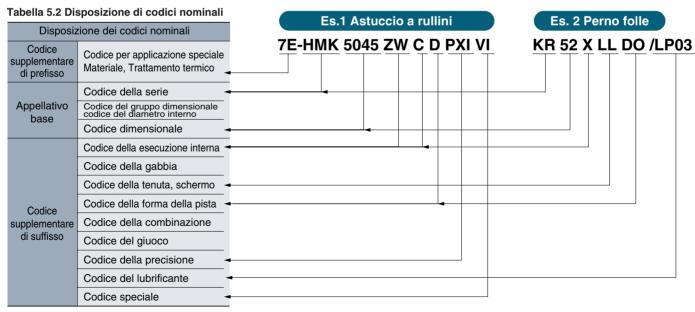

L'appellativo di un cuscinetto ne esprime il tipo, le dimensioni, la precisione e la struttura interna. L'appellativo è composto da un numero base e da un codice supplementare. Nella **Tabella 5.1** è indicata la composizione dello appellativo. La **tabella 5.2** riporta l'ordine della disposizione degli appellativi.

Tabella 5.1-1 Composizione dell'appellativo (Codice supplementare di prefisso, appellativo)

Codice supplementare di			Appellativo					
prefisso, Applicazione speciale, materiale, trattamento termico	Denominazione del cuscinetto	Codic della serie	Codice	della serie o codice del gruppo della nsione + sigla del diametro interno				
Cuscinetti-E in acciaio da cementazione	Gabbia a rullini	K, KJ, KMJ, PCJ, PK, KBK	Fw×Ew×Bc	ro×diametro esterno×larghezza)				
Cuscinetti-F in acciaio inossidabile	Astuccio a rullini	HK, HMK, BK	Fw • C (Diametro	o del foro / larghezza)				
	Astucció a fullifii	DCL	Fw" • C" (serie in	pollici: Diametro del foro /l arghezza)				
Cuscinetti-C in acciaio al carbonio Cuscinetti-M con rivestimento superficiale	Cuscinetto a rullini	RNA, NA	49, 48, 59, 69	5 - 9 (Diametro interno da 5 a 9) 00 - 03 (Diametro interno: 10, 12, 15, 17) /22, 28, 32 (Diametro interno: 22, 28, 32) 04 - 88 (Diametro interno da 20 a 440)				
Cuscinetti-HL aventi rulli HL		NK (+IR), RNAO, NAO	Fw/C (Diametro foro / Larghezza) Fw (or d) $\times D \times C$ (Diametro foro o interno \times Diametro esterno \times Largh					
(superficie con microcavità per l'olio) (riferimento a pag. C-2)		MR (+MI)	Fw"•D"•C" (Serie ir	n pollici: Diametro foro / Diametro esterno / Larghezza)				
Cuscinetti-8Q gabbia con trattamento di nitrurazione morbida	Cuscinetto assiale a rulli	AXK, AS, WS8, GS8, K8, 8	11 11, 12, 93 11, 12, 93	00 - 03 (diametro interno: 10, 12, 15, 17) 04 - 32 (diametro interno 20, 160)				
Cuscinetti TS2 per alta		NKX (+IR) NKXR (+IR)	Fw (Diametro del	foro)				
temperatura sino a 160°C, trattati per la stabilizzazione dimensionale	Cuscinetto combinato	NKIA NKIB	59	02, 03, / 22 (Diametro interno: 15, 17, 22) 04 - 15 (Diametro interno: 20, 70)				
		AXN, ARN	$d \cdot D$ (Diametro i	nterno / Diametro esterno)				
Cuscinetti TS3 per alta temperatura sino a 200°C, trattati per la stabilizzazione dimensionale		RNA, NA	22	/6, 8 (Diametro interno: 6, 8) 00 - 03 (diametro interno: 10, 12, 15, 17 04 - 10 (diametro interno: 20, 50)				
	Rotella	NATR, NATV	$d \cdot D$ (Diametro i	nterno / Diametro esterno)				
Cuscinetti TS4 per alta		NACV	d" • D" (Serie in p	pollici: Diametro interno / Diametro esterno)				
temperatura sino a 250°C, trattati per la stabilizzazione dimensionale.		NUTR	2, 3	02 - 03 (diametro interno: 15, 17) 04 - 10 (diametro interno 20, 50)				
(Ved. paragrafo A-55)	Perno folle	KR, KRV, KRU, KRVU, NUKR	D (diametro ester	rno)				
		CRV	D" serie in pollici	(Diametro interno / Diametro esterno				
	Componente	IR MI A, F WR, BR G, GD	d" • F" • B" (Serie in pollici: Di Dw×Lw (diametro d₁ (Diametro albe	ro interno×Diametro esterno×larghezza) ametro interno×Diametro esterno×Larghezza) o×Larghezza) ro o Diametro foro) ro interno×Diametro esterno×larghezza)				
	Cuscinetto per movimento lineare	KLM KH KD RLM FF RF, BF	$Fw \cdot D \cdot C$ (Diame $H \times L$ (Altezza $\times L$) $Dw \cdot b$ (O B) (Diame	del foro / Larghezza) etro interno×Diametro esterno×larghezza)				
	Ruote libere	HF NHF, NCU	$F_{\mathbf{W}} \cdot C$ (Diametro $F_{\mathbf{W}}$ (Diametro for	o foro / Larghezza) o)				

Tabella 5.1-2 Composizione dell'appellativo (Codice supplementare di suffisso)

			Codice s	upplementare di	suffisso			
Codice della modifica interna	Codice della gabbia	Codice dello schermo di tenuta	Codice della forma della pista	Codice della combinazione	Codice del giuoco	Codice della precisione	Codice del lubrificante	Codice speciale
ZW: gabbia a due corone A, B, C: Variazione della struttura interna R: Anello esterno a due bordi X: Superficie cilindrica dell'anello esterno delle rotelle o dei perni folli	L1: Gabbia massiccia in ottone ad alta resistenza F1: Gabbia massiccia in acciaio al carbonio J, JW: Gabbia in lamiera di acciaio T2: Gabbia in materiale plastico L3: Gabbia in lega di alluminio S: gabbia saldata	L: Anello di tenuta in gomma sintetica ad un solo lato (tipo a contatto) LL: Anello di tenuta in gomma sintetica ad ad ambo i lati (tipo a contatto)	N: Gola per anello elastico NR: Gola per anello elastico con relativo anello elastico D: Con fori di lubrificazione DO: Senza gola e fori di lubrificazione H: Perno folle con foro esagonale S: Tipo con giuoco registrabile	D2, Dn: Combinazione degli stessi cuscinetti in più di due pezzi + α Con distanziale (α esprime la larghezza del distanziale)	C2: Giuoco inferiore al normale (CN): Giuoco normale C3: Giuoco superiore al normale C4: Giuoco superiore a C3	P6: Classe JIS 6 P5: Classe JIS 5 P4: Classe JIS 4 Da PX1 a PNn: Tolleranza speciale	/2A. Alvania 2 /3A: Alvania 3 /8A: Alvania EP2 /5K: Multemp SRL /LPO3: Grasso solido (Grasso per cuscinetti a rullini con lubrificazione solida)	Da V1 a Vn: Esigenze di specifiche particolari

Note:

- 1. Contattare la NTN per appellativi, codici supplementari di prefisso o suffisso diversi da quelli sopra citati.
- 2. Il trattamento di nitrurazione morbida è la specifica normale per le gabbie saldate ed il codice supplementare di prefisso può essere omesso (8Q-)
- 3. Se il grasso di prelubrificazione è normale per il tipo di cuscinetto ed il tipo di prodotto, il codice del grasso può essere omesso.
- 4. Se viene usato il codice speciale (Vn), Vn include il codice del materiale, del trattamento termico e di quello del lubrificante, ma il codice della esecuzione interna come il codice supplementare del prefisso HL- e A, B, C (gabbie saldate), delle tenute, degli anelli elastici di bloccaggio, H (con foro esagonale), il codice della combinazione e quello della precisione non sono inclusi in Vn ma descritti.

6. Tolleranze dei cuscinetti

6.1 Precisione dimensionale e di rotazione

Le tolleranze dei cuscinetti o la precisione dimensionale e di rotazione degli stessi sono regolate dalle normative ISO e JIS B 1514 (tolleranze dei cuscinetti volventi). Per quanto riguarda la precisione dimensionale, la normative prescrivono le tolleranze delle dimensioni che permettono il montaggio del cuscinetto sull'albero e nello alloggiamento. La precisione di rotazione è definita dai limiti dei difetti di rotazione del cuscinetto durante il funzionamento.

Precisione dimensionale

La precisione dimensionale è definita dai limiti dimensionali accettabili per il diametro del foro, per il diametro esterno, per la larghezza del cuscinetto montato, per l'uniformità del diametro del foro e delle dimensioni dei raccordi e per gli scostamenti e gli errori di forma degli anelli interni con foro conico. La precisione dimensionale include anche la variazione media del diametro medio del foro, la variazione del diametro esterno e la propra irregolarità media e così pure la larghezza e l'altezza (per i cuscinetti assiali) della pista.

Precisione di rotazione

La precisione di rotazione è definita dai valori accettabili dei difetti di rotazione radiali ed assiali dell'anello interno e di quello esterno, dall'errore di quadratura dell'anello interno e dall'errore di rotazione del diametro esterno.

Le tolleranze ammesse per i cuscinetti volventi sono state stabilite dalle classi di precisione ISO (JIS). La classe 0 corrisponde alla classe di precisione normale dei cuscinetti: La precisione diventa progressivamente più elevata col diminuire del numero della classe stessa; cioè la classe 6 è meno precisa della classe 5 che a sua volta è meno precisa della classe 4 e così via.

La **Tabella 6.1** indica quali siano le classi di precisione applicabili alla maggior parte dei tipi di cuscinetti. Per maggiori dettagli sui limiti degli errori ammessi ed i relativi valori, fare riferimento alle **Tabelle 6.2** e **6.3**. I valori ammessi per le dimensioni dei raccordi sono riportati nella **tabella 6.4**.

Tabella 6.1 Tipi di cuscinetti e tolleranze applicabili

Tipi di cu	uscinetti	Normativa applicabile		Classe di tolleranza applicabile						
Cuscinetti a rullini Cuscinetti a rullini con	giuoco registrabile		classe 0	classe 6	classe 5	classe 4 classe 4	Tabella 6.2 Tabella 6.2			
Cuscinetti combinati	Cuscinetto radiale Cuscinetto assiale	ISO 492 JIS B 1514 (normale NTN)	classe 0 NTN classe 0	classe 6 NTN classe 6	classe 5 NTN classe 5	NTN classe 4	Tabella 6.2 Tabella 6.3			
Cuscinetti a rullini combinati con cuscinetti assiali a doppio effetto a rulli cilidrici	Cuscinetto radiale Cuscinetto assiale				classe 5 NTN classe 5	classe 4 NTN classe 4	Tabella 6.2 Tabella 6.3			
Cuscinetti assiali a rull Rotelle e perni folli	i		NTN classe 0 classe 0	NTN classe 6 —	NTN classe 5	NTN classe 4	Tabella 6.3 Tabella 6.2			

Nota: JIS B 1514 e ISO 492 hanno lo stesso livello di specificazione.

Tabella 6.2 Tolleranze dei cuscinetti radiali Tabella 6.2 (1) Anelli interni

nor	Diam minale d mi	del foro		Scostamento del diametro medio del foro in un singolo piano Δ_{dmp}									Variazione del diametro del foro in un singolo piano radiale V_{dp}			Variazione del diametro del foro in un singolo piano medio $V_{d\mathrm{mp}}$				Difetto di rotazione radiale dell'anello interno Kia		
			clas	se 0	clas	se 6	clas	se 5	clas	se 4	classe 0	classe 6	classe 5	classe 4	classe 0	classe 6	classe 5	classe 4	classe	classe 6	classe 5	classe 4
	oltre	fino a	sup.	inf.	sup.	inf.	sup.	inf.	sup.	inf.		m	ax			m	nax			'n	nax	
	2.5	2 10	0	-8	0	-7	0	-5	0	-4	10	9	5	4	6	5	3	2	10	6	4	2.5
	10	18	0	-8	0	-7	0	-5	0	-4	10	9	5	4	6	5	3	2	10	7	4	2.5
	18	30	0	-10	0	-8	0	-6	0	-5	13	10	6	5	8	6	3	2.5	13	8	4	3
	30	50	0	-12	0	-10	0	-8	0	-6	15	13	8	6	9	8	4	3	15	10	5	4
	50	80	0	-15	0	-12	0	-9	0	-7	19	15	9	7	11	9	5	3.5	20	10	5	4
	80	120	0	-20	0	-15	0	-10	0	-8	25	19	10	8	15	11	5	4	25	13	6	5
	120	150	0	-25	0	-18	0	-13	0	-10	31	23	13	10	19	14	7	5	30	18	8	6
	150	180	0	-25	0	-18	0	-13	0	-10	31	23	13	10	19	14	7	5	30	18	8	6
	180	250	0	-30	0	-22	0	-15	0	-12	38	28	15	12	23	17	8	6	40	20	10	8
	250	315	0	-35	0	-25	0	-18	-	-	44	31	18	-	26	19	9	-	50	25	13	-
	315	400	0	-40	0	-30	0	-23	-	-	50	38	23	-	30	23	12	-	60	30	15	-
	400	500	0	-45	0	-35	-	-	-	-	56	44	-	-	34	26	-	-	65	35	-	_

La differenza dimensionale Δ_{ds} del diametro del foro da applicare alla classe 4 è uguale alla tolleranza della differenza dimensionale Δ_{dmp} del diametro del foro medio.
 E' incluso nella presente divisione dimensionale il diametro nominale del foro del cuscinetto da 2.5 mm.

Tabella 6.2 (1) Anelli esterni

	Diam nomir ester	nale rno		Scostamento del diametro medio esterno in un singolo piano ΔDmp								Variazione del diametro esterno in un singolo piano radiale V_{Dp}			diametro esterno in un singolo piano medio				Difetto di rotazione radiale dell'anello esterno $K_{\rm ea}$			
	mr oltre	n fino a	clas sup.	se 0 inf.	clas	se 6 inf.	clas	se 5 inf.	clas	sse 4	classe 0	classe 6	classe 5 ax		classe 0	classe 6	Dmp classe 5	classe 4	classe 0	6	classe 5	classe 4
I	6	18	0	-8	0	-7	0	-5	0	-4	10	9	5	4	6	5	3	2	15	8	5	3
	18 9	30	0	-9	0	-8	0	-6	0	-5	12	10	6	5	7	6	3	2.5	15	9	6	4
	30	50	0	-11	0	-9	0	-7	0	-6	14	11	7	6	8	7	4	3	20	10	7	5
	50	80	0	-13	0	-11	0	-9	0	-7	16	14	9	7	10	8	5	3.5	25	13	8	5
	80	120	0	-15	0	-13	0	-10	0	-8	19	16	10	8	11	10	5	4	35	18	10	6
	120	150	0	-18	0	-15	0	-11	0	-9	23	19	11	9	14	11	6	5	40	20	11	7
	150	180	0	-25	0	-18	0	-13	0	-10	31	23	13	10	19	14	7	5	45	23	13	8
	180	250	0	-30	0	-20	0	-15	0	-11	38	25	15	11	23	15	8	6	50	25	15	10
	250	315	0	-35	0	-25	0	-18	0	-13	44	31	18	13	26	19	9	7	60	30	18	11
	315	400	0	-40	0	-28	0	-20	0	-15	50	35	20	15	30	21	10	8	70	35	20	13
	400	500	0	-45	0	-33	0	-23	-	-	56	41	23	-	34	25	12	-	80	40	23	
	500	630	0	-50	0	-38	0	-28	-	-	63	48	28	-	38	29	14	-	100	50	25	_

[🚯] La differenza dimensionale ΔDs del diametro esterno da applicare alla classe 4 è uguale alla tolleranza della differenza dimensionale ΔDmp del diametro esterno medio.

⁶ E' incluso nella presente divisione dimensionale il diametro esterno del cuscinetto di 6 mm.

С	de	di qua ella fac etto al		della f	di rota di	eterale nterno	m	costamo isura si rghezza	ngola	della	Variazione della larghezza dell'anello interno V_{Bs}			
	classe 0	classe 6 max	classe 5	classe 0	classe 6 max	classe 5	class	se 0,6 imf.		se 5,4 imf.	classe 0	classe 6 m	classe 5	classe 4
	7	3	1.5	7	3	1.5	0	-120	0	-40	15	15	5	2.5
	7	3	1.5	7	3	1.5	0	-120	0	-80	20	20	5	2.5
	8	4	1.5	8	4	2.5	0	-120	0	-120	20	20	5	2.5
	8 8 9	4 5 5	1.5 1.5 2.5	8 8 9	4 5 5	2.5 2.5 2.5	0 0	-120 -150 -200	0 0 0	-120 -150 -200	20 25 25	20 25 25	5 6 7	3 4 4
	10 10 11	6 6 7	2.5 4 5	10 10 13	7 7 8	2.5 5 5	0 0 0	-250 -250 -250 -300	0 0	-250 -250 -300	30 30 30	30 30 30	8 8 10	5 5 6
	13 15 —	- - -	- - -	15 20 —	_ _ _	- - -	0 0 0	-350 -400 -450	0 0 -	-350 -400 —	35 40 50	35 40 45	13 15 —	_ _ _

³ Da applicarsi ai cuscinetti radiali rigidi a sfere.

Variazio inclina este	erna	della late dell'anell	rotazione faccia rale o esterno	Scostamento di una misura singola della larghezza dell'anello esterno Δcs	Variazion larghezz anello e: Va	a del	lo
classe 5 m	classe 4 nax	classe 5 m	classe 4 ax	tutti i tipi	classe 0,6 cl	asse 5	classe 4
8	4	8	5			5	2.5
8	4	8	5	Identica a	Identica a	5	2.5
8	4	8	5	Δ_{Bs} dell'anello	Δ_{Bs} e V_{Bs}	5	2.5
8 9 10	4 5 5	10 11 13	5 6 7	interno dello stesso cuscinetto	dell'anello interno dello stesso cuscinetto	6 8 8	3 4 5
10	5	14	8		00000110	8	5
11	7	15	10			10	7
13	8	18	10			11	7
13 15 18	10 - -	20 23 25	13 _ _			13 15 18	8 - -

⁶ Da applicarsi ai cuscinetti radiali rigidi a sfere

Tabella 6.3 Tolleranze dei cuscinetti assiali a rulli Tabella 6.3 (1) Anelli interni

	iametro ale del foro	So	del foro in ur	el diametro mo n singolo piano Admp		del foro in piano	del diametro un singolo radiale	Variazione dello spessore della ralla per albero del cuscinetto assiale Si				
	mm	cla	sse	cla	classe		classe	classe	classe	classe	classe	
		0,6	6,5	4	4	0,6,5	4	0	6	5	4	
oltre	incl.	sup.	inf.	sup.	inf.	m	ax		m	ıax		
-	18	0	-8	0	-7	6	5	10	5	3	2	
18	30	0	-10	0	-8	8	6	10	5	3	2	
30	50	0	-12	0	-10	9	8	10	6	3	2	
50	80	0	-15	0	-12	11	9	10	7	4	3	
80	120	0	-20	0	-15	15	11	15	8	4	3	
120	180	0	-25	0	-18	19	14	15	9	5	4	
180	250	0	-30	0	-22	23	17	20	10	5	4	
250	315	0	-35	0	-25	26	19	25	13	7	5	
315	400	0	-40	0	-30	30	23	30	15	7	5	
400	500	0	-45	0	-35	34	26	30	18	9	6	
500	630	0	-50	0	-40	38	30	35	21	11	7	

Tabella 6.3 (2) Anelli esterni

Tabella 6.3	(2) Anelli es	sterni											
est	nominale erno d		esterno in ur Δ	el diametro me I singolo piano		esterno in piano	del diametro un singolo radiale	Variazione dello spessore della ralla per alloggiamento del cuscinetto assiale $S_{\rm e}$					
		classe classe classe		classe	classe	classe	classe						
		0,0	6,5	4	1	0,6,5	4	0	6	5	4		
oltre	incl.	sup.	inf.	sup.	inf.	m	ax		m	ax			
10	18	0	-11	0	-7	8	5						
18	30	0	-13	0	-8	10	6						
30	50	0	-16	0	-9	12	7						
50	80	0	-19	0	-11	14	8						
80	120	0	-22	0	-13	17	10						
120	180	0	-25	0	-15	19	11	A se	conda della to	olleranza di S 1	1		
180	250	0	-30	0	-20	23	15	di "d'	o "d2" dello	stesso cuscin	netto		
250	315	0	-35	0	-25	26	19						
315	400	0	-40	0	-28	30	21						
400	500	0	-45	0	-33	34	25						
500	630	0	-50	0	-38	38	29						
630	800	0	-75	0	-45	55	34						

6.2 Dimensioni dei raccordi

Tabella 6.4 Valori critici ammessi per i raccordi del cuscinetto

•		(1) Cuscinetti radi	•
	∕rs min	Diametro nominale del foro	?'s max O ?'₁s max

r _{s min} ●	Diametro nominale del foro		r s max ${\sf O}$	r1s max
О			Direzione	Direzione
γ_{1S} min	oltre	incl	radiale	assiale
0.05	-	_	0.1	0.2
0.08	-	-	0.16	0.3
0.1	-	-	0.2	0.4
0.15	-	-	0.3	0.6
0.2	-	-	0.5	0.8
0.2	-	40	0.6	1
0.3	40	-	0.8	1
0.6	-	40	1	2
0.6	40	-	1.3	2
1	-	50	1.5	3
'	50	-	1.9	3
4.4	-	120	2	3.5
1.1	120	-	2.5	4
4.5	-	120	2.3	4
1.5	120	-	3	5
	-	80	3	4.5
2	80	220	3.5	5
	220	_	3.8	6
0.4	-	280	4	6.5
2.1	280	-	4.5	7
	-	100	3.8	6
2.5	100	280	4.5	6
	280	-	5	7
0	-	280	5	8
3	280	-	5.5	8
4	-	_	6.5	9
5	_	_	8	10
6	-	-	10	13
7.5	-	_	12.5	17
9.5	-	_	15	19
12	-	-	18	24
15	-	-	21	30
19	-	-	25	38

¹ Queste sono le dimensioni minime ammesse del raccordo "r" e sono indicate nelle tabelle dimensionali.

Tabella 6.4 (2) Cuscinetti assiali Dimensioni in n				
r s min O r_1 min $^oldsymbol{\Theta}$	rs max o r₁s max Direzione radiale ed assiale			
0.05	0.1			
0.08	0.16			
0.1	0.2			
0.15	0.3			
0.2	0.5			
0.3	0.8			
0.6	1.5			
1	2.2			
1.1	2.7			
1.5	3.5			
2	4			
2.1	4.5			
3	5.5			
4	6.5			
5	8			
6	10			
7.5	12.5			
9.5	15			
12	18			
15	21			
19	25			

² Queste sono le dimensioni minime ammesse dei raccordi "r"o " r_1 "e sono iportate nelle tabelle dimensionali.

7. Accoppiamenti dei cuscinetti

7.1 Interferenza

L'anello interno e quello esterno dei cuscinetti volventi vengono fissati sull'albero o nell'alloggiamento affinchè, durante il funzionamento o sotto carico, non si manifesti un movimento relativo tra le superfici accoppiate. Tale movimento (denominato strisciamento) tra le superfici accoppiate del cuscinetto con l'albero e con l'alloggiamento può avvenire in direzione radiale, in quella assiale o nel senso della rotazione. Per poter evitare lo strisciamento tra le superfici accoppiate, gli anelli del cuscinetto vengono montati sull'albero e nell'alloggiamento mediante uno dei tre tipi di accoppiamento ovvero: con "interferenza stretta" (denominato anche accoppiamento con deformazione delle parti), "accoppiamento incerto" e "accoppiamento scorrevole"; i tre casi citati si distinguono per il grado di interferenza tra le superfici accoppiate.

Il sistema più efficace per bloccare gli anelli del cuscinetto sull'albero e nell'alloggiamento è quello di utilizzare una "interferenza stretta". Nel caso dei cuscinetti a parete sottile,il vantaggio dell'interferenza stretta è quello di permettere un supporto uniforme del carico lungo l'intera circonferenza degli anelli senza perciò causare alcuna perdita della capacità di carico. Comunque, con l'accoppiamento ad interferenza stretta si perde la facilità di montaggio e smontaggio e, quando si usa un cuscinetto non scomponibile dal lato del supporto mobile, viene a mancare la possibilità dello spostamento in senso assiale. Per tale motivo, l'interferenza stretta non è adatta a tutti i casi.

7.2 La necessità di un accoppiamento adatto

In alcuni casi un accoppiamento inadeguato può causare degli inconvenienti che riducono la durata del cuscinetto; risulta quindi necessario analizzare accuratamente la scelta dell'accoppiamento adatto. Alcuni degli effetti negativi causati da una scelta inadeguata dell'accoppiamento sono i seguenti:

- Rottura degli anelli, usura precoce e spostamento degli anelli stessi.
- Abrasione delle superfici dell'albero e di quelle dello alloggiamento causate dallo strisciamento relativo e dalla corrosione di contatto.
- Grippaggio causato dalla riduzione del giuoco.
- incremento della rumorosità e riduzione della precisione conseguenti alla deformazione delle piste.

Preghiamo fare riferimento alle pagine da A-32 ad A-39 per informazioni riguardanti la diagnosi degli inconvenienti sopra esposti.

7.3 Scelta degli accoppiamenti

La scelta dell'accoppiamento adatto è una conseguenza dall'analisi accurata delle condizioni operative del cuscinetto, incluse le seguenti considerazioni.

- Materiale dell'albero e dell'alloggiamento, spessore delle pareti della struttura di montaggio, qualità delle finiture superficiali, ecc.
- Condizioni operative della macchina (natura ed entità del carico, regime di rotazione, temperatura, ecc.)

Tabella 7.1 Scelta degli accoppiamenti dei cuscinetti						
Schema	Rotazione del cuscinetto		Carico sull'anello	Accoppiamento		
Carico statico/		Anello interno rotante Anello esterno stazionario	Carico rotante con l'anello interno	Anello interno: accoppiamento stretto		
Carico sbilanciato		Anello interno stazionario Anello esterno rotante	Carico statico sullo anello esterno	Anello esterno: accoppiamento scorrevole		
Carico statico		Anello interno stazionario Anello esterno rotante	Carico statico sull'anello interno	Anello interno: accoppiamento scorrevole		
Carico sbilanciato		Anello interno rotante Anello esterno stazionario	Carico rotante con l'anello esterno	Anello esterno: accoppiamento stretto		

Tabella 7.1 Scelta degli accoppiamenti dei cuscinetti

7.3.1 Accoppiamento "stretto" "incerto" e "scorrevole"

- (1) Per gli anelli soggetti ad un carico rotante è necessario un accoppiamento stretto (vedere la **tabella 7.1**). Per "anelli soggetti a carico rotante" si intendono quegli anelli soggetti ad un carico che ruota relativamente alla loro direzione radiale Viceversa, per anelli soggetti a carico statico è sufficiente un accoppiamento scorrevole. (Esempio) Carico rotante con l'anello interno = la direzione del carico radiale sull'anello interno ruota con l'anello stesso.
- (2) Per i cuscinetti non scomponibili, come quelli radiali rigidi a sfere, si raccomanda in genere che uno degli anelli, quello interno o quello esterno, sia montato con accoppiamento scorrevole.

7.3.2 Accoppiamenti raccomandati

Le norme ISO 286 e JIS B 0401 (Sistema dei limiti e degli accoppiamenti) definiscono le tolleranze dal diametro esterno dell'albero e quelle del diametro del foro di alloggiamento (l'albero e l'alloggiamento per il montaggio di un cuscinetto con dimensioni metriche). Gli accoppiamenti dei cuscinetti sono regolati dalla scelta delle tolleranze per il diametro esterno dell'albero e quello interno dell'alloggiamento. La fig. 7.1 compendia le interrelazioni tra il diametro esterno dell'albero e quello del foro di cuscinetto e quelle tra il diametro del foro di alloggiamento e quello esterno del cuscinetto.

La **Tabella 7.2** indica gli accoppiamenti raccomandati per i normali cuscinetti massicci a rullini (cuscinetti a rullini con anelli ricavati da lavorazione meccanica, completi di anello interno), in relazione alle dimensioni ed alle condizioni di carico. La **tabella 7.3** rappresenta i valori numerici degli accoppiamenti.

7.3.3 Valori minimi e massimi della interferenza

Quando si rende necessario calcolare l'interferenza per una determinata applicazione, devono essere considerati i seguenti punti:

- Calcolando il minimo valore richiesto della interferenza ricordare che:
 - 1) l'interferenza viene ridotta dal carico radiale
 - 2) l'interferenza viene ridotta dalla differenza di temperatura tra il cuscinetto e quella dell'ambiente
 - 3) l'interferenza viene ridotta dalla modifica delle superfici di accoppiamento
- L'interferenza massima non deve superare 1/1000 del diametro dell'albero o del diametro esterno.

I calcoli necessari per determinare l'interferenza sono riportati di seguito.

(1) Carico radiale ed interferenza richiesta

L'interferenza degli anelli interni montati su di alberi massicci si riduce quando si manifesta l'azione di carichi radiali.

Per il caso sopra citato, il calcolo del valore minimo richiesto della interferenza viene eseguito con le formule (7.1) e (7.2).

$$F_{r} \leq 0.3 \ C_{or}$$

$$\Delta_{dF} = 0.08 \ (d \cdot F_{r}/B)^{1/2} \qquad \qquad N$$

$$= 0.25 \ (d \cdot F_{r}/B)^{1/2} \qquad \qquad \{kgf\} \qquad \} \cdots (7.1)$$

$$F_{r} > 0.3 \ C_{or}$$

$$\Delta_{dF} = 0.02 \ (F_{r}/B) \qquad \qquad N$$

$$= 0.2 \ (F_{r}/B) \qquad \qquad \{kgf\} \qquad \} \cdots (7.2)$$

dove:

 Δ_{dF} : Interferenza effettiva richiesta dal carico μ m

d: Diametro nominale del foro mm B: Larghezza dell'anello interno mm

 F_r : Carico radiale N {kgf}

 C_{or} : Coefficiente di carico statico N $\{\text{kgf}\}$

(2) Differenza di temperatura e interferenza richiesta

La differenza di temperatura tra gli anelli interni e gli alberi in acciaio si riduce coll'aumentare della temperatura (differenza tra la temperatura del cuscinetto e quella ambientale ΔT), a causa della rotazione del cuscinetto.

$$\Delta_{dT} = 0.0015 \ d \ \Delta T \cdots (7.3)$$

 $\Delta_{a au}$: Interferenza effettiva richiesta per la differenza di temperatura $\,\mu$ m

 ΔT : Differenza tra la temperatura del cuscinetto e quella ambientale °C

d: Diametro del foro del cuscinetto mm

(3) Modifica delle superfici accoppiate ed interferenza richiesta

L'interferenza tra le superfici accoppiate viene ridotta dalla rugosità ed altre piccole variazioni delle superfici stesse che vengono spianate durante il procedimento di montaggio. Il grado di riduzione dell'interferenza dipende dal procedimento di finitura delle superfici ma, in generale, si rende necessario tener conto delle seguenti riduzioni dell'interferenza:

Per alberi rettificati: $1.0\sim2.5 \mu$ m Per alberi torniti: $5.0\sim7.0 \mu$ m

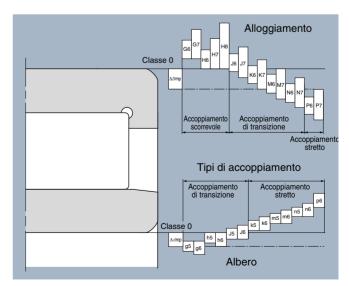


Fig 7.1

(4) Interferenza massima

Quando gli anelli dei cuscinetti vengono montati con un accoppiamento ad interferenza, negli anelli si manifestano delle sollecitazioni di trazione o di compressione. Se l'interferenza è troppo elevata può causare il danneggiamento degli anelli stessi con la conseguenza della riduzione della durata del cuscinetto. Per tali motivi, l'interferenza massima non deve eccedere il rapporto precedentemente citato di 1/1000 del diametro esterno dell'albero.

7.3.4 Ulteriori dettagli

- Gli accoppiamenti con interferenza stretta sono raccomandati per:
 - Condizioni operative con elevate vibrazioni o carichi ad urto.
 - Applicazioni che prevedono un albero cavo od un alloggiamento a pareti sottili
 - Applicazioni con alloggiamenti in lega leggera od in materiale plastico
- (2) Gli accoppiamenti scorrevoli sono preferibili per:
 - Applicazioni richiedenti una elevata precisione di funzionamento.
 - Applicazioni richiedenti cuscinetti di piccole dimensioni od ad anelli sottili.
- (3) Si deve inoltre tener presente il fatto che la scelta dell'accoppiamento inciderà sulla scelta del giuoco del cuscinetto (fare riferimento al paragrafo A- 40)

Tabella 7.2 Norme generali per gli accoppiamenti dei cuscinetti a rullini Tabella 7.2 (1) Accoppiamenti con l'albero

Natura del carico	Accopp- iamento	Condizioni di carico Ampiezza	Diametro dell'albero mm oltre incl.	Classe di tolleranza	Note
Carico di Carico ro	Accop Accop	Carico limitato	$ \sim 50 $ $ 50 \sim 100 $ $ 100 \sim 200 $	js6 k6 m6	Quando è richiesta una precisione più elevata ad m6 si sostituisce m5.
Carico di direzione indeterminata Carico rotante con l'anello interno	Accoppiamento stretto/ Accoppiamento scorrevole	Carico normale	~ 50 50 ~ 100 100 ~ 150 150 ~ 200 200 ~	k5 m5 m6 n6 p6	
erminata o interno	evole	Carico elevato o ad urto	~ 150 150 ~	n6 p6 r6	Usare cuscinetti con giuoco superiore a CN
Carico sull'a inte	Accopp scorr	Spostamento assiale dell'anello interno possibile	Tutti i diametri	g6	Quando è richiesta una precisione più elevata usare g5. Per i cuscinetti di dimensioni maggiori si può usare f6.
Carico statico sull'anello interno	Accoppiamento scorrevole	Spostamento assiale dell'anello non necessario	albero	h6	Quando è richiesta una precisione più elevata usare h5.
Solo carico assiale centrato	Accoppiamento scorrevole	Tutti i carichi	Tutti i diametri albero	js6	In genere; a seconda dello accoppiamento, l'albero e l'anello interno non sono fissati.

Normali per carichi limitati, carichi normali e carichi elevati

Carichi limitati: carico radiale equivalente

Carichi normali: $0.06 C_r <$ carico radiale equivalente $\le 0.06 C_r$ Carichi elevati: $0.12 C_r <$ carico radiale equivalente $\le 0.12 C_r$

Nota: Tutti i valori e gli accoppiamenti elencati nella tabella sopra riportata sono per alberi massicci.

Tabella 7.2 (2) Accoppiamenti con l'alloggiamento (Per gli accoppiamenti con l'alloggiamento degli astucci a rullini le tolleranze sono indicate a pag. B-27)

Natura del carico	Alloggi- amento		Condizini di carico Ampiezza	Classe di tolleranza	Spostamento assiale dello anello esterno €	Note
Anello e static	Alloggiamento massiccio o divis	Accoppiamento stretto	Tutti i carichi	J7	Spostamento possibile	E' anche accettata G7 per i cuscinetti di grandi dimensioni e così pure per anelli esterni ed Alloggiamenti con elevate differenze di temperatura.
sterno ro o sull'ane	amento o diviso		Carichi da leggeri a normali	H7	Spostamento possibile	_
Anello esterno rotante o carico statico sull'anello esterno	Accoppiamento incerto o scorrevole		Elevata precisione di rotazione richiesta con carichi da da leggeri a normali	K6	Spostamento non possibile (in principio)	Si applica principalmente ai cuscinetti a rulli
ij		. G	Carichi da normali a leggeri	J7	Spostamento possibile	
Carico di direzione indeterminata	Alloggiamento	Accoppiament da stretto a scorrevole	Carichi da normali a gravosi	K7	Spostamento non possibile (in principio)	Quando è richiesta una precisione più elevata sostituire J7 con J6 e K7 con K6
ata	nent	nto	Carichi elevati ad urto	M7	Spostamento non possibile	_
Cario		Acc	Carichi leggeri o variabili	M7	Spostamento non possibile	—
statico o o car l'anello	massiccio	oppia a stre	Carichi da normali a gravosi	N7	Spostamento non possibile	
Carico statico sull'anello interno o carico rotante con l'anello estemo	Accoppiamento da stretto a scorrevole massiccio massiccio Carico statico sull'anello intere a corio carico da la corio carico	amento etto a evole	Carichi gravosi (alloggiamento) a pareti sottili) o carichi elevati ad urto	P7	Spostamento non possibile	
Solo carico assiale centrato Accoppiamento scorrevole		Accoppiamento stretto	_	che pre	ere una classe di tolleranza eveda del giuoco tra l'anello o e l'alloggiamento.	

1 Normale per carichi limitati, normali ed elevati

Carichi limitati: carico radiale equivalente \leq 0.06 C_r

Nota 1: Tutti i valori e gli accoppiamenti elencati nella tabella sopra riportata sono per alloggiamenti in ghisa o acciaio.

2: Nel caso in cui sul cuscinetto agisce solo in carico assiale centrato, scegliere una classe di tolleranza che per l'anello esterno prevede del giuoco in direzione assiale.

< Carichi normali: 0.06 C_r < carico radiale equivalente \le 0.12 C_r

Carichi elevati: 0.12 $C_{\rm r}$ < carico radiale equivalente

² Indica se con i cuscinetti non separabili sia possibile o meno lo spostamento dell'anello esterno.

Tabella 7.3 Tabella dei valori numerici degli accoppiamenti per i cuscinetti radiali della classe 0

Tabella 7.3 (1) Accoppiamenti con l'albero

Diam			amento	g5	g6	h5	h6	j5	js5	j6
del f	nominale del diametro del foro del cuscinetto d in un singolo piano Δ_{dmp}		cuscin. albero.							
			inf.			<u> </u>				<u> </u>
oltre	incl.	sup.								
3	6	0	-8	4T∼ 9L	4T∼12L	8T∼ 5L	8T∼ 8L	11T∼ 2L	10.5T∼ 2.5L	14T∼ 2L
6	10	0	-8	3T∼11L	3T∼14L	8T \sim 6L	8T∼ 9L	12T∼ 2L	11T ~ 3L	15T∼ 2L
10	18	0	-8	2T~14L	2T~17L	8T \sim 8L	8T∼11L	13T∼ 3L	12T ∼ 4L	16T∼ 3L
18	30	0	-10	3T∼16L	3T∼20L	10T∼ 9L	10T∼13L	15T∼ 4L	14.5T~ 4.5L	19T∼ 4L
30	50	0	-12	3T∼20L	3T∼25L	12T~11L	12T~16L	18T∼ 5L	17.5T∼ 5.5L	23T∼ 5L
50	80	0	-15	5T∼23L	5T∼29L	15T∼13L	15T~19L	21T~ 7L	21.5T~ 6.5L	27T∼ 7L
80	120	0	-20	8T∼27L	8T∼34L	20T∼15L	20T~22L	26T∼ 9L	27.5T~ 7.5L	33T∼ 9L
120 140 160	140 160 180	0	-25	11T∼32L	11T∼39L	25T∼18L	25T~25L	32T∼11L	34T ∼ 9L	39T∼11L
180 200 225	200 225 250	0	-30	15T∼35L	15T∼44L	30T∼20L	30T∼29L	37T∼13L	40T ∼10L	46T∼13L
250 280	280 315	0	-35	18T∼40L	18T∼49L	35T∼23L	35T∼32L	42T∼16L	46.5T∼11.5L	51T∼16L
315 355	355 400	0	-40	22T~43L	22T~54L	40T∼25L	40T∼36L	47T∼18L	52.5T~12.5L	58T∼18L
400 450	450 500	0	-45	25T∼47L	25T~60L	45T∼27L	45T∼40L	52T~20L	58.5T~13.5L	65T~20L

Tabella 7.3 (2) Accoppiamenti con l'alloggiamento

	netro	Scostamento del diametro		G7	H6	H7	J6	J7	Js7	K6
ester	esterno del es		metro o medio singolo ano	allogg. cuscin.						
oltre	incl.	sup.	inf.							
6	10	0	-8	5L∼ 28L	0∼17L	0∼ 23L	4T∼13L	7T∼16L	7.5T~15.5L	7T~10L
10	18	0	-8	6L∼ 32L	0∼19L	0∼ 26L	5T∼14L	8T∼18L	9T ∼17L	9T~10L
18	30	0	-9	7L∼ 37L	0∼22L	0∼ 30L	5T∼17L	9T∼21L	10.5T~19.5L	11T~11L
30	50	0	-11	9L∼ 45L	0∼27L	0∼ 36L	6T∼21L	11T∼25L	12.5T~23.5L	13T~14L
50	80	0	-13	10L∼ 53L	0∼32L	0∼ 43L	6T∼26L	12T~31L	15T ∼28L	15T~17L
80	120	0	-15	12L∼ 62L	0∼37L	0∼ 50L	6T∼31L	13T∼37L	17.5T~32.5L	18T∼19L
120	150	0	-18	14L∼ 72L	0∼43L	0∼ 58L	7T∼36L	14T~44L	20T ∼38L	21T~22L
150	180	0	-25	14L∼ 79L	0∼50L	0∼ 65L	7T∼43L	14T~51L	20T ∼45L	21T~29L
180	250	0	-30	15L∼ 91L	0∼59L	0∼ 76L	7T∼52L	16T∼60L	23T ~53L	24T~35L
250	315	0	-35	17L~104L	0∼67L	0∼ 87L	7T∼60L	16T∼71L	26T ∼61L	27T~40L
315	400	0	-40	18L~115L	0∼76L	0∼ 97L	7T∼69L	18T∼79L	28.5T~68.5L	29T~47L
400	500	0	-45	20L~128L	0∼85L	0∼108L	7T∼78L	20T∼88L	31.5T~76.5L	32T~53L

Nota: T = stretto, L = scorrevole

51T ∼16L

58T \sim 18L

65T \sim 20L

62T~4T

69T∼4T

77T~5T

Dimensioni in $\mu \mathrm{m}$

250

280

315

355

400

450

500

225

250

280

315

355

400

450

 $143T\sim~84T$

161T∼ 94T

165T∼ 98T

184T~108T

190T~114T

211T~126T

217T~132T

js6	k5	k6	m5	m6	n6	p6	r6	Diam	
cuscin. albero.	nomi del f del cus	foro cinetto							
								mı	
								oltre	incl.
12T \sim 4L	14T~1T	17T∼1T	17T∼ 4T	20T∼ 4T	24T~ 8T	28T~12T		3	6
12.5T∼ 4.5L	15T∼1T	18T∼1T	20T∼ 6T	23T∼ 6T	27T~10T	32T∼15T		6	10
13.5T∼ 5.5L	17T~1T	20T∼1T	23T∼ 7T	26T \sim 7T	31T~12T	37T∼18T		10	18
16.5T∼ 6.5L	21T~2T	25T~2T	27T∼ 8T	31T \sim 8T	38T~15T	45T∼22T		18	30
20T \sim 8L	25T~2T	30T∼2T	32T \sim 9T	$37T\sim~9T$	45T~17T	54T∼26T		30	50
24.5T~ 9.5L	30T∼2T	36T∼2T	39T∼11T	45T∼11T	54T~20T	66T∼32T	-	50	80
31T ∼11L	38T∼3T	45T∼2T	48T∼13T	55T∼13T	65T~23T	79T∼37T		80	120
							113T∼ 63T	120	140
37.5T~12.5L	46T∼3T	53T∼3T	58T∼15T	65T∼15T	77T~27T	93T∼43T	115T∼ 65T	140	160
							118T∼ 68T	160	180
							136T∼ 77T	180	200
44.5T~14.5L	54T~4T	63T∼4T	67T∼17T	76T∼17T	90T~31T	109T∼50T	139T∼ 80T	200	225

87T~20T

97T~21T

108T~23T

101T~34T

113T~37T

125T~40T

123T~56T

138T~62T

153T~68T

				Dimensioni in μm
K7	M7	N7	P7	Diametro
allogg. cuscin.	allogg. cuscin.	allogg. cuscin.	allogg. cuscin.	nominale esterno del cuscinetto d mm
				oltre incl.
10T∼13L	15T∼ 8L	19T∼ 4L	24T∼ 1L	6 10
12T~14L	18T∼ 8L	23T∼ 3L	29T∼ 3L	10 18
15T~15L	21T∼ 9L	28T∼ 2L	35T∼ 5L	18 30
18T∼18L	25T~11L	33T∼ 3L	42T∼ 6L	30 50
21T~22L	30T∼13L	39T∼ 4L	52T∼ 8L	50 80
25T~25L	35T∼15L	45T∼ 5L	59T∼ 9L	80 120
28T~30L	40T∼18L	52T∼ 6L	52T~ 6L 68T~10L	
28T∼37L	40T∼25L	52T~13L	68T∼ 3L	150 180
33T~43L	46T∼30L	60T∼16L	79T∼ 3L	180 250
36T∼51L	52T∼35L	66T∼21L	88T∼ 1L	250 315
40T∼57L	57T~40L	73T∼24L	98T∼ 1L	315 400
45T∼63L	63T∼45L	80T∼28L	108T∼ 0	400 500

71T~4T

 $80T\sim4T$

90T~4T

78T~20T

86T~21T

95T~23T

7.4 Pressione specifica sulle superfici di accoppiamento

La **tabella 7.4** riporta le equazioni per il calcolo della pressione specifica sulle superfici di accoppiamento.

L'interferenza effettiva, ovvero la reale interferenza dopo l'accoppiamento, è inferiore a quella apparente rilevata dai valori misurati del diametro foro del cuscinetto e del diametro dell'albero. La differenza è dovuta alla rugosità o modifica delle superfici finite che devono essere accoppiate e perciò, per valutare l'interferenza efffettiva, è necessario tener conto delle seguenti riduzioni:

Per alberi rettificati: 1.0 \sim 2.5 μ m Per alberi torniti : 5.0 \sim 7.0 μ m

Tabella 7.4 : Pressione specifica tra le superfici accoppiate e massima sollecitazione ammessa

Condizion	i di accoppiamento	Equazioni	Simboli (unità: N, (kgf), mm)	
	Accoppiamento albero massicio in acciaio/ anello interno	$P = \frac{E}{2} \frac{\Delta_{\text{deff}}}{d} \left(1 - \left(\frac{d}{D_{i}}\right)^{2}\right)$	d : Diametro dell'albero, diametro del foro dell'anello interno do : Diametro interno dell'albero cavo	
Pressione tra le superfici	Accoppiamento albero cavo in acciaio/ anello interno	$P = \frac{E}{2} \frac{\Delta_{deff}}{\Delta_d} \frac{\left[1 - \left(d/D\right)^2\right] \left[1 - \left(d_o/d\right)^2\right]}{\left[1 - \left(d_o/D\right)^2\right]}$	Di :/Diametro della pista dell'anello interno \[\lambda_{deff} : Interferenza effettiva \] E :/Modulo di elasticit\(\) = 208,000 MPa \{ 21,200 kgf / mm^2 \}	
MPa {kgf / mm²}	Accoppiamento Alloggiamento in acciaio/ anello esterno	$P = \frac{E}{2} - \frac{\Delta_{Deff}}{D} - \frac{\left[1 - (D_{\circ}/D)^{2}\right] \left[1 - (D/D_{h})^{2}\right]}{\left[1 - (D_{\circ}/D_{h})^{2}\right]}$	D: Diametro interno dell'alloggiamento, diametro esterno del cuscinetto Do: Diametro della pista dell'anello esterno Dh: Diametro esterno dell'alloggiamento ΔDeff: Interferenza effettiva	
Sollecita- zione massima	Albero/ anello interno	$\sigma_{t} \max = P \frac{1 + (d / D_{i})^{2}}{1 - (d / D_{i})^{2}}$	Massima sollecitazione ammessa al diametro del foro dell'anello interno	
ammessa MPa {kgf / mm²}	Accoppiamento alloggiamento/ anello esterno	$\sigma_{+} \max = P \frac{2}{1 - (D_{\circ} / D)^{2}}$	Massima sollecitazione ammessa al diametro interno dell'anello esterno	

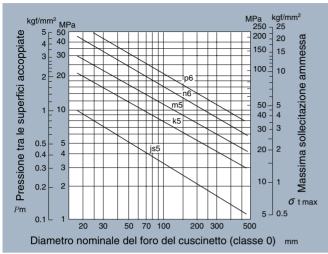


Fig. 7.2 Interferenza di accoppiamento media; in funzione della pressione superficiale e della massima sollecitazione

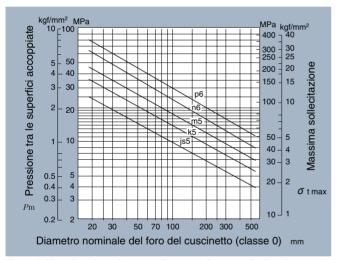


Fig. 7.3 Massima interferenza di accoppiamento in funzione della pressione superficiale e della massima sollecitazione ammessa

7.5 Accoppiamento necessario e forza di smontaggio

Le equazioni (7.1) e (7.2) sotto riportate possono essere usate per calcolare la forza necessaria per lo smontaggio degli accoppiamenti ad interferenza tra l'anello interno e l'albero o l'anello esterno e l'alloggiamento.

Per albero ed anello interno:

$$K_{\rm d} = \mu \cdot P \cdot \pi \cdot d \cdot B \cdots (7.1)$$

 $K_{\rm D} = \mu \cdot P \cdot \pi \cdot D \cdot B \cdots (7.2)$

dove:

 K_d : Accoppiamento forzato dell'anello interno o forza di smontaggio N $\{kgf\}$

 $\it K_D$: Accoppiamento forzato dell'anello esterno o forza di smontaggio $\,N\,$ $\{kgf\}$

P: Pressione specifica tra le superfici accoppiate MPa {kgf/mm²} (Riferimento alla **Tabella 7.4**)

d : Diametro dell'albero, diametro del foro dell'anello interno mm

D : Diametro interno dell'alloggiamento, diametro dell'anello esterno mm

 ${\it B}\;\;$: Larghezza dell'anello interno o di quello esterno

 μ : Coefficiente di attrito (Riferimento alla **Tabella 7.5**)

Tabella 7.5 Accoppiamento forzato e coefficiente d'attrito per lo smontaggio

Tipo	μ
Anello interno (esterno) accoppiamento forzato sull'albero cilindrico (foro)	0.12
Anello interno (esterno) smontaggio da albero cilindrico (foro)	0.18
Accoppiamento dell'anello interno su albero conico o bussola	0.17
Smontaggio dell'anello interno da un albero conico	0.14
Accoppiamento della bussola su albero / cuscinetto	0.30
Smontaggio della bussola da albero/cuscinetto	0.33

8. Giuoco del cuscinetto

8.1 Giuoco del cuscinetto

Il giuoco del cuscinetto (giuoco iniziale) è il valore del giuoco interno che un cuscinetto ha prima di essere installato su di un albero o in un alloggiamento.

Quando viene bloccato uno dei due anelli , quello interno o quello esterno, mentre l'altro anello è libero di muoversi quast'ultimo si può spostare in senso radiale. L'entità di tale spostamento (in senso radiale) prende il nome di giuoco interno e, in conseguenza della direzione è denominato gioco interno radiale.

Quando si misura il giuoco interno di un cuscinetto, viene applicato un leggero carico sulle piste al fine di poter eseguire un rilievo accurato del giuoco stesso. Per i cuscinetti a rulli l'entità della deformazione può essere ignorata.

I valori di ciascun gruppo di gioco dei cuscinetti è indicato nella **tabella 8.1**.

8.2 Scelta del giuoco del cuscinetto

IL giuoco interno di un cuscinetto nelle condizioni di funzionamento (giuoco effettivo) normalmente è inferiore a quello iniziale dello stesso cuscinetto prima che venga installato e sia funzionante. Ciò è dovuto a diversi

fattori come l'accoppiamento del cuscinetto, la differenza di temperatura tra l'anello interno e quello esterno, ecc. Poichè il giuoco di funzionamento di un cuscinetto influisce sulla sua durata, la produzione di calore, le vibrazioni, la rumorosità, ecc., nella scelta del giuoco di funzionamento si deve usare la massima cura.

Giuoco interno effettivo:

La differenza del giuoco interno del cuscinetto ovvero la differenza tra il giuoco iniziale e quello di funzionamento (effettivo) (il valore della riduzione del giuoco causato dall'accoppiamento con interferenza, o della variazione del giuoco dovuta alla differenza di temperatura tra l'anello interno e quello esterno) può essere calcolata con la formula seguente:

$$\delta_{\text{eff}} = \delta_{\text{o}} - (\delta_{\text{f}} + \delta_{\text{t}}) \cdots (8.1)$$

dove:

 δ eff : Giuoco interno effettivo, mm

 δ $_{\circ}$: Giuoco interno del cuscinetto, mm

 $\delta_{\,\rm f}\,$: Aliquota di riduzione del giuoco dovuta all'interferenza, mm

 δ : Aliquota di riduzione del giuoco dovuta alla differenza di temperatura tra l'anello interno e quello esterno, mm

Tabella 8.1 Giuoco radiale interno dei cuscinetti a rullini

Dimensioni in μ m

								L	imensioni in μ m			
Diametro nor	Diametro nominale del foro		Giuoco radiale interno									
	mm	C	2	С	:N	C3		C4				
oltre	incl.	min	max	min	max	min	max	min	max			
_	10	0	30	10	40	25	55	35	65			
10	18	ő	30	10	40	25	55	35	65			
18	24	Ö	30	10	40	25	55	35	65			
24	30	0	30	10	45	30	65	40	70			
30	40	Ö	35	15	50	35	70	45	80			
40	50	5	40	20	55	40	75	55	90			
50	65	5	45	20	65	45	90	65	105			
65	80	5	55	25	75	55	105	75	125			
80	100	10	60	30	80	65	115	90	140			
100	120	10	65	35	90	80	135	105	160			
120	140	10	75	40	105	90	155	115	180			
140	160	15	80	50	115	100	165	130	195			
160	180	20	85	60	125	110	175	150	215			
180	200	25	95	65	135	125	195	165	235			
200	225	30	105	75	150	140	215	180	255			
225	250	40	115	90	165	155	230	205	280			
250	280	45	125	100	180	175	255	230	310			
280	315	50	135	110	195	195	280	255	340			
315	355	55	145	125	215	215	305	280	370			
355	400	65	160	140	235	245	340	320	415			
400	450	70	190	155	275	270	390	355	465			

(1) Riduzione del giuoco dovuta all'interferenza

Quando i cuscinetti vengono montati con accoppiamento ad interferenza sia sull'albero che nell'alloggiamento, l'anello interno si espande mentre l'anello esterno si contrae e quindi si manifesta una riduzione del giuoco. L'ammontare dell'espensione e quello della contrazione varia a seconda della forma del cuscinetto, la forma dell'albero o quella dell'alloggiamento, la dimensione delle rispettive parti, ed il tipo di materiale usato. La la riduzione del giuoco può aggirasi approssimativamente all' 85% della interferenza effettiva.

$$\delta_f = (0.85) \Delta_{deff} \cdots (8.2)$$

dove:

 δ f : Aliquota di riduzione del giuoco dovuta alla interferenza, mm

 Δ_{deff} : Interferenza effettiva, mm

(2) Riduzione del giuoco dovuta alla differenza di temperatura dell'anello interno / esterno

Durante il funzionamento, normalmente l'anello esterno assume una temperatura che, rispetto a quella dell'anello interno o quella delle parti rotanti è inferiore di 5 - 10°C. Comunque, se l'effetto di raffreddamento dello alloggiamento è elevato e l'albero è collegato ad una

sorgente di calore o una sostanza riscaldata viene condotta attraverso l'albero cavo, la differenza di temperatura tra i due anelli può essere ancora superiore. Il valore del giuoco interno viene quindi ulteriormente ridotto dalla differenza di dilatazione dei due anelli.

$$\delta_t = \alpha \cdot \Delta T \cdot D_0 \cdot \dots (8.3)$$

dove:

δ t : Aliquota della riduzione del giuoco dovuta al diverso riscaldamento degli anelli, mm

lpha : Coefficiente di espansione lineare dell'acciaio per cuscinetti volventi 12.5 imes 10⁻⁶/ $^{\circ}$ C

 ΔT : Differenza di temperatura tra l'anello interno e quello esterno, ${\rm ^{\circ}C}$

 D_{o} : Diametro della pista dell'anello esterno, mm

Il diametro della pista dell'anello esterno, D_0 , può essere approssimato usando la formula (8.4).

Per i cuscinetti a sfere e quelli orientabili a rulli
$$D_0 = 0.25 (d + 3.0D) \cdots (8.4)$$
 dove:

 $d: \ensuremath{\mathsf{Diametro}}$ del foro del cuscinetto, mm

 ${\it D}$: Diametro esterno del cuscinetto, mm

9. Numero di giri ammesso

All'aumentare del regime di rotazione di un cuscinetto fa riscontro un incremento della temperatura di quest'ultimo. Tale effetto è causato dal calore di attrito che si sviluppa all'interno del cuscinetto. Se la temperatura continua ad aumentre ed eccede certi limiti, l'efficienza del lubrificante inizia a ridursi drasticamente e quindi il cuscinetto non può continuare a lungo a funzionare in modo stabile. Perciò, il regime massimo al quale per il cuscinetto è ancora possibile funzionare continuamente senza che si generi un calore eccessivo oltre dei limiti specifici, è denominato regime ammesso (giri/min).

Il numero di giri ammesso di un cuscinetto dipende dal tipo di cuscinetto stesso, dalle dimensioni relative, dal tipo di gabbia, dal carico, dalle condizioni di lubrificazione e da quelle di raffreddamento.

E' possibile far funzionare cuscinetti di precisione muniti di gabbie con specifiche di alta velocità a dei numeri di giri superiori a quelli indicati nelle tabelle dei cuscinetti, purchè vengano prese delle precauzioni particolari. Tali precauzioni devono includere l'impiego della lubrificazione con circolazione forzata dell'olio come la lubrificazione a getto d'olio o quella a nebbia d'olio.

10. Attrito ed aumento della temperatura

10.1 Attrito

Una delle principali funzioni richieste ad un cuscinetto è quella di poter garantire un basso attrito od una bassa resistenza al rotolamento. In condizioni operative normali i cuscinetti volventi hanno un coefficiente di attrito di gran lunga inferiore a quello dei cuscinetti a strisciamento, specialmente per quanto concerne l'attrito al primo distacco.

Il coefficiente di attrito dei cuscinetti volventi viene calcolato in base al diametro del foro ed è espresso dalla formula (10.1).

$$\mu = \frac{2M}{Pd} \qquad (10.1)$$

dove:

 μ : Coefficiente di attrito

M: Momento di attrito o coppia resistente, Nmm

P: Carico, N

d: Diametro del foro del cuscinetto, mm

Sebbene il coefficiente d'attrito dinamico dei cuscinetti volventi vari col tipo dei cuscinetti stessi, il carico, la lubrificazione, il numero di giri ed altri fattori, in condizioni operative normali i valori approssimati dei coefficiente di attrito per i vari tipi di cuscinetti sono indicati nella **tabella 10.1**.

Tabella 10.1 Coefficienti di attrito dei cuscinetti

Tipo di cuscinetto	Coefficiente $\mu \times 10^{-3}$
Cuscinetti a rullini	2.0~3.0
Cuscinetti assiali a rulli	2.0~3.0
Cuscinetti radiali rigidi a sfere	1.0~1.5
Cuscinetti a sfere a contatto obliquo	1.2~1.8
Cuscinetti a rulli cilindrici	1.0~1.5
Cuscinetti assiali a sfere	1.0~1.5

10.2 Aumento della temperatura

Quasi tutte le perdite per attrito in un cuscinetto vengono trasformate in calore all'interno del cuscinetto stesso e causano un aumento di temperatura di ques'ultimo. L'entità della generazione termica causata dalla coppia di attrito può essere calcolata usando la formula (10.2).

Q=0.105
$$\times$$
10⁻⁶Mn N
=1.03 \times 10⁻⁶Mn {kgf}

Q: Quantità di calore, kW M: Coppia di attrito, N·mm n: Regime di rotazione, r/min

La temperatura di funzionamento del cuscinetto è determinata mediante l'equilibrio od il bilancio tra la quantità di calore generato dal cuscinetto e la quantità di calore asportato dal cuscinetto. Nella maggior parte dei casi, la temperatura aumenta rapidamente durante l'inizio del funzionamento, aumenta lentamente sino al raggiungimento di una condizione stabile e quindi rimane costante. Il tempo necessario per il raggiungimento dello stato di stabilità varia a seconda della quantità di calore generato, la capacità di assorbimento di calore dell'alloggiamento e delle parti circostanti, l'ampiezza della superficie di raffreddamento, la quantità di olio lubrificante e la temperatura dell'ambiente in cui si trova la macchina. Se la temperatura continua a salire e non raggiunge una condizione stabile, si deve pensare che vi è un funzionamento anomalo.

Un eccessivo calore generato dal cuscinetto può essere causato da: un carico causato da un momento, giuoco interno insufficiente, precarico eccessivo, troppo poco o troppo lubrificante, corpi estranei presenti nel cuscinetto, od a calore generato dal dipositivo di tenuta.

Lubrificazione

11. Lubrificazione

11.1 Lubrificazione dei cuscinetti volventi

Lo scopo della lubrificazione dei cuscinetti è quello di prevenire il contatto metallico diretto tra le varie parti che rotolano e strisciano. Ciò viene ottenuto tramite la formazione di un film sottile di olio (o di grasso) sulle superfici di contatto. Comunque, per i cuscinetti volventi, la lubrificazione presenta i seguenti vantaggi:

- (1) Riduzione dell'attrito e dell'usura
- (2) Dissipazione del calore di attrito
- (3) Incremento della durata del cuscinetto
- (4) Prevenzione dalla ruggine
- (5) Protezione contro gli elementi dannosi

Al fine di poter ottenere gli effetti sopra citati, deve essere scelto il sistema di lubrificazione più efficace per le condizioni operative previste.. Inoltre deve essere scelto un lubrificante affidabile e di buona qualità. In aggiunta, è anche indispensabile un sistema di tenuta progettato adegautamente che prevenga l'inclusione all'interno del cuscinetto di elementi dannosi (polvere, acqua, ecc), che

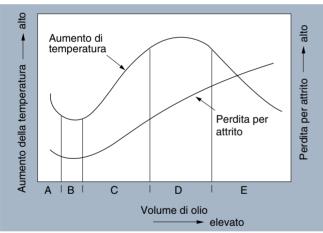


Fig. 11.1

Tabella 11.1 Volume di olio, perdita per attrito, temperatura del cuscinetto (Ved. Fig. 11.1)

Campo	Caratteristiche	Metodo di lubrificazione
Α	Quando il volume di olio sia estremamente basso., avviene il contatto metallico diretto tra i corpi volventi e la piste. Si manifesta l'abrasione ed il grippaggio del cuscinetto.	
В	Un sottile velo d' olio si sviluppa su tutte le superfici, l'attrito è minimo e la temperatura del cuscinetto è bassa.	Lubrificazione a grasso, a nebbia d'olio, lubrificaz. ad aria-olio
С	Come si aumenta il volume d'olio, lo sviluppo di calore è bilanciato dal raffreddamento.	Lubrificazione a circolazione d'olio
D	Indipendentemente dal volume di olio la temperatura aumenta di un tasso fisso	Lubrificazione a circolazione d'olio
E	Come si aumenta il volume di olio, predomina il raffreddamento e la temperatura del cuscinetto diminuisce.	Lubrificazione a circolazione forzata, lubrificazione a getto d'olio

rimuova la polvere ed altre impurità dal lubrificante e prevenga la fuoriuscita del lubrificante stesso.

Quasi tutti i cuscinetti volventi usano i metodi di lubrificazione a grasso o quella ad olio ma, in alcune applicazioni speciali, può essere usato un lubrificante solido come il bisolfuro di molibdeno o la grafite.

La **fig. 11.1** illustra la relazione tra il volume di olio, la perdita per attrito, e la temperatura del cuscinetto La **Tabella 11.1** pone in dettaglio le caratteristiche di tale relazione.

11.2 Metodi di lubrificazione e caratteristiche

I metodi di lubrificazione si suddividono in due tipologie generali: a grasso o ad olio, ognuna con le proprie caratteristiche. Tali caratteristiche sono illustrate dalla **tabella 11.2**.

Tabella 11.2 Comparazione tra le caratteristiche della lubrificazione a grasso e di quella ad olio

Metodo Caratteristiche	Lubrificazione a grasso	Lubrificazione ad olio
Manutenzione	0	Δ
Affidabilità	0	0
Effetto di raffreddamento	×	(E' necessaria la circolazione)
Struttura della tenuta	0	Δ
Perdita di potenza	0	0
Contaminazione dell'ambiente	0	Δ
Elevato regime di rotazione	×	0

11.3 Lubrificazione a grasso

I tipi di grasso lubrificante sono relativamente facili da maneggiare e richiedono un sistema di tenuta più semplice; per tali motivi la lubrificazione a grasso è la più ampiamente usata per i cuscinetti volventi.

11.3.1 Tipi e caratteristiche dei grassi

I grassi lubrificanti sono composti sia da un olio a base minerale che da un olio a base sintetica. Alla base citata viene aggiunto un mezzo di addensamento ed altri additivi. Le proprietà di tutti i grassi sono determinate principalmente dal tipo di olio base usato e dalla combinazione del mezzo addensante e dei vari additivi.

I grassi normali e le loro caratteristiche sono riportate nella **tabella 11.3**. Poichè le caratteristiche prestazionali anche degli stessi tipi di grasso variano ampiamente tra produttore e produttore, la miglior cosa da fare quando si sceglie un grasso è quella di controllare i dati forniti dal produttore.

Tabella 11.3 Varietà di grasso e relative caratteristiche

Nome del grasso		Grasso al litio		Grasso al sodio (grasso fibroso)	Mescola di calcio grasso base
Mezzo addensante		Sapone di litio			Ca+Na Sapone Ca+Li Sapone
Olio base	Olio minerale	Olio diestere	Olio silicone	Olio minerale	Olio minerale
Punto di goccia °C	170 ~ 190	170 ~ 190	200 ~ 250	150 ~ 180	150 ~ 180
Campo di temperatura operativa °C	-30 ∼ +130	-50 ∼ +130	-50 ∼ +160	-20 ∼ +130	-20 ∼ +120
Stabilità meccanica	Eccellente	Buona	Buona	Eccellente ~ Buona	Eccellente ~ Buona
Resistenza alla pressione	Buona	Buona	Scarsa	Buona	Eccellente~ Buona
Resistenza all'acqua	Buona	Buona	Buona	Buona ∼ Scarsa	Buona ∼ Scarsa
Applicazioni	Il più ampio campo di applicazioni Grasso usato in tutti i tipi di cuscinetti volventi	Eccellenti caratteristiche alle basse temperature e antiusura Adatto ai cuscinetti di piccole dimensioni e miniatura	Adatto per alte e basse temperature Non adatto per le applicazioni con carichi elevarti a causa della bassa resistenza del film	Alcune produzioni di emulsioni in caso di inclusione di acqua Eccellenti caratteristiche alle relativamente alte temperature	Eccellente resistenza alla pressione e stabilità meccanica Adatto per cuscinetti soggetti a carichi ad urto

Nome del grasso	Grasso al litio	Grassi con addensanti n	
Mezzo addensante	Sapone di alluminio	Bentonite, silica gel, urea mescole al, carbonio nero fluoro	
Olio base	Olio minerale	Olio minerale	Olio sintetico
Punto di goccia °C	70 ~ 90	250 o superiore	250 o superiore
Campo di temperatura operativa °C	-10 ∼ +80	-10 ∼ +130	-50 ∼ +200
Stabilità meccanica	Buona ∼ scarsa	Buona	Buona
Resistenza alla pressione	Buona	Buona	Buona
Resistenza all'acqua	Buona	Buona	Buona
Applicazioni	Eccellenti caratteristiche di viscosità Adatto per cuscinetti soggetti a vibrazioni	Può essere utilizzato in condizioni di a bassa temperatura. Presenta una eccellente resistenza al freddo ed al ca agli agenti chimici, etc. quando è accoppiato con un dio adeguato. Grasso usato in tutti i tipi di cuscinetti volventi.	

Nota: I valori espressi in relazione ai range di temperatura sono relativi a caratteristiche standard e non sono garantiti.

Lubrificazione NTN

(1) Olio base

Come oli di base per i grassi vengono usati oli naturali minerali o sintetici come l'olio diestere, al silicone e l'olio al fluoro-carbonio.

Generalmente, le proprietà di qualsiasi grasso sono determinate da quelle dell'olio base. In generale i grassi aventi olio base con bassa viscosità sono i più adatti per le basse temperature e le elevate velocità, mentre i grassi ottenuti con olio base ad alta viscosità sono i più adatti ai carichi elevati.

(2) Agenti addensanti

Gli agenti addensanti sono mescolati con gli oli base al fine di mantenere lo stato semisolido del grasso. Gli agenti addensanti si suddividono in due tipi base, i saponi metallici e quelli non a base di sapone. I saponi metallici addensanti includono: il litio, il sodio, il calcio, ecc.

Le varie caratteristiche speciali di un grasso, come il limite di temperatura di impiego, la stabilità meccanica, la resistenza all'acqua, ecc. dipendono largamente dal tipo di agente addensante impiegato. Per esempio, un grasso a base di sodio ha generalmente scarse proprietà di resistenza all'acqua, mentre i grassi con bentonite, poliurea ed altri saponi non metallici come agenti addensanti hanno di norma proprietà superiori e caratteristiche di resistenza alle alte temperature.

(3) Additivi

Ai grassi vengono aggiunti vari additivi al fine di migliorarne l'efficienza e varie altre proprietà. Per esempio, vi sono degli anti-ossidanti, additivi per elevate pressioni (additivi EP), additivi che prevengono la ruggine ed anticorrosivi.

Per i cuscinetti soggetti a carichi elevati e/o carichi ad urto, deve essere usato un grasso contenente additivi per elevate pressioni. Per temperature di funzionamento comparativamente elevate o per le applicazioni dove il grasso non può essere ripristinato per lunghi periodi, il grasso migliore da usare è quello contenente uno stabilizzatore di ossidazione.

(4) Consistenza

La consistenza di un grasso, ovvero la compattezza e la liquidità, è espressa da un indice numerico.

I valori NLGI di tale indice indicano la morbidezza relativa del grasso, più grande è il numero e più compatto è il grasso. La consistenza di un grasso è determinata dalla quantità di agente addensante usato e dalla viscosità dell'olio base. Per la lubrificazione dei cuscinetti volventi vengono usati i grassi con i gradi di consistenza NLGI 1,2 e 3.

Le relazioni generali tra la consistenza ed il tipo di applicazione del grasso sono indicate nella **tabella 11.4**

(5) Miscelazione dei grassi

Quando vengono mischiati dei grassi di tipo diverso, la consistenza ne viene modificata (usualmente più morbida), il campo di temperatura di funzionamento viene

Tabella 11.4 Consistenza del grasso

No . di consistenza NLGI	Penetrazione JIS (ASTM)	Applicazioni
0	355~385	Per uso con impianto centralizzato di ingrassaggio
1	310~340	Per uso con impianto centralizzato di ingrassaggio
2	265~295	Per uso in generale e nei cuscinetti con anelli di tenuta
3	220~250	Per uso in generale e per alta temperatura
4	175~205	Per impieghi speciali

abbassato e si manifestano altre modifiche delle caratteristiche. Come regola generale, i grassi con oli base dversi ed i grassi con agenti addensanti diversi non devono mai essere mescolati.

Ancora, i grassi di produttori diversi non devo essere miscelati a causa della disparità di additivi che contengono.

Comunque, se devono essere mischiati grassi diversi, al limite devono essere scelti dei grassi aventi gli stessi oli base ed agenti addensanti. Ma anche quando dei grassi aventi gli stessi oli base ed agenti addensanti vengono mischiati, la qualità del grasso risultante può ancora cambiare a causa della differente additivazione.

Per tale motivo, prima dell'impiego, si devono controllare le variazioni di consistenza e le altre qualità.

11.3.2 Quantità di grasso

La quantità di grasso usata in ogni situazione data dipenderà da molti fattori concernenti alla dimensione ed alla forma dell'alloggiamento, alle limitazioni di spazio, al regime di rotazione del cuscinetto ed al tipo di grasso usato.

Come regola generale, gli alloggiamenti ed i cuscinetti devono essere riempiti dal 50% all' 80% della loro capacità.

Quando i regimi di rotazione sono elevati e l'aumento della temperatura deve essere mantenuto al minimo, deve essere usato un quantitativo ridotto di grasso. Quantitativi eccessivi di grasso causano un aumento della temperatura che a sua volta provoca la riduzione della consistenza con coseguente possibilità di fuoriscita del grasso dal cuscinetto. Con riempimenti eccessivi di grasso l'ossidezione ed il deterioramento dello stesso possono causare la riduzione dell'efficienza lubrificante.

Ulteriormente, lo spazio disponibile normalmente all'interno di un cuscinetto può essere trovato impiegando la formula (11.1)

$$V=K\cdot W\cdot \cdots \cdot (11.1)$$
 dove:

 V: Entità dello spazio nel cuscinetto di tipo aperto (valore approssimato) cm³

K: Fattore dello spazio del cuscinetto (**Tabella 11.5**)

W: Massa del cuscinetto, kg, (vedere le tabelle dimensionali)

Lubrificazione NTN

Tabella 11.5 Rapporto dello spazio nei cuscinetti K

Tipo di cuscinetto	Tipo di gabbia	K
Cuscinetti a rullini	Gabbia stampata o massiccia	35
Cuscinetti a sfere ●	Gabbia stampata	61
Cuscinetti a rulli Cilindrici tipo NU 2	Gabbia stampata Gabbia massiccia	50 36
Cuscinetti a rulli Cilindrici tipo N ³	Gabbia stampata Gabbia massiccia	55 37

Escludere la serie 160

2 Escludere la serie NU4

Escludere la serie N4

11.3.3 Riempimento

Acquisito che l'efficienza del grasso diminuisce col passare del tempo, si rende necessario rifornire del grasso fresco ad intervalli determinati. La frequenza di rinnovo del grasso dipende dal tipo di cuscinetto, dalle sue dimensioni, dal regime di rotazione, dalla temperatura del cuscinetto stesso e dal tipo di grasso.

Come facile punto di riferimento la **fig. 11.2** indica il metodo per determinare gli intervalli di rilubrificazione.

Il grafico indica gli intervalli di rinnovo del grasso per i cuscinetti volventi normali impiegati in condizioni di funzionamento egualmente normali. Con l'aumentare della temperatura di funzionamento gli intervalli di rinnovo del grasso devono essere ridotti di conseguenza.

In linea di massima, per ogni 10°C di incremento della temperatura del cuscinetto oltre gli 80°C, i periodi di rilubrificazione devono essere ridotti con l'esponente "1/1,5".

(Esempio)

Trovare l'intervallo di reingrassaggio per il cuscinetto NA4910R che opera a 1600 giri /min e sottoposto ad un carico radiale Pr di 5 kN (510kg).

d = 50 mm.

Dalla tabella die cuscinetti per il tipo NA4910R, C_r =48kN (510kgf) ed il regime ammesso è n_0 = 4,700 giri/min

 $n_0 = 4,700$

Perciò,

$$\frac{n_0}{n} = \frac{4700}{1600} = 2.9$$

Usando il grafico della **fig. 11.2** trovare il punto corrispondente al diametro foro d=50mm,. Tracciare quindi una linea orizzontale sino ad incontrare la linea verticale I . Continuare quindi tracciando una linea retta dal punto A al punto B sulla verticale II in corrispondenza di $n_{\rm o}/n=3$. Il punto C sulla verticale II indica un intervallo di rilubrificazione approssimativo di 4,600 ore.

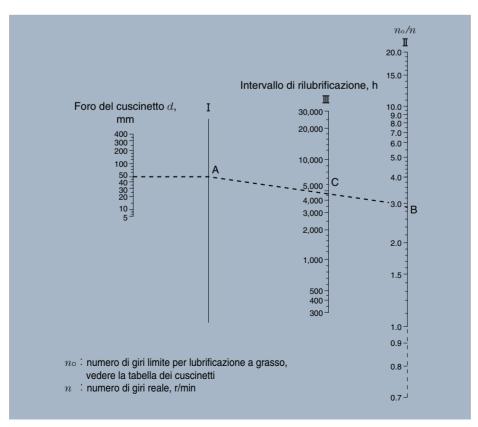


Fig. 11.2 Diagramma degli intervalli di reingrassaggio

11.4 Grasso solido (Per cuscinetti con grasso solido)

Il "grasso solido" è un lubrificante composto essenzialmente di grasso lubrificante e di polietilene ad alta polimerizzazione. Il grasso solido ha la stessa viscosità del grasso alla normale temperatura ma, tramite un processo speciale di trattamento termico, questo grasso speciale solidifica trattenendo una elevata proporzione di lubrificante all'interno del cuscinetto. Il risultato di tale solidificazione è che il grasso non fuoriesce facilmente dal cuscinetto, anche quando quest'ultimo è soggetto ad elevate vibrazioni od a forza centrifuga.

I cuscinetti con lubrificazione solida sono disponibili in due tipi: il tipo "spot pack" nel quale il grasso solido viene iniettato nella gabbia, ed il tipo "full pack" nel quale tutto lo spazio libero che circonda i corpi volventi viene riempito di grasso.

La lubrificazione "full pack" è normale per i cuscinetti a rullini.

Vantaggi principali:

- (1) Ambiente di lavoro pulito con la minima fuoriuscita di grasso
- (2) Limitata coppia di rotolamento del cuscinetto con la lubrificazione solida "spot pack".

Per ulteriori dettagli, si prega di richiedere il catalogo speciale NTN dei cuscinetti con lubrificazione solida.

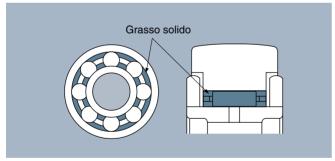


Fig. 11.3 Cuscinetto a rullini con lubrificazione solida full-pack (normale per i cuscinetti a rullini)

Fotografia 11.1 Cuscinetto a rullini con lubrificazione full-pack (perno folle ed astuccio a rullini)

11.5 Lubrificazione ad olio

La lubrificazione ad olio è adatta per quelle applicazioni nelle quali il calore generato dal cuscinetto od il calore trasmesso allo stesso, da altre sorgenti venga asportato dal cuscinetto e dissipato all'esterno. La **tabella 11.6** riporta i sistemi principali di lubrificazione ad olio.

11.5.1 Scelta del tipo di lubrificazione ad olio

In condizioni operative normali, l'olio per mandrini, l'olio per macchine in genere, l'olio per turbine ed altri oli minerali sono usati ampiamente per la lubrificazione dei cuscinetti volventi. Comunque, per temperature superiori ai 150°C od inferiori a -30°C, sono usati degli oli sintetici come l'olio diestere, l'olio di silicone e l'olio al fluorocarbonio.

Per gli oli lubrificanti, la viscosità rappresenta una delle maggiori proprietà che ne determina l'efficienza di lubrificazione. Se la viscosità dell'olio è troppo bassa, si avrà una insufficiente formazione di film d'olio con conseguente deterioramento della capacità di carico delle superfici del cuscinetto. Se la viscosità è troppo elevata, risulterà anche elevata la resistenza viscosa con il conseguente aumento della temperatura e perdita per attrito. In generale per le applicazioni con numeri di giri più elevati deve essere usato un olio con viscosità inferiore, per le applicazioni con i carichi più elevati, si deve usare un olio con viscosità più elevata.

Per quanto concerne la temperatura di funzionamento e la lubrificazione, la **tabella 11.7** riporta la viscosità richiesta dell'olio per i diversi tipi di cuscinetti. La **fig. 11.4.** rappresenta un grafico di comparazione viscosità dell'olio / temperatura di funzionamento avente lo scopo della scelta dell'olio lubrificante con le caratteristiche di viscosità appropriate ad una determinata applicazione.

La **Tabella 11.8** ripota le norme per la scelta della viscosità dell'olio lubrificante in relazione alle condizioni di funzionamento del cuscinetto.

Tabella 11.7 Viscosità richiesta dell'olio lubrificante per i cuscinetti

Tipo di cuscinetto	Viscosità dinamica mm²/s
Cuscinetti a sfere, cuscinetti a rulli cilindrici, cuscinetti a rullini	13
Cuscinetti assiali a rullini	20

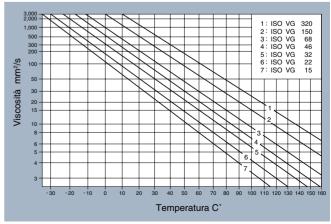


Fig. 11.4 Relazione tra la viscosità dell'olio lubrificante e la temperatura

Tabella 11.6 Metodi di lubrificazione ad olio

Metodo di lubrificazione	Esempio	Metodo di lubrificazione	Esempio
(Lubrificazione a bagno d'olio) La lubrificazione a bagno d'olio rappresenta il sistema più usato ed è impiegato ampiamente per le applicazioni con regimi di rotazione da lenti a moderati. Per le applicazioni con albero orizzontale, il livello dell'olio deve poter essere controllato e deve essere approssimativamente mantenuto al centro del corpo vovente più in basso, quando il cuscinetto è fermo. Per gli alberi ad asse verticale e rotanti a basso regime, il livello dell'olio deve essetre mantenuto in modo tale da poter sommergere dal 50 all'80% dei corpi volventi.		(Lubrificazione a disco) IL metodo di lubrificazione a disco, consiste in un disco parzialmente immerso che ruotando centrifuga l'olio in un vano dal quale scende nel cuscinetto, lubrificandolo.	
(Lubrificazione a spruzzo di olio) ● Con al lubrificazione a spruzzo d'olio una girante od un dispositivo similare, montato sull'albero, pesca l'olio e lo spruzza nel cuscinetto. Tale metodo può essere usato anche a regimi di rotazione molto elevati.		(Lubrificazione a nebbia d'olio) Usando dell'aria sotto pressione, l'olio lubrificante viene atomizzato prima di passare attraverso il cuscinetto. Grazie alla minima resistenza del lubrificante, la lubrificazione a nebbia d'olio è molto adatta alle applicazioni con elevato numero di giri.	
(Lubrificazione a goccia, l'olio si trova in un serbatoio al di sopra del cuscinetto e viene fatto colare nell'alloggiamento dove viene vaporizzato come entra in contatto con i corpi volventi. Un'altra versione della lubrificazione a goccia permette di passare attraverso il cuscinetto solo una piccola parte di olio. Tale metodo viene usato per i regimi di rotazione relativamente elevati in applicazion i con carichi da moderati a leggeri. Nella maggior parte dei casi la quantità di olio è rappresentata da poche goccvie al minuto.		(Lubrificazione aria-olio) Con il metodo di lubrificazione aria-olio, viene stabilito il quantitativo minimo di lubrificante necessario che viene poi inviato a ciascun cuscinetto mediante aria compressa. Essendo fornito costantemente dell'olio fresco al cuscinetto e, grazie all'effetto refrigerante dell'aria compressa, l'aumento di temperatura del cuscinetto può essere minimizzato. Poichè la quantità richiesta di olio è infinitesima, l'ambiente di lavoro può essere tenuto pulito. I gruppi per la lubrificazione aria-olio sono disponibili presso la NTN.	Separatore Serbaroio (interruttore livello) Aria - Olio Valvola solenoide Filtro aria Interruttore di pressione
(Lubrificazione a circolazione) La lubrificazione a circolazione d'olio viene impiegata nelle applicazioni dove sia necessario il raffreddamento del cuscinetto o quando sia richiesto un sistema di alimentazione automatica e centralizzata dell'olio. Uno dei vantaggi della circolazione è rappresentato dal fatto che il gruppo di raffreddamento ed il fitro per il mantenimento della pulizia dell'olio sono integrati nel sistema. Al fine di poter garantire una efficace lubrificazione del cuscinetto, si deve curare che i fori di ingresso dell'olio siano situati dal lato opposto di quelli di uscita.		(Lubrificazione a getto d'olio) Il metodo n oggetto è basato sulla iniezione di olio ad elevata pressione direttamente dal lato del cuscinetto. Tale sistema è affidabile per gli elevati regimi di rotazione, le elevate temperature o altre simili condizioni gravose. Usato per la lubrificazione dei cuscinetti dei motori a reazione, turbine a gas ed altri gruppi ad elevato numero di giri. Le guide delle macchine utensili costituiscono un esempio per il metodo di lubrificazione in oggetto.	

Tabella 11.8 Norme per la scelta degli oli lubrificanti (Riferimento)

Temperatura di	dn-Valore	Oli lubrificanti ISO grado di viscosità (VG)		
fonzionamento del cuscinetto °C	an-valore	Carichi normali	Carichi elevati o ad urto	
−30~ 0	Sino al numero di giri ammesso	22, 32	46	
	Fino a 15,000		100	
0~ 60	15,000 ~80,000	32, 46	68	
0~ 60	80,000 ~150,000	22, 32	32	
	150,000~500,000	10	22, 32	
	Fino a 15,000	150	220	
60 100	15,000 ~80,000	100	150	
60~100	80,000 ~150,000	68	100, 150	
	150,000~500,000	32	68	
100 ~150	Sino al numero di giri ammesso		320	

Note: 1: Applicabile quando il metodo di lubrificazione è a bagno d'olio od a circolazione d'olio.

2: Si prega di consultare l'assistenza tecnica NTN nei casi in cui le condizioni operative sono al di fuori del campo coperto dalla tabella sopra riportata.

11.5.2 Quantità d'olio

Nei sistemi di lubrificazione forzata, il calore asportato per radiazione dall'alloggiamento e dalle parti circostanti più il calore asportato dall'olio lubrificante è approssimativamente uguale all'entità del calore generato dal cuscinetto e dalle altre sorgenti.

Per applicazioni in alloggiamenti normali, la quantità di olio richiesta può essere trovata con la formula (11.2)

dove:

Q: Quantità di olio per ciascun cuscinetto, cm³/min.

K: Fattore dell'aumento ammesso della temperatura (Tabella 11.9)

q: Minima quantità di olio, cm³/min. (Fig. 11.6)

Poichè l'aliquota di calore irradiato varia a seconda del tipo di alloggiamento, per la condizine reale di funzionamento è consigliabile che la quantità di olio calcolata con la formula (11.2) venga moltiplicata per un fattore di 1,5 o 2,0. In tal modo, la quantità di olio può essere adeguata alla reale condizione operativa.

Ulteriormente, per motivi di calcolo si assume che l'alloggiamento non irradi calore e che tutto quello del cuscinetto venga asportato dall'olio, quindi, senza tener conto del diametro reale dell'albero, nella **fig. 11.5** si assume d=0.

(Esempio) Si deve calcolare la quantità di olio da fornire al cuscinetto a rullini NA4916R soggetto ad un carico F_T = 9,4 kN (959 kgf) e ad un regime di rotazione di 1500 giri/min. E' inoltre richiesto che l'olio fornito permetta di controllare un aumento della temperatura del cuscinetto inferiore a 10°C.

Tabella 11.9 Fattore K

Temperatura dell'olio in uscita - temperatura olio alimentato °C	K
10	1.5
15	1
20	0.75
25	0.6

$$d = 80 \text{ mm},$$

 $dn = 80 \times 1,500 = 12 \times 10^4$

Dalla **fig. 11.5** $q = 170 \text{cm}^3 / \text{min}$

Si assume che la temperatura sia approssimativamente uguale a quella dell'olio in uscita, dalla **tabella 11.9**, poichè K=1.5

$$Q=1\times170=255$$
cm³/ min

11.5.3 Intervalli di rilubrificazione

Gli intervalli ai quali si rende necessario sostituire l'olio lubrificante variano a seconda delle condizioni di funzionamento, la quantità di olio, ed il tipo di olio usato.. In generale, per la lubrificazione a bagno d'olio dove la temperatura dell'olio è meno di 50°C o inferiore, l'olio deve essere sostituito una volta l'anno. Quando la temperatura di funzionamento è tra 80°C e 100 °C, l'olio l'olio dovrebbe essere sostituito almeno ogni tre mesi. Per gli equipaggiamenti importanti è consigliabile che l'efficienza lubrificante e la deteriorazione della purezza dell'olio sia controllata regolarmente al fine di poter determinare quando sia necessaria la sostituzione dell'olio.

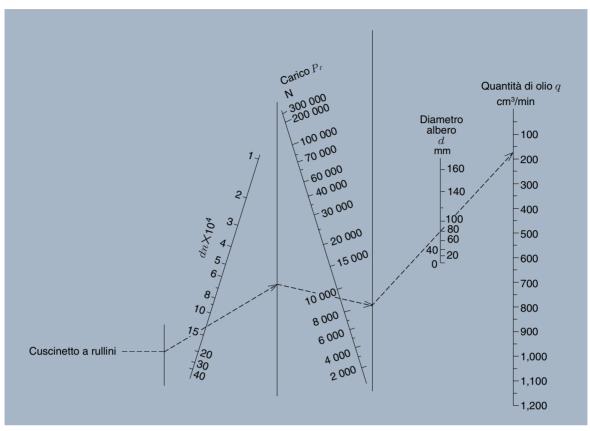


Fig. 11.5 Linea di guida per la quantità di olio

12. Sistemi di tenuta esterni dei cuscinetti

Le tenute esterne hanno due funzioni principali: prevenire la fuoriuscita dell'olio lubrificante ed evitare l'ingresso nel cuscinetto di polvere, acqua ed altri agenti contaminanti. Nella scelta di una tenuta si devono tenere in considerazione i seguenti fattori: il tipo di lubrificante (olio o grasso), la velocità periferica della tenuta di montaggio dell'albero, le limitazioni di spazio, l'attrito della tenuta e l'auento della produzione di calore risultante ed il costo.

I dispositivi di tenuta per i cuscinetti volventi si suddividono in due classificazioni principali: tenute non a contatto e tenute a contatto.

• Tenute non a contatto:Le tenute non a contatto si basano su di un giuoco limitato tra l'albero ed il coperchio dell'alloggiamento. In tal caso l'attrito è trascurabile e auindi il sistema di tenuta in esame è adatto alle applicazioni con elevato numero di giri. Al fine di migliorare le capacità di tenuta, la luce tra albero e coperchio viene spesso riempita di lubrificante • Tenute a contatto: Le tenute a contatto svogono il loro effetto di tenuta tramite la pressione di contatto di una parte resiliente della tenuta (il labbro è spesso realizzato in gomma sintetica) e la superficie di tenuta. Le tenute a contatto, dal punto di vista dell'efficienza di tenuta, sono decisamente superiori a quelle non a contatto, sebbene la loro coppia di attrito ed i coeficienti di incremento della temperatura siano superiori. Inoltre, poichè la parte del labbro che realizza la tenuta ruota mentre è in contatto con l'albero, la velocità periferica ammessa varia a seconda del tipo di tenuta.

Si rende inoltre necessario lubrificare la superficie di contatto tra la porzione del labbro che realizza la tenuta e l'albero. Normalmente, per tale scopo, può essere usato il lubrificante del cuscinetto.

Il grafico seguente elenca le caratteristiche speciali delle tenute ed altri punti che devono essere considerati cquando si vuole scegliere una tenuta appropriata.

їро 📗	Esecuzione della tenuta	Denominazione	Caratteristiche della tenuta e considerazioni di scelta		
		Tenuta con giuoco	Questa è una tenuta di esecuzione estremamente semplice caratterizzata da un piccolo giuoco.	Per migliorare l'effic ridurre al minimo il i l'alloggiamento. E'c curare la rigidità del dell'albero ed altri fa contatto tra albero e	omunque necessario cuscinetto e attori per evitare il ed alloggiamento
		Tenuta con gole per l'olio (gole per l'olio nello alloggiamento)	Parecchie gole concentiche per l'olio sono praticate nel diametro interno dello alloggiamento per migliorare in modo decisivo l'effetto	durante il funzionan Giuoco gole olio (rife Diametro albero mm	
Tenute non a contatto	,	di tenuta. Quando le gole vengono riempite di lubrificante, si previene l'inclusone di agenti contaminati dall'esterno.	Fino a 50 Oltre a 50 Larghezza e profon (Riferimento)	•	
	Tenuta con gole per l'olio (gole per l'olio nell'albero e nello alloggiamento)	Le gole per l'olio sona praticate sia sulla superficie esterna dell'albero che nella superficie interna dell'alloggiamento. Ció per ottenere una grande efficacia di tenuta.	e sia ero larghezzá: 2~ profondità: 4~ Si devono praticar L'efficacia della tei ulteriormente migli spazio tra le gole o di viscosità sia da Per le tenute a lab viene generalmen	tre o più gole. uta può essere rata riempiendo lo on grasso il cui grado 50 a 200. into, come lubrificante usato il grasso che, applicazioni a basso e usato per altri	
		Tenuta a labirinto assiale	La tenuta è realizzata con un passaggio a labirinto dal lato assiale dell'alloggiamento.	Punti di caute Per migliorare l'effic del passaggio a lab ridotta al minimo. E necessario curare cuscinetto e dell'alb il giuoco ed altri fatt	a per la scelta acia di tenuta la luce irinto deve essere comunque a rigidità del ero, l'accoppiamento, ore per evitare il
		Tenuta a labirinto radiale	Viene praticato un passaggio a labirinto dal lato radiale dello alloggiamento. Da usarsi con	diretto contatto dell' sporgenza dell'allog funzionamento Giuoco del labirinto (giamento, durante il
	**************************************		alloggiamenti divisi. Tale esecuzione offre una migliore efficienza di tenuta rispetto a quella assiale.	Diametro albero mm Direz rac	
		Tenuta a labirinti in linea	Il passaggio a labirinto è inclinato ma ha una luce sufficiente per	-~ 50 0.2~0 50~200 0.5~1 • L'efficienza di tenut	.0 3.0~5.0
			evitare il contatto tra le proiezioni dello alloggiamento e dell'albero, anche se quest'ultimo si sposta assialmente.	migliorata riempieno mediante un grasso viscosità da 150 a 2	do lo spazio tra le gole con grado di 200. non sono adatte alle

Tipo	Esecuzione della tenuta	Denominazione	Caratteristiche della tenuta e considerazioni per la scelta	
			23.2.1.5.1.5.1.5.1.5.1.5.1.5.1.5.1.5.1.5.1	
Т		Tenuta olio a pettine	Nell' esecuzione rappresentata, l'olio lubrificante uscente dall'alloggiamento lungo l'albero viene espulso dagli enelli in risalto e rimesso in circolazione. Punti di cautela per la scelta • Grazie alla presenza sull'albero rotante ed alla conseguente forza centrifuga, questo tipo di tenuta aiuta la lubrificazione, evita la fuoriuscita del lubrificante e previene l'ingresso di corpi contaminanti.	
Tenute non a contatto		Centrifugatore interno	Il centrifugatore, posto all'interno dell'alloggiamento, per forza centrifuga crea un flusso che riporta l'olio nel cuscinetto e protegge quest'ultimo dalla contaminazione da parte di corpi esterni. - La presenza di un centrifugatore nello alloggiamento migliora inoltre la trattenuta la trattenuta del lubrificante. - La presenza di un centrifugatore al trattenuta del lubrificante. - La presenza di un centrifugatore nello alloggiamento provvede una protezione maggiore	
tatto		Centrifugatore esterno	Montando un centrifugatore all'esterno dell'alloggiamento, per effetto della forza centrifuga si evita l'ingresso di polvere e di altri corpi solidi nell'alloggiamento.	
		Tenuta Z per grasso	In sezione l'anello di tenuta ricopia la lettera "Z" i suoi spazi vuoti sono riempiti di grasso. Questa tenuta è comunemente usata nei supporti ritti (o alloggiamenti per cuscinetti).	
		Tenuta V-ring	Questa esecuzione migliora l'efficacia della tenuta con un labbro che protegge in direzione assiale. Con l'aiuto della forza centrifuga, questa tenuta offre anche una protezione efficace contro l'ingresso nel cuscinetto di polvere, acqua ed altri contaminanti.	
	Armatura metallica Molla Labbro della tenuta Filo del labbro	+	Tenuta olio	Le tenute olio sono ampiamente usate e,le loro forme e dimensioni sono comprese nella norma JIS B 2402. Lo schema a lato mostra che una molla elicoidale disposta ad anello è montata intorno al labbro. Come risultato si ottiene una pressione otrtimale di contatto che si esercita tra il filo del labbro e la superficie dell'albero (riferimento)
Tenute			una buona efficacia di tenuta. Quando la tenuta olio ed il cuscinetto si trovano nelle immediate vicinanze, qualche volta Velocità periferica m/s Rugosità superficiale Periferica m/s Ra Rmax	
combinate			il giuoco del cuscinetto è troppo piccolo per poter assorbire la dilatazione termica coseguente al calore aggiuntivo generato dallo	
inate			attrito tra la tenuta e l'albero. Inoltre, se si considera il calore generato dalle tenute a contatto alle varie velocità periferiche, il giuoco interno del cuscinetto dovrà essere scelto con cura. Materiale dell'albero (riferimento) Acciaio al carbonio per strutture di macchine. Leghe a basso tenore di carbonio. Acciaio inox.	
			A seconda di come viene disposto il labbro (ovvero rivolto verso il cuscinetto a da lato opposto) la tenuta a contatto è molto effcace rispettivamente per prevenire la fugriscita del lubrificante e per	
			impedire la contaminazione del cuscinetto da parte di corpi estranei. Metodo di lavorazione Metodo di lavorazione di segni elicoidali o lucidatura dopo cromatura dura.	
			Numero di giri ammesso/temperatura a seconda del tipo di tenuta/materiale (riferimanto) Tipo di tenuta/materiale (Velocità periferica m/a / rr. , n **X/(mm)\times/n / (min)\times Temperatura	
			ammessa *C	
			Tenute Gomma nitrilica 16 o inferiore -25 ∼+120 Tenute Gomma acrilica 26 o inferiore -15 ∼+150	
			olio Gomma fluorilica 32 o inferiore -30 ∼+200	
			Tenuta Z Gomma nitrilica 6 o inferiore -25 ∼+120 Anello V Gomma nitrilica 40 o inferiore -25 ∼+120	
			Anello V Gomma nitrilica 40 o inferiore -25 ~+120	

Tipo	Esecuzione della tenuta	Denominazione	Caratteristiche della tenuta e considerazioni per la scelta
1		Tenuta Z + tenuta a labirinto	Quello a lato rappresenta un esempio di un labirinto assiale che è stato combinato con una tenuta "Z" al fine di poter aumentare l'efficacia di tenuta. Il labirinto assiale viene bloccato sull'albero mediante viti o con altri sistemi. Nella figura a sinistra, entrambe le direzioni della tenuta "Z" e del labirinto sono orientate in modo tale da evitare l'inclusione nel cuscinetto di polvere ed altri agenti contaminanti. la velocità periferica ammessa non deve superare 6 m/sec poichè nel gruppo è inserita una tenuta"Z".
Tenute combinate		Tenuta a labirinto + gola olio di tenuta + centrifugatore	Il gruppo a lato rappresenta la combinazione di tre diversi tipi di tenuta non a contatto. Esso ha il vantaggio di prevenire sia la fuoriuscita del lubrificante dall'interno del cuscinetto che di evitare l'inclusione dall'esterno di polvere ed altri agenti contaminanti. La tenuta combinata in esame è ampiamente usata negli equipaggiamenti minerari e come sistema di tenuta di supporti ritti montati dove esistono condizioni di estrema polverosità.
		Gola olio di tenuta + centrifugatore + tenuta Z	La figura a sinistra illustra un esempio dove una gola olio ed un anello centrifugatore sono stati combinati con una tenuta "Z" al fine di poter incrementare l'efficacioa di tenuta. La figura indica come tutte e tre le tenute siano state orientate per isolare il cuscinetto dall polvere ed altri contaminanti. La combinazione illustrata è ampiamente usati negli equipaggiamenti minerari e come sistema di tenuta di supporti ritti montati dove esistono condizioni di estrema polverosità.

13. Materiali dei cuscinetti

13.1 Materiali degli anelli e dei corpi volventi

Gli anelli ed i corpi volventi del cuscinetto devono poter mantenere una elevata precisione dimensionale e di rotazione mentre le loro superfici sono soggette a sollecitazioni elevate e continuo. Per poter soddisfare tale esigenza, gli anelli ed i corpi volventi devono essere costruiti con un materiale che abbia una elevata durezza, che resista alla fatica dle movimento volvente, che sia resistante all'usura e ch e abbia una buona stabilità dimensionale. La cusa più comune di cedimento per fatica dei cuscinetti è l'inclusione di impurità non metalliche nell'acciaio. Con l'uso di materiali puri, ovvero che hanno un limitato contenuto di impurità non metalliche, viene aumentata la durata a fatica delle parti volventi del cuscinetto.

Per tutti i cuscinetti NTN, viene impiegato dell'acciaio con basso contenuto di ossigeno e di impurità non metalliche che viene degasato sotto vuoto. Per i cuscinetti ai quali è richiesta una elevata affidabilità ed una lunga durata vengono usati degli acciai di purezza ancora maggiore come quelli fusi sotto vuoto (VIM, VAR, CEVM) ed acciai fusi in forno elettrico, a scoria controllata (ESR).

1) Acciai ad elevato/medio tenore di carbonio

In generale, per gli anelli e per i corpi volventi dei cuscinetti vengono usate delle varietà di acciai che, non solo possono essere temprati superficialmente, ma che possono anche essere temprati in profondità "a tutta tempra". Tra gli acciai il più usato è il cosiddetto acciaio per cuscinetti ovvero l'acciaio al cromo con elevato tenore di carbonio. Per i cuscinetti di grandi dimensioni e per quelli aventi una sezione di dimensioni rilevanti, viene impiegato dell'acciaio per cuscinetti contenente manganese e molibdeno, temprato ad induzione. Viene anche usato l'acciaio al cromo con tenore medio di carbonio legato con silicio e manganese che ha una temprabilità comparabile a quella dell'acciaio ad elevato tenore di carbonio.

2) Acciai da cementazione

Grazie alla combinazione di una superficie dura, cementata e temprata ad una profondità appropriata e con un cuore relativamente dolce, l'acciaio da cementazione ha una eccellente resistenza ai carichi ad urto. La NTN impiega gli acciai da cementazione per quasi tutti i cuscinetti a rulli conici. Anche per altri tipi di cuscinetti la NTN impiega degli acciai da cementazione precisamente: gli acciai al cromo e quelli al cromo molibdeno per cuscinetti con dimensioni da piccole a medie ed acciai al nickel - cromo- molibdeno per cuscinetti di elevate dimensioni.

3) Acciai resistenti al calore (TS3-)

Quando dei cuscinetti costruiti con il normale acciaio al cromo con alto tenore di carbonio e con normale trattamento termico vengono impiegati per lunghi periodi con temperature superiori a 120°C, si possono presentare delle elevate ed inaccettabili modifiche dimensionali. Per tale motivo è stato ideato il trattamento di stabilizzazzione dimensionale (Trattamento TS) che è destinato ai cuscinetti funzionanti a temperature molto elevate. Grazie a tale trattamento di stabilizzazione dimensionale, si può evitare la riduzione della durata a fatica del cuscinetto che consegue all a diminuzione della durezza (ved. a pag. A-16 3.4.2).

Per i normali cuscinetti per alte temperature impiegati da 150°C a 200°C l'aggiunta di silicio all'acciaio aumenta la resistenza al calore ed il cuscinetto che ne risulta ha una eccellente durata a fatica, una minima variazione dimensionale ed una limitata perdita della durezza alle elevate temperature.

Nella produzione dei cuscinetti, per minimizzare la perdita di durezza e le variazioni dimensionali alle elevate temperature, viene anche impiegata una varietà di acciai resistenti al calore. Due di tali acciai sono gli acciai al molibdeno e l'acciaio al tungsteno entrambi ad alta velocità. per i cuscinetti che richiedono una resistenza al calore in applicazione ad elevato numero di giri, vi anche un acciaio da cementazione al molibdeno resistente al calore

4) Acciai per cuscinetti resistenti alla corrosione

Per le applicazioni che richiedono una elevata resistenza alla corrosione viene impiegato acciaio inossidabile. Per poter ottenere la resistenza alla corrosione all'acciaio inossidabile martensitico viene aggiunta una elevata aliquota di elemento legante al cromo.

5) Acciai per tempra ad induzione

Per il trattamento termico degli anelli, accanto alla cementazione, viene anche usata la tempra ad induzione e, a tale scopo, viene usato un acciaio a medio tenore di carbonio le cui caratteristiche costituiscono un'alternativa all'acciaio a tutta tempra. Per la tempra ad induzione dove sono richiesti degli strati induriti di profondità rilevante, come richiedono i cuscinetti di garndi dimensioni e quelli con superfici molto estese, l'acciaio a medio tenore di carbonio è addizionato con cromo e molibdeno.

6) Altri materiali per cuscinetti

Per applicazioni con numeri di giri elevatissimi o richiedenti una resistenza alla corrosione molto spinta, sono disponibili dei cuscinetti in materiali ceramici come Si₃N₄.

13.2 Materiali delle gabbie

Il materiale delle gabbie dei cuscinetti deve avere la resistenza per poter sopportare le vibrazioni conseguenti alla rotazione ed i carichi ad urto. Tali materiali devono avere un basso coefgficiente d'attrito, devono essere leggeri e devono poter sopportare le temperature operative dei cuscinetti.

Per i cuscinetti di piccole e di medie dimensioni vengono impiegate delle gabbie in lamiera di acciaio con basso tenore di carbonio (circa 0.1%) ottenute da stampaggio. Comunque, a seconda delle applicazioni, viene anche usato acciaio inossidabile austenitico.

Per i cuscinetti di grandi dimensioni, vengono ampiamente usate delle gabbie in acciaio al carbonio per strutture di macchine o in ottone fuso ad elevata resistenza, ottenute da lavorazione meccanica. Sono comunque disponibili anche gabbie in leghe di alluminio e di altri materiali.

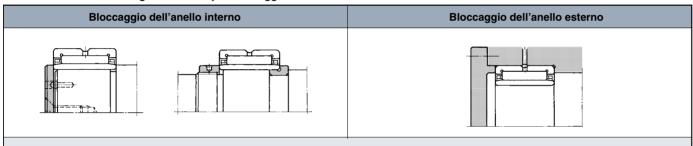
Per le gabbie dei cuscinetti dei motori aeronautici vengono impiegati: ottone ad alta resistenza, acciaio al nickel-cromo e con medio tenore di carbonio o acciai al molibdeno che vengono sottoposti a vari trattamenti termici e tempra ad elevata temperatura. Il basso coefficiente di attrito di tali materiali può anche essere migliorato mediante un rivestimento superficiale di argento.

Le gabbie in plastica ottenuta da iniezione non sono di ampio uso; molte di queste sono realizzate in resina poliammide resistente al calore, rinforzata in fibra di vetro. Le gabbie in plastica sono leggere, resistenti alla corrosione ed hanno eccellenti caratteristiche di smorzamento e di sorrevolezza. Le resine in poliammide resistenti al calore permettono ora la produzione di gabbie in grado di operare adeguatamente tra -40°C e +120°C.- Comunque, queste ultime gabbie, non sono raccomandabili per temperature superiori a 120°C.

14. Esecuzione degli alberi e degli alloggiamenti

A seconda dell'esecuzione di un albero o di un alloggiamento, l'albero può essere soggetto ad un carico squilibrato o ad altre azioni che possono causare delle elevate fluttuazioni del rendimento del cuscinetto. Per tale motivo, quando si progetta o si sceglie un albero od un alloggiamento, si rende necessario considerare i seguenti punti:

- 1) Scelta della disposizione del cuscinetto; sistema più efficace di fissaggio in posizione.
- 2) Raggi di raccordo ed altezza degli spalleggiamenti a deguati all'albero ed all'alloggiamento.
- Dimensioni delle superfici di accoppiamento; precisione di forma e perpendicolarità degli spalleggiamenti.
- Disallineamento ammesso del cuscinetto; precisione di finitura ed errori di montaggio dall'albero e dell'ialloggiamentoin accordo con l'angolo di allineamento ammesso.


14.1 Fissaggio del cuscinetto

Quando si fissa in posizione un cuscinetto sull'albero o nell'alloggiamento, vi sono molti casi nei quali il solo accoppiamento con interferenza non è sufficiente a tenere il cuscinetto in posizione. I cuscinetti possono essere fissati in posizione con metodi diversi, in modo tale che essi non si spossano spostare assialmenmte quando sono sotto carico.

Ulteriormente, anche i cuscinetti che non sono soggetti a carico assiale (come i cuscinetti a rulli cilindrici, ecc) devono essere bloccati assialmente e poichè sussiste la possibilità di spostamento degli anelli a causa di sollecitazioni da parte di momenti e delle conseguenti flessioni dell'albero.

Nella **tabella 14.1** sono indicati i metodi più comuni per il fissaggio dei cuscinetti.

Tabella 14.1 Sistemi usati generalmente per il fissaggio dei cuscinetti

Il metodo più comune per bloccare in posizione il cuscinetto è quello di usare delle ghiere o dei bulloni aventi lo scopo di tenere le superfici laterali degli anelli bloccate contro quelle degli spalleggiamenti degli alberi o degli alloggiamenti.

Anelli elastici

L'uso di anelli elastici normalizzati secondo JIS B 2804, B 2805 e B 2806 semplifica il progetto. In tal caso si devono comunque considerate accuratamente le possibilità di interferenza con i raccordi, le dimensioni montaggio dei cuscinetti ed altre specifiche relative.

Gli anelli elastici non sono adatti alle applicazioni con esigenze di elevata precisione e nelle quali gli anelli elasti stessi possono ricevere delle elevate spinte assiali.

14.2 Dimensioni di montaggio dei cuscinetti

14.2.1 Altezza degli spalleggiamenti e raggi di raccordo

L'altezza (h) degli spalleggiamenti dell'albero e di quelli dell'alloggiamento deve essere maggiore della dimensione massima ammessa dei raggi di raccordo del cuscinetto $(r_s \text{ max})$.Gli spalleggiamenti inoltre devono essere previsti in modo tale che si appoggino direttamente sulla parte piana delle superfici latelali dei cuscinetti. Il raggio di raccordo deve essere inferiore alla dimensione minima ammessa del raccordo $(r_s \text{ min})$ in modo tale da non disturbare l'appoggio del cuscinetto. La **tabella 14.2** riporta l'altezza (h) degli spalleggiamenti ed il raggio di raccordo (r_a) .

Per i cuscinetti che devono essere applicati dove si manifestano dei carichi assiali molto elevati, l'altezza (h) degli spalleggiamenti degli alberi dovrà essere superiore a quella indicata nella tabella.

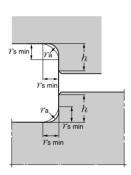


Tabella 14.2 Raggi di raccordo ed altezza degli spalleggiamenti
Dimensioni in mm

Difficusioni ili filii					
n of the state of	Ƴas max	h (min)			
75 min	7 as max	Uso normale •	Uso speciale ²		
0.1	0.1	0.	4		
0.15	0.15	0.	6		
0.2	0.2	0.	8		
0.3	0.3	1.25	1		
0.6	0.6	2.25	2		
1	1	2.75	2.5		
1.1	1	3.5	3.25		
1.5	1.5	4.25	4		
2	2	5	4.5		
2.1	2	6	5.5		
2.5	2	6	5.5		
3	2.5	7	6.5		
4	3	9	8		
5	4	11	10		
6	5	14	12		
7.5	6	18	16		
9.5	8	22	20		
12	10	27	24		
15	12	32	29		
19	15	42	38		

- In presenza di carichi assiali più elevati è necessario avere altezze degli spalleggiamenti superiori a valori sopra indicati.
- ② I valori in questa colonna dei "Casi speciali) devono essere adottati nei casi in cui ile spinte assiali siano estremamente ridotte.

Nota: ras max valore massimo ammesso del raggio di raccordo.

14.2.2 Distanziali e gole di scarico

Nei casi in cui, per motivi di resistenza dell'albero o per ridurre il coefficiente di forma (**fig. 14 1a**), il raggio di raccordo (*r*a) è maggiore del raccordo del cuscinetto o quando l'altezza dello spalleggiamento è troppo limitata per garantire un'adeguata superficie di contatto col cuscinetto (**fig 14.1b**), devono essere usati degli anelli distanziatori.

Nella **tabella 14.4** sono indicate le dimensioni delle gole di scarico delle superfici rettificate di montaggio degli alberi e degli alloggiamenti.

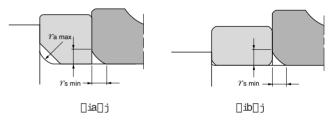
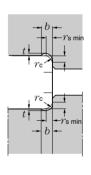



Fig. 14.1 Montaggio di cuscinetti con distanziatori

Tabella 14.3 Scarichi per alberi rettificati

Dimensioni in mm			
γ_s min	Dimensioni degli scarichi		
	b	t	rc
1	2	0.2	1.3
1.1	2.4	0.3	1.5
1.5	3.2	0.4	2
2	4	0.5	2.5
2.1	4	0.5	2.5
2.5	4	0.5	2.5
3	4.7	0.5	3
4	5.9	0.5	4
5	7.4	0.6	5
6	8.6	0.6	6
7.5	10	0.6	7

14.2.3 Cuscinetti assiali e dimensioni degli scarichi

Per i cuscinetti assiali è necessario dimensionare in modo adeguato al carico ed alla rigidità le superfici di appoggio delle ralle; la dimensione degli scarichi deve essere rilevata dalle tabelle dimensionali (ved. la **fig. 14.2**).

Per tale motivo, in confronto a quelli dei cuscinetti radiali, gli alberi e l'altezza degli spalleggiamenti dovranno essere maggiorati. (Fare riferimento alle tabelle dimensionali per tutte le dimensioni relative agli scarichi per i cuscinetti assiali.

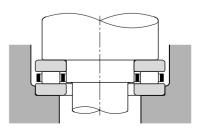


Fig. 14.2

14.3 Precisione degli alberi e degli alloggiamenti

La **tabella 14.4** riporta i dati relativi alla precisione necessaria per le dimensioni e le configurazioni della superfici di accoppiamento dei cuscinetti. Nella stessa tabella sono indicate le rugosità delle superfici e la perpendicolarità degli spalleggiamenti, necessarie per le normali condizioni operative.

Tabella 14.4 Precisione degli alberi e degli alloggiamenti

Caratteristiche	Albero	Alloggiamento
Tolleranza dimensionale	IT6 (IT5)	IT7 (IT6)
Circolarità	IT3 (IT2)	IT4 (IT3)
Cilindricità (max)	- ()	(- /
Ortogonalità degli spalleggiamenti (max)	IT5 (IT4)	IT5 (IT4)
Rugosità superficiale	0.8a	1.6a

Nota: I dati in parentesi sono validi per le applicazioni con elevata precisione di rotazione.

14.4 Precisione della superficie delle piste

Con i cuscinetti a rullini è pratica comune utilizzare l'albero e l'alloggiamento come piste volventi. Al fine di poter contenere il giuoco radiale entro tolleranze ammissibili ed assicurare la precisione di rotazione necessaria, le tolleranze dimensionali delle superfici degli alberi e quelle degli alloggiamenti, per quanto riguarda la precisione e la finitura superficiale, devono essere corrispondenti a quelle delle piste dei cuscinetti. La **tabella 14.5** riporta i dati relativi alla precisione ed alla finitura superficiale delle piste.

Tabella 14.5 Precisione degli alberi e degli alloggiamenti

Caratteristiche	Albero	Alloggiamento	
Tolleranza dimensionale	IT5 (IT4)	IT6 (IT5)	
Circolarità	IT3 (IT2)	IT4 (IT3)	
Cilindricità (max)		, ,	
Ortogonalità degli spalleggiamenti (max)	IT3 (IT2)	IT3 (IT2)	
Difetto di rotazione assiale per i cuscinetti assiali (max)	IT5 (IT4)		
Rugosità superficiale	0.4a (0.1a)		

Nota: I dati in parentesi sono validi per le applicazioni con elevata precisione di rotazione.

14.5 Materiale e durezza delle piste

La superficie esterna dell'albero e quella del foro dell'alloggiamento possono essere usate come piste volventi. Per tale scopo e quindi assicurare una sufficiente capacità di sopportare il carico, la durezza superficiale deve essere HRC da 58a 60.

Vengono normalmente impiegati l'acciaio al cromo ad alto tenore di carbonio per cuscinetti volventi o gli acciai da cementazione.

Le norme JIS definiscono che quando un acciaio subisce un trattamento termico superficiale di cementazione o di nitrurazione, per profondità dello strato indurito si intende quella alla quale si ha ancora una durezza HV 550. Il valore minimo dello stato indurito si può calcolare approssimativamente con la formula seguente:

$$Eht_{min} \ge 0.8D_{w} \ (0.1+0.002D_{w}) \cdots (14.1)$$

dove:

Ehtmin: Profondità minima dello strato indurito mm

 D_{w} : Diametro del rullo mm

14.6 Disallineamento ammesso del cuscinetto

Un disallineamento di una certa entità dell'anello interno e di quello esterno di un cuscinetto è la conseguenza della flessione dell'albero, delle irregolarità di finitura dell'albero o dell'alloggiamento e di errori minori di montaggio. Sebbene il disallineamento ammesso varia a seconda del tipo di cuscinetto, delle condizioni di carico, il giuoco di funzionamento, ecc, la tabella 14.6 riporta alcuni valori normali di disallineamento validi per le applicazioni normali. Al fine di poter ridurre la durata per usura e l'abrasione della gabbia, si rende necessario mantenere i livelli di disallineamento entro i valori normali.

Tabella 14.6 Tipo di cuscinetto e disallineamento ammesso Disallineamento ammesso

Disallineamento ammesso			
Cuscinetti a rullini	1/2,000		
Cuscinetti assiali	1/10,000		
Cuscinetti radiali rigidi a sfere	1/1,000~1/300		
Cuscinetti a contatto obliquo (ad una corona)	1/1,000		
Cuscinetti a rulli cilindrici	1/1,000~1/2,000		

15. Manipolazione dei cuscinetti

I cuscinetti sono particolari di precisione e, al fine di preservare la loro precisione ed affidabilità, devono essere trattati con cura.

In particolare deve essere mantenuta la pulizia dei cuscinetti, devono essere evitati gli urti violenti e deve essere prevenuta l'ossidazione.

15.1 Conservazione dei cuscinetti

La maggior parte dei cuscinetti è dotata di uno strato di protettivo prima del confezionamento e della spedizione; i cuscinetti devono essere quindi conservati alla temperatura ambiente con una umidità relativa inferiore al 60%.

15.2 Montaggio

Quando i cuscinetti devono essere montati sull'albero e nell'alloggiamento non si deve mai battere direttamente sui loro anelli con un martello od un punzone, come illustrato dalla figura 15.1, ciò in quanto su corre il rischio di danneggiare i cuscinetti stessi. Qualsiasi forza applicata al cuscinetto deve essere distribuita uniformemente sulla intera superficie laterale dei suoi anelli.

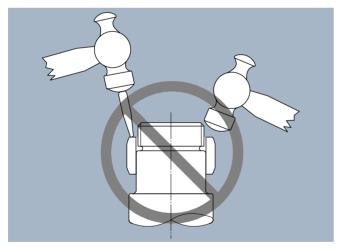


Fig. 15.1

15.2.1 Preparazione al montaggio

I cuscinetti dovrebbero essere montati in un'area di lavoro pulita ed asciutta. Ciò vale particolarmente per i microcuscinetti e per quelli miniatura, dovrebbe essere disponibile un "ambiente ad atmosfera controllata" poichè qualsiasi particalla di contaminazione influenzerà in modo decisivo l'efficienza del cuscinetto.

Prima del montaggio, tutti gli strumenti specifici, l'albero, l'alloggiamento e le parti interessate devono essere pulite e, se necessario, qualsiasi bava o truciolo devono essere allontanati. Si dovranno inoltre controllare l'albero e l'alloggiamento per quanto riguarda la rugosità, la corrispondenza al disegno e le dimensioni ed accertarsi che queste ultime siano nei limiti ammessi

delle tolleranze.

I cuscinetti devono essere tolti dall'imballo solo prima del montaggio. Normalmente i cuscinetti che vengono impiegati con la lubrificazione a grasso, si possono montare come si trovano, senza asportare il mezzo antiruggine. Comunque, per i cuscinetti che saranno lubrificati ad olio, o nei casi dove la miscela del grasso ed il mezzo protettivo può pregiudicare l'efficienza della lubrificazione, il mezzo protettivo può essere rimosso mediante lavaggio con solvente a base di benzene o petrolio ed i cuscinetti dovranno essere asciugati prima del montaggio. I cuscinetti dovranno anche essere lavati ed asciugati prima del montaggio se la loro confezione sia stata danneggiata o se vi siano state altre possibilità di contaminazione. I cuscinetti con schermi o tenute ad entrambi i lati non devono mai essere lavati.

15.2.2 Montaggio dei cuscinetti con foro cilindrico.

I cuscinetti con accoppiamento ad interferenza relativamente limitata possono essere forzati in sede alla temperatura ambiente appoggiando una bussola sulla superficie laterale dell'anello interno, come illustrato nella

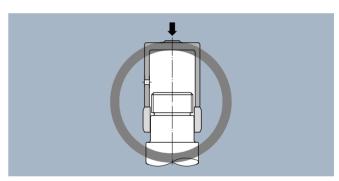


Fig. 15.2 Bussola di montaggio sull'anello interno.

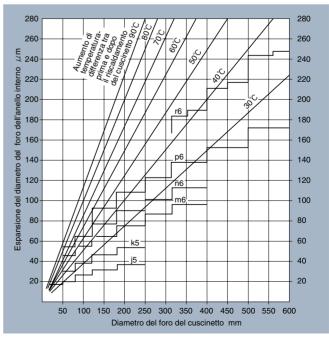


Fig. 15.3 Differenza di temperatura richiesta per il montaggio con dilatazione dell'anello interno.

figura 15.2. Usualmente i cuscinetti vengono montati agendo sulla bussola con un martello; comunque, se deve essere montato un rilevante numero di cuscinetti, si dovrebbe usare una pressa meccanica od idraulica.

Quando si montano dei cuscinetti non scomponibili simultaneamente sull'albero e nell'alloggiamento, si deve usare una ralla che distribuisce uniformemente la pressione di montaggio sull'anello interno e su quello esterno, come illustrato nella 15.3. Quando si devono montare dei cuscinetti il cui anello interno ha un accoppiamento con elevata interferenza, o quando il montaggio avviene su alberi di diametro rilevante, per il montaggio del cuscinetto a temperatura ambiente è richiesta una forza di considerevole entità. Il montaggio può essere facilitato riscaldando ed espandendo preventivamente l'anello interno. La differenza di temperatura relativa richiesta tra l'anello interno e la superficie di montaggio dipende dalla entità dell'interferenza e dal diametro della superficie dell'albero di accoppiamento. Il grafico 15.4 illustra la relazione tra la differenza di temperatura dell'anello interno e l'entità dell'aespansione termica. In ogni caso il cuscinetto non deve mai essere riscaldato oltre 120°C.

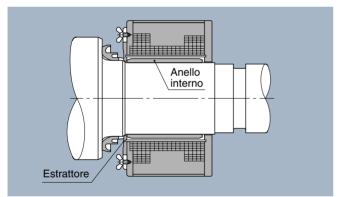


Fig 15.4 Smontaggio dell'anello interno con mezzo di riscaldamento ad induzione.

Il metodo più comune per riscaldare i cuscinetti è quello di immergerli in olio caldo. Comunque, tale metodo non deve essere usato per i cuscinetti prelubrificati, per quelli schermati e per quelli muniti di tenute.

Al fine di non surriscaldare alcune parti del cuscinetto, esso non deve mai giungere a diretto contatto con la sorgente di calore; il cuscinetto dovrà quindi essere sospeso all'interno del contenitore di riscaldamento o posto su di una rete metallica.

Se i cuscinetti vengono riscaldati a secco in una camera apposita o su di una piastra di riscaldamento, essi possono essere montati senza essere asciugati.

Per riscaldare rapidamente i cuscinetti in condizioni a secco può venire usato un riscaldatore ad induzione, (ved. Fig. 11.5). In tal caso si deve sempre smagnetizzare.

Quando i cuscinetti riscaldati vengono montati sull'albero, gli anelli interni devono essere tenuti contro gli spalleggiamenti dell'albero sino a quando i cuscinetti si sono raffreddati; ciò per prevenire che si formi un giuoco tra il cuscinetto e la superficie dello spalleggiamento.

15.2.3 Montaggio dell'anello esterno

Anche nel caso di accoppiamento con interferenza stretta, gli anelli esterni dei cuscinetti di piccole dimensioni possono essere montati nell'alloggiamento a temperatura ambiente. Per i cuscinetti di grandi dimensioni l'alloggiamento può essere riscaldato prima del montaggio del cuscinetto o l'anello esterno di quest'ultimo può venire raffreddato con ghiaccio secco, ecc. prima del montaggio. Se vengono usati ghiaccio secco od altri sistemi di raffreddamento, l'umidità atmosferica si condenserà sulle superfici del cuscinetto e quindi sarà necessario usare delle adeguate misure per prevenire l'ossidazione.

15.3 Prova di funzionamento dopo montaggio

Per poter essere certi che il cuscinetto sia stato montato correttamente, a montaggio completato i deve eseguire una prova di funzionamento. L'albero o l'alloggiamento devono essere prima fatti ruotare a mano e, se non vengono riscontrati problemi, si deve procedere con una prova a basso numero di giri in assenza di carico. Se non si manifestano anomalie, si dovrà aumentare gradualmente sia il carico che il numero di giri sino al raggiungimento delle reali condizioni operative. Se durante la prova si evidenziano: rumorosità anomala, vibrazioni od aumento di temperatura, la prova deve venire interrotta ed il gruppo deve essere esaminato. Se necessario, i cuscinetti devono essere smontati ed ispezionati.

Per controllare la rumorosità di un cuscinetto, quest'ultima può venire amplificata e le caratteristiche relative possono essere accertate con uno strumento di ascolto appoggiato all'alloggiamento. Un rumore di funzionamento chiaro, uniforme e continuo deve essere considerato normale. Una rumorosità elevata, metallica o irregolare indica delle anomalie di funzionamento. Le vibrazioni possono venire controllate accuratamente con un apposito rilevatore e le relative caratteristiche di ampiezza e frequenza confrontate con una normativa prefissata.

Usualmente la temperatura del cuscinetto può essere stimata da quella della superficie della struttura di montaggio. Comunque, se l'anello esterno è accessibile tramite i fori di lubrificazione o simili, la temperatura può venire misurata più accuratamente.

In condizioni normali, la temperatura aumenta col passare del tempo di funzionamento e quindi raggiunge un valore stabile dopo un certo periodo. Se la temperatura non si stabilizza e continua a salire, se si manifesta un brusco aumento della temperatura stessa o se quest'ultima raggiunge valori elevati anomali, il cuscinetto deve essere ispezionato.

15.4 Smontaggio del cuscinetto

I cuscinetti vengono smontati di frequente per una procedura di ispezione periodica o per la sostituzione di altre parti. Comunque, nella maggior parte dei casi, l'albero e l'alloggiamento vengono quasi sempre riutillizzati e, non di rado, i cuscinetti stessi vengono rimessi in opera.

I cuscinetti, gli alberi, gli alloggiamenti e gli altri particolari adiacenti, devono essere previsti in modo tale da non poter essere danneggiati durante i procedimenti di smontaggio. Devono inoltre essere utilizzati gli adeguati utensili di smontaggio. Quando si devono rimuovere gli anelli interni o quelli esterni che sono stati montati con accppiamenti ad interferenza, lo sforzo di smontaggio deve essere applicato al solo anello che si deve estrarre e non ad altre parti del cuscinetto poichè, diversamente, si possono causare dei danni alle piste od ai corpi volventi del cuscinetto.

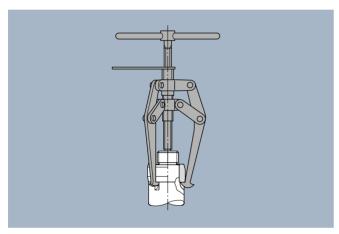


Fig. 15.5 Smontaggio con estrattore

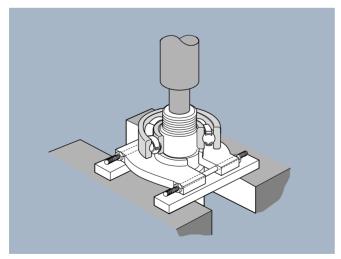


Fig. 15.6 Smontaggio alla pressa

15.4.1 Smontaggio dei cuscinetti con foro cilindrico

Per lo smontaggio dei cuscinetti di piccole dimensioni possono essere impiegati l'estrattore illustrato nella **fig. 15.5**. o la pressa della **fig.15.6**. Quando vengono usati adeguatamente, tali metodi possono migliorare l'efficienza dello smontaggio e prevenire il danneggiamento dei cuscinetti.

Per facilitare le procedure di smontaggio, si devono pianificare con cura i progetti degli alberi e degli alloggiamenti prevedendo delle cave di estrazione per le unghie degli estrattori, come indicato dalle **figg. 15.7** e **15.8**.

Nell'alloggiamento devono anche essere previsti dei fori filettati per eventuali bulloni di estrazione che facilitano lo smontaggio degli anelli esterni, come illustrato nella **fig. 15.9.**

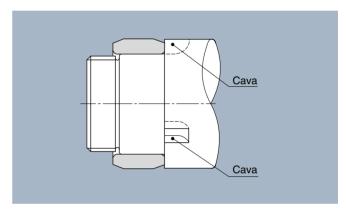


Fig. 15.7 Cave di estrazione

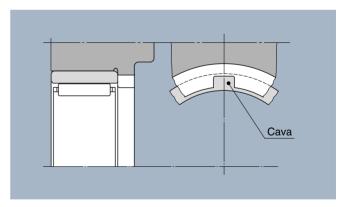


Fig. 15.8 Cava di estrazione per lo smontaggio dell'anello esterno.

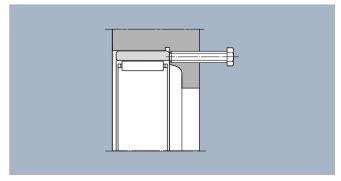


Fig. 15.9 Bullone di smontaggio dell'anello esterno

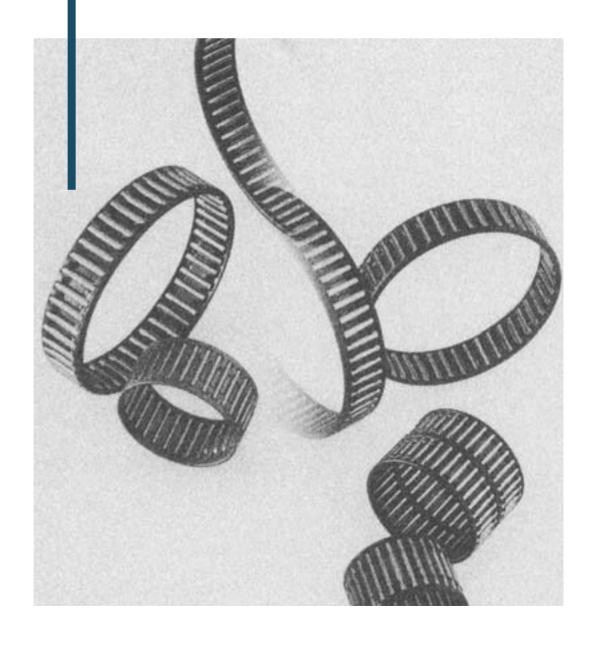
16. Danneggiamento dei cuscinetti e misure correttive

Ovviamente non è possibile osservare i cuscinetti in funzionamento però ci si può fare un'idea di come essi stiano operando controllandone la rumorosità, le vibrazioni,

la temperatura e le condizioni del lubrificante. I tipi di danneggiamento che si incontrano normalmente sono presentati nella **tabella 16.1**.

Tabella 16.1 Danneggiamento dei cuscinetti e misure correttive

	Descrizione	Cause	Misure correttive
Sfaldamento superficiale	La superficie della pista viene asportata. Successivamente si formano dei picchi ed avvallamenti di notevole entità.	 Carico eccessivo o manipolazione impropria. Montaggio non corretto. Precisione inadeguata di albero ed alloggiamento. Giuoco insufficiente. Contaminazione. Ossidazione. Decadimento della durezza dovuto ad un aumento abnorme della temperatura. 	 Rivedere le condizioni applicative. Scegliere un cuscinetto di tipo diverso. Rivedere il giouco. Mugliorare la precisione di albero ed alloggiamento. Rivedere il progetto dell'area circostante il cuscinetto. Rivedere il tipo di lubrificante ed il sistema di lubrificazione.
Bloccaggio	Il cuscinetto si surriscalda ed assume le colorazioni di rinvenimento. Eventualmente il cuscinetto si blocca.	Giuoco insufficiente (inclusa la riduzione del giuoco a causa di deformazioni locali). Lubrificazione insufficiente o lubrificante non adatto. Carichi eccessivi (pressione eccessiva). Rulli disposti angolarmente.	Controllare l'esattezza del giuoco (aumentare il giuoco). Rivedere tipo e quantità di lubrificante Rivedere le condizioni applicative. Prendere delle misure per prevenire i disallineamenti. Rivedere il progetto dell'area circostante il cuscinetto (incluso l'accoppiamento del cuscinetto). Migliorare la procedura di montaggio
Rottura o scheggiatura	Si manifesta uno sfaldamento superficiale localizzato. Si presentano delle piccole rotture o scheggiature.	 Carichi ad urto eccessivi. Interferenza eccessiva. Sfaldamento superficiale elevato. Rottura per attrito. Spalleggiamenti o smussi non adegueti. Manipolazione impropria (improntamenti da parte di corpi estranei). 	Rivedere le condizioni applicative Scegliere l'interferenza corretta e rivedere i materiali. Migliorare il procedimento di montaggio ed usare maggior cura nella manipolazione. Prendere delle misure per prevenire le rotture per attrito (rivedere il tipo di lubrificante). Rivedere il progetto dell'area circostante il cuscinetto.
Rottura della gabbia	Rottura dei rivetti o allentamento degli stessi con la conseguente rottura della gabbia.	Momenti elevati sul cuscinetto. Regime di rotazione elevato od eccessive fluttuazioni dello stesso. Lubrificazione non adatta. Impatto con corpi estranei. Vibrazioni eccessive. Montaggio non adeguato (montaggio con errori di allineamento). Aumento abnorme della temperatura (gabbia in plastica).	 Rivedere le condizioni applicative. Rivedere le condizioni di lubrificazione. Rivedere la scelta del tipo di gabbia. Usare maggior cura nella manipolazione. Controllare la rigidezza di albero ed alloggiamento.
Usura a cavità	Abrasione od usura irregolare in forma di cavità lasciate dai corpi volventi lungo le superfici delle piste.	Albero ed alloggiamento di precisione insufficiente. Montaggio improprio. Insufficiente rigidità dell'albero o dell'alloggiamento. Rotazione eccentrica dell'albero causata da eccessivo giuoco del cuscinetto.	Ricontrollare il giuoco. Rivedere la precisione dell'albero e dello alloggiamento. Rivedere la rigidità dell'albero e dello alloggiamento.
Erosione ed abrasione	La superficie diventa rugosa e si formano dei depositi. L'abrasione incide sulla rugosità dei bordi della pista e su quella delle superfici laterali dei rulli.	Lubrificazione inadeguata. L'inclusione di corpi estranei. I rulli si dispongono in obliquo a causa del disallineamento del cuscinetto. Bordi con zone esenti da film lubrificante a causa di un carico assiale elevato. Rugosità superficiale. Strisciamento eccessivo dei corpi volventi.	Riesame del tipo di lubrificante e del sistema di lubrificazione. Riesame delle condizioni operative. Conferimanto di un precarico adeguato. Migliorare l'efficienza della tenuta. Manipolare adeguatamente il cuscinetto.
Ossidazione e corrosione	La superficie diventa sia parzialmente che totalmente ossidata e, occasionalmente, l'ossidazione si presenta anche lungo la linea primitiva dei corpi volventi.	 Conservazione inadeguata. Confezione scadente. Mezzo di conservazione insufficiente. Ingresso di acqua, acido, ecc. Manipolazione a mani nude. 	Prevenire l'ossidazione durante la conservazione. Migliorare l'efficienza della tenuta. Ispezionare periodicamente l'olio lubrificante. Manipolare adeguatamente il cuscinetto.


Tabella 16.1 Danneggiamento dei cuscinetti e misure correttive

	Descrizione	Cause	Misure correttive
Corrosione da attrito	Esistono due tipi di corrosione da contatto. In una si ha la formazione di una polvere di materiale di usura ossidato sulle superfici accoppiate. Nell'altra si formano delle impronte di brinellatura sulle piste corrispondenti al passo dei corpi volventi.	 Interferenza insufficiente. Funzionamento del cuscinetto con limitati angoli di oscillazione. Lubrificazione insufficiente. Carichi variabili. Vibrazioni durante il trasporto. 	Rivedere l'interferenza ed applicare un velo di lubrificante. Confezionare separatamente l'anello interno e quello esterno per il trasporto o precaricarli se non possono essere separati. Scegliere un tipo diverso di lubrificante. Scegliere un tipo diverso di cuscinetto.
Usura	Si manifesta l'usura superficiale unita a deformazioni dimensionali. L'usura è spesso accompagnata da rugosità ed abrasioni.	 Inclusione di particelle estranee nel lubrificante. Lubrificazione inadeguata. Rulli disposti obliquamente. 	Riesame del tipo di lubrificante e del sistema di lubrificazione. Migliorare l'efficienza della tenuta. Prendere delle misure per prevenire il disallineamento.
Corrosione elettrolitica	Si formano delle cavità sulle piste. Le cavità si trasformano poi gradualmente in ondulazioni.	Corrente elettrica passante attraverso i rulli.	Mettere il cuscinetto a massa. Isolare il cuscinetto affinchè lo stesso non conduca corrente.
Ammaccatura e rigatura	Ammaccature conseguenti al montaggio, impronte dovute a corpi estranei duri, impronte dovute ad urti meccanici.	Inclusione di corpi estranei. Caduta od altri urti meccanici causati da manipolazione non adeguata. Montaggio non allineato.	Migliorare i metodi di manipolazione e di montaggio. Prendere dei provvedimenti per impedire l'inclusione di corpi estranei Se il danneggiamento è stato causato da frammenti metallici controllare completamente la pulizia delle zone circostanti.
Lucidatura e strisciamento	Lo strisciamento è accompagnato da superfici con aspetto speculare o di colorazioni particolari nell diametro interno o sul diametro esterno. Si può anche manifestare l'abrasione superficiale.	 Interferenza insufficiente nella zona di accoppiamento. Bussola non bloccata correttamente. Aumento abnorme della temperatura. Carichi eccessivi. 	Riesaminare l'interferenza. Rivedere le condizioni di impiego. Rivedere la precisione dell'albero e quella dell'alloggiamento.
Opacità superficiale	La lucentezza superficiale è scomparsa; la superficie si presenta opaca, rugosa e/o uniformamente butterata. Superficie coperta da minute cavità.	 Inclusione nel cuscinetto di corpi estranei. Lubrificazione insufficiente. 	Riesame del tipo di lubrificante e del sistema di lubrificazione. Rivedere il sistema di tenuta. Esaminare la purezza dell'olio lubrificante(il filtro può essere troppo sporco).
Sbucciatura	Scagliatura o sbucciatura (dimensione approssimativa $10 \mu m$). Innumerevoli rotture filiformi ancora con sbucciatura. (Tale tipo di danneggiamento si riscontra di frequente nei cuscinetti a rulli cilindrici).	 Inclusione nel cuscinetto di corpi estranei. Lubrificazione insufficiente. 	 Riesame del tipo di lubrificante e del sistema di lubrificazione. Migliorare le prestazioni del sistema di tenuta (per prevenire l'inclusione di corpi estranei). Curare che il funzionamento sia regolare.

Cuscinetti a rullini TABELLE DIMENSIONALI

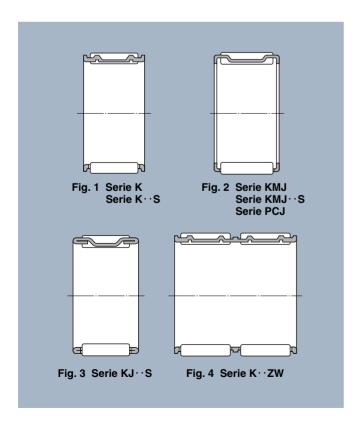
Gabbie a rullini	B- 1∼ 17
Gabbie a rullini per imbiellaggi	B- 19∼ 24
Astucci a rullini	B- 25∼ 46
Cuscinetti a rullini	B- 47∼ 87
Cuscinetti a rullini senza bordi	B- 89~105
Cuscinetti a rullini con giuoco registrabile	B-107~111
Cuscinetti assiali a rullini ed a rulli cilindrici	B-113~125
Cuscinetti combinati	B-127~145
Rotelle	B-147~157
Perni folli	B-158~175
Componenti Anelli interni / rullini /anelli elastici / Anelli di tenuta	B-177~206
Cuscinetti per movimenti lineari	B-207~221
Ruote libere	B-223~227
Cuscinetti per cilindro inferiore per macchine tessili Rulli tendicinghia per macchine tessili	B-229~235

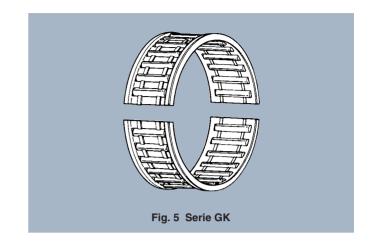
Gabbie a rullini

Gabbie a rullini

Gabbie a rullini

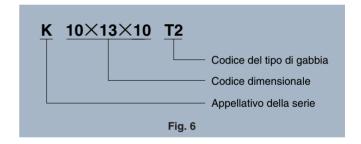
Le gabbie a rullini NTN costituiscono il componente di base dei cuscinetti a rullini. Le gabbie trattengono i rullini in posizione. Quando l'albero o l'alloggiamento vengono impiegati come piste volventi e quindi non viene usato nè un anello interno nè un anello esterno, le gabbie a rullini permettono la progettazione di una macchina compatta e leggera.


In confronto ai cuscinetti a pieno riempimento di rulli, le gabbie a rullini NTN possono sopportare regimi di rotazione più elevati ed una guida più accurata dei rullini negli alveoli della gabbia. Malgrado le dimensioni ridotte, le gabbie a rullini offrono maggiori rigidità e capacità di carico.


Tipi ed esecuzioni

Le gabbie a rullini NTN sono disponibili in esecuzione ad una corona, a due corone, ed in due metà (figg. da 1 a 5).

Le gabbie ad una corona di rullini sono disponibili in parecchie esecuzioni: massicce (Serie K), in lamiera stampata (serie KMJ) rullate e saldate (Serie K··S, KJ··S, e KMJ··S) ed ottenute per iniezione di materiale plastico rinforzate in fibra di vetro o di carbonio (Serie K··T2). Le gabbie con suffisso T2 possono operare sino ad un massimo di 120°C ma possono operare con continuità solo ad una temperatura massima di 100°C.


Le gabbie a due corone sono in esecuzione massiccia o ricavate da lavorazione meccanica, serie $\mathbf{K} \cdot \mathbf{Z} \mathbf{W}$, mentre le gabbie in due metà hanno la sigla $\mathbf{G} \mathbf{K}$.

Appellativo

Come illustrato dalla **Fig. 6**, l'appellativo delle gabbie **NTN** è costituito dal codice della serie, un codice dimensionale (diametro del cerchio inscritto, diametro del cerchio circoscritto, larghezza della gabbia) e suffisso.

Scostamento medio del diametro medio dei rullini di una singola gabbia.

Lo scostamento medio del diametro dei rullini facenti parte di una singola gabbia non deve eccedere i 2 μ m. Come indicato nella **tabella 1**, il gruppo di selezione diametrale dei rullini di una gabbia è identificato sulla confezione da una striscia adesiva colorata. A meno che il cliente richieda diversamente, la **NTN** fornisce le gabbie nei gruppi di selezionatura normale (rosso, blu, azzurro, nero o bianco).

Quando due o più gabbie vengono usate in parallelo, esse devono avere i rullini dello stesso gruppo di selezionatura poiché, solo in tal modo, si ha una distribuzione uniforme del carico.

Tabella 1 Gruppi di selezionatura dei rullini

Codice del colore della striscia adesiva	Campo di tolleranza μ m	Classe
Rosso Blu Celeste Nero Bianco	$0 \sim -2$ $-1 \sim -3$ $-2 \sim -4$ $-3 \sim -5$ $-4 \sim -6$	Normale
Grigio Verde Marrone Giallo	-5~- 7 -6~- 8 -7~- 9 -8~-10	Quasi normale

Giuoco radiale

Quando l'albero e l'alloggiamento vengono usati come piste volventi, il giuoco radiale della gabbia a rullini è determinato dal valore del diametro dell'albero e da quello del foro di alloggiamento.

Usualmente, se il gruppo di selezionatura dei rullini è nel campo normale (rosso, blu o bianco), per il diametro dell'albero e per quello dell'alloggiamento vengono utilizzate le indicazioni della **tabella 2.**

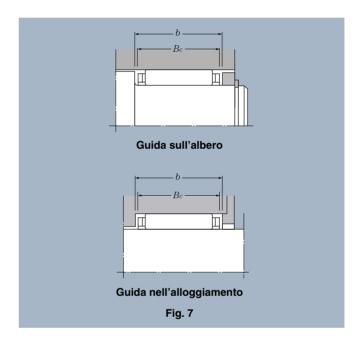
Tabella 2 Accoppiamenti raccomandati

	Diametro albero mm	~80	80~140	140~
0 ө	Giuoco inferiore al normale	j5/G6	h5/G6	h5/G6
Giuoco radiale	Giuoco normale	h5/G6	g5/G6	f5/H6
କ ଜ	Giuoco superiore al normale	g6/G6	f6/G6	f6/G6

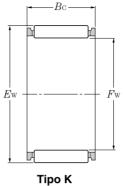
Esigenze dell'albero e dell'alloggiamento

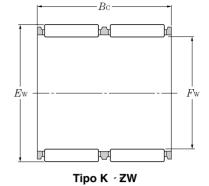
Per l'impiego come piste volventi il diametro dell'albero e quello dell'alloggiamento devono essere soddisfatte le esigenze riportate nella **Tabella 3**.

Tabella 3 Esigenze dell'albero e dell'alloggiamento


Caratteristiche	Albero	Alloggiamento
Circolarità (max)	IT3	IT4
Cilindricità (max)	IT3	IT4
Rugosità superficiale (max)	0.4a	0.4a
Durezza superficiale	HRC5	8~64
Profondità di tempra (min)	Vedere la formula (14.1) a pagina A-59

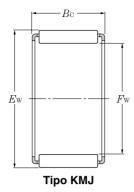
Dimensioni di montaggio del cuscinetto

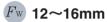

La **Tabella 4** fornisce le tolleranze raccomandate per la guida assiale della gabbia in relazione al valore nominale della larghezza "Bc."


Tabella 4 Tolleranze per la guida assiale della gabbia

Classificazione della serie Tolleranza per bMetrica $Bc^{+0.2}_{0}$ Pollici $Bc^{+0.4}_{-0.2}$

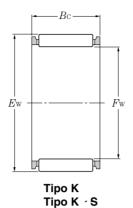
Tipo K
Tipo K··T2
Tipo K··S
Tipo K··ZW
Tipo KMJ

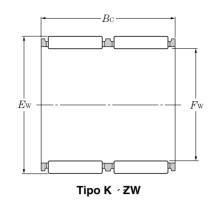




Tipo K
Tipo K · T2
Tipo K · S

Dime	nsioni d	l'ingombro	dinamico	Coefficient		o statico	Numero di	i giri limite	Appellativo	Massa
	mn	า	N			kgf	rp			kg
$F_{ m w}$	E_{w}	$B_{ m c}$	$C_{\rm r}$	Cor	$C_{ m r}$	$C_{ m or}$	grasso	olio		(approssimata)
3	6	7 -0.2 -0.55	1 460	970	149	99	33 000	50 000	K3×6×7T2	0.0004
4	7	7 ^{-0.2} _{-0.55}	1 770	1 270	180	129	30 000	45 000	K4×7×7T2	0.0005
5	8	8 _{-0.2}	2 640	2 190	269	224	27 000	40 000	K5×8×8T2	0.0007
3	8	10 -0.55	2 720	2 250	277	230	27 000	40 000	K5×8×10T2	0.0009
	9	8	2 660	2 280	272	233	25 000	37 000	K6×9×8T2	0.0009
6	9	10 ^{-0.2} _{-0.55}	3 400	3 150	345	320	25 000	37 000	K6×9×10T2	0.0011
	10	13	4 400	3 700	450	380	25 000	37 000	K6×10×13T2	0.0019
7	10	8 _{-0.2}	2 670	2 350	272	239	23 000	34 000	K7×10×8T2	0.0009
,	10	10 -0.55	3 400	3 200	345	330	23 000	34 000	K7×10×10T2	0.0011
	11	8	3 150	3 000	320	305	21 000	32 000	K8×11×8T2	0.0011
	11	10	4 000	4 100	410	420	21 000	32 000	K8×11×10T2	0.0013
	11	13 _{-0.2}	4 850	5 200	495	535	21 000	32 000	K8×11×13	0.0026
8	12	10 -0.55	4 650	4 150	475	425	21 000	32 000	K8×12×10T2	0.0020
	12	12	5 600	5 300	570	540	21 000	32 000	K8×12×12	0.0034
	12	13	5 600	5 300	570	540	21 000	32 000	K8×12×13	0.0036
9	12	10 _{-0.2}	4 550	5 000	465	510	20 000	30 000	K9×12×10T2	0.0015
9	12	13 -0.55	5 500	6 400	560	650	20 000	30 000	K9×12×13T2	0.0021
	13	10	4 550	5 100	460	520	19 000	28 000	K10×13×10T2	0.0016
	13	13	5 450	6 450	555	660	19 000	28 000	K10×13×13	0.0031
10	14	8 -0.2	4 300	3 950	435	405	19 000	28 000	K10×14×8	0.0027
10	14	10 -0.55	5 500	5 450	560	555	19 000	28 000	K10×14×10	0.0034
	14	13	6 600	6 900	675	705	19 000	28 000	K10×14×13	0.0044
	16	12	7 100	5 950	720	610	19 000	28 000	K10×16×12	0.0066
11	14	10 ^{-0.2} _{-0.55}	5 050	6 000	515	615	18 000	27 000	K11×14×10	0.0028
	15	9	4 450	5 250	455	535	17 000	26 000	K12×15×9	0.0027
	15	10	5 000	6 100	510	620	17 000	26 000	K12×15×10S	0.0033
12	15	13 ^{-0.2} _{-0.55}	6 000	7 700	615	785	17 000	26 000	K12×15×13	0.0038
	15	20	8 550	12 200	875	1 240	17 000	26 000	K12×15×20ZW	0.0059
	16	8	4 850	4 900	495	500	17 000	26 000	K12×16×8	0.0034

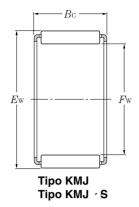




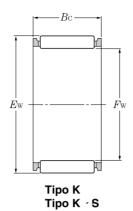
Dime	ensioni d	l'ingombro		Coefficient			Numero di	i giri limite	Appellativo	Massa
	mn	n	dinamico N			o statico kgf	ro	m		kg
							grasso	olio		
$F_{ m w}$	$E_{\rm w}$	$B_{\rm c}$	$C_{\rm r}$	Cor	$C_{\rm r}$	Cor				(approssimata)
	16	13	7 500	8 500	765	870	17 000	26 000	K12×16×13	0.0055
12	17	13 ^{-0.2} _{-0.55}	9 000	9 400	920	960	17 000	26 000	K12×17×13	0.0075
	18	12	8 650	8 000	880	815	17 000	26 000	K12×18×12	0.0084
	17	10	5 400	7 050	550	720	16 000	24 000	K14×17×10	0.0033
	18	10	6 900	8 000	705	815	16 000	24 000	K14×18×10	0.0046
	18	11	7 600	9 050	775	925	16 000	24 000	K14×18×11	0.0053
	18	13	8 300	10 100	845	1 030	16 000	24 000	K14×18×13	0.0063
4.4	18	15 _{-0.2}	9 650	12 300	985	1 250	16 000	24 000	K14×18×15S	0.0076
14	18	17 -0.55	10 900	14 400	1 120	1 470	16 000	24 000	K14×18×17	0.0081
	18	39	18 800	28 900	1 910	2 950	16 000	24 000	$K14 \times 18 \times 39ZW$	0.0180
	19	13	8 950	9 650	915	985	16 000	24 000	K14×19×13	0.0080
	20	12	9 350	9 150	955	930	16 000	24 000	K14×20×12	0.0095
	20	17	13 500	14 600	1 370	1 490	16 000	24 000	K14×20×17	0.0140
	18	14	7 850	11 600	800	1 190	15 000	23 000	K15×18×14	0.0060
	19	10	6 850	8 050	700	820	15 000	23 000	K15×19×10S	0.0051
	19	13	8 250	10 200	840	1 040	15 000	23 000	K15×19×13S	0.0067
	19	17	10 900	14 600	1 110	1 490	15 000	23 000	K15×19×17	0.0090
15	19	24 ^{-0.2} _{-0.55}	14 100	20 400	1 440	2 080	15 000	23 000	K15×19×24ZW	0.0130
	20	13	10 100	11 500	1 030	1 170	15 000	23 000	K15×20×13	0.0088
	21	15	11 900	12 500	1 210	1 280	15 000	23 000	K15×21×15	0.0130
	21	17	15 100	17 200	1 540	1 750	15 000	23 000	KMJ15 \times 21 \times 17	0.0140
	21	21	16 500	19 100	1 680	1 950	15 000	23 000	K15×21×21	0.0170
	20	10	7 500	9 250	765	945	15 000	23 000	K16×20×10	0.0057
	20	11	8 300	10 500	845	1 070	15 000	23 000	K16×20×11	0.0061
	20	13	9 050	11 800	925	1 200	15 000	23 000	K16×20×13	0.0071
16	20	17 _{-0.2}	11 900	16 800	1 220	1 710	15 000	23 000	K16×20×17S	0.0092
16	22	12 ^{-0.55}	11 700	12 500	1 190	1 280	15 000	23 000	K16×22×12	0.0100
	22	13	12 600	13 900	1 290	1 410	15 000	23 000	KMJ16 \times 22 \times 13	0.0110
	22	16	14 200	16 100	1 450	1 650	15 000	23 000	KMJ16×22×16	0.0140
	22	17	14 400	16 400	1 470	1 670	15 000	23 000	K16×22×17	0.0150
				K K O K I						

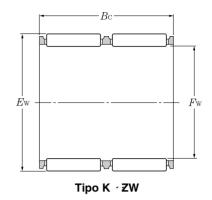
NOTA: La NTN può fornire gabbie in esecuzione K, K..S, KJ..S, KMJ o KMJ..S anche se ordinate con l'appellativo indicato in tabella. La NTN, come esecuzione normale, usa differenti configurazioni di gabbie come: K, K..S, KJ..S, KMJ o KMJ..S.

Tipo K Tipo K··S Tipo K∵ZW **Tipo KMJ** Tipo KMJ··S



F_w 16~20mm

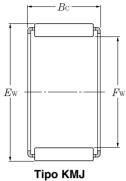

	mm		Coefficienti di carico dinamico statico dinamico statico							
			N			gf	rp grasso	m olio		kg
$F_{ m w}$. I	E_{w}	B_{c}	C_{r}	Cor	$C_{ m r}$	$C_{ m or}$	gradoo	Ollo		(approssimata)
16	22	20 -0.2 -0.55	16 000	18 800	1 640	1 920	15 000	23 000	K16×22×20	0.0170
2	21	10	7 450	9 300	760	950	15 000	22 000	K17×21×10S	0.0056
2	21	13	9 400	12 600	960	1 280	15 000	22 000	K17×21×13S	0.0075
17	21	15 -0.2	10 400	14 400	1 060	1 460	15 000	22 000	K17×21×15	0.0089
17	21	17 -0.55	11 800	16 900	1 210	1 720	15 000	22 000	K17×21×17	0.0095
2	22	20	14 700	19 200	1 500	1 960	15 000	22 000	K17×22×20	0.0150
4	23	17	14 400	16 500	1 460	1 690	15 000	22 000	K17×23×17	0.0160
2	22	10	7 400	9 400	755	955	14 000	21 000	K18×22×10	0.0061
2	22	13	8 900	11 900	910	1 210	14 000	21 000	K18×22×13	0.0077
2	22	17	11 700	17 000	1 200	1 730	14 000	21 000	K18×22×17	0.0110
2	23	20	14 600	19 300	1 490	1 970	14 000	21 000	K18×23×20S	0.0150
18	24	12 _{-0.2}	12 300	13 800	1 250	1 410	14 000	21 000	K18×24×12	0.0120
10	24	13 -0.55	11 600	12 800	1 180	1 300	14 000	21 000	K18×24×13	0.0130
2	24	17	16 000	19 300	1 630	1 970	14 000	21 000	KMJ18×24×17S	0.0140
2	24	20	17 000	20 900	1 730	2 130	14 000	21 000	K18×24×20	0.0190
2	25	17	18 000	20 400	1 830	2 080	14 000	21 000	K18×25×17	0.0190
2	25	22	22 100	26 600	2 250	2 710	14 000	21 000	K18×25×22	0.0240
19	23	13 _{-0.2}	9 650	13 500	985	1 370	14 000	21 000	K19×23×13	0.0082
19	23	17 -0.55	12 700	19 200	1 300	1 960	14 000	21 000	K19×23×17	0.0110
2	24	10	8 300	11 200	845	1 150	13 000	20 000	K20×24×10S	0.0065
2	24	11	9 500	13 400	970	1 370	13 000	20 000	K20×24×11	0.0072
2	24	13	10 000	14 300	1 020	1 460	13 000	20 000	K20×24×13S	0.0086
2	24	17	13 200	20 400	1 340	2 080	13 000	20 000	K20×24×17S	0.0110
2		45	16 400	27 100	1 680	2 760	13 000	20 000	$K20 \times 24 \times 45ZW$	0.0280
20	25	40 -0.2	29 000	48 000	2 950	4 900	13 000	20 000	$K20 \times 25 \times 40ZW$	0.0330
2	26	12	12 900	15 100	1 320	1 540	13 000	20 000	K20×26×12	0.0130
2	26	13	14 000	16 700	1 420	1 700	13 000	20 000	KMJ20×26×13	0.0120
	26	17	17 800	22 800	1 810	2 330	13 000	20 000	KMJ20×26×17S	0.0160
2	26	20	20 600	27 600	2 100	2 820	13 000	20 000	KMJ20 $ imes$ 26 $ imes$ 20S	0.0190
	28	25	27 100	32 500	2 760	3 300	13 000	20 000	K20×28×25	0.0370

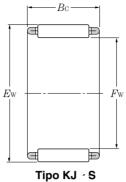


F_w 21∼25mm

Dime	nsioni d	l'ingombro	dinomico	Coefficien			Numero di	giri limite	Appellativo	Massa
	mn	า	dinamico N			o statico kgf	rp	m		kg
П	П	D		a	C.	a	grasso	olio		(
$F_{ m w}$	E_{w}	$B_{\rm c}$	Cr	Cor	$C_{ m r}$	Cor				(approssimata)
21	25	13 -0.2	10 300	15 100	1 050	1 540	13 000	19 000	$K21 \times 25 \times 13$	0.0090
	25	17 ^{-0.55}	13 600	21 500	1 380	2 200	13 000	19 000	K21×25×17	0.0120
	26	10	8 500	11 900	865	1 220	12 000	18 000	K22×26×10S	0.0071
	26	11	10 100	14 900	1 030	1 520	12 000	18 000	K22×26×11S	0.0079
	26	13	10 200	15 200	1 040	1 550	12 000	18 000	K22×26×13	0.0094
	26	17	13 500	21 600	1 370	2 200	12 000	18 000	K22×26×17S	0.0120
22	27	20 ^{-0.2} _{-0.55}	17 500	25 900	1 780	2 640	12 000	18 000	K22×27×20	0.0200
	27	40	29 900	51 500	3 050	5 250	12 000	18 000	$K22 \times 27 \times 40ZW$	0.0390
	28	17	17 700	23 300	1 810	2 380	12 000	18 000	K22×28×17	0.0200
	29	16	18 700	22 700	1 910	2 310	12 000	18 000	KMJ22×29×16	0.0220
	30	15	19 300	21 700	1 970	2 210	12 000	18 000	K22×30×15	0.0220
23	28	24 ^{-0.2} _{-0.55}	19 800	31 000	2 020	3 150	11 000	17 000	K23×28×24	0.0230
	28	10	9 000	13 200	915	1 350	11 000	17 000	K24×28×10S	0.0081
	28	13	10 800	16 800	1 100	1 710	11 000	17 000	$K24 \times 28 \times 13$	0.0100
24	28	17 _{-0.2}	14 300	23 900	1 460	2 440	11 000	17 000	K24×28×17	0.0130
24	29	13 ^{-0.55}	12 300	16 900	1 250	1 720	11 000	17 000	$K24 \times 29 \times 13$	0.0120
	30	17	18 400	25 200	1 880	2 570	11 000	17 000	$K24 \times 30 \times 17$	0.0220
	30	31	27 900	43 000	2 840	4 350	11 000	17 000	$K24 \times 30 \times 31ZW$	0.0390
	29	10	8 950	13 300	910	1 350	11 000	16 000	K25×29×10	0.0083
	29	13	10 800	16 900	1 100	1 720	11 000	16 000	K25×29×13	0.0100
	29	17	14 200	24 000	1 450	2 450	11 000	16 000	K25×29×17S	0.0140
	30	13	13 200	18 800	1 350	1 920	11 000	16 000	K25×30×13	0.0130
	30	17	17 400	26 800	1 770	2 730	11 000	16 000	$K25 \times 30 \times 17S$	0.0170
25	30	20 -0.2	19 400	31 000	1 980	3 150	11 000	16 000	$K25 \times 30 \times 20S$	0.0210
25	30	26 -0.55	21 800	35 500	2 220	3 650	11 000	16 000	$K25 \times 30 \times 26ZW$	0.0270
	30	39	29 800	53 500	3 050	5 450	11 000	16 000	$K25 \times 30 \times 39ZW$	0.0400
	31	13	15 200	19 900	1 550	2 030	11 000	16 000	K25×31×13	0.0160
	31	14	16 500	22 100	1 680	2 250	11 000	16 000	K25×31×14	0.0180
	31	17	18 300	25 300	1 870	2 580	11 000	16 000	$K25 \times 31 \times 17$	0.0220
	31	21	22 500	33 000	2 290	3 350	11 000	16 000	K25×31×21	0.0260

Tipo K Tipo K⋯S Tipo K∵ZW **Tipo KMJ** Tipo KMJ··S Tipo KJ··S



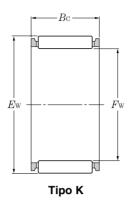


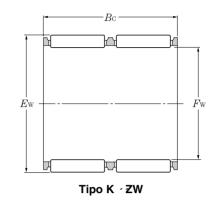
F_w 25∼32mm

Dime	nsioni d	l'ingombro		Coefficient			Numero di	i giri limite	Appellativo	Massa
	mn	n	dinamico N			o statico kgf	rn	m		kg
	11111	1	11		ľ	Ngi	grasso	olio		, kg
$F_{ m w}$	E_{w}	B_{c}	$C_{\rm r}$	Cor	$C_{ m r}$	$C_{ m or}$				(approssimata)
25	32	16 _{-0.2}	19 500	24 700	1 990	2 520	11 000	16 000	KMJ25 \times 32 \times 16	0.025
25	33	24 -0.55	34 500	47 000	3 500	4 800	11 000	16 000	$KMJ25 \times 33 \times 24S$	0.040
	30	13	11 800	19 200	1 200	1 960	10 000	15 000	K26×30×13	0.011
26	30	17 ^{-0.2} _{-0.55}	15 500	27 400	1 580	2 790	10 000	15 000	$K26 \times 30 \times 17$	0.015
	34	22	24 200	30 000	2 470	3 050	10 000	15 000	$K26 \times 34 \times 22$	0.041
	32	17	15 300	27 500	1 560	2 810	9 500	14 000	K28×32×17	0.017
	32	21	18 700	35 500	1 910	3 650	9 500	14 000	$K28 \times 32 \times 21$	0.020
	33	13	13 900	20 900	1 420	2 130	9 500	14 000	K28×33×13	0.015
	33	17	18 300	29 800	1 870	3 050	9 500	14 000	$K28 \times 33 \times 17S$	0.020
28	33	26 _{-0.2}	23 900	42 000	2 430	4 250	9 500	14 000	$K28 \times 33 \times 26ZW$	0.033
20	33	27 -0.55	28 300	52 000	2 890	5 300	9 500	14 000	$K28 \times 33 \times 27$	0.032
	34	14	17 500	24 800	1 790	2 530	9 500	14 000	$K28 \times 34 \times 14$	0.020
	34	17	18 100	25 800	1 850	2 630	9 500	14 000	$K28 \times 34 \times 17$	0.024
	35	16	21 200	28 400	2 160	2 900	9 500	14 000	K28×35×16	0.029
	35	18	21 500	28 900	2 190	2 950	9 500	14 000	K28×35×18	0.031
00	34	17 _{-0.2}	18 900	31 000	1 920	3 200	9 500	14 000	$K29 \times 34 \times 17S$	0.022
29	34	27 -0.55	28 100	52 000	2 870	5 300	9 500	14 000	$K29 \times 34 \times 27$	0.033
	35	11	12 200	18 000	1 240	1 840	8 500	13 000	K30×35×11S	0.014
	35	13	14 700	22 900	1 500	2 340	8 500	13 000	$K30 \times 35 \times 13S$	0.016
	35	17	19 400	32 500	1 970	3 350	8 500	13 000	$KJ30 \times 35 \times 17S$	0.021
	35	20	21 600	37 500	2 200	3 850	8 500	13 000	$K30 \times 35 \times 20S$	0.025
	35	26	25 200	46 000	2 570	4 650	8 500	13 000	$K30 \times 35 \times 26ZW$	0.032
30	35	27 _{-0.2}	29 900	57 000	3 050	5 800	8 500	13 000	$K30 \times 35 \times 27S$	0.033
30	36	14 -0.55	18 600	27 400	1 900	2 790	8 500	13 000	KMJ30 \times 36 \times 14	0.022
	37	16	21 900	30 500	2 230	3 100	8 500	13 000	K30×37×16	0.029
	37	18	23 300	33 000	2 370	3 350	8 500	13 000	K30×37×18	0.034
	37	20	26 200	38 000	2 670	3 850	8 500	13 000	KMJ30 \times 37 \times 20	0.038
	37	48	40 000	65 500	4 050	6 700	8 500	13 000	$K30 \times 37 \times 48ZW$	0.075
	38	18	25 000	33 000	2 550	3 350	8 500	13 000	K30×38×18	0.036
32	36	15 ^{-0.2} _{-0.55}	14 300	26 400	1 460	2 700	8 500	13 000	K32×36×15S	0.017

NTN

Tipo KMJ · S

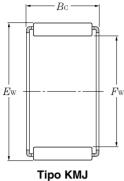

F_w 32∼38mm

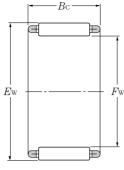

Dime	nsioni c	l'ingombro	din amaia a	Coefficien			Numero di	i giri limite	Appellativo	Massa
	mn	า	dinamico			co statico kgf	rp	m		kg
							grasso	olio		
$F_{ m w}$	$E_{\rm w}$	B_{c}	$C_{\rm r}$	Cor	$C_{ m r}$	Cor				(approssimata)
	37	13	14 500	23 000	1 480	2 350	8 500	13 000	$K32 \times 37 \times 13$	0.018
	37	17	19 200	33 000	1 950	3 350	8 500	13 000	$K32 \times 37 \times 17S$	0.022
	37	26	24 900	46 000	2 540	4 700	8 500	13 000	$K32 \times 37 \times 26ZW$	0.034
	37	27	29 600	57 500	3 000	5 850	8 500	13 000	$KJ32 \times 37 \times 27S$	0.037
32	38	14 _{-0.2}	19 800	30 500	2 020	3 100	8 500	13 000	KMJ32 \times 38 \times 14	0.022
32	38	20 -0.55	25 100	41 000	2 560	4 150	8 500	13 000	$KJ32 \times 38 \times 20S$	0.031
	38	26	31 500	54 000	3 200	5 550	8 500	13 000	$K32 \times 38 \times 26$	0.041
	39	16	22 600	32 000	2 310	3 300	8 500	13 000	$K32 \times 39 \times 16$	0.034
	39	18	24 000	35 000	2 450	3 550	8 500	13 000	$K32 \times 39 \times 18$	0.037
	39	20	26 800	40 000	2 740	4 100	8 500	13 000	KJ32×39×20S	0.041
	40	13	15 200	25 100	1 550	2 560	7 500	11 000	K35×40×13	0.019
	40	17	20 000	36 000	2 040	3 650	7 500	11 000	$K35 \times 40 \times 17$	0.025
	40	26	26 100	50 000	2 660	5 100	7 500	11 000	$K35 \times 40 \times 26ZW$	0.037
	40	27	32 000	65 000	3 250	6 600	7 500	11 000	$KJ35 \times 40 \times 27S$	0.039
	40	30	26 100	50 000	2 660	5 100	7 500	11 000	$K35 \times 40 \times 30ZW$	0.043
	41	14	19 400	30 500	1 980	3 100	7 500	11 000	$K35 \times 41 \times 14$	0.026
35	41	15 ^{-0.2} _{-0.55}	20 900	33 500	2 130	3 400	7 500	11 000	$K35 \times 41 \times 15$	0.027
	41	40	43 000	84 000	4 400	8 550	7 500	11 000	$K35 \times 41 \times 40ZW$	0.055
	42	16	24 100	36 000	2 450	3 650	7 500	11 000	$K35 \times 42 \times 16$	0.035
	42	18	24 700	37 000	2 510	3 750	7 500	11 000	$K35 \times 42 \times 18$	0.039
	42	20	28 500	44 500	2 910	4 550	7 500	11 000	$K35 \times 42 \times 20$	0.041
	42	30	39 500	68 000	4 050	6 950	7 500	11 000	$K35 \times 42 \times 30$	0.062
	42	45	42 500	74 000	4 300	7 550	7 500	11 000	$K35 \times 42 \times 45ZW$	0.106
36	42	46 ^{-0.2} _{-0.55}	51 000	106 000	5 200	10 800	7 500	11 000	K36×42×46ZW	0.086
	42	13	15 900	27 100	1 620	2 770	7 500	11 000	K37×42×13	0.021
27	42	17 _{-0.2}	20 400	37 500	2 080	3 800	7 500	11 000	KJ37×42×17S	0.026
37	42	27 ^{-0.55}	32 500	67 500	3 300	6 900	7 500	11 000	KJ37×42×27S	0.041
	44	18	26 300	41 000	2 680	4 150	7 500	11 000	K37×44×18	0.042
	43	17 _{-0.2}	20 900	38 500	2 130	3 950	7 500	11 000	K38×43×17	0.026
38	43	27 -0.55	32 000	67 500	3 300	6 900	7 500	11 000	K38×43×27	0.043

NOTA: La NTN può fornire gabbie in esecuzione K, K..S, KJ..S, KMJ o KMJ..S anche se ordinate con l'appellativo indicato in tabella. La NTN, come esecuzione normale, usa differenti configurazioni di gabbie come: K, K..S, KJ..S, KMJ o KMJ..S.

NTN

Tipo K Tipo K∵ZW **Tipo KMJ** Tipo KJ··S



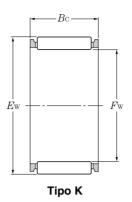


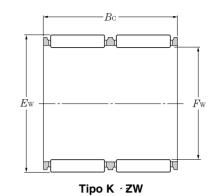
F_w 38∼48mm

Dime	nsioni	d'ingombro		Coefficient			Numero di	i giri limite	Appellativo	Massa
	m	m	dinamico			o statico kgf	rp	m		kg
	_	_			_		grasso	olio		
$F_{ m w}$	E_{w}	$B_{\rm c}$	Cr	Cor	$C_{ m r}$	$C_{ m or}$				(approssimata)
38	46	20 _{-0.2}	34 000	52 000	3 450	5 350	7 500	11 000	KMJ38 \times 46 \times 20	0.046
	46	32 ^{-0.55}	54 000	95 500	5 500	9 700	7 500	11 000	K38×46×32	0.073
	45	13	16 500	29 200	1 680	2 980	6 500	10 000	$K40 \times 45 \times 13$	0.022
	45	17	21 800	41 500	2 220	4 250	6 500	10 000	$K40 \times 45 \times 17$	0.027
	45	21	26 700	54 000	2 720	5 500	6 500	10 000	$K40 \times 45 \times 21$	0.037
	45	27	33 500	72 500	3 400	7 400	6 500	10 000	$K40 \times 45 \times 27$	0.044
40	46	17 ^{-0.2} _{-0.55}	24 600	43 000	2 500	4 350	6 500	10 000	$K40 \times 46 \times 17$	0.030
	47	18	27 700	45 000	2 820	4 550	6 500	10 000	K40×47×18	0.045
	47	20	31 000	51 500	3 150	5 250	6 500	10 000	$K40 \times 47 \times 20$	0.048
	48	20	33 000	51 000	3 350	5 200	6 500	10 000	K40×48×20	0.052
	48	25	42 500	71 000	4 350	7 250	6 500	10 000	$K40 \times 48 \times 25$	0.065
	47	17	22 100	43 000	2 250	4 400	6 500	9 500	K42×47×17	0.028
40	47	27 _{-0.2}	34 000	75 500	3 450	7 700	6 500	9 500	K42×47×27	0.047
42	48	17 ^{-0.55}	25 700	46 000	2 630	4 700	6 500	9 500	K42×48×17	0.036
	50	20	34 000	53 500	3 450	5 500	6 500	9 500	$K42 \times 50 \times 20$	0.054
	48	17	22 000	43 000	2 240	4 400	6 500	9 500	K43×48×17	0.029
43	48	27 ^{-0.2} _{-0.55}	34 000	75 500	3 450	7 700	6 500	9 500	K43×48×27	0.046
	50	18	29 100	49 000	2 960	5 000	6 500	9 500	K43×50×18	0.049
	49	19	22 100	52 000	2 260	5 300	6 000	9 000	K45×49×19	0.027
	50	17	22 800	46 000	2 330	4 700	6 000	9 000	$KJ45 \times 50 \times 17S$	0.031
	50	27	34 500	78 000	3 500	7 950	6 000	9 000	$K45 \times 50 \times 27$	0.050
45	52	18 _{-0.2}	29 700	51 000	3 000	5 200	6 000	9 000	$K45 \times 52 \times 18$	0.051
45	52	21 -0.55	32 000	56 500	3 300	5 750	6 000	9 000	$K45 \times 52 \times 21$	0.061
	53	20	36 000	59 000	3 650	6 000	6 000	9 000	$K45 \times 53 \times 20$	0.062
	53	25	46 500	82 000	4 700	8 400	6 000	9 000	$K45 \times 53 \times 25$	0.077
	53	28	49 500	90 000	5 050	9 200	6 000	9 000	KJ45×53×28S	0.078
47	52	17 _{-0.2}	23 200	47 500	2 360	4 850	5 500	8 500	K47×52×17	0.033
47	52	27 -0.55	35 500	83 000	3 650	8 450	5 500	8 500	K47×52×27	0.051
48	53	37.5 ^{-0.2} _{-0.55}	41 500	101 000	4 200	10 300	5 500	8 500	K48×53×37.5ZW	0.072
NOTALL	AITAL			K K O K I	C KM1 ° KI	M.I. O			to in tabella I a NTN come es	

NTN

Tipo KJ · S

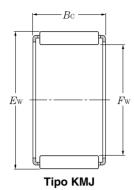


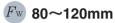

F_w 48∼60mm

Dimer	nsioni d	d'ingombro		Coefficient			Numero di	giri limite	Appellativo	Massa
	mr	n	dinamico			co statico kgf	rpr	n		kg
							grasso	olio		
$F_{ m w}$	$E_{\rm w}$	$B_{ m c}$	$C_{\rm r}$	$C_{ m or}$	$C_{ m r}$	Cor				(approssimata)
48	54	19 ^{-0.2} -0.55	31 000	61 000	3 150	6 250	5 500	8 500	K48×54×19	0.044
	55	13.5	18 100	35 500	1 850	3 600	5 500	8 000	$K50 \times 55 \times 13.5$	0.023
	55	20	27 900	62 000	2 850	6 300	5 500	8 000	$K50 \times 55 \times 20$	0.042
	55	27	37 000	88 500	3 750	9 000	5 500	8 000	$K50 \times 55 \times 27$	0.053
50	55	30 ^{-0.2} _{-0.55}	39 500	97 000	4 050	9 900	5 500	8 000	$K50 \times 55 \times 30$	0.059
	57	18	31 500	57 000	3 200	5 800	5 500	8 000	K50×57×18	0.053
	58	20	38 500	67 500	3 950	6 850	5 500	8 000	K50×58×20	0.065
	58	25	48 500	90 000	4 950	9 150	5 500	8 000	K50×58×25	0.081
52	58	19 ^{-0.2} _{-0.55}	32 000	65 500	3 250	6 650	5 000	7 500	K52×58×19	0.048
	60	17	25 800	58 000	2 630	5 900	5 000	7 500	K55×60×17	0.043
	60	20	28 800	66 500	2 940	6 750	5 000	7 500	$K55 \times 60 \times 20$	0.045
	60	30	42 000	108 000	4 300	11 000	5 000	7 500	K55×60×30	0.069
	61	19	33 000	69 500	3 350	7 100	5 000	7 500	K55×61×19	0.051
55	61	20 _{-0.2}	33 000	69 500	3 350	7 100	5 000	7 500	$K55 \times 61 \times 20$	0.054
99	61	30 ^{-0.55}	48 000	113 000	4 900	11 500	5 000	7 500	$K55 \times 61 \times 30$	0.081
	62	18	33 500	63 000	3 400	6 450	5 000	7 500	$K55 \times 62 \times 18$	0.054
	63	20	39 000	70 000	3 950	7 100	5 000	7 500	$K55 \times 63 \times 20$	0.073
	63	25	50 500	97 500	5 150	9 950	5 000	7 500	K55×63×25	0.088
	63	32	61 000	125 000	6 200	12 700	5 000	7 500	K55×63×32	0.117
58	64	19 ^{-0.2} _{-0.55}	34 000	73 500	3 450	7 500	4 700	7 000	K58×64×19	0.052
	65	20	29 800	71 500	3 050	7 300	4 300	6 500	K60×65×20	0.051
	65	30	43 500	116 000	4 450	11 800	4 300	6 500	$K60 \times 65 \times 30$	0.071
	66	19	33 500	73 500	3 450	7 500	4 300	6 500	K60×66×19	0.053
	66	20	33 500	73 500	3 450	7 500	4 300	6 500	K60×66×20	0.056
00	66	30 _{-0.2}	49 000	119 000	5 000	12 200	4 300	6 500	K60×66×30	0.084
60	68	15 ^{-0.55}	27 200	45 500	2 780	4 650	4 300	6 500	K60×68×15	0.058
	68	20	40 000	75 000	4 100	7 650	4 300	6 500	K60×68×20	0.077
	68	23	44 500	85 000	4 500	8 700	4 300	6 500	K60×68×23	0.092
	68	25	52 000	105 000	5 300	10 700	4 300	6 500	K60×68×25	0.097
	68	27	52 000	105 000	5 300	10 700	4 300	6 500	K60×68×27	0.098

NOTA: La NTN può fornire gabbie in esecuzione K, K..S, KJ..S, KMJ o KMJ..S anche se ordinate con l'appellativo indicato in tabella. La NTN, come esecuzione normale, usa differenti configurazioni di gabbie come: K, K..S, KJ..S, KMJ o KMJ..S.

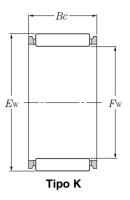
Tipo K Tipo K∵ZW Tipo KMJ

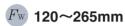




F_w 60∼80mm

Dime	nsioni d	l'ingombro	dinamico	Coefficien		o so statico	Numero di	giri limite	Appellativo	Massa
	mn	า	N		umamic	kgf	rpr	n		kg
П		D		a	a	0	grasso	olio		(
$F_{ m w}$	E_{w}	B _c	$C_{\rm r}$	Cor	$C_{ m r}$	Cor				(approssimata)
60	68	30 ^{-0.2} -0.55	46 500	91 000	4 750	9 300	4 300	6 500	K60×68×30ZW	0.119
61	66	20 -0.2	29 700	71 500	3 050	7 300	4 300	6 500	$K61 \times 66 \times 20$	0.054
0.	66	30 -0.55	43 500	116 000	4 400	11 900	4 300	6 500	K61×66×30	0.073
63	70	21 ^{-0.2} -0.55	44 500	95 500	4 500	9 700	4 300	6 500	K63×70×21	0.075
64	70	16 ^{-0.2} _{-0.55}	28 400	60 500	2 900	6 150	4 300	6 500	K64×70×16	0.053
	70	20	30 500	75 000	3 100	7 650	4 000	6 000	K65×70×20	0.055
65	70	30 _{-0.2}	45 000	124 000	4 600	12 700	4 000	6 000	K65×70×30	0.083
00	73	23 -0.55	47 000	94 000	4 800	9 600	4 000	6 000	K65×73×23	0.100
	73	30	61 000	132 000	6 200	13 400	4 000	6 000	K65×73×30	0.126
	74	20	36 000	83 500	3 700	8 550	4 000	6 000	K68×74×20	0.065
60	74	30 _{-0.2}	51 500	133 000	5 250	13 500	4 000	6 000	K68×74×30	0.097
68	74	35 ^{-0.55}	49 500	125 000	5 050	12 800	4 000	6 000	$K68 \times 74 \times 35ZW$	0.116
	75	21	45 500	101 000	4 600	10 300	4 000	6 000	K68×75×21	0.077
	76	20	36 500	86 000	3 700	8 750	3 700	5 500	K70×76×20	0.070
	76	30	53 000	139 000	5 400	14 200	3 700	5 500	K70×76×30	0.100
70	77	21 ^{-0.2} _{-0.55}	45 000	101 000	4 600	10 300	3 700	5 500	K70×77×21	0.080
	78	23	49 500	103 000	5 050	10 500	3 700	5 500	K70×78×23	0.107
	78	30	65 500	149 000	6 700	15 200	3 700	5 500	K70×78×30	0.136
72	79	21 ^{-0.2} _{-0.55}	46 500	106 000	4 750	10 800	3 700	5 500	K72×79×21	0.085
70	79	20 _{-0.2}	39 500	95 500	4 000	9 750	3 700	5 500	KMJ73×79×20	0.063
73	79	30 -0.55	54 500	146 000	5 550	14 900	3 700	5 500	K73×79×30	0.106
	81	20	40 500	100 000	4 100	10 200	3 700	5 500	KMJ75 \times 81 \times 20	0.064
	81	30	56 000	152 000	5 700	15 500	3 700	5 500	$K75 \times 81 \times 30$	0.108
75	82	21 ^{-0.2} _{-0.55}	46 000	106 000	4 700	10 800	3 700	5 500	K75×82×21	0.088
	83	23	50 500	109 000	5 150	11 100	3 700	5 500	$K75 \times 83 \times 23$	0.113
	83	30	67 500	157 000	6 850	16 100	3 700	5 500	K75×83×30	0.147
00	86	20 _{-0.2}	39 000	98 000	4 000	10 000	3 300	5 000	K80×86×20	0.077
80	86	30 -0.55	57 000	159 000	5 800	16 200	3 300	5 000	K80×86×30	0.110



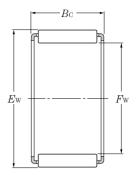


Dime	nsioni d	l'ingombro		Coefficient			Numero di	giri limite	Appellativo	Massa
	mm	1	dinamico N		dinamic	co statico kgf	rpr	n		kg
		To the state of th		<i>a</i>	~	<i>a</i>	grasso	olio		
$F_{ m w}$	E_{w}	$B_{\rm c}$	$C_{\rm r}$	Cor	$C_{ m r}$	Cor				(approssimata)
	88	23		118 000	5 400	12 100	3 300	5 000	K80×88×23	0.125
80	88	26 ^{-0.2} _{-0.55}	61 000	142 000	6 250	14 500	3 300	5 000	K80×88×26	0.131
	88	30	69 000	166 000	7 050	17 000	3 300	5 000	K80×88×30	0.157
	92	20	47 500	115 000	4 850	11 700	3 100	4 700	$KMJ85 \times 92 \times 20$	0.083
85	92	30 _{-0.2}	66 000	176 000	6 750	18 000	3 100	4 700	$K85 \times 92 \times 30$	0.142
03	93	27 -0.55	64 000	153 000	6 500	15 600	3 100	4 700	$K85 \times 93 \times 27$	0.145
	93	30	71 000	175 000	7 200	17 900	3 100	4 700	$K85 \times 93 \times 30$	0.160
	97	20	46 000	113 000	4 700	11 500	2 900	4 400	K90×97×20	0.103
	97	30	67 500	184 000	6 850	18 700	2 900	4 400	K90×97×30	0.151
90	98	26 ^{-0.2} _{-0.55}	64 000	157 000	6 550	16 000	2 900	4 400	K90×98×26	0.148
	98	27	64 000	157 000	6 550	16 000	2 900	4 400	K90×98×27	0.150
	98	30	72 500	184 000	7 400	18 800	2 900	4 400	$K90 \times 98 \times 30$	0.172
	102	21	48 000	122 000	4 900	12 400	2 800	4 200	K95×102×21	0.115
95	102	31 _{-0.2}	70 500	199 000	7 200	20 300	2 800	4 200	$K95 \times 102 \times 31$	0.172
95	103	27 -0.55	65 500	165 000	6 700	16 800	2 800	4 200	K95×103×27	0.159
	103	30	74 000	193 000	7 550	19 600	2 800	4 200	K95×103×30	0.165
	107	21	49 000	127 000	5 000	12 900	2 700	4 000	K100×107×21	0.120
100	107	31 _{-0.3}	71 500	207 000	7 300	21 100	2 700	4 000	K100×107×31	0.173
100	108	27 ^{-0.65}	61 000	153 000	6 250	15 600	2 700	4 000	K100×108×27	0.176
	108	30	76 000	201 000	7 700	20 500	2 700	4 000	K100×108×30	0.190
	112	21	48 500	127 000	4 950	12 900	2 500	3 800	K105×112×21	0.130
105	112	31 ^{-0.3} _{-0.65}	71 000	207 000	7 250	21 100	2 500	3 800	$K105 \times 112 \times 31$	0.176
	113	30	77 500	210 000	7 900	21 400	2 500	3 800	K105×113×30	0.198
	117	24	54 500	149 000	5 550	15 200	2 400	3 600	K110×117×24	0.145
110	117	34 ^{-0.3} _{-0.65}	77 500	235 000	7 900	24 000	2 400	3 600	$K110 \times 117 \times 34$	0.205
	118	30	79 000	219 000	8 050	22 300	2 400	3 600	K110×118×30	0.217
445	123	27 _{-0.3}	64 000	170 000	6 550	17 300	2 300	3 500	K115×123×27	0.200
115	125	34 ^{-0.65}	95 000	241 000	9 700	24 600	2 300	3 500	K115×125×34	0.330
120	127	24 ^{-0.3} _{-0.65}	57 500	165 000	5 850	16 800	2 200	3 300	K120×127×24	0.160

NOTA: La NTN può fornire gabbie in esecuzione K, K..S, KJ..S, KMJ o KMJ..S anche se ordinate con l'appellativo indicato in tabella. La NTN, come esecuzione normale, usa differenti configurazioni di gabbie come: K, K..S, KJ..S, KMJ o KMJ..S.

Tipo K

Dime	Dimensioni d'ingombro		Coefficienti di carico dinamico statico dinamico statico				Numero di giri limite		Appellativo	Massa
	mm	1	N		umamic	kgf	rpr	n		kg
$F_{ m w}$	$E_{ m w}$	$B_{ m c}$	$C_{\rm r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	grasso	olio		(approssimata)
120	127	34 ^{-0.3} -0.65	82 000	260 000	8 350	26 600	2 200	3 300	K120×127×34	0.235
	133	35 _{-0.3}	87 000	260 000	8 900	26 500	2 100	3 200	K125×133×35	0.275
125	135	34 ^{-0.65}	100 000	265 000	10 200	27 000	2 100	3 200	K125×135×34	0.350
130	137	24 _{-0.3}	59 000	175 000	6 000	17 900	2 100	3 100	K130×137×24	0.170
130	137	34 -0.65	84 500	277 000	8 600	28 300	2 100	3 100	K130×137×34	0.240
135	143	35 -0.3	92 500	288 000	9 450	29 400	2 000	3 000	K135×143×35	0.300
100	150	38 -0.65	145 000	325 000	14 800	33 500	2 000	3 000	K135×150×38	0.590
	153	26	72 000	214 000	7 350	21 800	1 900	2 800	K145×153×26	0.250
145	153	28 ^{-0.3} _{-0.65}	80 500	247 000	8 200	25 200	1 900	2 800	K145×153×28	0.252
	153	36	100 000	325 000	10 200	33 000	1 900	2 800	K145×153×36	0.335
150	160	46 ^{-0.3} _{-0.65}	149 000	470 000	15 200	48 000	1 800	2 700	K150×160×46	0.550
155	163	26 _{-0.3}	73 500	224 000	7 500	22 800	1 700	2 600	K155×163×26	0.270
133	163	36 ^{-0.65}	102 000	340 000	10 400	34 500	1 700	2 600	K155×163×36	0.355
160	170	46 ^{-0.3} _{-0.65}	155 000	505 000	15 800	51 500	1 700	2 500	K160×170×46	0.570
	173	26	79 000	251 000	8 050	25 600	1 600	2 400	K165×173×26	0.290
165	173	32 ^{-0.3} _{-0.65}	97 000	330 000	9 900	33 500	1 600	2 400	$K165 \times 173 \times 32$	0.340
	173	36	109 000	380 000	11 100	39 000	1 600	2 400	K165×173×36	0.375
170	180	46 ^{-0.3} _{-0.65}	160 000	540 000	16 400	55 000	1 600	2 400	K170×180×46	0.620
175	183	32 ^{-0.3} -0.65	101 000	350 000	10 300	35 500	1 500	2 300	K175×183×32	0.360
185	195	37 ^{-0.3} _{-0.65}	131 000	425 000	13 300	43 500	1 500	2 200	K185×195×37	0.560
195	205	37 ^{-0.3} _{-0.65}	135 000	450 000	13 800	46 000	1 400	2 100	K195×205×37	0.620
210	220	42 ^{-0.3} _{-0.65}	156 000	560 000	15 900	57 000	1 300	1 900	K210×220×42	0.740
220	230	42 ^{-0.3} _{-0.65}	161 000	590 000	16 400	60 000	1 200	1 800	K220×230×42	0.790
240	250	42 ^{-0.3} _{-0.65}	167 000	635 000	17 000	64 500	1 100	1 700	K240×250×42	0.850
265	280	50 ^{-0.3} _{-0.65}	256 000	850 000	26 100	87 000	1 000	1 500	K265×280×50	1.810

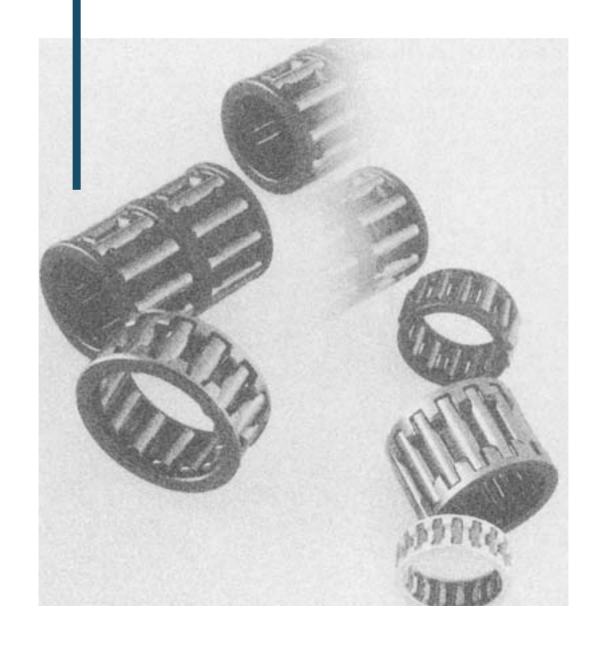

*F*w **285mm**

Dime	Dimensioni d'ingombro		dinamico	Coefficien		o statico	Numero di g	iri limite	Appellativo	Massa
	mm	1	N			kgf	rpm			kg
$F_{ m w}$	$E_{ m w}$	$B_{ m c}$	$C_{ m r}$	Cor	$C_{ m r}$	$C_{ m or}$	grasso	olio		(approssimata)
285	300	B _c 50 -0.3 -0.65		Cor 930 000		Cor 94 500	950	1 400	K285×300×50	1.970
10-									ato in tahalla. La NTN, coma es	

NOTA: La NTN può fornire gabbie in esecuzione K, K..S, KJ..S, KMJ o KMJ..S anche se ordinate con l'appellativo indicato in tabella. La NTN, come esecuzione normale, usa differenti configurazioni di gabbie come: K, K..S, KJ..S, KMJ o KMJ..S.

Serie in pollici

Tipo PCJ


*F*_w 12.700∼63.500mm

Dime	ensioni d'ingoml	oro		Coefficien			Numero d	li giri limite	Appellativo	Massa
	mm		dinamico	statico N	dinamico	statico gf	rr	om		kg
$F_{ m w}$	$E_{ m w}$	$B_{\rm c}$.9.	grasso	olio		9
		0 -0.35 (0 -0.014)	$C_{\rm r}$	Cor	C_{r}	Cor				(approssimata)
12.700(½)	15.875(%)	12.70(½)	6 650	8 600	680	875	16 000	24 000	PCJ081008	0.003
19.050(¾)	25.400(1)	25.40(1)	25 700	35 000	2 620	3 550	13 000	20 000	PCJ121616	0.023
22.225(%)	28.575(11/8)	25.40(1)	29 600	44 000	3 000	4 450	11 000	17 000	PCJ141816	0.028
25.400(1)	33.338(15/16)	19.05(3/4)	29 200	38 500	2 980	3 950	10 000	15 000	PCJ162112	0.032
25.400(1)	33.338(15/16)	25.40(1)	38 000	54 000	3 850	5 500	10 000	15 000	PCJ162116	0.044
28.575(1½)	38.100(1½)	25.40(1)	44 000	60 000	4 500	6 100	9 500	14 000	PCJ182416	0.058
20.373(1/8)	38.100(1½)	31.75(1¼)	53 500	77 000	5 450	7 850	9 500	14 000	PCJ182420	0.073
	41.275(1%)	19.05(3/4)	35 000	46 000	3 600	4 700	8 500	13 000	PCJ202612	0.045
31.750(11/4)	41.275(1%)	25.40(1)	45 500	64 500	4 650	6 600	8 500	13 000	PCJ202616	0.062
	41.275(1%)	38.10(1½)	65 000	102 000	6 650	10 400	8 500	13 000	PCJ202624	0.096
34.925(1¾)	44.450(1¾)	31.75(11/4)	60 000	94 500	6 150	9 650	7 500	11 000	PCJ222820	0.090
	47.625(1%)	25.40(1)	51 000	78 500	5 200	8 000	6 500	10 000	PCJ243016	0.075
38.100(1½)	47.625(1%)	31.75(11/4)	62 000	101 000	6 300	10 300	6 500	10 000	PCJ243020	0.095
	47.625(1%)	38.10(1½)	72 500	124 000	7 400	12 600	6 500	10 000	PCJ243024	0.114
	53.975(21/8)	25.40(1)	56 000	92 500	5 700	9 450	6 000	9 000	PCJ283416	0.086
44.450(1¾)	53.975(21/8)	31.75(11/4)	68 000	119 000	6 900	12 100	6 000	9 000	PCJ283420	0.110
	53.975(21/8)	38.10(1½)	79 500	145 000	8 100	14 800	6 000	9 000	PCJ283424	0.132
	60.325(23/8)	25.40(1)	58 500	102 000	5 950	10 400	5 000	7 500	PCJ323816	0.094
50.800(2)	60.325(23/8)	31.75(11/4)	71 000	131 000	7 250	13 400	5 000	7 500	PCJ323820	0.120
	60.325(23/8)	38.10(1½)	83 000	160 000	8 450	16 400	5 000	7 500	PCJ323824	0.144
52.388(2 ½6)	61.913(2 ⁷ / ₁₆)	25.40(1)	55 000	95 500	5 600	9 750	5 000	7 500	PCJ333916	0.087
53.975(2 ¹ / ₈)	63.500(2½)	25.40(1)	56 500	99 500	5 750	10 200	5 000	7 500	PCJ344016	0.091
30.373(£/8)	63.500(2½)	38.10(1½)	82 000	161 000	8 350	16 400	5 000	7 500	PCJ344024	0.144
57.150(21/4)	66.675(25%)	25.40(1)	57 500	104 000	5 900	10 600	4 300	6 500	PCJ364216	0.094
60.325(2 ³ / ₈)	69.850(2¾)	38.10(1½)	87 500	182 000	8 950	18 500	4 300	6 500	PCJ384424	0.161
63.500(2½)	73.025(27/8)	25.40(1)	61 500	117 000	6 250	11 900	4 000	6 000	PCJ404616	0.105

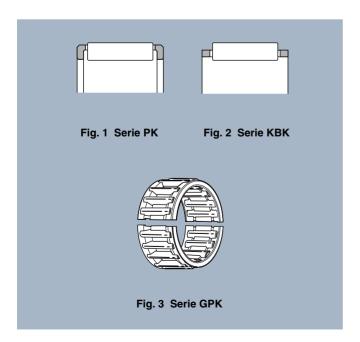
F_w 63.500∼101.600mm

Din	Dimensioni d'ingombro			Coefficien statico	ti di carico dinamico		Numero di giri limite		Appellativo	Massa
	mm	T.	dinamico	N		gf		m		kg
$F_{ m w}$	$E_{ m w}$	$B_{\rm c}$ 0 (0 -0.014)	C_{r}	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	grasso	olio		(approssimata)
63.500(2½)	73.025(2½)	38.10(1½)	89 000	189 000	9 100	19 300	4 000	4 000	PCJ404624	0.167
69.850(2 ³ / ₄)	79.375(3½)	25.40(1)	65 000	130 000	6 650	13 200	3 700	5 500	PCJ445016	0.116
76.200(3)	85.725(3 ³ / ₈) 85.725(3 ³ / ₈)	25.40(1) 38.10(1½)	68 500 99 500	143 000 231 000	7 000 10 100	14 600 23 500	3 300 3 300	5 000 5 000	PCJ485416 PCJ485424	0.127 0.201
88.900(3½)	98.425(3½) 101.600(4) 101.600(4)	25.40(1) 25.40(1) 38.10(1½)	75 000 82 000 121 000	169 000 154 000 253 000	7 650 8 350 12 300	17 200 15 700 25 800	2 900 2 900 2 900	4 400 4 400 4 400	PCJ566216 PCJ566416 PCJ566424	0.149 0.187 0.305
101.600(4)	114.300(4½) 114.300(4½)	25.40(1) 38.10(1½)	87 500 129 000	176 000 290 000	8 950 13 200	18 000 29 500	2 500 2 500	3 800 3 800	PCJ647216 PCJ647224	0.212 0.345

Gabbie a rullini per imbiellaggi

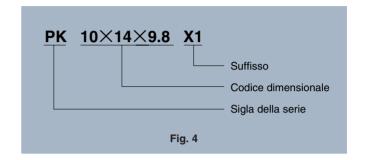
Gabbie a rullini per imbiellaggi

Le gabbie a rullini **NTN** per imbiellaggi sono realizzate in modo speciale per il particolare impiego nelle bielle dei motori alternativi di piccole e medie dimensioni e dei compressori.


Le bielle operano in condizioni di funzionamento severe che includono elevate temperature, difficoltà di lubrificazione e carichi la cui ampiezza e direzione variano rapidamente. Per soddisfare tali esigenze, la NTN ha progettato delle gabbie a struttura unica e costruite con un materiale particolare. Il processo di produzione è realizzato con una speciale tecnica di lavorazione.

Tipi ed esecuzioni

Le gabbie a rullini **NTN** per imbiellaggi sono disponibili in due tipologie diverse: la **serie PK** e la **serie KBK**.


La serie PK viene impiegata per il supporto del bottone di manovella (lato occhio grande). Una gabbia per tale tipo di supporto è concepita per essere guidata sull'esterno ed è realizzata con un acciaio ad alta resistenza a trazione e con trattamento di tempra superficiale. Inoltre, le gabbie in esame possono essere rivestite superficialmente mediante un riporto di un metallo non ferroso. La NTN offre anche la serie GPK in due metà che può essere montata su di un albero a gomiti in esecuzione massiccia.

La **serie KBK** viene usata per il supporto dello spinotto (lato occhio piccolo). La gabbia per tale tipo di supporto è concepita per la guida nella superficie interna dove quest'ultima è realizzata più lunga possibile al fine di poter ridurre la pressione specifica. Anche la lunghezza dei rullini viene massimizzata relativamente alla larghezza della biella per poter aumentare la capacità di carico del supporto.

Interpretazione dell'appellativo

L'appellativo delle gabbie a rullini NTN per imbiellaggi comprende una serie di cifre: Il codice dimensionale (diametro del cerchio inscritto×diametro del cerchio circoscritto×larghezza della gabbia) e suffisso.

Giuoco radiale

I giuochi radiali raccomandati per le gabbie NTN per i supporti degli imbiellaggi sono riportati nella **Tabella 1**. E' comunque da tener presente che il giuoco reale ed ottimale dipende dal carico sul supporto, dal regime di rotazione e dalla temperatura locale.

Un gioco radiale appropriato può essere ottenuto mediante un combinazione adeguata delle selezionature del diametro dei rullini, della dimensione del diametro del foro della biella e del diametro del bottone di manovella. Le combinazioni tipiche si trovano nella **Tabella 2**.

Tabella 1 Accoppiamenti raccomandati

Dimensioni in μm

			B 1111 0110101111 111 /#11
Diametro del perno mm oltre incluso		Lato occhio grande	Lato occhio piccolo
6	10	9~23	5~17
10	18	10~24	5~17
18	30	10~24	5~17
30	40	18~33	_

Tabella 2 Giuochi radiali ottenuti dalle opportune combinazioni delle selezionature

Per la **serie PK** gabbie a rullini per bottone di manovella Diametro del foro dell'occhio grande: 22 mm H6 (0 \sim +13 μ m) Diametro del bottone di manovella: 14 mm h5 (0 \sim -8 μ m)

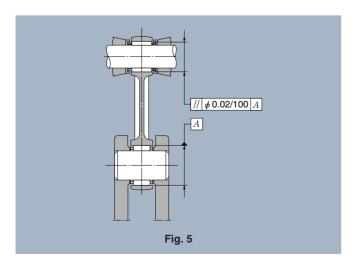
dimensioni in μ m

		۵	
Gruppi selezionatura del foro Gruppi	0~+4	+4~+8	+8~+13
di selezionatura di selezionatura del bottone di manovella dei rullini	-4~-6	-2~-4	0~-2
0~-3	10~17	10~17	10~18
-3~-6	13~20	13~20	13~21
-6~-8	16~22	16~22	16~23

Esigenze dei fori delle bielle e dei perni relativi

Le bielle (superfici dei fori), i bottoni di manovella e gli spinotti (superficie esterna) vengono impiegati come piste volventi. Essi devono perciò avere la possibilità di sopportare dei carichi elevati e di mantenere una altrettanto elevata precisione. Per ottenere tali caratteristiche, le bielle ed i perni relativi devono soddisfare le seguenti esigenze.

Le bielle sono costruite in acciaio da cementazione come il l'acciaio al cromo-molibdeno (SCM415, ecc.) od al nickel-cromo-molibdeno (SNCM420, ecc.); i bottoni di manovella e gli spinotti sono costruiti in acciaio al cromo (SCr420, ecc.) e le superfici relative sono cementate e temprate.


La durezza superficiale dei componenti sopra citati deve aggirarsi tra HRC58 e HRC64, e la effettiva profondità dello strato indurito deve ancora avere una durezza 550HV. La profondità di cementazione effettiva richiesta varia a seconda del carico ed alla dimensione del perno. Per i dati specifici di una singola applicazione, si prega di prendere contatto con l'assistenza tecnica NTN.

La precisione di forma dei fori della biella, del bottone di manovella e della superficie esterna dello spinotto devono soddisfare i valori indicati dalla **Tabella 3**. Il parallelismo del bottone di manovella e quella dello spinotto non deve superare il valore di 0.02 mm, misurato su di una lunghezza di 100 mm (**Fig. 5**).

Come linea di guida per le finiture superficiali dei fori della biella prevedere 0.2a e per le superfici esterne dei perni prevedere 0.1a.

Tabella 3 Precisione raccomandato per la biella ed i perni

Particolare	Caratteristiche	Dimensione dei perni e gruppi mm						
ranicolare	Caratteristiche	~14	14~18	18~25	25~30	30~40		
Biella	Circolarità (max)	3	4	4	5	5		
Diella	Cilindricità (max)	2	3	3	4	4		
Perni	Circolarità (max)	2	2	3	3	4		
remi	Cilindricità (max)	1	1	2	2	3		

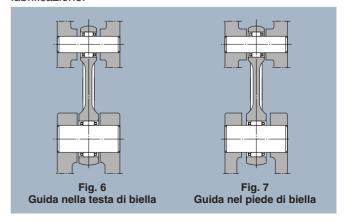
Guida assiale della biella

Per la guida assiale della biella sono possibili due diverse tecniche: una tecnica è quella di registrare il giuoco tra le superfici dei contrappesi dell'albero a gomito ovvero dal lato dell'occhio grande (registrazione alla testa di biella); e l'altra tecnica è quella di ridurre il giuoco rispetto alle portate dello stantuffo ovvero dal lato dell'occhio piccolo (registrazione al piede di biella).

In genere, per ottenere un movimento accurato della biella, viene scelta di frequente la guida all'occhio grande od alla testa di biella.

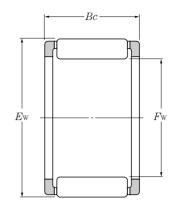
La guida nel piede di biella viene usata quando quest'ultima sia troppo corta, quando la velocità di funzionamento della biella sia relativamente alta e quando non sia garantita una buona lubrificazione alla testa di biella ed a tale scopo debba essere lasciato un rilevante giuoco assiale.

Guida alla testa di biella


Le superfici di guida sono rispettivamente le facciate laterali della biella e quelle dei contrappesi dell'albero motore; in tal modo si limita lo spostamento assiale della biella. Al fine di garantire la lubrificazione sia al cuscinetto della testa di biella che alle superfici laterali di guida, nella testa di biella viene praticato un foro, degli intagli ed una gola di lubrificazione. In accordo ad una particolare esigenza, le superfici di guida dell'albero motore possono essere indurite, protette con una lega di rame o mediante ralle indurite in acciaio.

La gabbia a rullini montata nel piede di biella viene guidata assialmente dalle portate dello stantuffo. Con la biella guidata nell'occhio grande, tra le porate del pistone ed il piede di biella si conferisce un giuoco assiale più elevato.

Guida nel piede di biella

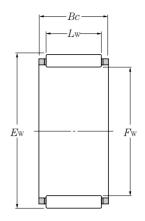

Le superfici laterali del piede di biella e quelle contrapposte delle portate dello stantuffo limitano lo spostamento assiale della biella. Generalmente, per la guida nel piede di biella non sono richiesti fori ed intagli di lubrificazione. Comunque, le superfici di guida devono essere indurite o, come richiesto, provviste di ralle interposte. Per la lubrificazione del supporto, nella biella viene praticato un foro passante (nell'occhio piccolo).

La testa di biella, rispetto ai contrappesi dell'albero ha un notevole giuoco assiale e quindi non necessita di gole per la lubrificazione.

Per bottone di manovella

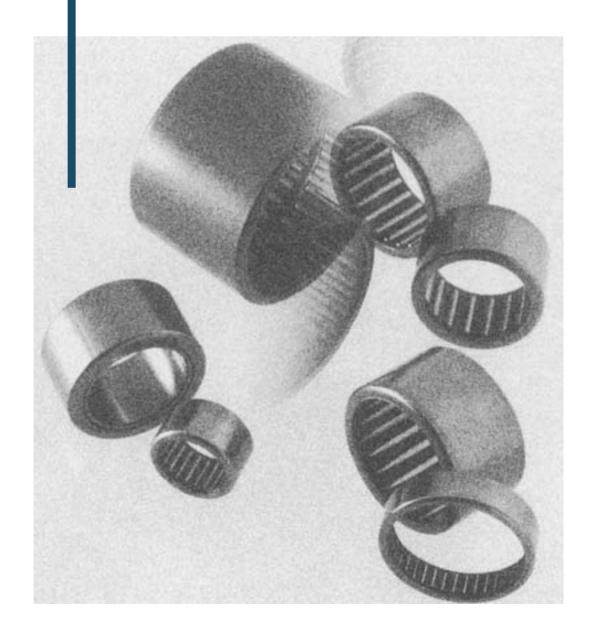
Tipo PK

*F*_w 10∼30mm


Dimor	ncioni d'	ingombro		Coefficient	i di carico		Appellativo	Massa
Dilliel	isioiii u	iligollibio	dinamico	statico	dinamico	statico	Арренаціо	iviassa
	mm			N		kgf		kg
$F_{ m w}$	E_{w}	Bc 0 -0.2	$C_{ m r}$	Cor	$C_{ m r}$	$C_{ m or}$		(approssimata)
10	14	9.8	5 050	4 900	515	500	PK10×14× 9.8X1	0.0037
12	16	10	5 450	5 600	555	570	PK12×16×10.2	0.0044
12	17	9.8	6 800	6 550	695	670	PK12×17× 9.8X2	0.0051
14	19	9.7	7 300	7 400	745	755	PK14×19× 9.7X1	0.0065
15	20	9.8	7 250	7 450	740	760	PK15×20× 9.8X	0.0067
15	21	11.8	10 000	10 200	1 020	1 040	PK15×21×11.8X1	0.0096
16	22	11.8	10 000	10 300	1 020	1 050	PK16×22×11.8X2	0.0097
10	22	13.2	10 900	11 500	1 110	1 170	PK16×22×13.2X	0.0110
40	24	11.8	11 300	12 400	1 150	1 260	PK18×24×11.8X3	0.0110
18	24	13.3	13 300	15 300	1 360	1 560	PK18×24×13.3X1	0.0120
19	24	13.9	11 900	15 200	1 220	1 550	PK19×24×13.9X	0.0110
19	25	15.8	14 300	17 000	1 460	1 730	PK19×25×15.8X1	0.0150
20	26	13.8	14 000	16 700	1 420	1 700	PK20×26×13.8X6	0.0140
	28	15.8	15 900	20 200	1 620	2 060	PK22×28×15.8X1	0.0170
22	29	17.8	18 800	22 800	1 920	2 320	PK22×29×17.8X7	0.0240
	30	14.7	16 900	18 200	1 720	1 860	PK22×30×14.7X2	0.0240
	30	17.8	21 900	25 400	2 230	2 590	PK22×30×17.8X2	0.0270
24	31	16.8	20 800	26 600	2 120	2 710	PK24×31×16.8X7	0.0240
	32	19.8	22 900	27 500	2 340	2 810	PK24×32×19.8X6	0.0330
26	31	13.8	14 200	20 900	1 450	2 130	PK26×31×13.8X2	0.0150
20	34	16.8	21 600	26 100	2 200	2 660	PK26×34×16.8X7	0.0320
27	36	20.8	30 500	38 500	3 150	3 950	PK27×36×20.8X1	0.0440
28	36	15.8	23 700	30 000	2 410	3 050	PK28×36×15.8X6	0.0310
20	37	20.8	32 500	41 500	3 300	4 250	PK28×37×20.8X	0.0480
29	39	21.4	32 500	39 500	3 300	4 000	PK29×39×21.4X2	0.0550
30	37	15.9	21 900	30 500	2 230	3 100	PK30×37×15.9X	0.0280
30	38	15.8	24 600	32 000	2 510	3 300	PK30×38×15.8X	0.0320

*F*_w 30∼38mm

kg (approssimata) 0.037 0.057 0.069
0.037
0.057
0.069
0.046
0.056


Per piede di biella

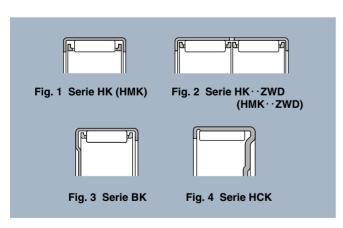
Tipo KBK

*F*_w 7~22mm

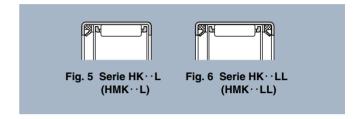
	Dimension	oni d'ingo	mbro	dinamico		nti di carico dinamico		Appellativo	Massa
		mm			V	kg			kg
$F_{ m w}$	$E_{ m w}$	Bc 0 -0.2	$L_{ m w}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	Cor		(approssimata)
7	10	9.8	6.8	3 050	2 780	310	284	KBK 7×10× 9.8X	0.0022
8	11	11.8	8.8	4 100	4 200	415	430	KBK 8×11×11.8X1	0.0028
9	12	11.5	8.8	4 400	4 750	450	485	KBK 9×12×11.7	0.0030
	14	9.8	6.8	4 500	4 200	460	430	KBK10×14× 9.8X	0.0042
10	14	12.5	9.8	6 100	6 200	620	635	KBK10×14×12.5X1	0.0053
	14	14.8	9.8	6 100	6 200	620	635	KBK10×14×14.8X	0.0064
11	14	13.5	10.8	5 850	7 250	595	740	KBK11×14×13.5X1	0.0044
	15	16.4	13.8	7 500	10 200	765	1 040	KBK12×15×16.6	0.0055
	16	14.8	11.8	7 600	8 600	775	875	KBK12×16×14.8X	0.0072
12	16	15.4	9.8	7 000	7 800	715	795	KBK12×16×15.6	0.0079
	16	15.8	12.8	8 100	9 350	825	955	KBK12×16×16	0.0073
	17	14.8	9.8	8 400	8 550	855	875	KBK12×17×14.8X	0.0094
	18	16.8	13.8	9 750	12 400	995	1 260	KBK14×18×17	0.0089
14	18	19.8	13.8	9 150	11 300	930	1 160	KBK14×18×20	0.0130
	19	17.1	12.8	11 100	12 700	1 130	1 300	KBK14×19×17.1X	0.0120
15	19	17.3	13.8	10 900	14 600	1 110	1 490	KBK15×19×17.3X	0.0100
	20	16.8	13.8	10 800	14 700	1 100	1 500	KBK16×20×17	0.0100
40	20	19.6	13.8	10 200	13 600	1 040	1 390	KBK16×20×19.8	0.0130
16	20	23.8	19.8	13 600	19 700	1 390	2 010	KBK16×20×23.8X	0.0150
	21	19.6	15.8	13 900	17 600	1 420	1 790	KBK16×21×19.6X	0.0160
	21	23	15.8	13 200	19 400	1 340	1 980	KBK17×21×23.2	0.0160
17	21	25	17.8	13 100	19 200	1 340	1 960	KBK17 \times 21 \times 25X	0.0170
	22	22	18.8	16 900	22 900	1 720	2 340	KBK17×22×22X1	0.0170
40	22	21.8	15.8	12 500	18 300	1 270	1 870	KBK18×22×21.8X3	0.0150
18	22	23.8	17.8	13 000	19 300	1 330	1 970	KBK18×22×23.8X1	0.0160
20	25	27.9	21.8	20 800	31 500	2 120	3 200	KBK20×25×27.9X	0.0270
22	28	29.9	23.8	26 000	38 000	2 650	3 900	KBK22×28×29.9X1	0.0390

Astucci a rullini

Gli astucci a rullini NTN sono costituiti da un anello esterno (ottenuto da stampaggio profondo da lamiera di acciaio) e da una gabbia a rullini inserita nell'anello esterno stesso (astuccio). L'astuccio è cementato e temprato e la sua superficie cilindrica interna costituisce la pista volvente della gabbia a rullini. L'astuccio a rullini rappresenta il cuscinetto con anello esterno avente una sezione di altezza limitatissima e quindi contribuisce al risparmio di spazio e di costo. Usualmente, questo tipo di cuscinetto, mancante dell'anello interno, viene adottato in un progetto che prevede direttamente la superficie dell'albero come pista volvente: il suo anello esterno è realizzato in modo tale da non poter essere separato dai rullini e dalla gabbia. L'astuccio a rullini viene guindi montato con adequato forzamento nel foro di un alloggiamento rigido e non richiede un ulteriore bloccaggio assiale mediante anelli elastici o simili.


Tipi ed esecuzioni

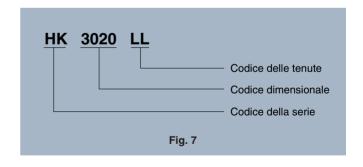
Gli astucci a rullini, NTN a seconda della forma del loro anello esterno, possono essere classificati senza fondello e con fondello.


L'esecuzione senza fondello è ancora suddivisa nella serie HK (serie normale con dimensioni metriche), nella serie HMK (serie per carichi gravosi) e nella serie DCL (con dimensioni in pollici).

L'esecuzione con fondello viene ulteriormente suddivisa nella **serie BK** (serie normale con dimensioni metriche) e nella **serie HCK** (priva di gabbia ed a pieno riempimento di rullini, per esclusivo uso nei giunti cardanici).

Astucci aventi larghezza superiore sono disponibili nelle **serie HK**, **HMK** e **BK** nella configurazione a due corone (suffisso **ZW**) ed hanno i rullini disposti su due file.

Gli astucci a rullini NTN con anelli di tenuta in gomma sintetica ad uno od entrambi i lati (rispettivamente suffissi L ed LL) sono prelubrificati con grasso al sapone di litio. Il campo di temperatura di funzionamento ammesso di quest'ultima variante di astuccio a rullini è da —25°C a + 100°C. A causa della presenza degli anelli di tenuta, i rullini di questi ultimi astucci sono più corti di quelli degli astucci normali e quindi i relativi coefficienti di carico risultano inferiori.



La gabbia impiegata negli astucci a rullini è usualmente in lamiera di acciaio stampata (suffisso **C**) oppure rullata e saldata (priva di suffisso).

Inoltre, alcuni astucci a rullini di piccole dimensioni impiegano delle gabbie in materiale plastico rinforzato con fibre di vetro o di carbonio (suffisso **T2**). Le gabbie **T2** permettono una temperatura massima di funzionamento di 120°C; la temperatura di funzionamento massima continuativa è però di 100°C.

Appellativo

Come illustrato dalla **fig. 7**, l'appellativo degli astucci a rullini **NTN** comprende il codice della serie, il codice dimensionale (diametro del cerchio inscritto Xlarghezza) e suffisso).

Accoppiamenti dei cuscinetti

L'accoppiamento di un astuccio a rullini NTN con il relativo alloggiamento è usualmente del tipo stretto per cui il diametro del cerchio inscritto $(F_{\rm w})$ soddisfa la classe di tolleranza F8 delle norme ISO. Comunque, il diametro del cerchio inscritto $(F_{\rm w})$ dell'astuccio montato con accoppiamento stretto, varia a seconda del materiale e della rigidezza dell'alloggiamento. Perciò, l'accoppiamento reale del cuscinetto (interferenza) deve essere rilevato e determinato tramite tentativi prima del montaggio vero e proprio del cuscinetto.

Con un alloggiamento avente sufficiente rigidità e scegliendo un accoppiamento indicato nella **Tabella 1** si può ottenere un diametro del cerchio inscritto ai rullini $(F_{\rm w})$ prossimo a F8 ed il giuoco radiale prossimo a quello normale.

Tabella 1 Accoppiamento con l'alloggiamento e con l'albero

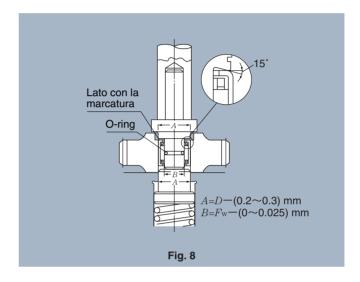
Appellativo	Alloggi	amento	Albero		
della serie	Acciaio	Lega leggera	Senza anello interno	Con anello interno	
HK,BK	N6 (N7)	R6 (R7)	hE (hC)	L.F. (:C)	
HMK,DCL	J6 (J7)	M6 (M7)	h5 (h6)	k5 (j6)	
HCK	F7		k6		

Precisione del foro di alloggiamento

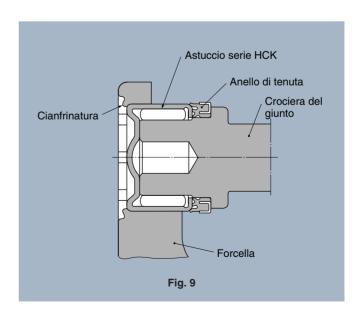
Poichè l'anello esterno ha uno spessore limitato, le prestazioni di un astuccio a rullini sono influenzate dalla rugosità superficiale e dalla precisione dimensionale e di forma del foro di alloggiamento nel quale l'astuccio verrà montato con accoppiamento forzato. Il foro di alloggiamento deve soddisfare la precisione indicata nella **Tabella 2**. Per quanto riguarda l'albero che viene impiegato direttamente come pista volvente o sul quale viene montato un anello interno, fare riferimento al Paragrafo **14.3** "**Precisione dell'albero e dello alloggiamento)**" a pag A-59.

Tabella 2 Precisione del foro di alloggiamento

Caratteristica	Tolleranza
Rotondità (max)	IT4 od inferiore
Cilindricità (max)	IT4 od inferiore
Rugosità superficiale (max)	1.6a


Procedura di montaggio

L'accoppiamento forzato di un astuccio a rullini NTN in un alloggiamento richiede l'impiego di un attrezzo di montaggio che appoggi sulla facciata laterale dell'astuccio recante la marcatura.


Non battere mai con un martello sul cuscinetto per eseguirne il montaggio. Per montare in modo affidabile il cuscinetto ovvero per evitare un disallineamento od un posizionamento errato, usare un attrezzo che comprenda un mandrino sul quale sia stato posto un O-ring, come

illustrato dalla Fig.8.

Poiché l'astuccio a rullini NTN è bloccato nell'alloggiamento, non è necessario l'ulteriore uso di anelli elastici o spalleggiamenti. Comunque, se il montaggio avviene in un alloggiamento con spalleggiamento, si deve porre una cura particolare per evitare l'interferenza della superficie laterale dell'astuccio con lo spalleggiamento stesso e quindi la deformazione del cuscinetto

Gli astucci a rullini della **serie NTN HCK** vengono bloccati nella forcella mediante cianfrinatura con una speciale attrezzatura di montaggio (**Fig. 9**) La durezza della forcella non deve superare il valore HRC30. Per ulteriori informazioni riguardanti l'attrezzatura speciale di montaggio (Modello IPH), si prega di prendere contatto con l'assistenza tecnica **NTN**.

Tolleranze degli astucci a rullini e sistema di misura

L'anello esterno degli astucci a rullini è a parete sottile. Esso quindi subisce delle deformazioni inevitabili durante il processo di produzione, particolarmente durante il trattamento termico. Comunque quando l'anello esterno viene montato forzato in un alloggiamento dimensionato in modo corretto, ne vengono ripristinate le caratteristiche funzionali.

Per il motivo sopra esposto è priva di senso la misurazione di un astuccio a rullini prima del montaggio con adeguato forzamento. Quindi, la precisione di un astuccio a rullini viene rilevata misurando il cerchio inscritto $(F_{\rm w})$ solo dopo che l'astuccio è stato montato in

Tabella 3 Tolleranza del diametro del cerchio inscritto (serie HK e BK)

Dimensioni in μ m Diametro de Diametro Diametro Tolleranza del diametro cerchio del foro del esterno del cerchio inscritto dell'anello calibro inscritto esterno ad anello Inferiore Superiore D 3 6.5 6.484 3.016 3.006 7 984 4.022 4.010 4 8 5 9 8.984 5.022 5.010 6 10 9.984 6.022 6.010 10.980 7.028 7.013 11 8.013 8 12 11.980 8.028 9 13 9.028 9.013 12.980 10.013 10 14 13.980 10.028 16 15.980 12.034 12.016 12 12 18 17.980 12.034 12.016 13 19 18.976 13.034 13.016 14.034 14.016 14 20 19.976 15 21 20.976 15.034 15 016 22 21.976 16.034 16.016 16 23 17 22.976 17.034 17.016 24 23 976 18 034 18 016 18 26 20.020 20 25.976 20.041 22 28 27.976 22.041 22.020 32 31.972 25.041 25.020 25 28 35 34.972 28.041 28.020 30 37 36.972 30.041 30.020 35 42 41.972 35.050 35.025 40 47 46.972 40.050 40.025 45 52 51.967 45.050 45.025 50 58 57.967 50.050 50.025 63 62,967 55.060 55.030 55

67.967

60

68

60.060

60.030

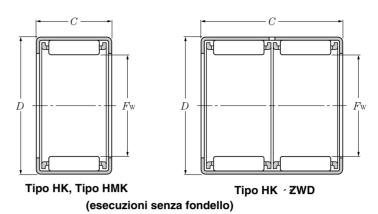
un calibro ad anello avente le specifiche dimensioni (spessore radiale dell'anello almeno 20mm).

Le **tabelle da 3** a **6** riportano le tolleranze del diametro dei fori dei calibri ad anello ed i valori del diametro del cerchio inscritto ai rullini $(F_{\rm w})$, da applicarsi alla **serie HK** e **BK** (serie normali in dimensioni metriche), alla **serie HMK** (serie per carichi gravosi), alla **serie DCL** (serie con dimensioni in pollici) ed alla **serie HCK** (per giunti cardanici). Quando si misura il diametro del cerchio inscritto ai rullini $(F_{\rm w})$ con un calibro a tampone, la dimensione del lato PASSA e di quello NON PASSA devono soddisfare rispettivamente il valore "Inferiore" e quello "Superiore" della tolleranza del cerchio inscritto più 2 μ m. Tali valori sono in linea con la specifica normativa ISO.

Tabella 4 Tolleranza del diametro del cerchio inscritto (serie HMK)

Dimensioni in μ m

				nension in μ in
Diametro de cerchio inscritto	Diametro esterno dell'anello esterno	Diametro del foro del calibro ad anello	Tolleranza del cerchi	
$F_{ m W}$	D	au aricilo	Superiore	Inferiore
8	15	14.995	8.028	8.013
9	16	15.995	9.028	9.013
10	17	16.995	10.028	10.013
12	19	18.995	12.034	12.016
14	22	21.995	14.034	14.016
15	22	21.995	15.034	15.016
16	24	23.995	16.034	16.016
17	24	23.995	17.034	17.016
18	25	24.995	18.034	18.016
19	27	26.995	19.041	19.020
20	27	26.995	20.041	20.020
21	29	28.995	21.041	21.020
22	29	28.995	22.041	22.020
24	31	30.994	24.041	24.020
25	33	32.994	25.041	25.020
26	34	33.994	26.041	26.020
28	37	36.994	28.041	28.020
29	38	37.994	29.041	29.020
30	40	39.994	30.041	30.020
32	42	41.994	32.050	32.025
35	45	44.994	35.050	35.025
37	47	46.994	37.050	37.025
38	48	47.994	38.050	38.025
40	50	49.994	40.050	40.025
45	55	54.994	45.050	45.025
50	62	61.994	50.050	50.025


Tabella 5 Tolleranza del diametro del cerchio inscritto (serie DCL) Dimensioni in $\,\mu\,\mathrm{m}$

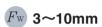
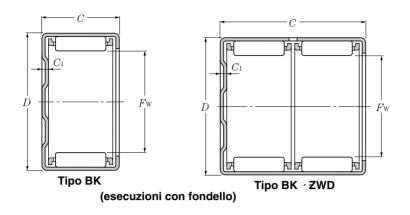

			ااط	Herisioni ili μ ili
Diametro de cerchio inscritto	Diametro esterno dell'anello esterno	Diametro del foro del calibro ad anello	Tolleranza del cerchi	del diametro o inscritto
$F_{ m W}$	D	au ariciio	Superiore	Inferiore
6.350	11.112	11.125	6.411	6.388
7.938	12.700	12.713	7.998	7.976
9.525	14.288	14.300	9.586	9.563
11.112	15.875	15.888	11.173	11.151
12.700	17.462	17.475	12.761	12.738
14.288	19.050	19.063	14.348	14.326
15.875	20.638	20.650	15.936	15.913
17.462	22.225	22.238	17.523	17.501
19.050	25.400	25.387	19.086	19.063
20.638	26.988	26.975	20.673	20.650
22.225	28.575	28.562	22.261	22.238
23.812	30.162	30.150	23.848	23.825
25.400	31.750	31.737	25.436	25.413
26.988	33.338	33.325	27.023	27.000
28.575	34.925	34.912	28.611	28.588
30.162	38.100	38.087	30.198	30.175
31.750	38.100	38.087	31.786	31.763
34.925	41.275	41.262	34.963	34.938
38.100	47.625	47.612	38.141	38.113
41.275	50.800	50.787	41.316	41.288
44.450	53.975	53.962	44.493	44.463
47.625	57.150	57.137	47.668	47.638
50.800	60.325	60.312	50.846	50.815

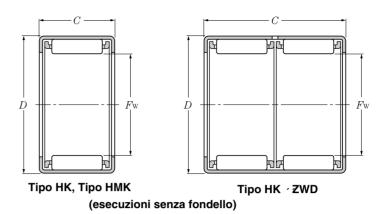
Tabella 6 Tolleranza del diametro del cerchio inscritto (serie HCK) Dimensioni in $\,\mu\,\mathrm{m}$

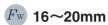
(,		ווט	Herisioni in μ in
Diametro de cerchio inscritto	Diametro esterno dell'anello esterno	Diametro del foro del calibro ad anello	Tolleranza d del cerchi	
$F_{ m W}$	D	au ariello	Superiore	Inferiore
10 11.656 13 14 16 18	15 17.1 19 20 22 24	15.016 17.116 19.020 20.020 22.020 24.020	10.026 11.687 13.031 14.031 16.031 18.031	10.011 11.669 13.013 14.013 16.013 18.013
18 20	24.6 27.9	24.620 27.920	18.031 20.038	13.013 20.017


Tipo HK, Tipo HK ∵ZWD **Tipo HMK** Tipo BK, Tipo BK∵ZWD

	Dime	nsioni d	l'ingo	mbro			di carico dinamico	etatico	Numero di	giri limite	Appella	ativo	Massa	Anello interno ¹⁾ appropriato
		mı	n		N		kg		rpı	m			kg	арргорпаю
	$F_{ m w}$	D	C 0 -0.2	$\overset{C_1}{max}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	grasso	olio	senza fondello	con fondello	(approssimata)	(come riferimento)
	•	6.5	6	_	1 250	835	128	85	33 000	50 000	HK0306T2	_	0.0006	_
	3	6.5	6	0.8	1 250	835	128	85	33 000	50 000	_	BK0306T2	0.0007	_
		8	8	_	1 770	1 270	180	129	30 000	45 000	HK0408T2	_	0.0016	_
	4	8	8	1.6	1 770	1 270	180	129	30 000	45 000	_	BK0408T2	0.0018	_
		9	9	_	2 640	2 190	269	224	27 000	40 000	HK0509T2	_	0.0019	_
	5	9	9	1.6	2 640	2 190	269	224	27 000	40 000	_	BK0509T2	0.0021	_
		10	9	_	2 660	2 280	272	233	25 000	37 000	HK0609T2	_	0.0022	_
	6	10	9	1.6	2 660	2 280	272	233	25 000	37 000	_	BK0609T2	0.0024	_
ľ		11	9	_	3 400	3 250	345	330	23 000	34 000	HK0709	_	0.0025	_
	7	11	9	1.6	3 400	3 250	345	330	23 000	34 000	_	BK0709	0.0027	_
		12	10	_	3 850	3 950	395	400	20 000	30 000	HK0810C	_	0.0032	IR 5× 8×12
		12	10	1.6	3 850	3 950	395	400	20 000	30 000	_	BK0810C	0.0034	IR 5× 8×12
	8	15	10	_	3 800	2 870	390	293	20 000	30 000	HMK0810	_	0.0067	IR 5× 8×12
		15	15	_	6 600	5 800	675	590	20 000	30 000	HMK0815	_	0.0100	IR 5× 8×16
		15	20	_	9 050	8 750	925	890	20 000	30 000	HMK0820T2	_	0.0130	_
		13	10	_	4 600	5 050	465	515	18 000	27 000	HK0910	_	0.0035	IR 6× 9×12
		13	10	1.6	4 600	5 050	465	515	18 000	27 000	_	BK0910	0.0039	IR 6× 9×12
	9	13	12	_	5 650	6 650	575	680	18 000	27 000	HK0912	_	0.0042	IR 6× 9×12
	9	13	12	1.6	5 650	6 650	575	680	18 000	27 000	_	BK0912	0.0045	IR 6× 9×12
		16	12	_	5 300	4 450	540	455	18 000	27 000	HMK0912	_	0.0087	IR 6× 9×16
		16	16	_	7 400	6 850	755	700	18 000	27 000	HMK0916	_	0.0120	_
		14	10	_	4 500	5 100	460	520	16 000	24 000	HK1010	_	0.0038	IR 7×10×10.5
		14	10	1.6	4 500	5 100	460	520	16 000	24 000	_	BK1010	0.0042	IR $7\times10\times10.5$
		14	12	_	5 900	7 250	605	735	16 000	24 000	HK1012	_	0.0045	IR 7×10×16
	10	14	12	1.6	5 900	7 250	605	735	16 000	24 000	_	BK1012	0.0050	IR 7×10×16
	10	14	15	_	7 100	9 150	725	935	16 000	24 000	HK1015	_	0.0056	IR 7×10×16
		14	15	1.6	7 100	9 150	725	935	16 000	24 000	_	BK1015	0.0062	IR 7×10×16
		17	10	_	4 250	3 450	435	350	16 000	24 000	HMK1010	_	0.0079	IR 7×10×10.5
		17	12	_	5 600	4 850	570	495	16 000	24 000	HMK1012	_	0.0094	IR 7×10×16
. 1														

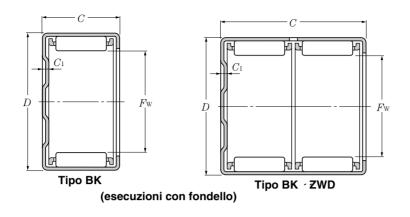
NOTA: 1) Per i cuscinetti con anello interno, l'appellativo diventa **HK+IR**. (Vedere a pag. B-179 la tabella dimensionale degli anelli interni). Esempio: **HK1012+IR7**×10×16.5

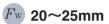



F_w 10∼16mm

Dimensioni d'ingombro		mbro		efficienti statico			Numero di	giri limite	Appell	ativo	Massa	Anello interno ¹⁾ appropriato	
	m	nm			N		gf	rpı	m			kg	арргорнаго
$F_{ m w}$	D	C 0 -0.2	C_1 max	$C_{ m r}$	Cor	$C_{\rm r}$	$C_{ m or}$	grasso	olio	senza fondello	con fondello	(approssimata)	(come riferimento)
10	17	15	_	7 400	6 950	755	710	16 000	24 000	HMK1015	_	0.0120	IR 7×10×16
10	17	20	_	10 200	10 500	1 040	1 070	16 000	24 000	HMK1020	_	0.0160	_
	16	10	_	5 050	6 250	515	635	13 000	20 000	HK1210	_	0.0046	IR 8×12×10.5
	16	10	1.6	5 050	6 250	515	635	13 000	20 000	_	BK1210	0.0052	IR 8×12×10.5
	18	12	_	6 600	7 300	675	745	13 000	20 000	HK1212	_	0.0091	IR 8×12×12.5
12	18	12	2.7	6 600	7 300	675	745	13 000	20 000	_	BK1212	0.0100	IR 8×12×12.5
12	19	12	_	7 100	6 900	725	705	13 000	20 000	HMK1212	_	0.0110	IR 8×12×12.5
	19	15	_	9 400	9 900	955	1 010	13 000	20 000	HMK1215	_	0.0140	IR 9×12×16
	19	20	_	12 300	14 000	1 260	1 430	13 000	20 000	HMK1220	_	0.0180	_
	19	25	_	15 300	18 600	1 560	1 890	13 000	20 000	HMK1225	_	0.0230	_
40	19	12	_	7 300	8 450	745	865	12 000	18 000	HK1312	_	0.0100	IR10×13×12.5
13	19	12	2.7	7 300	8 450	745	865	12 000	18 000	_	BK1312	0.0110	IR10×13×12.5
	20	12	_	7 200	8 500	735	865	11 000	17 000	HK1412	_	0.0110	IR10×14×13
	20	12	2.7	7 200	8 500	735	865	11 000	17 000	_	BK1412	0.0120	$IR10\times14\times13$
14	20	16	_	10 700	14 000	1 090	1 430	11 000	17 000	HK1416	_	0.0150	_
14	20	16	2.7	10 700	14 000	1 090	1 430	11 000	17 000	_	BK1416	0.0160	_
	22	16	_	11 500	12 000	1 180	1 220	11 000	17 000	HMK1416	_	0.0190	$IR10\times14\times20$
	22	20	_	14 600	16 200	1 490	1 650	11 000	17 000	HMK1420	_	0.0240	_
	21	12	_	7 500	9 100	765	930	11 000	16 000	HK1512	_	0.0110	IR12×15×12.5
	21	12	2.7	7 500	9 100	765	930	11 000	16 000	_	BK1512	0.0130	IR12×15×12.5
	21	16	_	10 700	14 400	1 090	1 470	11 000	16 000	HK1516	_	0.0150	IR12×15×16.5
	21	16	2.7	10 700	14 400	1 090	1 470	11 000	16 000	_	BK1516	0.0170	IR12×15×16.5
	21	22	_	12 900	18 200	1 310	1 860	11 000	16 000	HK1522ZWD	_	0.0200	IR12×15×22.5
15	21	22	2.7	12 900	18 200	1 310	1 860	11 000	16 000	_	BK1522ZWD	0.0220	IR12×15×22.5
	22	10	_	6 100	6 000	620	610	11 000	16 000	HMK1510	_	0.0110	IR10×15×12.5
	22	12	_	8 400	9 050	855	925	11 000	16 000	HMK1512	_	0.0130	IR12×15×12.5
	22	15	_	10 900	12 700	1 120	1 300	11 000	16 000	HMK1515	_	0.0160	IR12×15×16
	22	20	_	14 900	18 900	1 510	1 920	11 000	16 000	HMK1520	_	0.0220	IR12×15×22.5
	22	25	_	18 500	25 000	1 880	2 550	11 000	16 000	HMK1525	_	0.0270	_
16	22	12	_	7 750	9 700	795	990	10 000	15 000	HK1612	_	0.0120	IR12×16×13

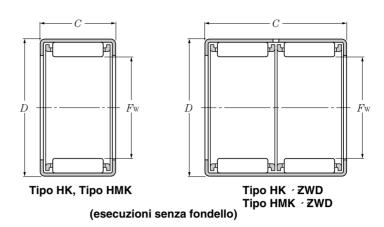
NOTA: 1) Per i cuscinetti con anello interno, l'appellativo diventa **HK+IR**. (Vedere a pag. B-179, 180 le tabelle dimensionali degli anelli interni). Esempio: **HK1312+IR10**×13×12.5


Tipo HK, Tipo HK ·· ZWD Tipo HMK Tipo BK, Tipo BK ·· ZWD



Dimensioni d'ingombro mm		Coefficienti di carico dinamico statico				Numero di	giri limite	Appell	ativo	Massa	Anello interno ¹⁾ appropriato		
	r	nm			N		gf	rpi	m			kg	арргорпаю
$F_{ m w}$	D	C 0 -0.2	C_1				_	grasso	olio	senza	con		
		-0.2	max	$C_{\rm r}$	$C_{ m or}$	$C_{\rm r}$	Cor			fondello	fondello	(approssimata)	(come riferimento)
	22	12	2.7	7 750	9 700	795	990	10 000	15 000	_	BK1612	0.014	IR12×16×13
	22	16	_	11 100	15 300	1 130	1 570	10 000	15 000	HK1616	_	0.016	IR12×16×20
	22	16	2.7	11 100	15 300	1 130	1 570	10 000	15 000	_	BK1616	0.018	IR12×16×20
16	22	22	_	13 300	19 400	1 360	1 980	10 000	15 000	HK1622ZWD	_	0.022	_
	22	22	2.7	13 300	19 400	1 360	1 980	10 000	15 000	_	BK1622ZWD	0.023	_
	24	16	_	12 400	13 500	1 260	1 370	10 000	15 000	HMK1616	_	0.021	IR12×16×20
	24	20	_	15 600	18 200	1 590	1 860	10 000	15 000	HMK1620	_	0.027	IR12×16×22
	23	12	_	8 500	11 100	865	1 130	9 500	14 000	HK1712	_	0.012	_
	23	12	2.7	8 500	11 100	865	1 130	9 500	14 000	_	BK1712	0.015	_
17	24	15	_	12 100	15 000	1 230	1 530	9 500	14 000	HMK1715	_	0.018	IR14×17×17
	24	20	_	15 200	20 000	1 540	2 040	9 500	14 000	HMK1720C	_	0.024	IR12×17×20.5
	24	25	_	19 300	27 400	1 970	2 790	9 500	14 000	HMK1725	_	0.030	IR12×17×25.5
	24	12	_	8 300	10 900	845	1 110	8 500	13 000	HK1812	_	0.013	IR15×18×12.5
	24	12	2.7	8 300	10 900	845	1 110	8 500	13 000	_	BK1812	0.015	IR15×18×12.5
	24	16	_	11 800	17 300	1 210	1 760	8 500	13 000	HK1816	_	0.018	IR15×18×16.5
	24	16	2.7	11 800	17 300	1 210	1 760	8 500	13 000	_	BK1816	0.020	IR15×18×16.5
10	25	13	_	10 200	12 200	1 040	1 240	8 500	13 000	HMK1813	_	0.016	IR15×18×16
18	25	15	_	12 000	15 100	1 220	1 540	8 500	13 000	HMK1815	_	0.019	IR15×18×16
	25	17	_	13 800	18 000	1 400	1 830	8 500	13 000	HMK1817	_	0.021	IR15×18×17.5
	25	19	_	15 500	20 900	1 580	2 130	8 500	13 000	HMK1819	_	0.024	IR15×18×20.5
	25	20	_	16 300	22 300	1 660	2 280	8 500	13 000	HMK1820	_	0.025	IR15×18×20.5
	25	25	_	20 300	29 600	2 070	3 000	8 500	13 000	HMK1825	_	0.031	IR15×18×25.5
4.0	27	16	_	13 900	16 300	1 410	1 660	8 500	13 000	HMK1916	_	0.025	IR15×19×20
19	27	20	_	17 500	22 100	1 790	2 250	8 500	13 000	HMK1920	_	0.031	_
	26	12	_	9 250	13 000	945	1330	8 000	12 000	HK2012C	_	0.014	IR15×20×13
	26	12	2.7	9 250	13 000	945	1330	8 000	12 000	_	BK2012	0.017	IR15×20×13
00	26	16	_	13 000	20 100	1 320	2 050	8 000	12 000	HK2016	_	0.019	IR17×20×16.5
20	26	16	2.7	13 000	20 100	1 320	2 050	8 000	12 000	_	BK2016	0.022	IR17×20×16.5
	26	20	_	16 400	27 100	1 670	2 760	8 000	12 000	HK2020C	_	0.024	IR17×20×20.5
	26	20	2.7	16 400	27 100	1 670	2 760	8 000	12 000	_	BK2020C	0.027	IR17×20×20.5

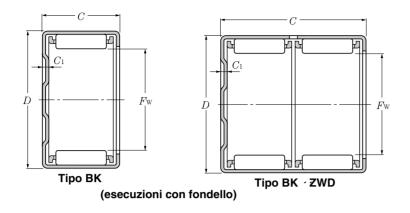
NOTA: 1) Per i cuscinetti con anello interno, l'appellativo diventa **HK+IR**. (Vedere a pag. B-180, 181 le tabelle dimensionali degli anelli interni). Esempio: **HK1812+IR15**×18×12.5



Dimensioni d'ingombro		Coefficienti di carico dinamico statico			Numero di	giri limite	nite Appellativo		Massa	Anello interno ¹⁾ appropriato			
	r	nm			N		gf	rpı	m			kg	
$F_{ m w}$	D	C 0 -0.2	$\frac{C_1}{max}$	$C_{ m r}$	Cor	$C_{\rm r}$	Cor	grasso	olio	senza fondello	con fondello	(approssimata)	(come riferimento)
	26	30	_	22 200	40 000	2 270	4 100	8 000	12 000	HK2030ZWD	_	0.035	IR17×20×30.5
	26	30	2.7	22 200	40 000	2 270	4 100	8 000	12 000	_	BK2030ZWD	0.037	IR17×20×30.5
20	27	15	_	13 000	17 300	1 330	1 760	8 000	12 000	HMK2015	_	0.021	IR17×20×16.5
20	27	20	_	17 700	25 600	1 800	2 610	8 000	12 000	HMK2020	_	0.027	IR17×20×20.5
	27	25	_	22 000	34 000	2 240	3 450	8 000	12 000	HMK2025	_	0.034	IR15×20×26
	27	30	—	26 100	42 000	2 660	4 300	8 000	12 000	HMK2030	—	0.041	IR17×20×30.5
0.1	29	16	_	15 300	19 100	1 560	1 940	7 500	11 000	HMK2116	_	0.027	IR17×21×20
21	29	20	_	19 400	25 800	1 970	2 630	7 500	11 000	HMK2120	_	0.033	_
	28	12	_	9 750	14 300	995	1 460	7 500	11 000	HK2212	_	0.013	IR17×22×13
	28	12	2.7	9 750	14 300	995	1 460	7 500	11 000	_	BK2212	0.015	IR17×22×13
	28	16	_	13 600	22 100	1 390	2 250	7 500	11 000	HK2216C	_	0.021	IR17×22×18
	28	16	2.7	13 600	22 100	1 390	2 250	7 500	11 000	_	BK2216	0.024	IR17×22×18
	28	20	_	17 200	29 800	1 760	3 050	7 500	11 000	HK2220C	_	0.026	IR17×22×20.5
22	28	20	2.7	17 200	29 800	1 760	3 050	7 500	11 000	_	BK2220	0.030	IR17×22×20.5
	29	10	_	8 400	10 100	855	1 030	7 500	11 000	HMK2210	_	0.015	IR17×22×13
	29	15	_	13 400	18 500	1 370	1 890	7 500	11 000	HMK2215	_	0.022	IR17×22×16D
	29	20	_	18 200	27 400	1 860	2 790	7 500	11 000	HMK2220	_	0.030	IR17×22×20.5
	29	25	_	23 600	38 500	2 410	3 900	7 500	11 000	HMK2225	_	0.037	IR17×22×26
	29	30	_	26 900	45 000	2 740	4 600	7 500	11 000	HMK2230		0.045	IR17×22×32
24	31	20	_	18 800	29 200	1 910	2 970	6 500	10 000	HMK2420	_	0.032	_
24	31	28	—	26 000	44 500	2 650	4 500	6 500	10 000	HMK2428	_	0.045	IR20×24×28.5
	32	12	_	11 800	16 300	1 200	1 660	6 500	9 500	HK2512C	_	0.021	IR20×25×12.5
	32	12	2.7	11 800	16 300	1 200	1 660	6 500	9 500	_	BK2512	0.023	IR20×25×12.5
	32	16	_	15 900	24 000	1 620	2 450	6 500	9 500	HK2516	_	0.027	IR20×25×17
	32	16	2.7	15 900	24 000	1 620	2 450	6 500	9 500	_	BK2516	0.031	IR20×25×17
25	32	20	_	20 300	33 000		3 350	6 500	9 500	HK2520	_	0.034	IR20×25×20.5
	32	20	2.7	20 300	33 000		3 350	6 500	9 500	_	BK2520	0.039	IR20×25×20.5
	32	26	_	26 400	46 000		4 700	6 500	9 500	HK2526	_	0.045	IR20×25×26.5
	32	26	2.7	26 400	46 000		4 700	6 500	9 500	_	BK2526	0.049	IR20×25×26.5
	32	38	_	35 000	65 500	3 550	6 700	6 500	9 500	HK2538ZWD	_	0.065	IR20×25×38.5

NOTA: 1) Per i cuscinetti con anello interno, l'appellativo diventa **HK+IR**. (Vedere a pag. B-181, 182 la tabella dimensionale degli anelli interni). Esempio: **HK2512+IR20**×25×12.5

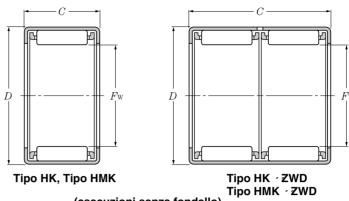
Tipo HK, Tipo HK∵ZWD Tipo HMK, Tipo HMK · · ZWD Tipo BK, Tipo BK ⋅ · ZWD



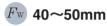
F_w 25∼30mm

	Dimer	nsioni	d'ingo	mbro		efficienti statico			Numero di	giri limite	Appell	ativo	Massa	Anello interno ¹⁾ appropriato
		m	ım			N		gf	rpn	n			kg	арр. ор. шо
	F_{w}	D	C 0 -0.2	$\frac{C_1}{max}$	$C_{ m r}$	$C_{ m or}$	C_{r}	$C_{ m or}$	grasso	olio	senza fondello	con fondello	(approssimata)	(come riferimento)
		32	38	2.7	35 000	65 500	3 550	6 700	6 500	9 500	_	BK2538ZWD	0.069	IR20×25×38.5
		33	10	_	9 150	10 400	935	1 060	6 500	9 500	HMK2510	_	0.019	IR20×25×12.5
	25	33	15	_	15 200	19 900	1 550	2 030	6 500	9 500	HMK2515C	_	0.029	IR20×25×16
	25	33	20	_	21 800	31 500	2 220	3 200	6 500	9 500	HMK2520	_	0.039	IR20×25×20.5
		33	25	_	26 700	41 000	2 720	4 200	6 500	9 500	HMK2525	_	0.048	IR20×25×26.5
		33	30	—	32 500	53 000	3 300	5 400	6 500	9 500	HMK2530	_	0.058	IR20×25×32
	26	34	16	_	17 100	23 400	1 740	2 390	6 000	9 000	HMK2616	_	0.032	IR22×26×20
	20	34	20	_	21 600	31 500	2 210	3 250	6 000	9 000	HMK2620	_	0.040	_
		35	16	_	17 300	27 600	1 760	2 820	5 500	8 500	HK2816	_	0.030	IR22×28×17
		35	16	2.7	17 300	27 600	1 760	2 820	5 500	8 500	—	BK2816	0.034	IR22×28×17
	28	35	20	_	21 300	36 000	2 170	3 700	5 500	8 500	HK2820	_	0.038	IR22×28×20.5
	20	35	20	2.7	21 300	36 000	2 170	3 700	5 500	8 500	—	BK2820	0.043	IR22×28×20.5
		37	20	_	23 600	32 500	2 410	3 350	5 500	8 500	HMK2820	_	0.049	IR22×28×20.5
		37	30	_	35 000	54 500	3 600	5 550	5 500	8 500	HMK2830	_	0.073	_
	29	38	20	_	24 600	35 000	2 510	3 550	5 500	8 500	HMK2920	_	0.050	_
	29	38	30	_	34 500	54 000	3 550	5 550	5 500	8 500	HMK2930	_	0.075	_
		37	12	_	13 000	19 500	1 320	1 990	5 500	8 000	HK3012	_	0.024	IR25×30×12.5
		37	12	2.7	13 000	19 500	1 320	1 990	5 500	8 000	—	BK3012	0.028	IR25×30×12.5
		37	16	_	18 100	30 000	1 850	3 050	5 500	8 000	HK3016C	_	0.032	IR25×30×17
		37	16	2.7	18 100	30 000	1 850	3 050	5 500	8 000	—	BK3016C	0.037	IR25×30×17
		37	20	_	22 300	39 500	2 280	4 000	5 500	8 000	HK3020	_	0.040	$IR25\times30\times20.5$
		37	20	2.7	22 300	39 500	2 280	4 000	5 500	8 000	—	BK3020	0.047	IR25×30×20.5
	30	37	26	_	29 100	55 000	2 960	5 650	5 500	8 000	HK3026	_	0.053	IR25×30×26.5
	30	37	26	2.7	29 100	55 000	2 960	5 650	5 500	8 000	—	BK3026	0.059	IR25×30×26.5
		37	38	_	38 500	78 500	3 900	8 000	5 500	8 000	HK3038ZWD	_	0.076	IR25×30×38.5
		37	38	2.7	38 500	78 500	3 900	8 000	5 500	8 000	—	BK3038ZWD	0.083	IR25×30×38.5
		40	13	—	14 100	17 100	1 430	1 750	5 500	8 000	HMK3013	_	0.040	IR25×30×16
		40	15	_	17 100	22 100		2 250	5 500	8 000	HMK3015	_	0.044	IR25×30×16
		40	20	—	24 200	34 500	2 470	3 500	5 500	8 000	HMK3020	_	0.058	IR25×30×20.5
		40	25	_	31 000	47 000	3 150	4 800	5 500	8 000	HMK3025	_	0.073	IR25×30×26.5
- 1														

NOTA: 1) Per i cuscinetti con anello interno, l'appellativo diventa HK+IR. (Vedere a pag. B-181, 182 le tabelle dimensionali degli anelli interni). Esempio: **HK2820+IR22**×28×20.5

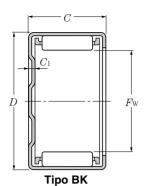


*F*_w 30∼40mm

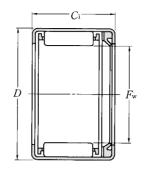

Dime	Dimensioni d'ingombro		mbro		efficienti statico			Numero di	giri limite	Appel	lativo	Massa	Anello interno ¹⁾ appropriato
	n	nm		amamo	N	N kgf rpm				kg	арргорпасо		
$F_{ m w}$	D	C 0 -0.2	$\overset{C_1}{max}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	grasso	olio	senza fondello	con fondello	(approssimata)	(come riferimento)
30	40	30	_	36 000	57 500	3 700	5 850	5 500	8 000	HMK3030	_	0.087	IR25×30×32
32	42	20	_	27 500	38 000	2 800	3 850	5 000	7 500	HMK3220	_	0.062	_
02	42	30	—	41 500	64 500	4 250	6 550	5 000	7 500	HMK3230	_	0.092	—
	42	12	_	14 000	22 800	1 430	2 320	4 700	7 000	HK3512	_	0.028	_
	42	12	2.7	14 000	22 800	1 430	2 320	4 700	7 000	_	BK3512	0.033	_
	42	16	_	19 700	35 000	2 000	3 600	4 700	7 000	HK3516	_	0.037	_
	42	16	2.7	19 700	35 000	2 000	3 600	4 700	7 000	_	BK3516	0.044	_
	42	20	_	24 800	47 500	2 530	4 850	4 700	7 000	HK3520	_	0.046	_
35	42	20	2.7	24 800	47 500	2 530	4 850	4 700	7 000	_	BK3520	0.055	_
	45	12	_	14 900	17 600	1 520	1 800	4 700	7 000	HMK3512	_	0.040	_
	45	15	_	20 200	26 200	2 060	2 670	4 700	7 000	HMK3515	_	0.050	_
	45	20	_	28 400	40 500	2 890	4 100	4 700	7 000	HMK3520	_	0.067	_
	45	25	_	36 000	54 500	3 650	5 550	4 700	7 000	HMK3525	_	0.083	_
	45	30	_	43 000	69 000	4 400	7 000	4 700	7 000	HMK3530	_	0.100	_
37	47	20	_	29 300	43 000	2 990	4 350	4 300	6 500	HMK3720	_	0.070	_
31	47	30	_	44 500	73 000	4 550	7 450	4 300	6 500	HMK3730	_	0.105	_
	48	15	_	21 700	29 300	2 210	2 990	4 300	6 500	HMK3815	_	0.054	_
	48	20	_	30 500	45 000	3 100	4 600	4 300	6 500	HMK3820	_	0.072	_
38	48	25	_	38 500	61 000	3 900	6 250	4 300	6 500	HMK3825	_	0.090	_
	48	30	_	46 000	77 000	4 700	7 850	4 300	6 500	HMK3830	_	0.107	IR32×38×32
	48	45	_	62 000	113 000	6 300	11 500	4 300	6 500	HMK3845ZWI) —	0.161	_
	47	12	_	15 100	26 000	1 540	2 660	4 000	6 000	HK4012	_	0.031	IR35×40×12.5
	47	12	2.7	15 100	26 000	1 540	2 660	4 000	6 000	_	BK4012	0.038	IR35×40×12.5
	47	16	_	21 100	40 000	2 150	4 100	4 000	6 000	HK4016	_	0.041	IR35×40×17
	47	16	2.7	21 100	40 000	2 150	4 100	4 000	6 000	_	BK4016	0.051	IR35×40×17
40	47	20	_	25 900	52 500	2 650	5 350	4 000	6 000	HK4020	_	0.052	IR35×40×20.5
	47	20	2.7	25 900	52 500	2 650	5 350	4 000	6 000	_	BK4020	0.064	IR35×40×20.5
	50	15	_	23 100	32 500	2 350	3 300	4 000	6 000	HMK4015	_	0.056	IR35×40×17
	50	20	_	32 500	50 000	3 300	5 100	4 000	6 000	HMK4020	_	0.075	IR35×40×20.5
	50	25	_	41 000	67 500	4 150	6 900	4 000	6 000	HMK4025	_	0.094	_
NOTA	4\ D			a analla inta	rna Pannalli	ativa diva	ata UV LIF) (Madara a n	D 100	192 194 lo taballe	a dimanaianali dae		!\

NOTA: 1) Per i cuscinetti con anello interno, l'appellativo diventa **HK+IR**. (Vedere a pag. B-182, 183, 184 le tabelle dimensionali degli anelli interni). Esempio: **HK4012+IR35×40×12.5**

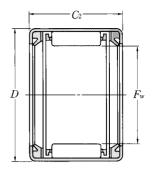
Tipo HK, Tipo HK··ZWD
Tipo HMK, Tipo HMK··ZWD
Tipo BK


(esecuzioni senza fondello)

Dime	Dimensioni d'ingombro mm		mbro		pefficienti o statico			Numero di	giri limite	Appell	ativo	Massa	Anello interno ¹⁾ appropriato
	n	nm			N		kgf	rpn	n			kg	- PP P
$F_{ m w}$	D	C 0 -0.2	$\frac{C_1}{max}$	$C_{ m r}$	$C_{ m or}$	$C_{\rm r}$	$C_{ m or}$	grasso	olio	senza fondello	con fondello	(approssimata)	(come riferimento)
	50	30	_	49 000	85 000	5 000	8 700	4 000	6 000	HMK4030	_	0.112	IR35×40×34
40	50	40	_	58 500	107 000	5 950	10 900	4 000	6 000	HMK4040ZWD	_	0.150	_
	52	16	_	21 600	43 000	2 210	4 400	3 700	5 500	HK4516	_	0.046	IR40×45×17
	52	16	2.7	21 600	43 000	2 210	4 400	3 700	5 500	_	BK4516	0.058	IR40×45×17
	52	20	_	27 600	59 000	2 810	6 000	3 700	5 500	HK4520	_	0.058	IR40×45×20.5
45	52	20	2.7	27 600	59 000	2 810	6 000	3 700	5 500	_	BK4520	0.072	IR40×45×20.5
45	55	20	_	33 000	53 000	3 350	5 400	3 700	5 500	HMK4520	_	0.083	IR40×45×20.5
	55	25	_	41 500	71 500	4 250	7 300	3 700	5 500	HMK4525	_	0.104	IR40×45×26.5
	55	30	_	49 500	90 000	5 050	9 150	3 700	5 500	HMK4530	_	0.125	IR40×45×34
	55	40	_	59 500	113 000	6 050	11 500	3 700	5 500	HMK4540ZWD	_	0.167	_
	58	20		31 500	63 000	3 200	6 450	3 200	4 800	HK5020	_	0.072	IR40×50×22
	58	20	2.7	31 500	63 000	3 200	6 450	3 200	4 800	_	BK5020	0.087	IR40×50×22
	58	25	_	38 500	82 000	3 900	8 400	3 200	4 800	HK5025	_	0.090	IR45×50×25.5
	58	25	2.7	38 500	82 000	3 900	8 400	3 200	4 800	_	BK5025	0.109	IR45×50×25.5
	62	12	_	18 200	23 600	1 860	2 410	3 200	4 800	HMK5012	_	0.067	_
50	62	15	_	25 900	37 000	2 650	3 800	3 200	4 800	HMK5015	_	0.084	_
	62	20	_	37 500	60 000	3 850	6 100	3 200	4 800	HMK5020	_	0.112	IR40×50×22
	62	25	_	48 000	82 500	4 900	8 450	3 200	4 800	HMK5025	_	0.140	IR45×50×25.5
	62	30	_	58 500	105 000	5 950	10 700	3 200	4 800	HMK5030	_	0.168	IR45×50×32
	62	40	_	70 000	134 000	7 150	13 600	3 200	4 800	HMK5040ZWD	_	0.224	_
	62	45	_	79 000	156 000	8 050	15 900	3 200	4 800	HMK5045ZWD	_	0.252	_


NOTA: 1) Per i cuscinetti con anello interno, l'appellativo diventa **HK+IR**. (Vedere a pag. B-184, 185 le tabelle dimensionali degli anelli interni). Esempio: **HK4516+IR40**×45×17

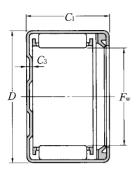
Astucci a rullini NTN



(esecuzione con fondello)

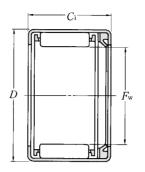
Tipo HK··L
Tipo HMK··LL
Tipo HMK··LL
Tipo BK··L

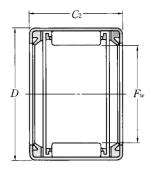
Tipo HK · L · Tipo HMK · L (senza fondello, un anello di tenuta)



Tipo HK · LL, Tipo HMK · LL (senza fondello, due anelli di tenuta)

Dim	nensio	ni d'ing	gombr	0	Co		i di carico dinamico		Numero di giri limite		Appellativo	
		mm			N		kg		rpm			
$F_{ m w}$	D	C ₁ 0 -0.2	C ₂ 0 -0.2	C₃ max	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	grasso	senza fondello un anello di tenuta	senza fondello due anelli di tenuta	con fondello un anello di tenuta
8	15	12	14	_	3 800	2 870	390	293	10 000	HMK0812L	HMK0814LL	_
10	17	12	14	_	4 250	3 450	435	350	10 000	HMK1012L	HMK1014LL	-
12	18 19	14 14	16 16	2.7 _	6 600 7 100	7 300 6 900	675 725	745 705	10 000 10 000	HK 1214L HMK1214L	HK 1216LL HMK1216LL	BK1214L _
14	20 22	14 19	16 22	2.7	7 200 11 500	8 500 12 000	735 1 180	865 1220	10 000	HK 1414L HMK1419L	HK 1416LL HMK1422LL	BK1414L
15	21 22 22	14 13 18	16 16 21	2.7 _ _	7 500 6 100 10 900	9 100 6 000 12 700	765 620 1 120	930 610 1 300	10 000 10 000 10 000	HK 1514L HMK1513L HMK1518L	HK 1516LL HMK1516LL HMK1521LL	BK1514L _ _
16	22 24	14 23	16 26	2.7 —	7 750 15 600	9 700 18 200	795 1 590	990 1 860	10 000 10 000	HK 1614L HMK1623L	HK1616LL HMK1626LL	BK1614L —
17	24	18	21	_	12 100	15 000	1 230	1 530	9 500	HMK1718L	HMK1721LL	_
18	24 25 25	14 18 20	16 21 23	2.7 _ _	8 300 12 000 13 800	10 900 15 100 18 000		1 110 1 540 1 830	9 000 9 000 9 000	HK 1814L HMK1818L HMK1820L	HK 1816LL HMK1821LL HMK1823LL	BK1814L - -
19	27	19	22	_	13 900	16 300	1 410	1 660	8 500	HMK1919L	HMK1922LL	_
20	26 26 27 27	- 18 18 23	16 20 21 26	- 2.7 - -	9 250 13 000 13 000 17 700	13 000 20 100 17 300 25 600	945 1 320 1 330 1 800	1 330 2 050 1 760 2 610	8 000 8 000 8 000 8 000	HK 2018L HMK2018L HMK2023L	HK 2016LL HK 2020LL HMK2021LL HMK2026LL	– BK2018L – –
22	28 28 29 29	- 18 18 23	16 20 21 26	- 2.7 - -	9 750 13 600 13 400 18 200	14 300 22 100 18 500 27 400	995 1 390 1 370 1 860	1 460 2 250 1 890 2 790	7 500 7 500 7 500 7 500	HK 2218L HMK2218L HMK2223L	HK 2216LL HK 2220LL HMK2221LL HMK2226LL	– BK2218L – –
24	31	23	26	_	18 800	29 100	1 910	2 970	6 500	HMK2423L	HMK2426LL	-
25	32 32	_ 18	16 20	_ 2.7	11 800 15 900	16 300 24 000	1 200 1 620	1 660 2 450	6 500 6 500	HK 2518L	HK 2516LL HK 2520LL	_ BK2518L

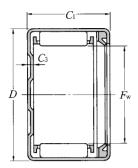

NOTA: 1) Per i cuscinetti con anello interno, l'appellativo diventa **HK+IR**. (Vedere a pag. B-179, 180, 181 le tabelle dimensionali degli anelli interni). Esempio: **HK1416LL+IR10**×14×20


Tipo BK · L (con fondello, un anello di tenuta)

	Massa kg (approssimata) senza fondello due anelli di tenuta	con fondello	Anello ii appro (come rife un anello di tenuta	priato
7.1	0.0075	—	IR 5×8×16	IR 5× 8×16
8.4	0.0089	_	IR 7×10×16	IR 7×10×16
11	0.0120	12	IR 9×12×16	-
11	0.0120	_	IR 9×12×16	-
12	0.0140	14	IR10×14×16	IR10×14×20
20	0.0210	_	IR10×14×20	-
13	0.0140	14	IR12×15×16.5	IR12×15×16.5
14	0.0150	_	IR12×15×16	IR12×15×16.5
17	0.0180	_	IR12×15×22.5	IR12×15×22.5
13	0.0150	15	IR12×16×16	IR12×16×20
28	0.0290	—	-	-
19	0.0200	_	IR12×17×20.5	IR12×17×25.5
15	0.0170	17	IR15×18×16	IR15×18×17.5
20	0.0210	-	IR15×18×20.5	IR15×18×25.5
23	0.0240	-	IR15×18×20.5	IR15×18×25.5
27	0.0290	-	IR15×19×20	_
-	0.0190	-	-	IR15×20×18
21	0.0240	24	IR17×20×20	IR17×20×20.5
22	0.0240	-	IR17×20×20	IR15×20×23
29	0.0310	-	IR15×20×26	IR17×20×30.5
- 24 24 32	0.0200 0.0260 0.0260 0.0330	- 27 - -	- IR17×22×20.5 IR17×22×20.5 IR17×22×26	IR17×22×18 IR17×22×23 IR17×22×23
35	0.0370	-	-	IR20×24×28.5
_	0.0270		_	IR20×25×18D
31	0.0330	35	IR20×25×20	IR20×25×23

Tipo HK…L Tipo HMK··L Tipo HK…LL Tipo HMK··LL Tipo BK · · L

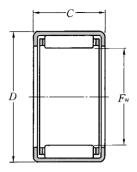
Tipo HK · L, Tipo HMK · L (senza fondello, un anello di tenuta)


Tipo HK · LL, Tipo HMK · LL (senza fondello, due anelli di tenuta)

F_w 25∼50mm

Dim	nensio	ni d'ing	gombr	0			i di carico		Numero di		Appellativo	
		mm			dinamico N		dinamico kg		giri limite rpm			
$F_{ m w}$	D	C ₁ 0 -0.2	C_2 0 -0.2	C₃ max	$C_{ m r}$	Cor	$C_{ m r}$	$C_{ m or}$	grasso	senza fondello un anello di tenuta	senza fondello due anelli di tenuta	con fondello un anello di tenuta
0.5	33	18	21	_	15 800	21 000	1 610	2 140	6 500	HMK2518L	HMK2521LL	-
25	33	23	26	_	21 800	31 500	2 220	3 200	6 500	HMK2523L	HMK2526LL	_
	35	_	20	_	17 300	27 600	1 760	2 820	5 500	_	HK 2820LL	_
28	37	23	26	_	23 600	32 500	2 410	3 350	5 500	HMK2823L	HMK2826LL	_
	37	_	16	_	13 000	19 500	1 320	1 990	5 500	_	HK 3016LL	_
	37	18	20	2.7	18 100	30 000	1 850	3 050	5 500	HK 3018L	HK 3020LL	BK3018L
30	40	23	26	_	24 200	34 500	2 470	3 500	5 500	HMK3023L	HMK3026LL	_
	40	28	31	_	31 000	47 000	3 150	4 800	5 500	HMK3028L	HMK3031LL	_
32	42	23	26	_	27 500	38 000	2 800	3 850	5 000	HMK3223L	HMK3226LL	_
	42	_	16	_	14 000	22 800	1 430	2 320	4 600	_	HK 3516LL	_
0.5	42	18	20	2.7	19 700	35 000	2 000	3 600	4 600	HK 3518L	HK 3520LL	BK3518L
35	45	18	21	_	20 200	26 200	2 060	2 670	4 600	HMK3518L	HMK3521LL	_
	45	28	31	_	36 000	54 500	3 650	5 550	4 600	HMK3528L	HMK3531LL	_
38	48	28	31	_	38 500	61 000	3 900	6 250	4 200	HMK3828L	HMK3831LL	-
	47	_	16	_	15 100	26 000	1 540	2 660	4 000	_	HK 4016LL	_
40	47	18	20	2.7	21 100	40 000	2 150	4 100	4 000	HK 4018L	HK 4020LL	BK4018L
40	50	18	21	_	23 100	32 500	2 350	3 300	4 000	HMK4018L	HMK4021LL	_
	50	28	31	_	41 000	67 500	4 150	6 900	4 000	HMK4028L	HMK4031LL	_
45	52	18	20	2.7	21 600	43 000	2 210	4 400	3 600	HK 4518L	HK 4520LL	BK4518L
45	55	23	26	_	33 000	53 000	3 350	5 400	3 600	HMK4523L	HMK4526LL	_
	58	22	24	2.7	31 500	63 000	3 200	6 450	3 200	HK 5022L	HK 5024LL	BK5022L
50	62	28	31	_	48 000	82 500	4 900	8 450	3 200	HMK5028L	HMK5031LL	_
							1.841.07.1					

NOTA: Per i cuscinetti con anello interno, l'appellativo diventa DCL+MI. (Vedere a pag. B-181, B-182·185 la tabella dimensionale degli anelli interni). Esempio: **HK5022L+IR45**×50×25



Tipo BK · L (con fondello, un anello di tenuta)

	Massa kg (approssimata)		Anello ir appro (come rife	priato
senza fondello un anello di tenuta	senza fondello due anelli di tenuta	con fondello due anelli di tenuta	un anello di tenuta	due anelli di tenuta
31	0.034	_	IR20×25×20	IR20×25×23
41	0.043	_	IR20×25×26.5	IR20×25×26.5
-	0.037	_	_	IR22×28×23
51	0.054	_	_	IR22×28×30
-	0.027	-	_	IR25×30×18D
37	0.039	45	IR25×30×20	IR25×30×23
61	0.064	_	IR25×30×26	IR25×30×26.5
76	0.078	-	IR25×30×30	IR25×30×32
65	0.069	_	_	IR28×32×30
_	0.036	_	_	-
37	0.040	47	_	_
53	0.056	_	_	_
86	0.089	_	_	-
94	0.098	-	IR32×38×32	IR32×38×32
-	0.041	-	-	IR35×40×17
47	0.050	62	IR35×40×20	_
60	0.063	_	IR35×40×20	_
97	0.100	_	IR35×40×30	IR32×40×36
54	0.057	72	IR40×45×20	_
87	0.091	_	IR40×45×26.5	IR40×45×26.5
86	0.089	104	IR45×50×25	IR45×50×25.5
144	0.149	_	IR45×50×32	IR45×50×32

Dimensioni in pollici

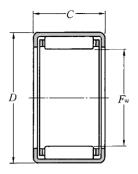
Tipo DCL

F_w 6.350∼15.875mm

Dime	Dimensioni d'ingombro $\operatorname{mm}(V_{25.4}\operatorname{mm})$			oefficienti	i di carico)	Numero di	giri limite	Appe	llativo	Massa	Anello interno ¹⁾
	mm (½5.4mm)		dinamico	statico							le es	appropriato
$F_{ m w}$	D	C		N		kgf	rp grasso	m olio			kg	
± "	2	0 -0.2	$C_{\rm r}$	$C_{ m or}$	$C_{\rm r}$	$C_{ m or}$	graces	55			(approssimata)	(come riferimento)
	11.112(7/16)	6.350(1/4)	1 580	1 110	161	113	25 000	38 000	DCL	44T2	0.0022	-
6.350(1/4)	11.112(1/16)	7.938(5/16)	2 160	1 670	221	170	25 000	38 000	DCL	45T2	0.0033	_
	11.112(7/16)	11.112(7/16)	3 550	3 150	360	320	25 000	38 000	DCL	47T2	0.0038	_
	12.700(½)	7.938(5/16)	2 940	2 610	300	266	20 000	30 000	DCL	55	0.0032	_
7.938(5/16)	12.700(1/2)	9.525(%)	3 900	3 750	400	385	20 000	30 000	DCL	56	0.0039	_
7.930(/16)	12.700(½)	11.112(7/16)	4 800	4 950	490	505	20 000	30 000	DCL	57	0.0048	_
	12.700(½)	14.288(%)	6 500	7 250	665	740	20 000	30 000	DCL	59	0.0058	_
	14.288(16)	7.938(5/16)	3 100	2 910	315	297	17 000	25 000	DCL	65	0.0037	_
9.525(¾)	14.288(16)	9.525(3/8)	4 100	4 200	420	430	17 000	25 000	DCL	66	0.0045	_
9.525(/8)	14.288(16)	12.700(1/2)	5 900	6 650	600	675	17 000	25 000	DCL	68	0.0065	_
	14.288(16)	15.875(%)	7 500	9 050	765	925	17 000	25 000	DCL	610	0.0075	_
11.112(7/16)	15.875(5/8)	12.700(½)	6 450	7 800	660	795	15 000	22 000	DCL	78	0.0068	_
	17.462(11/16)	7.938(5/16)	3 550	3 700	360	380	13 000	19 000	DCL	85	0.0047	_
	17.462(11/16)	9.525(3/8)	4 700	5 350	480	550	13 000	19 000	DCL	86	0.0057	_
12.700(½)	17.462(11/16)	11.112(7/16)	5 800	7 050	590	715	13 000	19 000	DCL	87	0.0066	_
12.700(/2)	17.462(11/16)	12.700(½)	6 700	8 500	685	865	13 000	19 000	DCL	88	0.0080	_
	17.462(11/16)	15.875(5/8)	8 550	11 600	870	1 180	13 000	19 000	DCL	810	0.0095	_
	17.462(11/16)	19.050(¾)	10 400	14 900	1 060	1 520	13 000	19 000	DCL	812	0.0120	_
	19.050(¾)	7.938(5/16)	3 800	4 250	390	430	11 000	17 000	DCL	95	0.0052	_
	19.050(3/4)	9.525(3/8)	5 050	6 150	515	625	11 000	17 000	DCL	96	0.0063	MI-060908
14.288(%16)	19.050(3/4)	11.112(7/16)	6 250	8 000	635	815	11 000	17 000	DCL	97	0.0073	MI-060908
14.200(/16)	19.050(3/4)	12.700(½)	7 200	9 650	735	985	11 000	17 000	DCL		0.0086	MI-060908
	$19.050(\frac{3}{4})$	15.875(%)	9 200	13 200	935	1 350	11 000	17 000	DCL		0.0110	_
	19.050(¾)	19.050(¾)	11 200	17 000	1 140	1 730	11 000	17 000	DCL	912	0.0130	_
	20.638(13/16)	7.938(5/16)	4 050	4 750	415	485	10 000	15 000	DCL	105	0.0075	_
	20.638(13/16)	11.112(7/16)	6 650	9 000	680	915	10 000	15 000	DCL		0.0080	_
15.875(%)	20.638(13/16)	12.700(½)	7 700	10 800	785	1 110	10 000	15 000	DCL		0.0091	_
	20.638(13/16)	15.875(%)	9 800	14 800	1 000	1 510	10 000	15 000	DCL.	1010	0.0130	MI-061012
	20.638(13/16)	19.050(3/4)	11 900	19 000	1 220	1 940	10 000	15 000	DCL.	1012	0.0140	MI-061012
				DOL 1441 /		D 404						

NOTA: Per i cuscinetti con anello interno, l'appellativo diventa **DCL+MI**. (Vedere a pag. B-191 la tabella dimensionale degli anelli interni). Esempio: **DCL96+MI-060908**Nota: La **NTN** offre anche un cuscinetto con fondello con le dimensioni sopra indicate.

Fw 15.875~25.400mm


Dime	ensioni d'ingon	nbro		oefficient			Numero di	giri limite	Appellativo	Massa	Anello interno ¹⁾
	mm (½5.4mm)		dinamico	statico N	dinamico kg	statico	rp	m		kg	appropriato
$F_{ m w}$	D	C			Ng		grasso	olio		l kg	
		0 -0.2	C_{r}	$C_{ m or}$	C_{r}	Cor				(approssimata)	(come riferimento)
15.875(5/8)	20.638(13/16)	22.225(%)	14 100	23 500	1 430	2 400	10 000	15 000	DCL1014	0.0160	MI-061016
	22.225(%)	9.525(¾)	5 700	7 650	585	780	9 500	14 000	DCL 116	0.0075	_
17.462(11/16)	22.225(%)	12.700(½)	8 150	12 000	830	1 230	9 500	14 000	DCL 118	0.0110	_
17.402(/16)	22.225(1/8)	15.875(%)	10 400	16 400	1 060	1 680	9 500	14 000	DCL1110	0.0130	_
	22.225(%)	19.050(¾)	12 600	21 100	1 290	2 150	9 500	14 000	DCL1112	0.0160	_
	25.400(1)	9.525(¾)	6 450	6 950	660	705	8 500	13 000	DCL 126	0.0110	_
	25.400(1)	12.700(½)	9 800	11 900	1 000	1 210	8 500	13 000	DCL 128	0.0140	MI-081210
19.050(¾)	25.400(1)	15.875(%)	12 900	16 800	1 310	1 720	8 500	13 000	DCL1210	0.0170	MI-081210
19.050(/4)	25.400(1)	19.050(¾)	15 900	22 100	1 620	2 250	8 500	13 000	DCL1212	0.0210	MI-081212
	25.400(1)	22.225(%)	19 000	27 700	1 930	2 830	8 500	13 000	DCL1214	0.0260	MI-081216
	25.400(1)	25.400(1)	21 700	33 000	2 210	3 350	8 500	13 000	DCL1216	0.0300	MI-081216
	26.988(1 1/16)	9.525(¾)	6 950	7 800	710	795	8 000	12 000	DCL 136	0.0120	_
	26.988(1 1/16)	12.700(½)	10 600	13 400	1 080	1 370	8 000	12 000	DCL 138	0.0160	_
	26.988(1 1/16)	15.875(5/8)	13 900	19 000	1 410	1 930	8 000	12 000	DCL1310	0.0200	_
20.638(¹³ / ₁₆)	26.988(1 1/16)	19.050(¾)	17 100	24 900	1 750	2 540	8 000	12 000	DCL1312	0.0230	_
	26.988(1 1/16)	22.225(%)	20 400	31 500	2 080	3 200	8 000	12 000	DCL1314	0.0280	_
	26.988(1 1/16)	25.400(1)	23 400	37 000	2 380	3 800	8 000	12 000	DCL1316	0.0320	_
	26.988(1 1/16)	31.750(1 1/4)	29 000	49 000	2 960	5 000	8 000	12 000	DCL1320	0.0400	_
	28.575(1 1/8)	9.525(¾)	7 150	8 300	730	845	7 500	11 000	DCL 146	0.0130	MI-101406
	28.575(1 1/8)	12.700(½)	10 900	14 200	1 110	1 450	7 500	11 000	DCL 148	0.0170	MI-101408
22.225(%)	28.575(1 1/8)	19.050(¾)	17 600	26 400	1 800	2 700	7 500	11 000	DCL1412	0.0250	MI-101412
	28.575(1 1/8)	22.225(%)	21 000	33 000	2 140	3 400	7 500	11 000	DCL1414	0.0340	MI-101416
	28.575(1 1/8)	25.400(1)	24 100	39 500	2 450	4 000	7 500	11 000	DCL1416	0.0340	MI-101416
23.812(15/16)	30.162(1 3/16)	15.875(5/8)	14 600	21 300	1 490	2 170	6 500	10 000	DCL1510	0.0230	_
23.612(/16)	30.162(1 3/16)	25.400(1)	24 700	41 500	2 520	4 250	6 500	10 000	DCL1516	0.0360	_
	31.750(1 1/4)	9.525(¾)	7 550	9 250	770	940	6 500	9 500	DCL 166	0.0140	-
25.400(1)	31.750(1 1/4)	12.700(½)	11 500	15 800	1 170	1 610	6 500	9 500	DCL 168	0.0190	_
25.400(1)	31.750(1 1/4)	19.050(¾)	18 600	29 500	1 890	3 000	6 500	9 500	DCL1612	0.0310	MI-121612
	31.750(1 1/4)	22.225(%)	22 100	37 000	2 260	3 750	6 500	9 500	DCL1614	0.0340	MI-121616
NOTA D	inotti con anollo in		dida D	OL 1 MIL () /-		D 404 L 1			111111111111111111111111111111111111111		

NOTA: Per i cuscinetti con anello interno, l'appellativo diventa DCL+MI. (Vedere a pag. B-191 la tabella dimensionale degli anelli interni).
Esempio: DCL128+MI-081210

Nota: La NTN offre anche un cuscinetto con fondello con le dimensioni sopra indicate.

Dimensioni in pollici

Tipo DCL

F_w 25.400∼41.275mm

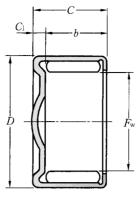
Dime	ensioni d'ingor	mbro			i di carico		Numero di	giri limite	Appellativo	Massa	Anello interno ¹⁾
	mm (½5.4mm)		dinamico		dinamico						appropriato
$F_{ m w}$	D	C		N	kgt	Ī	rpr grasso	n olio		kg	
1 W	D	0 -0.2	$C_{\rm r}$	Cor	$C_{\rm r}$	Cor	grasso	Ollo		(approssimata)	(come riferimento)
05 400(4)	31.750(1 1/4)	25.400(1)	25 400	44 000	2 590	4 500	6 500	9 500	DCL1616	0.038	MI-121616
25.400(1)	31.750(1 1/4)	31.750(1 1/4)	31 500	58 000	3 200	5 900	6 500	9 500	DCL1620	0.048	_
26.988(1 1/16)	33.338(1 5/16)	15.875(5/8)	15 900	24 600	1 620	2 510	6 000	9 000	DCL1710	0.025	_
	34.925(1 %)	9.525(¾)	8 150	10 600	830	1 080	5 500	8 500	DCL 186	0.016	MI-141808
	34.925(1 3/8)	12.700(1/2)	12 400	18 200	1 260	1 850	5 500	8 500	DCL 188	0.021	MI-141808
28.575(1 1/8)	34.925(1 3/8)	19.050(3/4)	20 100	34 000	2 050	3 450	5 500	8 500	DCL1812	0.032	MI-141812
	34.925(1 3/8)	25.400(1)	27 400	50 500	2 790	5 150	5 500	8 500	DCL1816	0.043	MI-141816
	34.925(1 %)	31.750(1 1/4)	34 000	66 500	3 450	6 800	5 500	8 500	DCL1820	0.053	MI-141820
30.162(1 ³ / ₁₆)	38.100(1½)	25.400(1)	33 000	54 000	3 350	5 500	5 500	8 000	DCL1916	0.057	_
	38.100(1½)	12.700(½)	12 500	19 000	1 280	1 940	5 000	7 500	DCL 208	0.023	_
	38.100(1½)	15.875(%)	16 400	27 000	1 670	2 750	5 000	7 500	DCL2010	0.029	_
31.750(1 1/4)	38.100(1½)	19.050(¾)	20 300	35 500	2 070	3 600	5 000	7 500	DCL2012	0.036	_
	38.100(1½)	25.400(1)	27 700	53 000	2 830	5 400	5 000	7 500	DCL2016	0.047	_
	38.100(1½)	31.750(1 1/4)	34 500	70 000	3 500	7 100	5 000	7 500	DCL2020	0.058	_
	41.275(1 %)	12.700(½)	13 400	21 400	1 360	2 180	4 700	7 000	DCL 228	0.027	_
04 005(4 30	41.275(1 %)	19.050(¾)	21 700	40 000	2 210	4 050	4 700	7 000	DCL2212	0.038	_
34.925(1 ¾)	41.275(1 %)	25.400(1)	29 600	59 500	3 000	6 050	4 700	7 000	DCL2216	0.051	_
	41.275(1 %)	31.750(1 1/4)	36 500	78 500	3 750	8 000	4 700	7 000	DCL2220	0.064	_
	47.625(1 1/8)	12.700(½)	17 100	22 800	1 750	2 320	4 300	6 500	DCL 248	0.043	_
	47.625(1 %)	15.875(5/8)	21 000	29 700	2 150	3 050	4 300	6 500	DCL2410	0.054	_
00 400/4 10	47.625(1 %)	19.050(¾)	26 600	40 000	2 710	4 100	4 300	6 500	DCL2412	0.065	_
38.100(1½)	47.625(1 1/8)	22.225(%)	32 000	50 500	3 250	5 150	4 300	6 500	DCL2414	0.076	MI-202416
	47.625(1 %)	25.400(1)	36 500	60 500	3 750	6 200	4 300	6 500	DCL2416	0.087	MI-202416
	47.625(1 %)	31.750(1 1/4)	46 500	82 000	4 750	8 350	4 300	6 500	DCL2420	0.107	MI-202420
	50.800(2)	12.700(½)	18 000	24 900	1 840	2 540	4 000	6 000	DCL 268	0.046	MI-222610
44 075/4 50	50.800(2)	15.875(%)	22 100	32 500	2 260	3 300	4 000	6 000	DCL2610	0.058	MI-222610
41.275(1 %)	50.800(2)	25.400(1)	38 500	66 500	3 950	6 800	4 000	6 000	DCL2616	0.106	_
	50.800(2)	31.750(1 1/4)	49 000	90 000	5 000	9 150	4 000	6 000	DCL2620	0.116	MI-212620
OT4 D :											

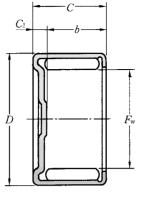
NOTA: Per i cuscinetti con anello interno, l'appellativo diventa DCL+MI. (Vedere a pag. B-191 la tabella dimensionale degli anelli interni).

Esempio: DCL2414+MI-202416

Nota: La NTN offre anche un cuscinetto con fondello con le dimensioni sopra indicate.

F_w 44.450∼50.800mm


Dime	ensioni d'ingoi	mbro		oefficient			Numero di	giri limite	Appellativo	Massa	Anello interno ¹⁾
	mm (½5.4mm)			statico N	dinamico kg		rpı	m		kg	appropriato
$F_{ m w}$	D	C					grasso	olio			
		0 -0.2	$C_{\rm r}$	Cor	$C_{\rm r}$	Cor				(approssimata)	(come riferimento)
	53.975(2 1/8)		29 200	47 500	2 980	4 850	3 700	5 500	DCL2812	0.074	MI-242812
44.450(1 %)	53.975(2 ½)	25.400(1) 38.100(1½)	40 500	72 000 126 000	4 100 6 350	7 350 12 800	3 700 3 700	5 500 5 500	DCL2816 DCL2824	0.099	MI-242816
47 COE(4 7A	57.150(2 ¹ / ₄) 57.150(2 ¹ / ₄)		19 700 24 200	29 200 38 000	2 000 2 460	2 980 3 900	3 300 3 300	5 000 5 000	DCL 308 DCL3010	0.053	_
47.023(1/8)	57.150(2 1/4)		42 000	78 000	4 300	7 950	3 300	5 000	DCL3010 DCL3016	0.106	_
	60.325(2 3/8)		20 400	31 500	2 080	3 200	3 100	4 700	DCL 328	0.056	
	60.325(2 %)		44 000	83 500	4 450	8 550	3 100	4 700	DCL 326	0.036	_
50.800(2)	60.325(2 %)			113 000		11 500	3 100	4 700	DCL3210	0.112	_
		38.100(1½)		146 000		14 800	3 100	4 700	DCL3224	0.168	_
	,	` ,									


NOTA: Per i cuscinetti con anello interno, l'appellativo diventa DCL+MI. (Vedere a pag. B-191 la tabella dimensionale degli anelli interni).

Esempio: DCL2816+MI-242816

Nota: La NTN offre anche un cuscinetto con fondello con le dimensioni sopra indicate.

Tipo HCK

Tipo normale Tipo con fondello speciale

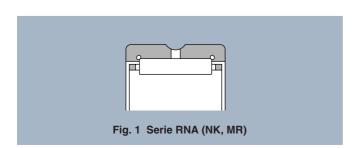
*F*_w 10∼20mm

	Dimen	sioni d'ing	ombro			Coefficien			Арр	pellativo	Massa
		mm			dinamico	statico N		o statico gf			kg
$F_{ m w}$	D	C	b	C_1	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	tipo normale	con fondello speciale	(approssimata)
10	15	9.35	7.6	1.75	6 200	9 250	635	940	_	HCK1015	0.007
11.656	17.1	11.85	9.6	2.25	8 850	13 800	905	1 400	HCK1217	-	0.011
13	19	11.85	9.6	2.25	10 000	15 000	1 020	1 530	HCK1319	_	0.013
14	20	11.85	9.6	2.25	10 500	16 600	1 070	1 690	HCK1420	_	0.014
16	22	12.85	10.6	2.25	12 200	20 700	1 240	2 110	HCK1622	-	0.017
18	24	13.85	11.6	2.25	13 900	25 300	1 420	2 580	HCK1824	-	0.021
18	24.6	13.85	11.6	2.25	13 900	25 300	1 420	2 580	HCK1825	-	0.025
20	27.9	15.82	13.1	2.72	17 800	31 000	1 810	3 150	HCK2028	-	0.037

Cuscinetti a rullini

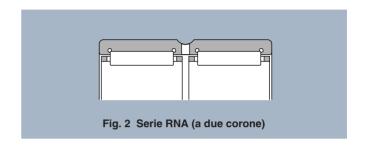
Cuscinetti a rullini

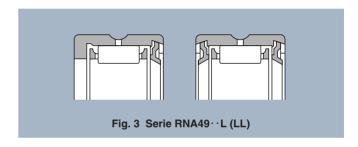
I cuscinetti a rullini sono realizzati con anelli ottenuti da lavorazione meccanica ed all'interno sono dotati di una gabbia a rullini. I bordi integrali dell'anello esterno rendono quest'ultimo non separabile dalla gabbia a rullini. L'esecuzione massiccia dell'anello esterno conferisce una elevata rigidutà al cuscinetto e ad una elevata precisione. I cuscinetti a rullini sono quindi adatti per le applicazioni con elevati numeri di giri, carichi elevati e richiedenti grande precisione.

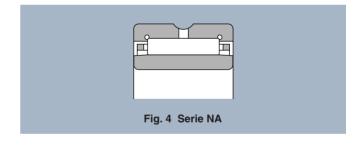

I cuscinetti possono essere forniti senza anello interno per i casi nei quali l'albero viene usato direttamente come pista volvente.

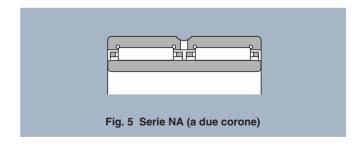
Tipi ed applicazioni

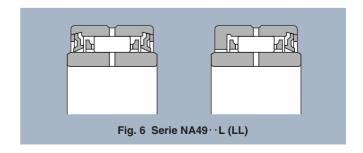
I cuscinetti a rullini NTN senza anello interno sono disponibili nella serie NK ed RNA (serie metrica) e nella serie MR (serie in pollici). La serie dimensionale RNA include i tipi RNA49, RNA59 ed RNA 69. La serie dei cuscinetti con anello interno è costituita dai tipi NK+IR ed NA (serie metrica) ed MR+MI (serie in pollici). La serie dimensionale dei coscinetti NA include i tipi NA48, NA49, NA59 ed NA69 Le dimensioni d'ingombro (diametro del foro, diametro esterno, larghezza e dimensione dei raccordi) per le serie dimensionali sopra citate sono specificate dalle norme JIS B 1512 ed ISO 15. La terza e la quarta cifra dell'appellativo del cuscinetto rappresentano rispettivamente la serie di larghezza e la serie di diametro.

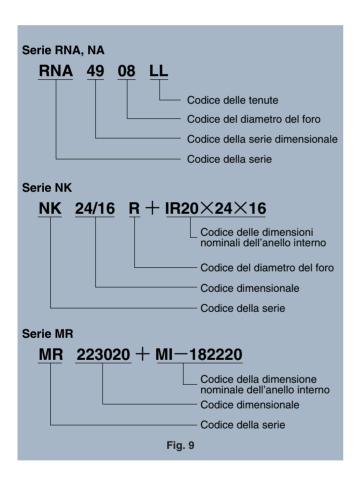

I cuscinetti particolari, il cui diametro inscritto ai rullini è di 40mm o superiore, tra i tipi **RNA69 (NA69)** hanno una doppia corona di rullini mentre i cuscinetti di altri tipi e serie dimensionali sono dotati di una sola corona. I cuscinetti il cui diametro del cerchio inscritto $(F_{\rm w})$ non è superiore a 12mm non hanno i bordi integrali e la gabbia a rullini è trattenuta da anelli riportati; nei casi in cui il diemetro del cerchio inscritto $(F_{\rm w})$ supera i 12 mm la gabbia a rullini è trattenuta dai bordi integrali dell'anello esterno. Gli anelli esterni (diversi da quelli dei cuscinetti della **serie NK** il cui diametro del cerchio inscritto non eccede i 12 mm) hanno un foro ed una gola per semplificare la rilubrificazione del cuscinetto.


La gabbia usata nei cuscinetti a rullini NTN usualmente è in acciaio: massiccia od in lamiera stampata. Possono comunque essere utilizzate delle gabbie ottenute per iniezione di poliammide rinforzata in fibre di vetro o di carbonio (suffisso T2). Le gabbie T2 possono operare ad una temperatura massima di 120°C; la temperatura




massima continuativa di funzionamento è pero di 100°C.


La serie dei cuscinetti **RNA49 (NA49)** include i tipi aventi l'anello interno dotato di anelli di tenuta in gomma sintetica ad uno o ad entrami i lati (suffisso **L, LL**). Tale variante è prelubrificata con un grasso al sapone di litio e può operare in un campo di temperatura tra -25° C e $+100^{\circ}$ C.



Appellativi

Gli appellativi dei cuscinetti a rullini NTN, serie RNA ed NA, comprende il codice della serie, il codice della serie dimensionale, il codice del diametro del foro e suffisso.

L'appellativo dei cuscinetti della **serie NK** indica: il codice dimensionale (diametro del cerchio inscritto/dimensione della larghezza) ed il suffisso; quello della **serie MR** comprende il codice dalla serie ed il codice dimensionale (diametro del cerchio inscritto, diametro esterno e larghezza). Le dimensioni della **serie MR** sono indicate con un intervallo di 1/16 di pollice.

Gli appellativi delle **serie NK** ed **MR** e quelle di altri cuscinetti con anello interno indicano anche il codice nominale dell'anello interno.

Tolleranze dei cuscinetti

La precisione dimensionale, di forma e di rotazione dei cuscinetti a rullini NTN sono definite nel paragrafo 6 "Tolleranze dei cuscinetti", Tabella 6.2, alle pagg. A-28, 29. Sebbene i prodotti conformi alle tolleranze ISO (JIS) della classe 0 siano normali, la NTN può anche fornire dei cuscinetti corrispondenti alle classi di tolleranza ISO (JIS) 4, 5e 6 per le applicazioni che richiedono una precisione di rotazione superiore. Per dettagli in merito contattare l'assistenza tecnica NTN.

La tolleranza dimensionale del cerchio inscritto ($F_{\rm w}$) dei cuscinetti delle **serie NK, RNA** e **MR** privi di anello

interno è conforme alla classe ISO F6. Si prega ti tener conto di tale tolleranza quando si sceglie il diametro dell'albero ed il giuoco radiale.

Accoppiamento del cuscinetto e giuoco interno

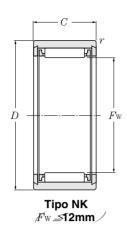
Il giuoco radiale dei cuscinetti a rullini NTN con anello interno è specificato nel Paragrafo 8 "Giuoco dei cuscinetti", Tabella 8.1 a pag. A-40. Poiché il giuoco dei cuscinetti con anelli non intercambiabili è limitato, un cuscinetto con anelli intercambiabili deve essere montato come fornito.

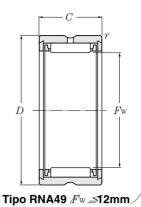
Le tolleranze dimensionali per l'accoppiamento del cuscinetto sull'albero e nell'alloggiamento, variano a seconda del tipo e dell'entità del carico, del diametro dell'albero, del diametro del foro e devono soddisfare le esigenze specificate nel Par. 14.3 "Precisione dell'albero e dell'alloggiamento ", Tabella 14.4, a pag. A-59

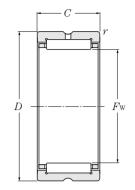
Un cuscinetto privo di anello interno utilizza l'albero come pista volvente. Le tolleranze richieste per il diametro dell'albero (diametro della pista) corrispondenti al giuoco di funzionamento sono indicate nella **tabella 1** sotto riportata. La tolleranza dimensionale del foro di alloggiamento che viene usata comunemente è K7. Nel caso in cui si voglia applicare una tolleranza diversa da K7 si prega di contattare l'assistenza tecnica NTN.

Per la precisione di forma, la rugosità e la durezza della pista ricavata sull'albero, fare riferimento al **Par. 14.4** " **Precisione della superficie della pista**", **Tabella 14.5**, a pag. A-59.

Tabella 1 Tolleranza dimensionale dell'albero (diametro della pista)

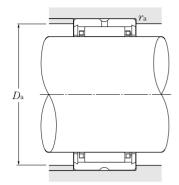

	etro del	Classe	di tolleranza de	ll'albero
•	inscritto r _w nm Incl.	Giuoco inferiore a normale	Giuoco normale	Giuoco superiore al normale
80 160	80 160 180	k5 k5 k5	h5 g5 g5	f6 f6 e6
180 200 250	200 250 315	j5 j5 h5	g5 f6 f6	e6 e6 e6
315	400	g5	f6	d6

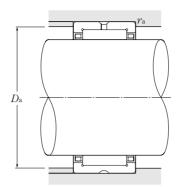

Dimensioni di montaggio


L'anello interno e quello esterno dei cuscinetti a rullini NTN, tipi separabili, devono essere bloccati assialmente da uno spalleggiamento o da un anello elastico. La dimensione degli spalleggiamenti e dei raggi di raccordo r_a (vedere a pagina B-51) dell'albero e dell'alloggiamento sono indicate nelle tabelle dimensionali.

Senza anello interno

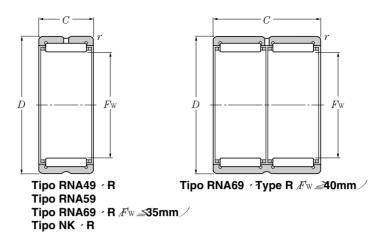
Tipo RNA49 Tipo RNA59 Tipo RNA69 Tipo NK

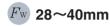




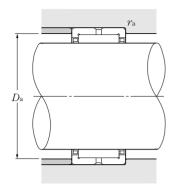
Tipo RNA49 · R Æw ≥14mm/ Tipo RNA59 Tipo RNA69 · R Tipo NK · R Æw ≥14mm/

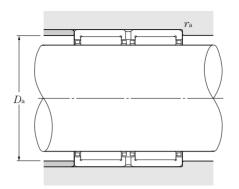
Dimens	ioni d	'ingon	nbro	dinamico	Coefficienti statico	di carico dinamico	statico	Numero di	giri limite	Appellativo	Dimens		Massa
	mr	n			N		gf	rp	om		mr	n	kg
$F_{ m w}$	D	C	∕r _{s min} 1)	$C_{ m r}$	Cor	$C_{ m r}$	Cor	grasso	olio		D _a max	r _{as} max	(approssimata)
5 ^{+0.018} _{+0.010}	10	10	0.15	2 640	2 190	269	224	27 000	40 000	NK5/10T2	6.5	0.15	0.0031
5 +0.010	10	12	0.15	2 720	2 250	277	230	27 000	40 000	NK5/12T2	6.5	0.15	0.0037
6 ^{+0.018} _{+0.010}	12	10	0.15	2 660	2 280	272	233	25 000	37 000	NK6/10T2	7.5	0.15	0.0047
b +0.010	12	12	0.15	3 400	3 150	345	320	25 000	37 000	NK6/12T2	7.5	0.15	0.0057
	13	10	0.15	2 670	2 350	272	239	23 000	34 000	RNA495T2	8.5	0.15	0.0055
7 ^{+0.022} _{+0.013}	14	10	0.3	2 670	2 350	272	239	23 000	34 000	NK7/10T2	8.5	0.3	0.0069
	14	12	0.3	3 400	3 200	345	330	23 000	34 000	NK7/12T2	8.5	0.3	0.0082
	15	10	0.15	3 150	3 000	320	305	21 000	32 000	RNA496	9.5	0.15	0.0073
8 ^{+0.022} _{+0.013}	15	12	0.3	4 000	4 100	410	420	21 000	32 000	NK8/12T2	9.5	0.3	0.0087
	15	16	0.3	4 850	5 200	495	535	21 000	32 000	NK8/16T2	9.5	0.3	0.0120
	16	12	0.3	4 550	5 000	465	510	20 000	30 000	NK9/12T2	10.5	0.3	0.0100
9 ^{+0.022} _{+0.013}	16	16	0.3	5 500	6 400	560	650	20 000	30 000	NK9/16T2	10.5	0.3	0.0130
	17	10	0.15	3 600	3 650	365	375	20 000	30 000	RNA497	10.5	0.15	0.0095
	17	12	0.3	4 550	5 100	460	520	19 000	28 000	NK10/12T2	11.5	0.3	0.0100
10 ^{+0.022} _{+0.013}	17	16	0.3	5 450	6 450	555	660	19 000	28 000	NK10/16	11.5	0.3	0.0130
	19	11	0.15	4 300	3 950	435	405	19 000	28 000	RNA498	12	0.15	0.0130
	19	12	0.3	5 000	6 100	510	620	17 000	26 000	NK12/12	13.5	0.3	0.0130
12 ^{+0.027} _{+0.016}	19	16	0.3	6 000	7 700	615	785	17 000	26 000	NK12/16	13.5	0.3	0.0160
	20	11	0.3	4 850	4 900	495	500	17 000	26 000	RNA499	14	0.3	0.0130
	22	13	0.3	8 600	9 200	875	935	16 000	24 000	RNA4900R	20	0.3	0.0170
14 ^{+0.027} _{+0.016}	22	16	0.3	10 300	11 500	1 050	1 170	16 000	24 000	NK14/16R	20	0.3	0.0210
	22	20	0.3	13 000	15 600	1 330	1 590	16 000	24 000	NK14/20R	20	0.3	0.0260
4 = +0.027	23	16	0.3	10 900	12 700	1 110	1 290	15 000	23 000	NK15/16R	21	0.3	0.0220
15 ^{+0.027} _{+0.016}	23	20	0.3	13 800	17 200	1 410	1 750	15 000	230 00	NK15/20R	21	0.3	0.0270
	24	13	0.3	9 550	10 900	975	1 110	15 000	23 000	RNA4901R	22	0.3	0.0170
16 ^{+0.027} _{+0.016}	24	16	0.3	12 200	14 900	1 240	1 520	15 000	23 000	NK16/16R	22	0.3	0.0220
16 +0.016	24	20	0.3	14 600	18 800	1 490	1 920	15 000	23 000	NK16/20R	22	0.3	0.0280
	24	22	0.3	15 400	20 000	1 570	2 040	15 000	23 000	RNA6901R	22	0.3	0.0310



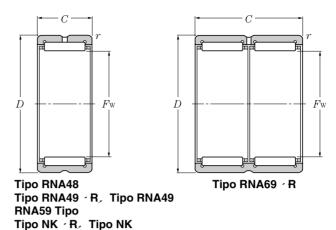

F_w 17∼28mm

Dimens	ioni d	'ingon	nbro	(Coefficienti	di carico		Numero di	giri limite	Appellativo	Dimens		Massa
	mr	m		dinamico	statico N	dinamico	statico	rr	am.		monta m	-	ka
	1111	11			IN	kį	yı	grasso	om olio		D_{a}	$r_{ m as}$	kg
$F_{ m w}$	D	C	<i>γ</i> _{s min} 1)	$C_{ m r}$	Cor	$C_{ m r}$	Cor				max	max	(approssimata)
17 ^{+0.027} _{+0.016}	25	16	0.3	12 100	15 000	1 240	1 530	15 000	22 000	NK17/16R	23	0.3	0.024
+0.016	25	20	0.3	15 400	20 400	1 570	2 080	15 000	22 000	NK17/20R	23	0.3	0.030
18 ^{+0.027} _{+0.016}	26	16	0.3	12 700	16 200	1 300	1 650	14 000	21 000	NK18/16R	24	0.3	0.025
+0.016	26	20	0.3	16 100	22 000	1 640	2 250	14 000	21 000	NK18/20R	24	0.3	0.031
19 ^{+0.033} _{+0.020}	27	16	0.3	13 300	17 400	1 350	1 780	14 000	21 000	NK19/16R	25	0.3	0.026
+0.020	27	20	0.3	16 000	22 200	1 630	2 260	14 000	21 000	NK19/20R	25	0.3	0.032
	28	13	0.3	10 300	12 800	1 050	1 310	13 000	20 000	RNA4902R	26	0.3	0.022
	28	16	0.3	13 200	17 500	1 340	1 790	13 000	20 000	NK20/16R	26	0.3	0.027
20 ^{+0.033} _{+0.020}	28	18	0.3	14 100	19 100	1 440	1 950	13 000	20 000	RNA5902	26	0.3	0.033
	28	20	0.3	16 700	23 800	1 700	2 420	13 000	20 000	NK20/20R	26	0.3	0.034
	28	23	0.3	17 600	25 300	1 790	2 580	13 000	20 000	RNA6902R	26	0.3	0.040
21 ^{+0.033} _{+0.020}	29	16	0.3	13 700	18 700	1 400	1 910	13 000	19 000	NK21/16R	27	0.3	0.028
+0.020	29	20	0.3	18 300	27 100	1 860	2 760	13 000	19 000	NK21/20R	27	0.3	0.035
	30	16	0.3	14 200	19 900	1 450	2 030	12 000	18 000	NK22/16R	28	0.3	0.034
	30	20	0.3	18 000	27 000	1 840	2 760	12 000	18 000	NK22/20R	28	0.3	0.037
22 ^{+0.033} _{+0.020}	30	13	0.3	11 200	14 600	1 140	1 490	12 000	18 000	RNA4903R	28	0.3	0.022
	30	18	0.3	15 200	21 700	1 550	2 210	12 000	18 000	RNA5903	28	0.3	0.035
	30	23	0.3	18 200	27 200	1 850	2 770	12 000	18 000	RNA6903R	28	0.3	0.042
24 ^{+0.033} _{+0.020}	32	16	0.3	15 200	22 300	1 550	2 280	11 000	170 00	NK24/16R	30	0.3	0.032
24 +0.020	32	20	0.3	18 600	28 800	1 890	2 930	11 000	17 000	NK24/20R	30	0.3	0.040
	33	16	0.3	15 100	22 400	1 540	2 280	11 000	16 000	NK25/16R	31	0.3	0.033
	33	20	0.3	19 200	30 500	1 960	3 100	11 000	16 000	NK25/20R	31	0.3	0.042
25 ^{+0.033} _{+0.020}	37	17	0.3	21 300	25 500	2 170	2 600	11 000	16 000	RNA4904R	35	0.3	0.052
	37	23	0.3	28 400	37 000	2 900	3 750	11 000	16 000	RNA5904	35	0.3	0.084
	37	30	0.3	36 500	50 500	3 700	5 150	11 000	16 000	RNA6904R	35	0.3	0.100
26 ^{+0.033} _{+0.020}	34	16	0.3	15 600	23 600	1 590	2 410	10 000	15 000	NK26/16R	32	0.3	0.034
+0.020	34	20	0.3	19 100	30 500	1 940	3 100	10 000	15 000	NK26/20R	32	0.3	0.042
28 ^{+0.033} _{+0.020}	37	20	0.3	22 300	34 000	2 280	3 450	9 500	14 000	NK28/20R	35	0.3	0.052
20 +0.020	37	30	0.3	26 700	48 000	2 720	4 900	9 500	14 000	NK28/30R	35	0.3	0.082


Senza anello interno


Tipo RNA49 Tipo RNA59 Tipo RNA69 Tipo NK

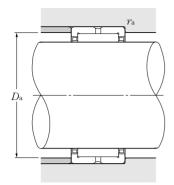
Dimens	ioni d	'ingon	nbro	(Coefficienti	di carico		Numero di	giri limite	Appellativo	Dimens		Massa
	100 H	~		dinamico	statico N	dinamico	statico				mont		len
	mr	n			IN	kį	gr	grasso	om olio		D_{a}	$r_{ m as}$	kg
$F_{ m w}$	D	C	$\gamma_{\mathrm{s}\mathrm{min}}$ 1)	$C_{\rm r}$	Cor	$C_{\rm r}$	Cor	3			max	max	(approssimata)
	39	17	0.3	23 200	29 300	2 360	2 990	9 500	14 000	RNA49/22R	37	0.3	0.050
28 ^{+0.033} _{+0.020}	39	23	0.3	26 400	37 500	2 690	3 850	9 500	14 000	RNA59/22	37	0.3	0.092
	39	30	0.3	40 000	58 500	4 050	6 000	9 500	14 000	RNA69/22R	37	0.3	0.100
29 ^{+0.033} _{+0.020}	38	20	0.3	22 200	34 000	2 270	3 450	9 500	14 000	NK29/20R	36	0.3	0.054
29 _{+0.020}	38	30	0.3	27 500	50 500	2 810	5 150	9 500	14 000	NK29/30R	36	0.3	0.084
	40	20	0.3	22 100	34 000	2 260	3 500	8 500	13 000	NK30/20R	38	0.3	0.065
	40	30	0.3	33 000	57 000	3 350	5 800	8 500	13 000	NK30/30R	38	0.3	0.098
30 ^{+0.033} _{+0.020}	42	17	0.3	24 000	31 500	2 450	3 200	8 500	13 000	RNA4905R	40	0.3	0.061
	42	23	0.3	30 500	43 000	3 150	4 350	8 500	13 000	RNA5905	40	0.3	0.101
	42	30	0.3	41 500	63 000	4 200	6 400	8 500	13 000	RNA6905R	40	0.3	0.112
	42	20	0.3	23 500	37 500	2 400	3 850	8 500	13 000	NK32/20R	40	0.3	0.068
	42	30	0.3	34 000	60 500	3 450	6 150	8 500	13 000	NK32/30R	40	0.3	0.102
32 ^{+0.041} _{+0.025}	45	17	0.3	24 800	33 500	2 530	3 400	8 500	13 000	RNA49/28R	43	0.3	0.073
	45	23	0.3	32 000	45 500	3 250	4 650	8 500	13 000	RNA59/28	43	0.3	0.108
	45	30	0.3	43 000	67 000	4 350	6 850	8 500	13 000	RNA69/28R	43	0.3	0.135
	45	20	0.3	24 800	41 500	2 520	4 250	7 500	11 000	NK35/20R	43	0.3	0.074
	45	30	0.3	36 000	66 500	3 650	6 800	7 500	11 000	NK35/30R	43	0.3	0.112
35 ^{+0.041} _{+0.025}	47	17	0.3	25 500	35 500	2 600	3 600	7 500	11 000	RNA4906R	45	0.3	0.069
	47	23	0.3	32 500	48 500	3 350	4 950	7 500	11 000	RNA5906	45	0.3	0.108
	47	30	0.3	42 500	67 500	4 300	6 900	7 500	11 000	RNA6906R	45	0.3	0.126
37 ^{+0.041} _{+0.025}	47	20	0.3	25 300	43 500	2 580	4 400	7 500	11 000	NK37/20R	45	0.3	0.077
37 +0.025	47	30	0.3	36 500	69 500	3 750	7 100	7 500	11 000	NK37/30R	45	0.3	0.107
38 ^{+0.041} _{+0.025}	48	20	0.3	25 900	45 000	2 640	4 600	7 500	11 000	NK38/20R	46	0.3	0.079
36 +0.025	48	30	0.3	37 500	73 000	3 850	7 400	7 500	11 000	NK38/30R	46	0.3	0.107
	50	20	0.3	26 400	47 000	2 700	4 800	6 500	10 000	NK40/20R	48	0.3	0.083
	50	30	0.3	38 500	76 000	3 900	7 750	6 500	10 000	NK40/30R	48	0.3	0.125
40 ^{+0.041} _{+0.025}	52	20	0.6	31 500	47 500	3 200	4 850	6 500	10 000	RNA49/32R	48	0.6	0.089
	52	27	0.6	38 000	61 000	3 850	6 250	6 500	10 000	RNA59/32	48	0.6	0.149
	52	36	0.6	47 500	82 000	4 850	8 350	6 500	10 000	RNA69/32R	48	0.6	0.162

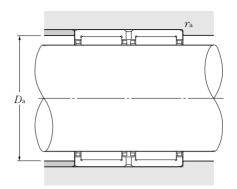


F_w 42∼63mm

Dimens	ioni d	ingon	nbro		Coefficienti	i di carico		Numero di	giri limite	Appellativo	Dimens	sioni di	Massa
				dinamico	statico	dinamico					monta	-	
	mr	n			N		kgf	rpr grasso	n olio		D_{a}	m $r_{ m as}$	kg
$F_{ m w}$	D	C	$r_{ m s min}$ 1)	$C_{ m r}$	Cor	C_{r}	Cor	9.4000	0110		max	max	(approssimata)
	52	20	0.3	26 900	49 000	2 750	5 000	6 500	9 500	NK42/20R	50	0.3	0.086
	52	30	0.3	39 000	79 000	4 000	8 050	6 500	9 500	NK42/30R	50	0.3	0.130
42 ^{+0.041} _{+0.025}	55	20	0.6	32 000	50 000	3 300	5 100	6 500	9 500	RNA4907R	51	0.6	0.107
	55	27	0.6	39 000	64 500	3 950	6 550	6 500	9 500	RNA5907	51	0.6	0.176
	55	36	0.6	49 000	86 500	5 000	8 800	6 500	9 500	RNA6907R	51	0.6	0.193
43 ^{+0.041} _{+0.025}	53	20	0.3	27 500	51 000	2 810	5 200	6 500	9 500	NK43/20R	51	0.3	0.086
43 +0.025	53	30	0.3	40 000	82 000	4 100	8 400	6 500	9 500	NK43/30R	51	0.3	0.133
45 ^{+0.041} _{+0.025}	55	20	0.3	28 000	52 500	2 860	5 400	6 000	9 000	NK45/20R	53	0.3	0.092
45 +0.025	55	30	0.3	41 000	85 500	4 150	8 700	6 000	9 000	NK45/30R	53	0.3	0.139
47 ^{+0.041} _{+0.025}	57	20	0.3	28 800	55 500	2 940	5 650	5 500	8 500	NK47/20R	55	0.3	0.095
47 +0.025	57	30	0.3	42 500	91 500	4 350	9 350	5 500	8 500	NK47/30R	55	0.3	0.142
	62	22	0.6	43 500	66 500	4 450	6 800	5 500	8 500	RNA4908R	58	0.6	0.140
48 ^{+0.041} _{+0.025}	62	30	0.6	53 000	92 500	5 450	9 450	5 500	8 500	RNA5908	58	0.6	0.225
	62	40	0.6	67 000	116 000	6 850	11 800	5 500	8 500	RNA6908R	58	0.6	0.256
50 ^{+0.041} _{+0.025}	62	25	0.6	38 500	74 500	3 950	7 550	5 500	8 000	NK50/25R	58	0.6	0.158
30 +0.025	62	35	0.6	51 000	106 000	5 200	10 800	5 500	8 000	NK50/35R	58	0.6	0.221
	68	22	0.6	46 000	73 000	4 700	7 450	5 000	7 500	RNA4909R	64	0.6	0.182
52 ^{+0.049} _{+0.030}	68	30	0.6	56 000	101 000	5 700	10 300	5 000	7 500	RNA5909	64	0.6	0.232
	68	40	0.6	70 500	127 000	7 200	13 000	5 000	7 500	RNA6909R	64	0.6	0.273
55 ^{+0.049} _{+0.030}	68	25	0.6	41 000	82 000	4 150	8 400	5 000	7 500	NK55/25R	64	0.6	0.193
55 +0.030	68	35	0.6	54 000	118 000	5 500	12 000	5 000	7 500	NK55/35R	64	0.6	0.267
.0.040	72	22	0.6	48 000	80 000	4 900	8 150	4 700	7 000	RNA4910R	68	0.6	0.163
58 ^{+0.049} _{+0.030}	72	30	0.6	58 000	110 000	5 950	11 200	4 700	7 000	RNA5910	68	0.6	0.289
	72	40	0.6	74 000	139 000	7 500	14 200	4 700	7 000	RNA6910R	68	0.6	0.320
60 ^{+0.049} _{+0.030}	72	25	0.6	41 000	85 000	4 200	8 700	4 300	6 500	NK60/25R	68	0.6	0.185
+0.030	72	35	0.6	57 000	130 000	5 800	13 200	4 300	6 500	NK60/35R	68	0.6	0.258
63 ^{+0.049} _{+0.030}	80	25	1	58 500	99 500	6 000	10 100	4 300	6 500	RNA4911R	75	1	0.255
+0.030	80	34	1	76 500	140 000	7 800	14 300	4 300	6 500	RNA5911	75	1	0.367

Senza anello interno


Tipo RNA49 Tipo RNA59 Tipo RNA69 Tipo NK



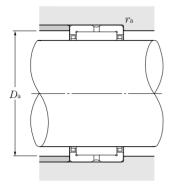
F_w 63∼85mm

Dimen	sioni d	'ingon	nbro		Coefficienti	di carico		Numero di	giri limite	Appellativo	Dimens	sioni di	Massa
				dinamico		dinamico						aggio	Lan
	mı	n			N		kgf	rpr grasso	n olio		D_{a}	m $r_{ m as}$	kg
$F_{ m w}$	D	C	∕r _{s min} 1)	$C_{ m r}$	Cor	$C_{ m r}$	$C_{ m or}$	graces			max	max	(approssimata)
63 ^{+0.049} _{+0.030}	80	45	1	94 000	183 000	9 600	18 600	4 300	6 500	RNA6911R	75	1	0.470
65 ^{+0.049} _{+0.030}	78	25	0.6	45 000	98 000	4 550	10 000	4 000	6 000	NK65/25R	74	0.6	0.221
+0.030	78	35	0.6	60 000	142 000	6 100	14 400	4 000	6 000	NK65/35R	74	0.6	0.310
	82	25	1	44 500	89 000	4 500	9 050	4 000	6 000	NK68/25R	77	0.6	0.241
	82	35	0.6	63 000	139 000	6 400	14 200	4 000	6 000	NK68/35R	78	0.6	0.338
68 ^{+0.049} _{+0.030}	85	25	1	61 500	108 000	6 250	11 000	4 000	6 000	RNA4912R	80	1	0.275
	85	34	1	80 500	153 000	8 200	15 600	4 000	6 000	RNA5912	80	1	0.408
	85	45	1	95 500	191 000	9 750	19 400	4 000	6 000	RNA6912R	80	1	0.488
70 ^{+0.049} _{+0.030}	85	25	0.6	45 000	91 500	4 600	9 350	3 700	5 500	NK70/25R	81	0.6	0.275
70 +0.030	85	35	0.6	64 000	144 000	6 550	14 700	3 700	5 500	NK70/35R	81	0.6	0.386
	90	25	1	62 500	112 000	6 350	11 400	3 700	5 500	RNA4913R	85	1	0.312
72 ^{+0.049} _{+0.030}	90	34	1	84 000	165 000	8 600	16 800	3 700	5 500	RNA5913	85	1	0.462
	90	45	1	97 000	198 000	9 900	20 200	3 700	5 500	RNA6913R	85	1	0.520
73 ^{+0.049} _{+0.030}	90	25	0.6	54 000	100 000	5 500	10 200	3 700	5 500	NK73/25R	86	0.6	0.302
73 +0.030	90	35	0.6	76 500	156 000	7 800	16 000	3 700	5 500	NK73/35R	86	0.6	0.428
75 ^{+0.049} _{+0.030}	92	25	0.6	55 000	104 000	5 600	10 600	3 700	5 500	NK75/25R	88	0.6	0.315
75 _{+0.030}	92	35	0.6	78 000	162 000	7 950	16 500	3 700	5 500	NK75/35R	88	0.6	0.492
	95	25	1	57 000	119 000	5 800	12 200	3 300	5 000	NK80/25R	90	1	0.301
	95	35	1	79 500	184 000	8 150	18 700	3 300	5 000	NK80/35R	90	1	0.425
80 ^{+0.049} _{+0.030}	100	30	1	85 500	156 000	8 750	15 900	3 300	5 000	RNA4914R	95	1	0.460
	100	40	1	103 000	187 000	10 500	19 100	3 300	5 000	RNA5914	95	1	0.706
	100	54	1	130 000	267 000	13 300	27 200	3 300	5 000	RNA6914R	95	1	0.857
	105	25	1	70 500	123 000	7 200	12 600	3 100	4 700	NK85/25R	100	1	0.404
	105	30	1	87 000	162 000	8 900	16 500	3 100	4 700	RNA4915R	100	1	0.489
85 ^{+0.058} _{+0.036}	105	35	1	100 000	193 000	10 200	19 700	3 100	4 700	NK85/35R	100	1	0.517
	105	40	1	109 000	205 000	11 100	20 900	3 100	4 700	RNA5915	100	1	0.745
	105	54	1	132 000	277 000	13 500	28 300	3 100	4 700	RNA6915R	100	1	0.935
NOTA () D													

F_w 90∼130mm

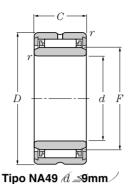
Dimens	sioni d	l'ingon	nbro		Coefficienti	di carico		Numero di g	jiri limite	Appellativo	Dimens		Massa
				dinamico	statico N	dinamico	statico				monta		l
	mı	n			IN	1	kgf	rpn grasso	olio		D_{a}	$r_{ m as}$	kg
$F_{ m w}$	D	B_{e}	$r_{\rm s min}$ 1)	$C_{\rm r}$	Cor	$C_{\rm r}$	Cor	ŏ			max	max	(approssimata)
	110	25	1	71 500	128 000	7 300	13 100	2 900	4 400	NK90/25R	105	1	0.426
	110	30	1	90 500	174 000	9 250	17 700	2 900	4 400	RNA4916R	105	1	0.516
90 ^{+0.058} _{+0.036}	110	35	1	104 000	208 000	10 600	21 200	2 900	4 400	NK90/35R	105	1	0.604
	110	40	1	115 000	223 000	11 700	22 700	2 900	4 400	RNA5916	105	1	0.787
	110	54	1	137 000	298 000	14 000	30 500	2 900	4 400	RNA6916R	105	1	0.987
95 ^{+0.058} _{+0.036}	115	26	1	74 500	137 000	7 600	14 000	2 800	4 200	NK95/26R	110	1	0.364
+0.036	115	36	1	108 000	223 000	11 100	22 700	2 800	4 200	NK95/36R	110	1	0.652
	120	26	1	73 500	137 000	7 500	14 000	2 700	4 000	NK100/26R	115	1	0.487
0.050	120	35	1.1	112 000	237 000	11 500	24 200	2 700	4 000	RNA4917R	113.5	1	0.657
100 ^{+0.058} _{+0.036}	120	36	1	107 000	223 000	11 000	22 800	2 700	4 000	NK100/36R	115	1	0.679
	120	46	1.1	137 000	290 000	14 000	29 600	2 700	4 000	RNA5917	113.5	1	1.00
	120	63	1.1	169 000	400 000	17 300	41 000	2 700	4 000	RNA6917R	113.5	1	1.20
	125	26	1	76 500	147 000	7 800	14 900	2 500	3 800	NK105/26R	120	1	0.506
	125	35	1.1	116 000	252 000	11 900	25 700	2 500	3 800	RNA4918R	118.5	1	0.697
105 ^{+0.058} _{+0.036}	125	36	1	111 000	238 000	11 400	24 300	2 500	3 800	NK105/36R	120	1	0.713
	125	46	1.1	143 000	310 000	14 600	32 000	2 500	3 800	RNA5918	118.5	1	1.04
	125	63	1.1	175 000	425 000	17 900	43 500	2 500	3 800	RNA6918R	118.5	1	1.33
	130	30	1.1	97 500	204 000	9 950	20 800	2 400	3 600	NK110/30R	123.5	1	0.612
	130	35	1.1	118 000	260 000	12 000	26 500	2 400	3 600	RNA4919R	123.5	1	0.719
110 ^{+0.058} _{+0.036}	130	40	1.1	129 000	292 000	13 100	29 700	2 400	3 600	NK110/40R	123.5	1	0.830
	130	46	1.1	149 000	335 000	15 200	34 000	2 400	3 600	RNA5919	123.5	1	1.13
	130	63	1.1	177 000	440 000	18 100	45 000	2 400	3 600	RNA6919R	123.5	1	1.46
115 ^{+0.058} _{+0.036}	140	40	1.1	127 000	260 000	12 900	26 500	2 300	3 500	RNA4920	133.5	1	1.15
+0.036	140	54	1.1	182 000	395 000	18 600	40 500	2 300	3 500	RNA5920	133.5	1	1.76
120 ^{+0.058} _{+0.036}	140	30	1	93 500	210 000	9 550	21 400	2 200	3 300	RNA4822	135	1	0.670
+0.036	140	40	1.1	113 000	268 000	11 500	27 300	2 200	3 300	NK120/40	133.5	1	0.910
125 ^{+0.068} _{+0.043}	150	40	1.1	131 000	279 000	13 300	28 400	2 100	3 200	RNA4922	143.5	1	1.24
		54	1.1	193 000	440 000	19 700	45 000	2 100	3 200	RNA5922	143.5	1	1.89
130 ^{+0.068} _{+0.043}	150	30	1	99 500	233 000	10 100	23 800	2 100	3 100	RNA4824	145	1	0.730

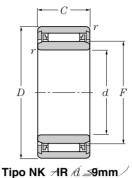
Senza anello interno

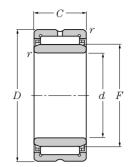

Tipo RNA48 Tipo RNA49 Tipo RNA59 Tipo NK

F_w 130∼220mm

Dimensi	ioni d'i	ingom	nbro		Coefficienti			Numero di g	giri limite	Appellativo	Dimens		Massa
	mm			dinamico	statico N	dinamico	statico kgf	rpr	n		monta mr	-	kg
$F_{ m w}$	D	C	_{√2 min} 1)	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	grasso	olio		D _a	$r_{ m as}$ max	(approssimata)
130 ^{+0.068} 1		40	1.1	116 000	283 000	11 800	28 800	2 100	3 100	NK130/40	143.5	1	0.98
135 ^{+0.068} _{+0.043}	165 165	45 60	1.1	180 000 245 000	380 000 525 000	18 300 25 000	38 500 53 500	2 000 2 000	3 000	RNA4924 RNA5924	158.5 158.5	1	1.86 2.67
1	165	35	1.1	118 000	305 000	12 100	31 000	1 900	2 800	RNA4826	158.5	1	0.95
145 ^{+0.068} _{+0.043} 1	170	32	1.5	111 000	238 000	11 300	24 300	1 900	2 800	NK145/32	162.5	1.5	1.12
	170	42	1.5	153 000	360 000	15 600	36 500	1 900	2 800	NK145/42	162.5	1.5	1.49
150 ^{+0.068} 1	180	50	1.5	202 000	455 000	20 600	46 500	1 800	2 700	RNA4926	172	1.5	2.21
150 +0.043	180	67	1.5	294 000	685 000	30 000	70 000	1 800	2 700	RNA5926	172	1.5	3.21
	175	35	1.1	121 000	315 000	12 300	32 500	1 700	2 600	RNA4828	168.5	1	1.02
155 ^{+0.068} _{+0.043} 1	180	32	1.5	114 000	252 000	11 600	25 700	1 700	2 600	NK155/32	172	1.5	1.20
1	180	42	1.5	156 000	380 000	16 000	38 500	1 700	2 600	NK155/42	172	1.5	1.59
160 ^{+0.068} 1	190	50	1.5	209 000	485 000	21 300	49 500	1 700	2 500	RNA4928	182	1.5	2.35
+0.043	190	67	1.5	310 000	755 000	31 500	77 000	1 700	2 500	RNA5928	182	1.5	3.48
	190	32	1.5	117 000	265 000	11 900	27 000	1 600	2 400	NK165/32	182	1.5	1.42
165 ^{+0.068} _{+0.043} 1	190	40	1.1	152 000	390 000	15 500	40 000	1 600	2 400	RNA4830	183.5	1	1.60
	190	42	1.5	160 000	400 000	16 300	40 500	1 600	2 400	NK165/42	182	1.5	1.66
170 ^{+0.068} _{+0.043} 2	210	60	2	261 000	610 000	26 600	62 500	1 600	2 400	RNA4930	201	2	2.98
175 ^{+0.068} 2	200	40	1.1	160 000	425 000	16 300	43 500	1 500	2 300	RNA4832	193.5	1	1.70
180 ^{+0.068} 2	220	60	2	270 000	650 000	27 600	66 500	1 500	2 200	RNA4932	211	2	3.10
185 ^{+0.079} 2	215	45	1.1	185 000	495 000	18 800	50 500	1 500	2 200	RNA4834	208.5	1	2.54
190 ^{+0.079} 2	230	60	2	279 000	690 000	28 500	70 500	1 400	2 100	RNA4934	221	2	3.22
195 ^{+0.079} 2	225	45	1.1	195 000	540 000	19 800	55 000	1 400	2 100	RNA4836	218.5	1	2.68
205 +0.079 2	250	69	2	375 000	890 000	38 500	90 500	1 300	2 000	RNA4936	241	2	4.48
210 ^{+0.079} 2		50	1.5	227 000	680 000	23 200	69 000	1 300	1 900	RNA4838	232	1.5	3.21
215 ^{+0.079} _{+0.050} 2	260	69	2	390 000	945 000	40 000	96 500	1 300	1 900	RNA4938	251	2	4.53
220 ^{+0.079} 2	250	50	1.5	231 000	705 000	23 600	71 500	1 200	1 800	RNA4840	242	1.5	3.35




F_w 225∼490mm


Dimensi	oni d'inge	ombro		Coefficienti			Numero di	giri limite	Appellativo		sioni di	Massa
	mm		dinamico	statico N	dinamico	statico kgf	rpi	m			aggio ım	kg
$F_{ m w}$		e r _{s min} 1)	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	grasso	olio		D _a max	r _{as}	(approssimata)
225 +0.079 2	80 80	2.1	505 000	1 180 000	51 500	120 000	1 200	1 800	RNA4940	269	2	7.20
240 ^{+0.079} _{+0.050} 2		1.5	242 000	770 000	24 700	78 500	1 100	1 700	RNA4844	262	1.5	3.62
245 ^{+0.079} 3	00 80	2.1	525 000	1 270 000	53 500	129 000	1 100	1 600	RNA4944	289	2	7.81
265 +0.088 3	00 60			1 080 000 1 350 000		110 000 138 000	1 000 1 000	1 500 1 500	RNA4848 RNA4948	291 309	2 2	5.40 8.40
285 ^{+0.088} 3	20 60	2	375 000	1 160 000	38 000	119 000	950	1 400	RNA4852	311	2	5.80
290 ^{+0.088} 3		2.1	805 000	1 900 000	82 000	193 000	950	1 400	RNA4952	349	2	15.90
305 +0.088 3	50 69	2	455 000	1 300 000	46 500	133 000	850	1 300	RNA4856	341	2	9.30
310 ^{+0.088} 3	80 100	2.1	835 000	2 030 000	85 000	207 000	850	1 300	RNA4956	369	2	16.70
330 ^{+0.098} 3	80 80	2.1	625 000	1 770 000	64 000	180 000	800	1 200	RNA4860	369	2	12.70
340 ^{+0.098} _{+0.062} 4	20 118	3	1 080 000	2 640 000	110 000	269 000	800	1 200	RNA4960	407	2.5	24.00
350 ^{+0.098} _{+0.062} 4	00 80	2.1	640 000	1 850 000	65 500	189 000	750	1 100	RNA4864	389	2	13.40
360 ^{+0.098} _{+0.062} 4	40 118	3	1 120 000	2 820 000	114 000	288 000	750	1 100	RNA4964	427	2.5	25.20
370 ^{+0.098} _{+0.062} 4	20 80	2.1	655 000	1 940 000	66 500	197 000	750	1 100	RNA4868	409	2	14.00
380 ^{+0.098} _{+0.062} 4	60 118	3	1 160 000	3 000 000	118 000	305 000	750	1 100	RNA4968	447	2.5	26.50
390 ^{+0.098} _{+0.062} 4	40 80	2.1	665 000	2 020 000	68 000	206 000	650	1 000	RNA4872	429	2	14.80
400 ^{+0.108} _{+0.068} 4	80 118	3	1 200 000	3 200 000	122 000	325 000	650	1 000	RNA4972	467	2.5	28.20
415 ^{+0.108} _{+0.068} 4	80 100	2.1	1 000 000	2 840 000	102 000	289 000	650	950	RNA4876	469	2	26.00
430 ^{+0.108} _{+0.068} 5	20 140	4	1 400 000	3 750 000	143 000	385 000	650	950	RNA4976	504	3	38.60
450 ^{+0.108} _{+0.068} 5	40 140	4	1 450 000	4 000 000	148 000	410 000	600	900	RNA4980	524	3	40.10
470 ^{+0.108} _{+0.068} 5	60 140	4	1 500 000	4 250 000	153 000	430 000	550	850	RNA4984	544	3	51.60
490 ^{+0.108} _{+0.068} 6	00 160	4	1 750 000	4 600 000	179 000	470 000	550	800	RNA4988	584	3	66.90
NOTA: 1) Dime	noiono min	ima ammaa	। sa del raggio d	i raccordo «								

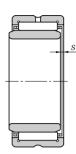
NOTA: 1) Dimensione minima ammessa del raggio di raccordo $\it r.$

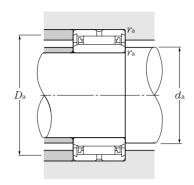
Tipo NA49 Tipo NA59 Tipo NA69 Tipo NK+IR

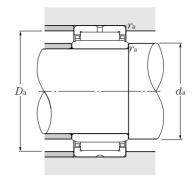
Tipo NA49 · R A≥10mm/

Tipo NA59 Tipo NA69 · R

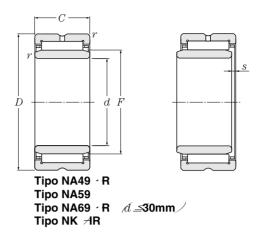
Tipo NK ⊀R Æ ≥10mm/

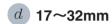



	Dim	ensio	ni d'ingo	ombro)		Coefficien	nti di carico)	Numero	di giri limite	Appellativo
						dinamico	statico					
			mm				N	kį	Ji	grasso	om olio	
d	D	C	$r_{\rm s min}$ 1)	F	_S 2)	$C_{\rm r}$	Cor	$C_{\rm r}$	Cor	3		
	13	10	0.15	7	_	2 670	2 350	272	239	23 000	34 000	NA495T2
5	15	12	0.3	8	1.5	4 000	4 100	410	420	21 000	32 000	NK8/12T2+IR5 \times 8 \times 12
	15	16	0.3	8	2	4 850	5 200	495	535	21 000	32 000	NK8/16T2 $+$ IR5 \times 8 \times 16
	15	10	0.15	8	_	3 150	3 000	320	305	21 000	32 000	NA496
6	16	12	0.3	9	1.5	4 550	5 000	465	510	20 000	30 000	NK9/12T2+IR6 \times 9 \times 12
	16	16	0.3	9	2	5 500	6 400	560	650	20 000	30 000	NK9/16T2+IR6 \times 9 \times 16
	17	10	0.15	9	_	3 600	3 650	365	375	20 000	30 000	NA497
7	17	12	0.3	10	1.5	4 550	5 100	460	520	19 000	28 000	NK10/12T2+IR7 \times 10 \times 12
	17	16	0.3	10	2	5 450	6 450	555	660	19 000	28 000	NK10/16+IR7 $ imes$ 10 $ imes$ 16
8	19	11	0.15	10	_	4 300	3 950	435	405	19 000	28 000	NA498
	19	12	0.3	12	1.5	5 000	6 100	510	620	17 000	26 000	NK12/12+IR9×12×12
9	19	16	0.3	12	2	6 000	7 700	615	785	17 000	26 000	NK12/16+IR9 \times 12 \times 16
	20	11	0.3	12	_	4 850	4 900	495	500	17 000	26 000	NA499
	22	13	0.3	14	0.5	8 600	9 200	875	935	16 000	24 000	NA4900R
10	22	16	0.3	14	0.5	10 300	11 500	1 050	1 170	16 000	24 000	NK14/16R+IR10 $ imes$ 14 $ imes$ 16
	22	20	0.3	14	0.5	13 000	15 600	1 330	1 590	16 000	24 000	NK14/20R+IR10 $ imes$ 14 $ imes$ 20
	24	13	0.3	16	0.5	9 550	10 900	975	1 110	15 000	23 000	NA4901R
12	24	16	0.3	16	0.5	12 200	14 900	1 240	1 520	15 000	23 000	NK16/16R+IR12 $ imes$ 16 $ imes$ 16
12	24	20	0.3	16	0.5	14 600	18 800	1 490	1 920	15 000	23 000	NK16/20R+IR12 \times 16 \times 20
	24	22	0.3	16	1	15 400	20 000	1 570	2 040	15 000	23 000	NA6901R
	27	16	0.3	19	0.5	13 300	17 400	1 350	1 780	14 000	21 000	NK19/16R+IR15 $ imes$ 19 $ imes$ 16
	27	20	0.3	19	0.5	16 000	22 200	1 630	2 260	14 000	21 000	NK19/20R+IR15 $ imes$ 19 $ imes$ 20
15	28	13	0.3	20	0.5	10 300	12 800	1 050	1 310	13 000	20 000	NA4902R
	28	18	0.3	20	0.5	14 100	19 100	1 440	1 950	13 000	20 000	NA5902
	28	23	0.3	20	1	17 600	25 300	1 790	2 580	13 000	20 000	NA6902R
	29	16	0.3	21	0.5	13 700	18 700	1 400	1 910	13 000	19 000	NK21/16R+IR17 \times 21 \times 16
17	29	20	0.3	21	0.5	18 300	27 100	1 860	2 760	13 000	19 000	NK21/20R+IR17 \times 21 \times 20
17	30	13	0.3	22	0.5	11 200	14 600	1 140	1 490	12 000	18 000	NA4903R
	30	18	0.3	22	0.5	15 200	21 700	1 550	2 210	12 000	18 000	NA5903
NIOTA	. 4\ D:											

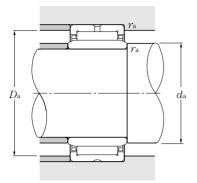

NOTA : 1) Dimensione minima ammessa del raggio di raccordo r.
: 2) Spostamento assiale possibile dell'anello interno nei confronti dell'anello esterno.

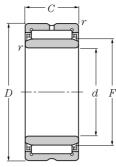
Riferimento: 1. Le gabbie dei cuscinetti con suffisso **T2** sono in materiale plastico; massima temperatura di funzionamento 120°C, massima temperatura continua di funzionamento 120°C.


2. Gli appellativi degli anelli interni (IR) sono costituiti dal diametro del foro \times il diametro esterno \times la larghezza dell'anello interno.

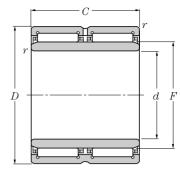


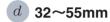
	nensioni nontaggio		Massa
d_{a}	mm Da	$r_{ m as}$	kg
min	max	max	(approssimata)
6.2	8.5	0.15	0.007
7	9.5	0.3	0.012
7	9.5	0.3	0.016
8	9.5	0.15	0.009
8	10.5	0.3	0.013
8	10.5	0.3	0.017
9	10.5	0.15	0.010
9	11.5	0.3	0.014
9	11.5	0.3	0.018
10	12	0.15	0.016
11	13.5	0.3	0.018
11	13.5	0.3	0.022
11	14	0.3	0.017
12	20	0.3	0.024
12	20	0.3	0.030
12	20	0.3	0.038
14	22	0.3	0.026
14	22	0.3	0.033
14	22	0.3	0.042
14	22	0.3	0.046
17	25	0.3	0.039
17	25	0.3	0.045
17	26	0.3	0.036
17	26	0.3	0.052
17	26	0.3	0.064
19	27	0.3	0.042
19	27	0.3	0.053
19	28	0.3	0.037
19	28	0.3	0.056



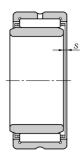

	Dime	ensio	ni d'ing	ombro	•	din ami a a	Coefficien			Numero o	di giri limite	Appellativo
		r	mm			dinamico	statico N	dinamico k		rp	om	
d	D	C	r _{s min} 1)	F	_S 2)	$C_{ m r}$	C	$C_{ m r}$	$C_{ m or}$	grasso	olio	
<i>d</i>							Cor					
17	30	23	0.3	22	1	18 200	27 200	1 850	2 770	12 000	18 000	NA6903R
	32	16	0.3	24	0.5	15 200	22 300	1 550	2 280	11 000	17 000	$NK24/16R + IR20 \times 24 \times 16$
	32	20	0.3	24	0.5	18 600	28 800	1 890	2 930	11 000	17 000	$NK24/20R + IR20 \times 24 \times 20$
20	37	17	0.3	25	8.0	21 300	25 500	2 170	2 600	11 000	16 000	NA4904R
	37	23	0.3	25	8.0	28 400	37 000	2 900	3 750	11 000	16 000	NA5904
	37	30	0.3	25	1	36 500	50 500	3 700	5 150	11 000	16 000	NA6904R
	34	16	0.3	26	0.5	15 600	23 600	1 590	2 410	10 000	15 000	NK26/16R+IR22 \times 26 \times 16
	34	20	0.3	26	0.5	19 100	30 500	1 940	3 100	10 000	15 000	NK26/20R+IR22 $ imes$ 26 $ imes$ 20
22	39	17	0.3	28	8.0	23 200	29 300	2 360	2 990	9 500	14 000	NA49/22R
	39	23	0.3	28	8.0	26 400	37 500	2 690	3 850	9 500	14 000	NA59/22
	39	30	0.3	28	0.5	40 000	58 500	4 050	6 000	9 500	14 000	NA69/22R
	38	20	0.3	29	1	22 200	34 000	2 270	3 450	9 500	14 000	NK29/20R+IR25 $ imes$ 29 $ imes$ 20
	38	30	0.3	29	1.5	27 500	50 500	2 810	5 150	9 500	14 000	$NK29/30R\!+\!IR25\!\times\!29\!\times\!30$
25	42	17	0.3	30	8.0	24 000	31 500	2 450	3 200	8 500	13 000	NA4905R
	42	23	0.3	30	8.0	30 500	43 000	3 150	4 350	8 500	13 000	NA5905
	42	30	0.3	30	1	41 500	63 000	4 200	6 400	8 500	13 000	NA6905R
	42	20	0.3	32	1	23 500	37 500	2 400	3 850	8 500	13 000	NK32/20R+IR28 \times 32 \times 20
	42	30	0.3	32	1.5	34 000	60 500	3 450	6 150	8 500	13 000	$NK32/30R\!+\!IR28\!\times\!32\!\times\!30$
28	45	17	0.3	32	8.0	24 800	33 500	2 530	3 400	8 500	13 000	NA49/28R
	45	23	0.3	32	8.0	32 000	45 500	3 250	4 650	8 500	13 000	NA59/28
	45	30	0.3	32	1	43 000	67 000	4 350	6 850	8 500	13 000	NA69/28R
	45	20	0.3	35	0.5	24 800	41 500	2 520	4 250	7 500	11 000	NK35/20R+IR30 \times 35 \times 20
	45	30	0.3	35	1	36 000	66 500	3 650	6 800	7 500	11 000	$NK35/30R\!+\!IR30\!\times\!35\!\times\!30$
30	47	17	0.3	35	0.8	25 500	35 500	2 600	3 600	7 500	11 000	NA4906R
	47	23	0.3	35	0.8	32 500	48 500	3 350	4 950	7 500	11 000	NA5906
	47	30	0.3	35	1	42 500	67 500	4 300	6 900	7 500	11 000	NA6906R
	47	20	0.3	37	0.5	25 300	43 500	2 580	4 400	7 500	11 000	NK37/20R+IR32 \times 37 \times 20
32	47	30	0.3	37	1	36 500	69 500	3 750	7 100	7 500	11 000	NK37/30R+IR32 \times 37 \times 30
	52	20	0.6	40	0.8	31 500	47 500	3 200	4 850	6 500	10 000	NA49/32R
NOTA						rangio di racc						

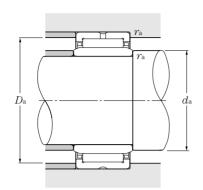
NOTA : 1) Dimensione minima ammessa del raggio di raccordo r. : 2) Spostamento assiale possibile dell'anello interno nei confronti dell'anello esterno.

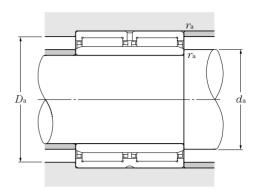

Riferimento: Gli appellativi degli anelli interni (IR) sono costituiti dal diametro del foro \times il diametro esterno \times la larghezza dell'anello interno.


	mension nontaggi		Massa
	mm		kg
$d_{ m a}$ min	$D_{ m a}$ max	$r_{ m as}$ max	(approssimata)
			,
19	28	0.3	0.069
22	30	0.3	0.049
22	30	0.3	0.061
22	35	0.3	0.074
22	35	0.3	0.115
22	35	0.3	0.141
24	32	0.3	0.046
24	32	0.3	0.064
24	37	0.3	0.080
24	37	0.3	0.134
24	37	0.3	0.154
27	36	0.3	0.079
27	36	0.3	0.123
27	40	0.3	0.088
27	40	0.3	0.139
27	40	0.3	0.162
30	40	0.3	0.096
30	40	0.3	0.146
30	43	0.3	0.098
30	43	0.3	0.142
30	43	0.3	0.179
32	43	0.3	0.112
32	43	0.3	0.171
32	45	0.3	0.101
32	45	0.3	0.152
32	45	0.3	0.185
34	45	0.3	0.117
34	45	0.3	0.170
36	48	0.6	0.157

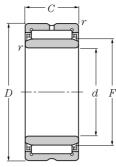
Tipo NA49 · R Tipo NA59 . Tipo NK · R → R

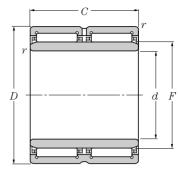


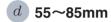

Tipo NA69 · R



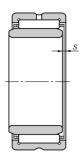
		Dim	ensio	ni d'ingo	ombro)			nti di carico		Numero	di giri limite	Appellativo
				mm			dinamico	o statico N	dinamico kg		rr	om	
									Κį	9'	grasso	olio	
	d	D	C	$r_{\rm s min}$ 1)	F	s ²⁾	$C_{\rm r}$	Cor	$C_{\rm r}$	Cor			
	32	52	27	0.6	40	0.8	38 000	61 000	3 850	6 250	6 500	10 000	NA59/32
		52	36	0.6	40	0.5	47 500	82 000	4 850	4 350	6 500	10 000	NA69/32R
		50	20	0.3	40	0.5	26 400	47 000	2 700	4 800	6 500	10 000	NK40/20R+IR35 $ imes$ 40 $ imes$ 20
		50	30	0.3	40	1	38 500	76 000	3 900	7 750	6 500	10 000	NK40/30R+IR35 $ imes$ 40 $ imes$ 30
	35	55	20	0.6	42	0.8	32 000	50 000	3 300	5 100	6 500	9 500	NA4907R
		55	27	0.6	42	0.8	39 000	64 500	3 950	6 550	6 500	9 500	NA5907
		55	36	0.6	42	0.5	49 000	86 500	5 000	8 800	6 500	9 500	NA6907R
	38	53	20	0.3	43	0.5	27 500	51 000	2 810	5 200	6 500	9 500	NK43/20R+IR38 $ imes$ 43 $ imes$ 20
	30	53	30	0.3	43	1	40 000	82 000	4 100	8 400	6 500	9 500	$NK43/30R\!+\!IR38\!\times\!43\!\times\!30$
ĺ		55	20	0.3	45	0.5	28 000	52 500	2 860	5 400	6 000	9 000	NK45/20R+IR40 \times 45 \times 20
		55	30	0.3	45	1	41 000	85 500	4 150	8 700	6 000	9 000	NK45/30R+IR40 $ imes$ 45 $ imes$ 30
	40	62	22	0.6	48	1	43 500	66 500	4 450	6 800	5 500	8 500	NA4908R
		62	30	0.6	48	1	53 000	92 500	5 450	9 450	5 500	8 500	NA5908
		62	40	0.6	48	0.5	67 000	116 000	6 850	11 800	5 500	8 500	NA6908R
	42	57	20	0.3	47	0.5	28 800	55 500	2 940	5 650	5 500	8 500	$NK47/20R\!+\!IR42\!\times\!47\!\times\!20$
	72	57	30	0.3	47	1	42 500	91 500	4 350	9 350	5 500	8 500	NK47/30R+IR42 \times 47 \times 30
		62	25	0.6	50	1.5	38 500	74 500	3 950	7 550	5 500	8 000	NK50/25R+IR45 \times 50 \times 25
		62	35	0.6	50	2	51 000	106 000	5 200	10 800	5 500	8 000	$NK50/35R \!+\! IR45 \!\times\! 50 \!\times\! 35$
	45	68	22	0.6	52	1	46 000	73 000	4 700	7 450	5 000	7 500	NA4909R
		68	30	0.6	52	1	56 000	101 000	5 700	10 300	5 000	7 500	NA5909
		68	40	0.6	52	0.5	70 500	127 000	7 200	13 000	5 000	7 500	NA6909R
		68	25	0.6	55	1.5	41 000	82 000	4 150	8 400	5 000	7 500	$NK55/25R \!+\! IR50 \!\times\! 55 \!\times\! 25$
		68	35	0.6	55	2	54 000	118 000	5 500	12 000	5 000	7 500	$NK55/35R \!+\! IR50 \!\times\! 55 \!\times\! 35$
	50	72	22	0.6	58	1	48 000	80 000	4 900	8 150	4 700	7 000	NA4910R
		72	30	0.6	58	1	58 000	110 000	5 950	11 200	4 700	7 000	NA5910
		72	40	0.6	58	0.5	74 000	139 000	7 500	14 200	4 700	7 000	NA6910R
		72	25	0.6	60	1.5	41 000	85 000	4 200	8 700	4 300	6 500	NK60/25R+IR55 \times 60 \times 25
	55	72	35	0.6	60	2	57 000	130 000	5 800	13 200	4 300	6 500	$NK60/35R \!+\! IR55 \!\times\! 60 \!\times\! 35$
		80	25	1	63	1.5	58 500	99 500	6 000	10 100	4 300	6 500	NA4911R
1													

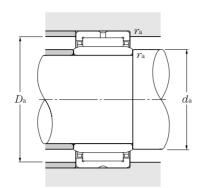

NOTA : 1) Dimensione minima ammessa del raggio di raccordo r.
: 2) Spostamento assiale possibile dell'anello interno nei confronti dell'anello esterno.
Riferimento: Gli appellativi degli anelli interni (IR) sono costituiti dal diametro del foro \times il diametro esterno \times la larghezza dell'anello interno.

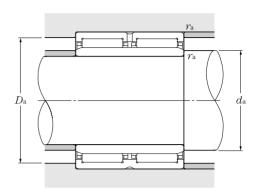



	mension nontaggi		Massa
$d_{ m a}$	$egin{array}{c} m{m} m{m} \ D_{\mathrm{a}} \end{array}$	$r_{ m as}$	kg
min	max	max	(approssimata)
36	48	0.6	0.241
36	48	0.6	0.286
37	48	0.3	0.130
37	48	0.3	0.193
39	51	0.6	0.171
39	51	0.6	0.256
39	51	0.6	0.310
40	51	0.3	0.134
40	51	0.3	0.207
42	53	0.3	0.143
42	53	0.3	0.216
44	58	0.6	0.232
44	58	0.6	0.348
44	58	0.6	0.426
44	55	0.3	0.148
44	55	0.3	0.222
48	58	0.6	0.229
48	58	0.6	0.322
49	64	0.6	0.270
49	64	0.6	0.396
49	64	0.6	0.437
53	64	0.6	0.271
53	64	0.6	0.379
54	68	0.6	0.276
54	68	0.6	0.498
54	68	0.6	0.529
58	68	0.6	0.271
58	68	0.6	0.379
60	75	1	0.396

Tipo NA49 · R Tipo NA59 Tipo NK · R →R

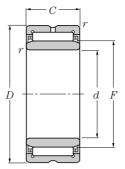

Tipo NA69 · R

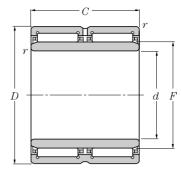



	Dime	ensio	ni d'ingo	ombro)		Coefficier			Numero d	li giri limite	Appellativo
			mm			dinamic	o statico N		o statico	rpi	m	
		ı	11111				IN	r	kgi	grasso	olio	
d	D	C	$\gamma_{\rm s min}$ 1)	F	_S 2)	$C_{ m r}$	Cor	$C_{\rm r}$	$C_{ m or}$	Ü		
55	80	34	1	63	1.5	76 500	140 000	7 800	14 300	4 300	6 500	NA5911
55	80	45	1	63	1.5	94 000	183 000	9 600	18 600	4 300	6 500	NA6911R
	82	25	1	68	1	44 500	89 000	4 500	9 050	4 000	6 000	NK68/25R+IR60 \times 68 \times 25
	82	35	0.6	68	1	63 000	139 000	6 400	14 200	4 000	6 000	NK68/35R+IR60 \times 68 \times 35
60	85	25	1	68	1.5	61 500	108 000	6 250	11 000	4 000	6 000	NA4912R
	85	34	1	68	1.5	80 500	153 000	8 200	15 600	4 000	6 000	NA5912
	85	45	1	68	1.5	95 500	191 000	9 750	19 400	4 000	6 000	NA6912R
	90	25	0.6	73	1	54 000	100 000	5 500	10 200	3 700	5 500	NK73/25R+IR65 \times 73 \times 25
	90	25	1	72	1.5	62 500	112 000	6 350	11 400	3 700	5 500	NA4913R
65	90	34	1	72	1.5	84 000	165 000	8 600	16 800	3 700	5 500	NA5913
	90	35	0.6	73	1	76 500	156 000	7 800	16 000	3 700	5 500	$NK73/35R \!+\! IR65 \!\times\! 73 \!\times\! 35$
	90	45	1	72	1.5	97 000	198 000	9 900	20 200	3 700	5 500	NA6913R
	95	25	1	80	0.8	57 000	119 000	5 800	12 200	3 300	5 000	NK80/25R+IR70 \times 80 \times 25
	95	35	1	80	0.8	79 500	184 000	8 150	18 700	3 300	5 000	NK80/35R+IR70 \times 80 \times 35
70	100	30	1	80	1.5	85 500	156 000	8 750	15 900	3 300	5 000	NA4914R
	100	40	1	80	1.5	103 000	187 000	10 500	19 100	3 300	5 000	NA5914
	100	54	1	80	1	130 000	267 000	13 300	27 200	3 300	5 000	NA6914R
	105	25	1	85	1	70 500	123 000	7 200	12 600	3 100	4 700	NK85/25R+IR75 \times 85 \times 25
	105	30	1	85	1.5	87 000	162 000	8 900	16 500	3 100	4 700	NA4915R
75	105	35	1	85	1	100 000	193 000	10 200	19 700	3 100	4 700	$\textbf{NK85/35R} \!+\! \textbf{IR75} \!\times\! \textbf{85} \!\times\! \textbf{35}$
	105	40	1	85	1.5	109 000	205 000	11 100	20 900	3 100	4 700	NA5915
	105	54	1	85	1	132 000	277 000	13 500	28 300	3 100	4 700	NA6915R
	110	25	1	90	1	71 500	128 000	7 300	13 100	2 900	4 400	NK90/25R+IR80 \times 90 \times 25
	110	30	1	90	1.5	90 500	174 000	9 250	17 700	2 900	4 400	NA4916R
80	110	35	1	90	1	104 000	208 000	10 600	21 200	2 900	4 400	NK90/35R+IR80 \times 90 \times 35
	110	40	1	90	1.5	115 000	223 000	11 700	22 700	2 900	4 400	NA5916
	110	54	1	90	1.5	137 000	298 000	14 000	30 500	2 900	4 400	NA6916R
05	115	26	1	95	1.5	74 500	137 000	7 600	14 000	2 800	4 200	NK95/26R+IR85 \times 95 \times 26
85	115	36	1	95	1.5	108 000	223 000	11 100	22 700	2 800	4 200	NK95/36R+IR85 \times 95 \times 36

NOTA : 1) Dimensione minima ammessa del raggio di raccordo r. : 2) Spostamento assiale possibile dell'anello interno nei confronti dell'anello esterno.

Riferimento: Gli appellativi degli anelli interni (IR) sono costituiti dal diametro del foro \times il diametro esterno \times la larghezza dell'anello interno.





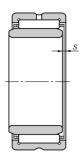
	Dimensioni di montaggio									
$d_{ m a}$	$egin{array}{c} mm \ D_{\mathrm{a}} \end{array}$	$r_{ m as}$	kg							
min	max	max	(approssimata)							
60	75	1	0.559							
60	75	1	0.726							
65	77	0.6	0.393							
64	78	0.6	0.551							
65	80	1	0.427							
65	80	1	0.614							
65	80	1	0.758							
69	86	0.6	0.466							
70	85	1	0.454							
70	85	1	0.655							
69	86	0.6	0.660							
70	85	1	0.779							
75	90	1	0.525							
75	90	1	0.738							
75	95	1	0.727							
75	95	1	1.06							
75	95	1	1.34							
80	100	1	0.642							
80	100	1	0.776							
80	100	1	0.853							
80	100	1	1.13							
80	100	1	1.45							
85	105	1	0.680							
85	105	1	0.820							
85	105	1	0.959							
85	105	1	1.15							
85	105	1	1.53							
90	110	1	0.644							
90	110	1	1.05							

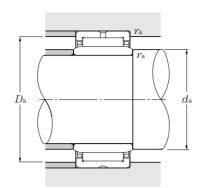
Tipo NA49 Tipo NA59 Tipo NA69 Tipo NK+IR

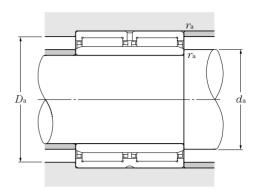
Tipo NA49 · R. Tipo NA49

Tipo NA69 - R

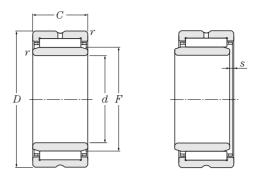
Tipo NA59

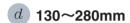

Tipo NK ·R ⊀R, Tipo NK ⊀R


d 85∼130mm

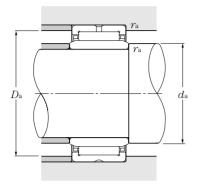

Dimensioni d'ingombro)	Coefficienti di carico dinamico statico				Numero di giri limite		Appellativo	
			r	nm			umannice	N Statico		gf	rp	m	
					4	0)					grasso	olio	
	d	D	C	γ_{s} min	1) F	_S 2)	$C_{ m r}$	Cor	$C_{\rm r}$	$C_{ m or}$			
		120	35	1.1	100	1	112 000	237 000	11 500	24 200	2 700	4 000	NA4917R
- 8	85	120	46	1.1	100	1.5	137 000	290 000	14 000	29 600	2 700	4 000	NA5917
		120	63	1.1	100	1	169 000	400 000	17 300	41 000	2 700	4 000	NA6917R
		120	26	1	100	1.5	73 500	137 000	7 500	14 000	2 700	4 000	NK100/26R+IR90 $ imes$ 100 $ imes$ 26
		120	36	1	100	1.5	107 000	223 000	11 000	22 800	2 700	4 000	$NK100/36R + IR90 \times 100 \times 36$
	90	125	35	1.1	105	1	116 000	252 000	11 900	25 700	2 500	3 800	NA4918R
		125	46	1.1	105	1	143 000	310 000	14 600	32 000	2 500	3 800	NA5918
		125	63	1.1	105	1	175 000	425 000	17 900	43 500	2 500	3 800	NA6918R
		125	26	1	105	1.5	76 500	147 000	7 800	14 900	2 500	3 800	NK105/26R+IR95 \times 105 \times 26
		125	36	1	105	1.5	111 000	238 000	11 400	24 300	2 500	3 800	$NK105/36R + IR95 \times 105 \times 36$
9	95	130	35	1.1	110	1	118 000	260 000	12 000	26 500	2 400	3 600	NA4919R
		130	46	1.1	110	1	149 000	335 000	15 200	34 000	2 400	3 600	NA5919
		130	63	1.1	110	1	177 000	440 000	18 100	45 000	2 400	3 600	NA6919R
		130	30	1.1	110	1.5	97 500	204 000	9 950	20 800	2 400	3 600	NK110/30R+IR100 $ imes$ 110 $ imes$ 30
10	00	130	40	1.1	110	2	129 000	292 000	13 100	29 700	2 400	3 600	NK110/40R+IR100 \times 110 \times 40
	00	140	40	1.1	115	2	127 000	260 000	12 900	26 500	2 300	3 500	NA4920
		140	54	1.1	115	2	182 000	395 000	18 600	40 500	2 300	3 500	NA5920
		140	30	1	120	0.8	93 500	210 000	9 550	21 400	2 200	3 300	NA4822
4.	10	140	40	1.1	120	_	113 000	268 000	11 500	27 300	2 200	3 300	NK120/40+IR110 \times 120 \times 40
•	10	150	40	1.1	125	2	131 000	279 000	13 300	28 400	2 100	3 200	NA4922
		150	54	1.1	125	2	193 000	440 000	19 700	45 000	2 100	3 200	NA5922
		150	30	1	130	0.8	99 500	233 000	10 100	23 800	2 100	3 100	NA4824
-14	20	150	40	1.1	130	_	116 000	283 000	11 800	28 800	2 100	3 100	NK130/40+IR120 $ imes$ 130 $ imes$ 40
14	20	165	45	1.1	135	2	180 000	380 000	18 300	38 500	2 000	3 000	NA4924
		165	60	1.1	135	2	245 000	525 000	25 000	53 500	2 000	3 000	NA5924
		165	35	1.1	145	1	118 000	305 000	12 100	31 000	1 900	2 800	NA4826
-14	30	170	32	1.5	145	_	111 000	238 000	11 300	24 300	1 900	2 800	NK145/32+IR130 \times 145 \times 32
13	50	170	42	1.5	145	_	153 000	360 000	15 600	36 500	1 900	2 800	NK145/42+IR130 \times 145 \times 42
		180	50	1.5	150	1.5	202 000	455 000	20 600	46 500	1 800	2 700	NA4926
NO		4) D:											

NOTA : 1) Dimensione minima ammessa del raggio di raccordo r. : 2) Spostamento assiale possibile dell'anello interno nei confronti dell'anello esterno.

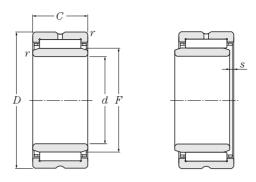

Riferimento: Gli appellativi degli anelli interni (IR) sono costituiti dal diametro del foro \times il diametro esterno \times la larghezza dell'anello interno.



	mensioni nontaggio		Massa
al	mm		kg
$d_{ m a}$ min	$D_{ m a}$ max	$r_{ m as}$ max	(approssimata)
91.5	113.5	1	1.24
91.5	113.5	1	1.76
91.5	113.5	1	2.25
95	115	1	0.781
95	115	1	1.09
96.5	118.5	1	1.31
96.5	118.5	1	1.84
96.5	118.5	1	2.44
100	120	1	0.819
100	120	1	1.15
101.5	123.5	1	1.36
101.5	123.5	1	1.98
101.5	123.5	1	2.63
106.5	123.5	1	0.990
106.5	123.5	1	1.34
106.5	133.5	1	1.93
106.5	133.5	1	2.85
115	135	1	1.11
116.5	133.5	1	1.49
116.5	143.5	1	2.08
116.5	143.5	1	2.98
125	145	1	1.17
126.5	143.5	1	1.57
126.5	158.5	1	2.84
126.5	158.5	1	3.92
136.5	158.5	1	1.60
138	162.5	1.5	1.90
138	162.5	1.5	2.54
138	172	1.5	3.90



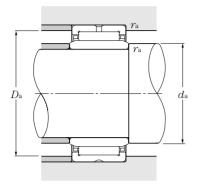
	Dimensioni d'ingombro					Coefficienti di carico dinamico statico dinamico statico				Numero d	i giri limite	Appellativo
		ı	mm			dinamice	N statico		gf	rpı	m	
d	D	C	$\gamma_{ m s}$ min	1) _F	_S 2)	$C_{\rm r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	grasso	olio	
130	180	67	1.5	150	1.5	294 000	685 000	30 000	70 000	1 800	2 700	NA5926
	175	35	1.1	155	1	121 000	315 000	12 300	32 500	1 700	2 600	NA4828
	180	32	1.5	155	_	114 000	252 000	11 600	25 700	1 700	2 600	NK155/32+IR140×155×32
140	180	42	1.5	155	_	156 000	380 000	16 000	38 500	1 700	2 600	NK155/42+IR140×155×42
	190	50	1.5	160	1.5	209 000	485 000	21 300	49 500	1 700	2 500	NA4928
	190	67	1.5	160	1.5	310 000	755 000	31 500	77 000	1 700	2 500	NA5928
	190	32	1.5	165	_	117 000	265 000	11 900	27 000	1 600	2 400	NK165/32+IR150×165×32
150	190	40	1.1	165	1.5	152 000	390 000	15 500	40 000	1 600	2 400	NA4830
150	190	42	1.5	165	_	160 000	400 000	16 300	40 500	1 600	2 400	$NK165/42 + IR150 \times 165 \times 42$
	210	60	2	170	1.5	261 000	610 000	26 600	62 500	1 600	2 400	NA4930
400	200	40	1.1	175	1.5	160 000	425 000	16 300	43 500	1 500	2 300	NA4832
160	220	60	2	180	1.5	270 000	650 000	27 600	66 500	1 500	2 200	NA4932
470	215	45	1.1	185	1.5	185 000	495 000	18 800	50 500	1 500	2 200	NA4834
170	230	60	2	190	1.5	279 000	690 000	28 500	70 500	1 400	2 100	NA4934
400	225	45	1.1	195	1.5	195 000	540 000	19 800	55 000	1 400	2 100	NA4836
180	250	69	2	205	1.5	375 000	890 000	38 500	90 500	1 300	2 000	NA4936
	240	50	1.5	210	1.5	227 000	680 000	23 200	69 000	1 300	1 900	NA4838
190	260	69	2	215	1.5	390 000	945 000	40 000	96 500	1 300	1 900	NA4938
	250	50	1.5	220	1.5	231 000	705 000	23 600	71 500	1 200	1 800	NA4840
200	280	80	2.1	225	1.5	505 000		51 500	120 000	1 200	1 800	NA4940
	270	50	1.5	240	1.5	244 000	780 000	24 900	79 500	1 100	1 700	NA4844
220	300	80	2.1	245	1.5	525 000 ·	1 270 000	53 500	129 000	1 100	1 600	NA4944
	300	60	2	265	2	360 000	1 080 000	37 000	110 000	1 000	1 500	NA4848
240	320	80	2.1	265	2	540 000		55 000	138 000	1 000	1 500	NA4948
	320	60	2	285	2	375 000	1 160 000	38 000	119 000	950	1 400	NA4852
260		100	2.1	290	2	805 000			193 000	950	1 400	NA4952
	350	69	2	305	2.5	455 000	1 300 000	46 500	133 000	850	1 300	NA4856
280		100	2.1	310	2.5	835 000 2			207 000	850	1 300	NA4956
NOTA						raggio di rac						


NOTA : 1) Dimensione minima ammessa del raggio di raccordo r. : 2) Spostamento assiale possibile dell'anello interno nei confronti dell'anello esterno.

Riferimento: Gli appellativi degli anelli interni (IR) sono costituiti dal diametro del foro \times il diametro esterno \times la larghezza dell'anello interno.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		nensioni nontaggi		Massa
min max max (approssimata) 138 172 1.5 5.60 146.5 168.5 1 1.82 148 172 1.5 2.04 148 172 1.5 2.69 148 182 1.5 4.05 148 182 1.5 6.18 158 182 1.5 2.32 156.5 183.5 1 2.72 158 182 1.5 2.84 159 201 2 5.33 166.5 193.5 1 2.90 169 211 2 5.60 176.5 208.5 1 3.99 179 221 2 5.87 186.5 218.5 1 4.19 189 241 2 8.58 198 232 1.5 5.62 199 251 2 8.68 208 242	,			kg
146.5 168.5 1 1.82 148 172 1.5 2.04 148 172 1.5 2.69 148 182 1.5 4.05 148 182 1.5 6.18 158 182 1.5 2.32 156.5 183.5 1 2.72 158 182 1.5 2.84 159 201 2 5.33 166.5 193.5 1 2.90 169 211 2 5.60 176.5 208.5 1 3.99 179 221 2 5.87 186.5 218.5 1 4.19 189 241 2 8.58 198 232 1.5 5.62 199 251 2 8.68 208 242 1.5 5.84 211 269 2 12.2 228 262 1.5 6.37 231 289 2 13.5 249		"		(approssimata)
148 172 1.5 2.04 148 172 1.5 2.69 148 182 1.5 4.05 148 182 1.5 6.18 158 182 1.5 2.32 156.5 183.5 1 2.72 158 182 1.5 2.84 159 201 2 5.33 166.5 193.5 1 2.90 169 211 2 5.60 176.5 208.5 1 3.99 179 221 2 5.87 186.5 218.5 1 4.19 189 241 2 8.58 198 232 1.5 5.62 199 251 2 8.68 208 242 1.5 5.84 211 269 2 12.2 228 262 1.5 6.37 231 289 2 13.5 249 291 2 10.0 251 <td>138</td> <td>172</td> <td>1.5</td> <td>5.60</td>	138	172	1.5	5.60
148 172 1.5 2.69 148 182 1.5 4.05 148 182 1.5 6.18 158 182 1.5 2.32 156.5 183.5 1 2.72 158 182 1.5 2.84 159 201 2 5.33 166.5 193.5 1 2.90 169 211 2 5.60 176.5 208.5 1 3.99 179 221 2 5.87 186.5 218.5 1 4.19 189 241 2 8.58 198 232 1.5 5.62 199 251 2 8.68 208 242 1.5 5.84 211 269 2 12.2 228 262 1.5 6.37 231 289 2 13.5 249 291 2 10.0 251 309 2 14.7 269	146.5	168.5	1	1.82
148 182 1.5 4.05 148 182 1.5 6.18 158 182 1.5 2.32 156.5 183.5 1 2.72 158 182 1.5 2.84 159 201 2 5.33 166.5 193.5 1 2.90 169 211 2 5.60 176.5 208.5 1 3.99 179 221 2 5.87 186.5 218.5 1 4.19 189 241 2 8.58 198 232 1.5 5.62 199 251 2 8.68 208 242 1.5 5.84 211 269 2 12.2 228 262 1.5 6.37 231 289 2 13.5 249 291 2 10.0 251 309 2 14.7 269 311 2 10.8 271	148	172	1.5	2.04
148 182 1.5 6.18 158 182 1.5 2.32 156.5 183.5 1 2.72 158 182 1.5 2.84 159 201 2 5.33 166.5 193.5 1 2.90 169 211 2 5.60 176.5 208.5 1 3.99 179 221 2 5.87 186.5 218.5 1 4.19 189 241 2 8.58 198 232 1.5 5.62 199 251 2 8.68 208 242 1.5 5.84 211 269 2 12.2 228 262 1.5 6.37 231 289 2 13.5 249 291 2 10.0 251 309 2 14.7 269 311 2	148	172	1.5	2.69
158 182 1.5 2.32 156.5 183.5 1 2.72 158 182 1.5 2.84 159 201 2 5.33 166.5 193.5 1 2.90 169 211 2 5.60 176.5 208.5 1 3.99 179 221 2 5.87 186.5 218.5 1 4.19 189 241 2 8.58 198 232 1.5 5.62 199 251 2 8.68 208 242 1.5 5.84 211 269 2 12.2 228 262 1.5 6.37 231 289 2 13.5 249 291 2 10.0 251 309 2 14.7 269 311 2 10.8 271 349 2 25.9 289 341 2 15.5	148	182	1.5	4.05
156.5 183.5 1 2.72 158 182 1.5 2.84 159 201 2 5.33 166.5 193.5 1 2.90 169 211 2 5.60 176.5 208.5 1 3.99 179 221 2 5.87 186.5 218.5 1 4.19 189 241 2 8.58 198 232 1.5 5.62 199 251 2 8.68 208 242 1.5 5.84 211 269 2 12.2 228 262 1.5 6.37 231 289 2 13.5 249 291 2 10.0 251 309 2 14.7 269 311 2 10.8 271 349 2 25.9 289 341 2 15.5	148	182	1.5	6.18
158 182 1.5 2.84 159 201 2 5.33 166.5 193.5 1 2.90 169 211 2 5.60 176.5 208.5 1 3.99 179 221 2 5.87 186.5 218.5 1 4.19 189 241 2 8.58 198 232 1.5 5.62 199 251 2 8.68 208 242 1.5 5.84 211 269 2 12.2 228 262 1.5 6.37 231 289 2 13.5 249 291 2 10.0 251 309 2 14.7 269 311 2 10.8 271 349 2 25.9 289 341 2 15.5	158	182	1.5	2.32
159 201 2 5.33 166.5 193.5 1 2.90 169 211 2 5.60 176.5 208.5 1 3.99 179 221 2 5.87 186.5 218.5 1 4.19 189 241 2 8.58 198 232 1.5 5.62 199 251 2 8.68 208 242 1.5 5.84 211 269 2 12.2 228 262 1.5 6.37 231 289 2 13.5 249 291 2 10.0 251 309 2 14.7 269 311 2 10.8 271 349 2 25.9 289 341 2 15.5	156.5	183.5	1	2.72
166.5 193.5 1 2.90 169 211 2 5.60 176.5 208.5 1 3.99 179 221 2 5.87 186.5 218.5 1 4.19 189 241 2 8.58 198 232 1.5 5.62 199 251 2 8.68 208 242 1.5 5.84 211 269 2 12.2 228 262 1.5 6.37 231 289 2 13.5 249 291 2 10.0 251 309 2 14.7 269 311 2 10.8 271 349 2 25.9 289 341 2 15.5	158	182	1.5	2.84
169 211 2 5.60 176.5 208.5 1 3.99 179 221 2 5.87 186.5 218.5 1 4.19 189 241 2 8.58 198 232 1.5 5.62 199 251 2 8.68 208 242 1.5 5.84 211 269 2 12.2 228 262 1.5 6.37 231 289 2 13.5 249 291 2 10.0 251 309 2 14.7 269 311 2 10.8 271 349 2 25.9 289 341 2 15.5	159	201	2	5.33
176.5 208.5 1 3.99 179 221 2 5.87 186.5 218.5 1 4.19 189 241 2 8.58 198 232 1.5 5.62 199 251 2 8.68 208 242 1.5 5.84 211 269 2 12.2 228 262 1.5 6.37 231 289 2 13.5 249 291 2 10.0 251 309 2 14.7 269 311 2 10.8 271 349 2 25.9 289 341 2 15.5	166.5	193.5	1	2.90
179 221 2 5.87 186.5 218.5 1 4.19 189 241 2 8.58 198 232 1.5 5.62 199 251 2 8.68 208 242 1.5 5.84 211 269 2 12.2 228 262 1.5 6.37 231 289 2 13.5 249 291 2 10.0 251 309 2 14.7 269 311 2 10.8 271 349 2 25.9 289 341 2 15.5	169	211	2	5.60
186.5 218.5 1 4.19 189 241 2 8.58 198 232 1.5 5.62 199 251 2 8.68 208 242 1.5 5.84 211 269 2 12.2 228 262 1.5 6.37 231 289 2 13.5 249 291 2 10.0 251 309 2 14.7 269 311 2 10.8 271 349 2 25.9 289 341 2 15.5	176.5	208.5	1	3.99
189 241 2 8.58 198 232 1.5 5.62 199 251 2 8.68 208 242 1.5 5.84 211 269 2 12.2 228 262 1.5 6.37 231 289 2 13.5 249 291 2 10.0 251 309 2 14.7 269 311 2 10.8 271 349 2 25.9 289 341 2 15.5	179	221	2	5.87
198 232 1.5 5.62 199 251 2 8.68 208 242 1.5 5.84 211 269 2 12.2 228 262 1.5 6.37 231 289 2 13.5 249 291 2 10.0 251 309 2 14.7 269 311 2 10.8 271 349 2 25.9 289 341 2 15.5	186.5	218.5	1	4.19
199 251 2 8.68 208 242 1.5 5.84 211 269 2 12.2 228 262 1.5 6.37 231 289 2 13.5 249 291 2 10.0 251 309 2 14.7 269 311 2 10.8 271 349 2 25.9 289 341 2 15.5	189	241	2	8.58
208 242 1.5 5.84 211 269 2 12.2 228 262 1.5 6.37 231 289 2 13.5 249 291 2 10.0 251 309 2 14.7 269 311 2 10.8 271 349 2 25.9 289 341 2 15.5	198	232	1.5	5.62
211 269 2 12.2 228 262 1.5 6.37 231 289 2 13.5 249 291 2 10.0 251 309 2 14.7 269 311 2 10.8 271 349 2 25.9 289 341 2 15.5	199	251	2	8.68
228 262 1.5 6.37 231 289 2 13.5 249 291 2 10.0 251 309 2 14.7 269 311 2 10.8 271 349 2 25.9 289 341 2 15.5	208	242	1.5	5.84
231 289 2 13.5 249 291 2 10.0 251 309 2 14.7 269 311 2 10.8 271 349 2 25.9 289 341 2 15.5	211	269	2	12.2
249 291 2 10.0 251 309 2 14.7 269 311 2 10.8 271 349 2 25.9 289 341 2 15.5	228	262	1.5	6.37
251 309 2 14.7 269 311 2 10.8 271 349 2 25.9 289 341 2 15.5	231	289	2	13.5
269 311 2 10.8 271 349 2 25.9 289 341 2 15.5	249	291	2	10.0
271 349 2 25.9 289 341 2 15.5	251	309	2	14.7
289 341 2 15.5	269	311	2	10.8
	271	349	2	25.9
291 369 2 27.5	289	341	2	15.5
	291	369	2	27.5

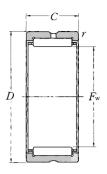
Tipo NA48 Tipo NA49



d 300~440mm

		Dim	ensio	ni d'ing	gombro		dinamico	Coefficient statico	i di carico dinamico		Numero d	i giri limite	Appellativo
	mm				1			gf	rp				
	d	D	C	r _{s min} 1)	F	s ²⁾	$C_{ m r}$	Cor	C_{r}	Cor	grasso	olio	
	200	380	80	2.1	330	2	625 000	1 770 000	64 000	180 000	800	1 200	NA4860
	300	420	118	3	340	2	1 080 000	2 640 000	110 000	269 000	800	1 200	NA4960
	320	400	80	2.1	350	2	640 000	1 850 000	65 500	189 000	750	1 100	NA4864
)ZU	440	118	3	360	2	1 120 000	2 820 000	114 000	288 000	750	1 100	NA4964
	340	420	80	2.1	370	2	655 000	1 940 000	66 500	197 000	750	1 100	NA4868
_	770	460	118	3	380	2	1 160 000	3 000 000	118 000	305 000	750	1 100	NA4968
3	360	440	80	2.1	390	2	665 000	2 020 000	68 000	206 000	650	1 000	NA4872
_	,00	480	118	3	400	2	1 200 000	3 200 000	122 000	325 000	650	1 000	NA4972
3	880	480	100	2.1	415	2	1 000 000	2 840 000	102 000	289 000	650	950	NA4876
_		520	140	4	430	2	1 400 000	3 750 000	143 000	385 000	650	950	NA4976
4	100	540	140	4	450	2.5	1 450 000	4 000 000	148 000	410 000	600	900	NA4980
4	120	560	140	4	470	2.5	1 500 000	4 250 000	153 000	430 000	550	850	NA4984
4	140	600	160	4	490	2.5	1 750 000	4 600 000	179 000	470 000	550	800	NA4988
NIC	T 4 .	4) Di					raio di raccorda						

NOTA: 1) Dimensione minima ammessa del raggio di raccordo r.

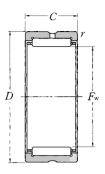

: 2) Spostamento assiale possibile dell'anello interno nei confronti dell'anello esterno.

Di 1	Massa		
	mm		kg
$d_{ m a}$ min	$D_{ m a}$ max	$r_{ m as}$ max	(approssimata)
311	369	2	22.0
313	407	2.5	42.5
331	389	2	23.2
333	427	2.5	45.2
351	409	2	24.1
353	447	2.5	47.3
371	429	2	25.7
373	467	2.5	49.0
391	469	2	44.5
396	504	3	73.6
416	524	3	76.6
436	544	3	89.8
456	584	3	123

Dimensioni in pollici Senza anello interno


Tipo MR

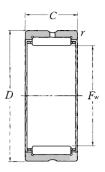
Fw 15.875~63.500mm


		nsioni d'ingombi	0		dinamico	Numero di giri limite				
		mm (½ _{5.4} mm)				N	kg	ıf		om
$F_{ m w}$		D	C	r _{s min} 1)	$C_{ m r}$	Cor	$C_{ m r}$	Cor	grasso (appro	olio ssimata)
15.875(%)	+0.027	28.575(1 1/8)	19.05(3/4)	0.6	16 700	16 700	1 700	1 700	17 000	25 000
13.673(/8)	+0.016	28.575(1 1/8)	25.40(1)	0.6	21 500	23 000	2 190	2 350	17 000	25 000
10.050/3/\	+0.033	31.750(1 1/4)	19.05(¾)	1	19 500	21 100	1 980	2 150	14 000	21 000
19.050(¾)	+0.020	31.750(1 1/4)	25.40(1)	1	25 000	29 100	2 550	2 970	14 000	21 000
00 00E(⁷ /\	+0.033	34.925(1 3/8)	19.05(¾)	1	21 900	25 600	2 240	2 610	12 000	18 000
22.225(%)	+0.020	34.925(1 3/8)	25.40(1)	1	28 200	35 500	2 870	3 600	12 000	18 000
05 400(4)	+0.033	38.100(1½)	19.05(¾)	1	23 000	28 100	2 340	2 870	11 000	16 000
25.400(1)	+0.020	38.100(1½)	25.40(1)	1	29 500	38 500	3 000	3 950	11 000	16 000
00 575/4 1/	+0.033	41.275(1 %)	25.40(1)	1	32 500	45 000	3 300	4 600	9 500	14 000
28.575(1 1/8)	+0.020	41.275(1 %)	31.75(1 1/4)	1	40 500	60 000	4 100	6 100	9 500	14 000
04 750/4 1/	+0.041	44.450(1 3/4)	25.40(1)	1	35 000	51 000	3 550	5 200	8 500	13 000
31.750(1 1/4)	+0.025	44.450(1 3/4)	31.75(1 1/4)	1	43 500	68 000	4 450	6 950	8 500	13 000
04 005(4 30	+0.041	47.625(1 1/8)	25.40(1)	1	37 000	57 500	3 800	5 850	7 500	11 000
34.925(1 ¾)	+0.025	47.625(1 %)	31.75(1 1/4)	1	46 500	76 500	4 750	7 800	7 500	11 000
00 400/4 1/	+0.041 +0.025	52.388(2 1/16)	25.40(1)	1.5	41 000	61 000	4 150	6 250	7 500	11 000
38.100(1½)		52.388(2 1/16)	31.75(1 1/4)	1.5	51 000	81 500	5 200	8 300	7 500	11 000
44 075/4 5/	+0.041	55.562(2 3/16)	25.40(1)	1.5	43 500	68 000	4 450	6 950	6 500	9 500
41.275(1 %)	+0.025	55.562(2 3/16)	31.75(1 1/4)	1.5	54 500	90 500	5 550	9 250	6 500	9 500
44.450(1 ³ ⁄ ₄)	+0.041	58.738(2 1/6)	25.40(1)	1.5	44 500	72 000	4 550	7 350	6 000	9 000
44.450(1 74)	+0.025	58.738(2 1/16)	31.75(1 1/4)	1.5	55 500	95 500	5 700	9 750	6 000	9 000
47.625(1 ¾)	+0.041 +0.025	61.912(2 1/6)	31.75(1 1/4)	1.5	59 000	105 000	6 000	10 700	5 500	8 500
E0 000(0)	+0.049	65.088(2 1/6)	25.40(1)	1.5	49 500	86 000	5 050	8 800	5 500	8 000
50.800(2)	+0.030	65.088(2 1/6)	31.75(1 1/4)	1.5	62 000	114 000	6 300	11 700	5 500	8 000
E7 150/0 10	+0.049	76.200(3)	38.10(1½)	1.5	83 500	142 000	8 500	14 500	4 700	7 000
57.150(2 1/4)	+0.030	76.200(3)	44.45(1 3/4)	1.5	97 000	173 000	9 850	17 600	4 700	7 000
63.500(2 ½)	+0.049 +0.030	82.550(3 1/4)	38.10(1½)	2	88 000	158 000	8 950	16 100	4 300	6 500

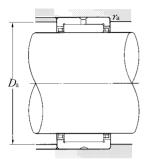
Appellativo	Dimens monta		Massa
	, m		kg
	Da max	r _{as} max	(approssimata)
MR101812	24.5	0.6	0.050
MR101816	24.5	0.6	0.068
MR122012	26.5	1	0.055
MR122016	26.5	1	0.073
MR142212	30	1	0.059
MR142216	30	1	0.082
MR162412	33	1	0.068
MR162416	33	1	0.091
MR182616	36.5	1	0.100
MR182620	36.5	1	0.127
MR202816	39.5	1	0.109
MR202820	39.5	1	0.136
MR223016	42.5	1	0.118
MR223020	42.5	1	0.150
MR243316	46	1.5	0.143
MR243320	46	1.5	0.180
MR263516	49	1.5	0.153
MR263520	49	1.5	0.191
MR283716	52	1.5	0.163
MR283720	52	1.5	0.204
MR303920	55.5	1.5	0.216
MR324116	58.5	1.5	0.183
MR324120	58.5	1.5	0.227
MR364824	69.5	1.5	0.422
MR364828	69.5	1.5	0.493
MR405224	74.5	2	0.472

Dimensioni in pollici Senza anello interno

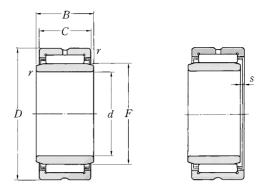
Tipo MR

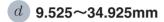

F_w 63.500∼184.150mm

Dime	ensioni d'ingombr	0		dinamico	Coefficien statico	statico	Numero di giri limite		
	mm				N	dinamico k		rp	m
$F_{ m w}$	D	C	r _{s min} 1)	$C_{ m r}$	Cor	$C_{ m r}$	Cor	grasso (appros	olio simata)
63.500(2 ½) +0.049 +0.030	82.550(3 1/4)	44.45(1 ¾)	2	102 000	191 000	10 400	19 500	4 300	6 500
	88.900(3½)	25.40(1)	2	66 000	112 000	6 700	11 400	3 700	5 500
69.850(2 ³ ⁄ ₄) ^{+0.049} _{+0.030}	88.900(3½)	38.10(1½)	2	92 000	173 000	9 400	17 600	3 700	5 500
	88.900(3½)	44.45(1 3/4)	2	107 000	209 000	10 900	21 300	3 700	5 500
76 200(2) +0.049	95.250(3¾)	38.10(1½)	2	96 000	188 000	9 800	19 100	3 300	5 000
76.200(3) +0.049 +0.030	95.250(3 ¾)	44.45(1 3/4)	2	112 000	227 000	11 400	23 200	3 300	5 000
82.550(3 ½) +0.058 +0.036	107.950(4 1/4)	44.45(1 3/4)	2	134 000	240 000	13 600	24 500	3 300	5 000
82.550(3 /4) +0.036	107.950(4 1/4)	50.80(2)	2	146 000	268 000	14 900	27 400	3 300	5 000
10.058	114.300(4½)	44.45(1 3/4)	2	141 000	264 000	14 400	26 900	3 000	4 500
88.900(3 ½) +0.058 +0.036	114.300(4½)	50.80(2)	2	154 000	295 000	15 700	30 000	3 000	4 500
95.250(3 ³ ⁄ ₄) ^{+0.058} _{+0.036}	120.650(4 ¾)	50.80(2)	2.5	162 000	320 000	16 500	32 500	2 800	4 200
101.600(4) +0.058 +0.036	127.000(5)	50.80(2)	2.5	169 000	345 000	17 200	35 500	2 600	3 900
107.950(4 ¹ / ₄) ^{+0.058} _{+0.036}	133.350(5 1/4)	50.80(2)	2.5	172 000	360 000	17 500	37 000	2 500	3 700
11/ 200// 1/2 +0.058	152.400(6)	57.15(2 1/4)	2.5	238 000	435 000	24 300	44 500	2 300	3 500
114.300(4 ½) +0.058 +0.036	152.400(6)	63.50(2½)	2.5	260 000	485 000	26 500	49 500	2 300	3 500
	165.100(6 ½)	50.80(2)	2.5	227 000	425 000	23 200	43 000	2 100	3 100
127.000(5) +0.068 +0.043	165.100(6 ½)	57.15(2 1/4)	2.5	250 000	480 000	25 500	49 000	2 100	3 100
	165.100(6 ½)	63.50(2 ½)	2.5	273 000	535 000	27 800	54 500	2 100	3 100
139.700(5 ½) +0.068 +0.043	177.800(7)	63.50(2 ½)	2.5	285 000	585 000	29 100	59 500	1 900	2 900
139.700(5 /2) +0.043	177.800(7)	76.20(3)	2.5	345 000	740 000	35 000	75 500	1 900	2 900
146.050(5 ³ / ₄) +0.068 +0.043	184.150(7 1/4)	76.20(3)	3	360 000	775 000	36 500	79 000	1 800	2 700
450 400(c) +0.068	190.500(7½)	63.50(2 ½)	3	310 000	630 000	31 500	64 000	1 700	2 600
152.400(6) +0.068 +0.043	190.500(7½)	76.20(3)	3	375 000	800 000	38 000	81 500	1 700	2 600
165 100/6 1/A +0.068	203.200(8)	63.50(2 ½)	3	325 000	680 000	33 000	69 500	1 600	2 400
165.100(6 ½) +0.068 +0.043	203.200(8)	76.20(3)	3	390 000	870 000	39 500	88 500	1 600	2 400
184.150(7 ½) +0.050 +0.050	231.775(9 1/8)	76.20(3)	3	435 000	915 000	44 500	93 000	1 500	2 200
NOTA: 1) Dimensione minima	ommoooo dal raggio d	li raccardo «							


Appellativo	Dimens	aggio	Massa
	$D_{ m a}$	n $_{r_{ m as}}$	kg
	max	max	(approssimata)
MR405228	74.5	2	0.533
MR445616	81	2	0.343
MR445624	81	2	0.504
MR445628	81	2	0.580
MR486024	87	2	0.558
MR486028	87	2	0.651
MR526828	100	2	1.02
MR526832	100	2	1.17
MR567228	106.5	2	1.08
MR567232	106.5	2	1.27
MR607632	111.5	2.5	1.28
MR648032	118	2.5	1.29
MR688432	124.5	2.5	1.36
MR729636	143.5	2.5	2.62
MR729640	143.5	2.5	2.91
MR8010432	156	2.5	2.53
MR8010436	156	2.5	2.87
MR8010440	156	2.5	3.19
MR8811240	169	2.5	3.46
MR8811248	169	2.5	4.16
MR9211648	172	3	4.30
MR9612040	177.5	3	3.74
MR9612048	177.5	3	4.49
MR10412840	190	3	4.02
MR10412848	190	3	4.82
MR11614648	219	3	7.36

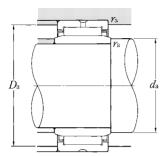
Tipo MR


Fw 196.850~234.950mm

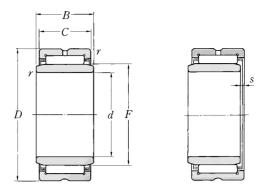

N kgf rpm grasso (approssime 196.850(7 %) +0.059	Dimensioni d'ingombro								
$F_{\rm w}$ D C $r_{\rm smin}$ 1) $C_{\rm r}$ $C_{\rm or}$ $C_{\rm r}$									
209.550(8 ¼) $^{+0.079}_{+0.050}$ 257.175(10 ⅓) 76.20(3) 3 475 000 1 060 000 48 500 109 000 1 300 1 222.250(8 ¾) $^{+0.079}_{+0.050}$ 269.875(10 ⅙) 76.20(3) 4 495 000 1 140 000 50 500 116 000 1 200 1	$F_{ m w}$								
222.250(8 ¾) +0.079 +0.050 269.875(10 %) 76.20(3) 4 495 000 1 140 000 50 500 116 000 1 200 1	196.850(7 ¾) +0.079 +0.050								
	209.550(8 ½) +0.079 +0.050								
234.950(9 ¼) +0.050 282.575(11 ⅓) 76.20(3) 4 510 000 1 210 000 52 000 124 000 1 100 1	222.250(8 ³ ⁄ ₄) ^{+0.079} _{+0.050}								

Appellativo	Dimens	ioni di	Massa
Appellativo	monta		เขเสออส
	mı		kg
	$D_{ m a}$ max	$r_{ m as}$ max	(approssimata)
MR12415448	231.5	3	7.80
MR13216248	244	3	8.36
MR14017048	254	4	8.81
MR14817848	266.5	4	9.27

Tipo MR+MI



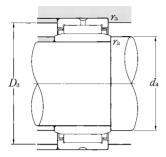
	D	dinamico	Coefficienti statico	di carico dinamico	statico					
		mm (_{25.4} mm)				N		kg	
d	D	В	C	$\gamma_{ m s min}$ 1)	F	_S 2)	$C_{\rm r}$	Cor	$C_{ m r}$	$C_{ m or}$
9.525(¾)	28.575(1 1/8)	19.30	19.05(¾)	0.6	15.875	2	16 700	16 700	1 700	1 700
3.323(×s)	28.575(1 1/8)	25.65	25.40(1)	0.6	15.875	3	21 500	23 000	2 190	2 350
12.700(½)	31.750(1 1/4)	19.30	19.05(¾)	1	19.050	4	19 500	21 100	1 980	2 150
	31.750(1 1/4)	25.65	25.40(1)	1	19.050	2	25 000	29 100	2 550	2 970
15.875(5/8)	34.925(1 3/8)	19.30	19.05(¾)	1	22.225	1	21 900	25 600	2 240	2 610
	34.925(1 3/8)	25.65	25.40(1)	1	22.225	2	28 200	35 500	2 870	3 600
17.462(¹¹ / ₁₆)	34.925(1 3/8)	19.30	19.05(¾)	1	22.225	1.5	21 900	25 600	2 240	2 610
19.050(¾)	38.100(1½)	19.30	19.05(¾)	1	25.400	1	23 000	28 100	2 340	2 870
19.030(/4)	38.100(1½)	25.65	25.40(1)	1	25.400	1.5	29 500	38 500	3 000	3 950
20.638(¹³ / ₁₆)	38.100(1½)	25.65	25.40(1)	1	25.400	2	29 500	38 500	3 000	3 950
22.225(%)	41.275(1 %)	25.65	25.40(1)	1	28.575	1.5	32 500	45 000	3 300	4 600
22.223(/8)	41.275(1 %)	32.00	31.75(1 1/4)	1	28.575	2	40 500	60 000	4 100	6 100
23.812(¹⁵ / ₁₆)	41.275(1 %)	25.65	25.40(1)	1	28.575	2	32 500	45 000	3 300	4 600
23.612(/16)	41.275(1 5/8)	32.00	31.75(1 1/4)	1	28.575	2	40 500	60 000	4 100	6 100
25.400(1)	44.450(1 3/4)	25.65	25.40(1)	1	31.750	1.5	35 000	51 000	3 550	5 200
23.400(1)	44.450(1 ¾)	32.00	31.75(1 1/4)	1	31.750	2	43 500	68 000	4 450	6 950
28.575(1 1/8)	47.625(1 %)	25.65	25.40(1)	1	34.925	3	37 000	57 500	3 800	5 850
20.373(178)	47.625(1 ¾)	32.00	31.75(1 1/4)	1	34.925	2	46 500	76 500	4 750	7 800
30.162(1 ³ / ₁₆)	52.388(2 1/6)	32.00	31.75(1 1/4)	1	38.100	2	51 000	81 500	5 200	8 300
31.750(1 1/4)	52.388(2 1/16)	25.65	25.40(1)	1.5	38.100	0.5	41 000	61 000	4 150	6 250
31.730(174)	52.388(2 1/16)	32.00	31.75(1 1/4)	1.5	38.100	1	51 000	81 500	5 200	8 300
33.338(1 ½)	55.562(2 3/16)	25.65	25.40(1)	1.5	41.275	0.5	43 500	68 000	4 450	6 950
33.330(1 /16)	55.562(2 ³ / ₁₆)	32.00	31.75(1 1/4)	1.5	41.275	1	54 500	90 500	5 550	9 250
	55.562(2 3/16)	32.00	31.75(1 1/4)	1.5	41.275	0.5	54 500	90 500	5 550	9 250
34.925(1 ³ ⁄ ₈)	58.738(2 ⁵ / ₁₆)	25.65	25.40(1)	1.5	44.450	0.5	44 500	72 000	4 550	7 350
	58.738(2 1/16)	32.00	31.75(1 1/4)	1.5	44.450	1	55 500	95 500	5 700	9 750


NOTA: 1) Dimensione minima ammessa del raggio di raccordo r.

2) Spostamento assiale possibile dell'anello interno nei confronti dell'anello esterno.

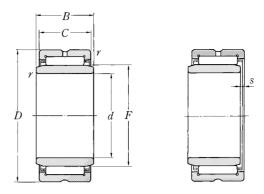
Numero d	i giri limite	Appellativo	Dimens	sioni di mo	ntaggio	Massa
rp grasso	om olio		$d_{ m a}$ min	mm Da max	$r_{ m as}$ max	kg (approprimate)
17 000	25 000	MR101812+MI-061012	13.5	24.5	0.6	(approssimata) 0.069
17 000	25 000	MR101816+MI-061016	13.5	24.5	0.6	0.093
14 000	21 000	MR122012+MI-081212	17.5	26.5	1	0.079
14 000	21 000	MR122016+MI-081216	17.5	26.5	1	0.105
12 000	18 000	MR142212+MI-101412	21	30	1	0.086
12 000	18 000	MR142216+MI-101416	21	30	1	0.118
12 000	18 000	MR142212+MI-111412	21	30	1	0.079
11 000	16 000	MR162412+MI-121612	24	33	1	0.102
11 000	16 000	MR162416+MI-121616	24	33	1	0.136
11 000	16 000	MR162416+MI-131616	24	33	1	0.125
9 500	14 000	MR182616+MI-141816	27	36.5	1	0.152
9 500	14 000	MR182620+MI-141820	27	36.5	1	0.193
9 500	14 000	MR182616+MI-151816	27	36.5	1	0.139
9 500	14 000	MR182620+MI-151820	27	36.5	1	0.176
8 500	13 000	MR202816+MI-162016	30.5	39.5	1	0.161
8 500	13 000	MR202820+MI-162020	30.5	39.5	1	0.201
7 500	11 000	MR223016+MI-182216	33.5	42.5	1	0.181
7 500	11 000	MR223020+MI-182220	33.5	42.5	1	0.229
7 500	11 000	MR243320+MI-192420	35	46	1.5	0.286
7 500	11 000	MR243316+MI-202416	37	46	1.5	0.230
7 500	11 000	MR243320+MI-202420	37	46	1.5	0.285
6 500	9 500	MR263516+MI-212616	40	49	1.5	0.257
6 500	9 500	MR263520+MI-212620	40	49	1.5	0.325
6 500	9 500	MR263520+MI-222620	40	49	1.5	0.286
6 000	9 000	MR283716+MI-222816	41.5	52 52	1.5	0.294
6 000	9 000	MR283720+MI-222820	41.5	52	1.5	0.364

Tipo MR+MI



d 36.512~66.675mm

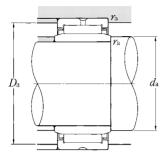
### Page 10 **********************************		D		Coefficienti							
d D B C r _{sum} 10 F s²0 Cr Cer Cr C 36.512(1¾) 58.738(2¾) 25.65 25.40(1) 1.5 44.450 0.5 44 500 72 000 4 550 7.0 38.100(1½) 58.738(2¾) 32.00 31.75(1¼) 1.5 44.450 0.5 55 500 95 500 5700 9.7 38.100(1½) 58.738(2¾) 32.00 31.75(1¼) 1.5 44.450 0.5 44 500 72 000 4 550 7.0 38.100(1½) 58.738(2¾) 32.00 31.75(1¼) 1.5 44.450 0.5 550.00 95 500 5700 95 65.088(2¾) 32.00 31.75(1¼) 1.5 47.625 1 59 000 105 000 6000 11 41.275(1¾) 65.088(2¾) 32.00 31.75(1¼) 1.5 50.800 0.5 49 500 86 000 5 500 81 42.682(1¼) 65.088(2¾) 32.00 31.75(1¼) 1.5			mm /1	/ mm\				dinamico			
36.512(1 %) 58.738(2 %) 25.65 25.40(1) 1.5 44.450 0.5 44 500 72 000 4 550 7 55.738(2 %) 32.00 31.75(1 %) 1.5 44.450 0.5 55 500 95 500 5 700 9 5 38.100(1 %) 58.738(2 %) 32.00 31.75(1 %) 1.5 44.450 0.5 55 500 95 500 5 700 9 5 38.100(1 %) 58.738(2 %) 32.00 31.75(1 %) 1.5 44.450 0.5 55 500 95 500 5 700 9 5 38.100(1 %) 58.738(2 %) 32.00 31.75(1 %) 1.5 50.800 0.5 62 000 114 000 6 300 11 3 39.688(1 %) 61.912(2 %) 32.00 31.75(1 %) 1.5 50.800 0.5 62 000 114 000 6 300 11 3 41.275(1 %) 65.088(2 %) 32.00 31.75(1 %) 1.5 50.800 0.5 62 000 114 000 6 300 11 3 41.275(1 %) 65.088(2 %) 32.00 31.75(1 %) 1.5 50.800 0.5 62 000 114 000 6 300 11 3 41.275(1 %) 65.088(2 %) 32.00 31.75(1 %) 1.5 50.800 0.5 62 000 114 000 6 300 11 3 41.275(1 %) 65.088(2 %) 32.00 31.75(1 %) 1.5 50.800 0.5 49 500 86 000 5 050 88 60.00 65.088(2 %) 32.00 31.75(1 %) 1.5 50.800 0.5 49 500 86 000 5 050 88 60.00 65.088(2 %) 32.00 31.75(1 %) 1.5 50.800 0.5 49 500 86 000 5 050 88 60.00 65.088(2 %) 32.00 31.75(1 %) 1.5 50.800 0.5 62 000 114 000 6 300 11 3 42.682(1 %) 76.200(3) 38.35 38.10(1 %) 1.5 57.150 3.5 83 500 142 000 8 500 14 62.200(3) 44.70 44.45(1 %) 2 63.500 2 102 000 191 000 10 400 19 6 30.800(2) 82.550(3 %) 44.70 44.45(1 %) 2 63.500 2 102 000 191 000 10 400 19 6 55.562(2 %) 88.900(3 %) 38.35 38.10(1 %) 2 69.850 0.5 66 000 112 000 191 000 10 400 19 6 55.562(2 %) 88.900(3 %) 38.35 38.10(1 %) 2 69.850 0.5 66 000 112 000 191 000 10 400 19 6 55.562(2 %) 88.900(3 %) 38.35 38.10(1 %) 2 69.850 0.5 66 000 112 000 10 900 21 3 60.325(2 %) 95.250(3 %) 44.70 44.45(1 %) 2 69.850 0.5 66 000 112 000 10 900 10 900 21 3 60.325(2 %) 95.250(3 %) 44.70 44.45(1 %) 2 69.850 0.5 66 000 112 000 10 900 10 900 21 3 60.325(2 %) 95.250(3 %) 44.70 44.45(1 %) 2 69.850 0.5 60 000 188 000 9 800 19 95.250(3 %) 44.70 44.45(1 %) 2 69.850 0.5 60 000 188 000 9 800 19 95.250(3 %) 44.70 44.45(1 %) 2 69.850 3 107 000 209 000 10 900 21 3 60.325(2 %) 95.250(3 %) 44.70 44.45(1 %) 2 69.850 3 107 000 209 000 10 900 21 3 60.350(%) 95.250(3 %) 44.70 44.45(1 %) 2 69.850 3 10.5 112 000 227 000 11 400 23			min (/	25.411111)					V	KÇ	ji
36.512(1%) 58.738(2 %) 32.00 31.75(1 %) 1.5 44.450 0.5 55 500 95 500 5 700 9 3	d	D	B	C	$r_{ m s min}$ 1)	F	_S 2)	$C_{\rm r}$	Cor	C_{r}	Cor
38.78(2%) 32.00 31.75(1%) 1.5 44.450 0.5 55.00 95.00 5700 95.00 31.75(1%) 1.5 44.450 0.5 55.500 95.00 5700 95.00 31.75(1%) 1.5 44.450 0.5 55.500 95.00 5700 95.00 31.75(1%) 1.5 50.800 0.5 62.000 114.000 63.00 11.000 65.088(2%) 32.00 31.75(1%) 1.5 50.800 0.5 62.000 114.000 63.00 11.000 65.088(2%) 32.00 31.75(1%) 1.5 50.800 0.5 62.000 114.000 63.00 11.000 65.088(2%) 32.00 31.75(1%) 1.5 50.800 0.5 49.500 86.000 50.500 86.000 65.088(2%) 32.00 31.75(1%) 1.5 50.800 0.5 49.500 86.000 50.500 86.000 65.088(2%) 32.00 31.75(1%) 1.5 50.800 0.5 49.500 86.000 50.500 86.000 65.088(2%) 32.00 31.75(1%) 1.5 50.800 0.5 49.500 86.000 50.500 86.000 65.088(2%) 32.00 31.75(1%) 1.5 50.800 0.5 49.500 86.000 50.500 86.000 65.088(2%) 32.00 31.75(1%) 1.5 50.800 0.5 62.000 114.000 63.00 11.000 63.00 11.000 65.088(2%) 32.00 31.75(1%) 1.5 50.800 0.5 62.000 114.000 63.00 11.000 63.00 11.000 65.088(2%) 32.00 31.75(1%) 1.5 57.150 3.5 83.500 142.000 86.000 50.500 86.000 65.088(2%) 38.35 38.10(1%) 1.5 57.150 3.5 83.500 142.000 86.000 144.450(1%) 1.5 57.150 3.5 97.000 173.000 98.500 17.600	26 E12/1 ½)	58.738(2 5/16)	25.65	25.40(1)	1.5	44.450	0.5	44 500	72 000	4 550	7 350
38.100(1½) 58.738(2 %) 32.00 31.75(1½) 1.5 44.450 0.5 55 500 95 500 5 700 9 3 65.088(2 %) 32.00 31.75(1½) 1.5 50.800 0.5 62 000 114 000 6 300 11 3 39.688(1 %) 61.912(2 %) 32.00 31.75(1½) 1.5 50.800 0.5 62 000 114 000 6 300 11 3 41.275(1%) 65.088(2 %) 32.00 31.75(1½) 1.5 50.800 0.5 62 000 114 000 6 300 11 3 41.275(1%) 65.088(2 %) 32.00 31.75(1½) 1.5 50.800 0.5 62 000 114 000 6 300 11 3 41.275(1%) 65.088(2 %) 32.00 31.75(1½) 1.5 50.800 0.5 49 500 86 000 5 050 88 60.00 65.088(2 %) 32.00 31.75(1½) 1.5 50.800 1 62 000 114 000 6 300 11 3 42.682(1 %) 65.088(2 %) 32.00 31.75(1½) 1.5 50.800 0.5 49 500 86 000 5 050 88 60.00 65.088(2 %) 32.00 31.75(1½) 1.5 50.800 0.5 49 500 86 000 5 050 88 60.00 11 62 000 114 000 6 300 11 62 000 114 000 6 300 11 62 000 114 000 6 300 11 62 000 114 000 6 300 11 62 000 114 000 6 300 11 62 000 114 000 6 300 11 62 000 114 000 6 300 11 62 000 114 000 6 300 11 62 000 114 000 6 300 11 62 000 114 000 6 300 11 62 000 114 000 6 300 11 62 000 114 000 6 300 11 62 000 114 000 6 300 11 62 000 114 000 6 300 11 62 000 114 000 6 300 11 62 000 114 000 6 300 11 62 000 114 000 6 300 11 62 000 114 000 6 300 11 62 000 114	30.312(1/16)	58.738(2 5/16)	32.00	31.75(1 1/4)	1.5	44.450	0.5	55 500	95 500	5 700	9 750
65.088(2 %) 32.00 31.75(1 %) 1.5 50.800 0.5 62 000 114 000 6 300 11 3		58.738(2 5/16)	25.65	25.40(1)	1.5	44.450	0.5	44 500	72 000	4 550	7 350
39.688(1 %) 61.912(2 %) 32.00 31.75(1 %) 1.5 47.625 1 59.000 105.000 6 000 10 10 65.088(2 %) 32.00 31.75(1 %) 1.5 50.800 0.5 62.000 114.000 6 300 11 7 65.088(2 %) 32.00 31.75(1 %) 1.5 50.800 0.5 62.000 114.000 6 300 11 7 65.088(2 %) 32.00 31.75(1 %) 1.5 50.800 1 62.000 114.000 6 300 11 7 62.000 11 7 62.000 11 7 62.000 11 7 62.000 11 7 62.000 11 7 62.000 11 7 62.000 11 7 62.000 11 7 7 62.000 11 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	38.100(1 ½)	58.738(2 ⁵ / ₁₆)	32.00	31.75(1 1/4)	1.5	44.450	0.5	55 500	95 500	5 700	9 750
39.688(1 %) 65.088(2 %) 32.00 31.75(1 %) 1.5 50.800 0.5 62 000 114 000 6 300 11		65.088(2 %)	32.00	31.75(1 1/4)	1.5	50.800	0.5	62 000	114 000	6 300	11 70
41.275(1%) 65.088(2%) 25.65 25.40(1) 1.5 50.800 0.5 62 000 114 000 6 300 11 11 000 6 5.050 88 000 65.088(2%) 32.00 31.75(1%) 1.5 50.800 1 62 000 114 000 6 300 11 11 000 11	20 600/1 %)	61.912(2 1/16)	32.00	31.75(1 1/4)	1.5	47.625	1	59 000	105 000	6 000	10 70
41.275(1%) 65.088(2%) 32.00 31.75(1¼) 1.5 50.800 1 62 000 114 000 6 300 117 42.682(1½) 65.088(2%) 25.65 25.40(1) 1.5 50.800 0.5 49 500 86 000 5 050 88 44.450(1¾) 76.200(3) 38.35 38.10(1½) 1.5 57.150 3.5 83 500 142 000 8 500 148 49.212(1⅙) 82.550(3¼) 38.35 38.10(1½) 2 63.500 1.5 88 000 158 000 8 950 167 82.550(3¼) 44.70 44.45(1¾) 2 63.500 2 102 000 191 000 10 400 19 8 50.800(2) 82.550(3¼) 38.35 25.40(1) 2 63.500 3 102 000 191 000 10 400 19 8 55.562(2¾) 88.900(3½) 44.70 44.45(1¾) 2 69.850 1.5 107 000 209 000 10 900 21 3 57.150(2¼) 88.900(3½) 38.35 38.10(1½) 2 69.850 0.5 66 000 112 000 6 700 114 57.150(2¼) 88.900(3½) 44.70 44.45(1¾) 2 69.850 0.5 66 000 112 000 6 700 114 57.150(2¼) 95.250(3¾) 38.35 38.10(1½) 2 69.850 3 107 000 209 000 10 900 21 3 60.325(2¾) 95.250(3¾) 38.35 38.10(1½) 2 76.200 1.5 112 000 227 000 11 400 23 24 66.675(2¾) 107.950(4¼) 44.70 44.45(1¾) 2 76.200 3 112 000 227 000 11 400 23 24 66.675(2¾) 107.950(4¼) 44.70 44.45(1¾) 2 76.200 3 112 000 227 000 11 400 23 24 66.675(2¾) 107.950(4¼) 44.70 44.45(1¾) 2 76.200 3 112 000 227 000 11 400 23 24 66.675(2¾) 107.950(4¼) 44.70 44.45(1¾) 2 76.200 3 112 000 227 000 11 400 23 24 66.675(2¾) 107.950(4¼) 44.70 44.45(1¾) 2 76.200 3 112 000 227 000 11 400 23 24 66.675(2¾) 107.950(4¼) 44.70 44.45(1¾) 2 76.200 3 112 000 227 000 11 400 23 24 66.675(2¾) 107.950(4¼) 44.70 44.45(1¾) 2 76.200 3 112 000 227 000 11 400 23 24 66.675(2¾) 107.950(4¼) 44.70 44.45(1¾) 2 82.550 3 134 000 240 000 13 600 24 66.675(2¾)	39.000(1 /16)	65.088(2 %)	32.00	31.75(1 1/4)	1.5	50.800	0.5	62 000	114 000	6 300	11 70
42.682(1 1/6) 65.088(2 %6) 25.65 25.40(1) 1.5 50.800 0.5 49 500 86 000 5 050 88 65.088(2 %6) 32.00 31.75(1 ½) 1.5 50.800 0.5 62 000 114 000 6 300 11 31 32 32.00 31.75(1 ½) 1.5 50.800 0.5 62 000 114 000 6 300 11 32 32.00 31.75(1 ½) 1.5 57.150 3.5 83 500 142 000 8 500 14 50 300 11 32 32.00 31.75(1 ½) 1.5 57.150 3.5 83 500 142 000 8 500 14 50 32.00 31 38.35 38.10(1 ½) 1.5 57.150 3.5 97 000 173 000 9 850 17 60 32.00 32 32.00 3	41 975/1 ⁵ /\	65.088(2 %)	25.65	25.40(1)	1.5	50.800	0.5	49 500	86 000	5 050	8 80
42.682(1 %) 65.088(2 %) 32.00 31.75(1 %) 1.5 50.800 0.5 62 000 114 000 6 300 117 (44.450(1 %)) 76.200(3) 38.35 38.10(1 %) 1.5 57.150 3.5 83 500 142 000 8 500 14 (54.450(1 %)) 76.200(3) 44.70 44.45(1 %) 1.5 57.150 3.5 97 000 173 000 9 850 17 (64.450(1 %)) 82.550(3 %) 44.70 44.45(1 %) 2 63.500 2 102 000 191 000 10 400 19 (54.450(1 %)) 82.550(3 %) 44.70 44.45(1 %) 2 63.500 2 102 000 191 000 10 400 19 (54.450(1 %)) 2 63.500 3 102 000 191 000 10 400 19 (54.450(1 %)) 2 63.500 3 102 000 191 000 10 400 19 (54.450(1 %)) 2 69.850 1.5 107 000 209 000 10 900 21 (54.450(1 %)) 2 69.850 2.5 92 000 173 000 9 400 17 (64.450(1 %)) 2 69.850 3 107 000 209 000 10 900 21 (64.450(1 %)) 2 69.850 3 107 000 209 000 10 900 21 (64.450(1 %)) 2 69.850 3 107 000 209 000 10 900 21 (64.450(1 %)) 2 69.850 3 107 000 209 000 10 900 21 (64.450(1 %)) 2 69.850 3 107 000 209 000 10 900 21 (64.450(1 %)) 2 69.850 3 107 000 209 000 10 900 21 (64.450(1 %)) 2 69.850 3 107 000 209 000 10 900 21 (64.450(1 %)) 2 76.200 1.5 112 000 227 000 11 400 23 (64.450(1 %)) 2 76.200 3 112 000 227 000 11 400 23 (64.450(1 %)) 3 83.35 38.10(1 %) 2 76.200 2.5 96 000 188 000 9 800 19 (64.450(1 %)) 3 80.500(1 %	41.275(1 %)	65.088(2 1/6)	32.00	31.75(1 1/4)	1.5	50.800	1	62 000	114 000	6 300	11 70
44.450(1¾) 76.200(3) 38.35 38.10(1½) 1.5 57.150 3.5 83 500 142 000 8 500 14 6 6 6 75(2 %) 95.250(3¾) 44.70 44.45(1¾) 2 76.200 3 102 000 191 000 10 900 21 5 6 6 6 75/(2 %) 95.250(3¾) 44.70 44.45(1¾) 2 76.200 3 112 000 227 000 11 400 23 2 6 6 6 75/(2 %) 66 675/(2 %) 107.950(4¾) 44.70 44.45(1¾) 2 76.200 3 112 000 240 000 11 400 23 2 6 6 6 75/(2 %) 107.950(4¾) 44.70 44.45(1¾) 2 76.200 3 112 000 240 000 11 400 23 2 6 6 6 75/(2 %) 107.950(4¾) 44.70 44.45(1¾) 2 76.200 3 112 000 227 000 11 400 23 2 6 6 6 75/(2 %) 107.950(4¾) 44.70 44.45(1¾) 2 76.200 3 112 000 227 000 11 400 23 2 6 6 6 75/(2 %) 107.950(4¾) 44.70 44.45(1¾) 2 76.200 3 112 000 227 000 11 400 23 2 6 6 6 75/(2 %) 107.950(4¾) 44.70 44.45(1¾) 2 76.200 3 112 000 227 000 11 400 23 2 6 6 6 75/(2 %) 107.950(4¾) 44.70 44.45(1¾) 2 76.200 3 112 000 227 000 11 400 23 2 6 6 6 75/(2 %) 107.950(4¾) 44.70 44.45(1¾) 2 76.200 3 112 000 227 000 11 400 23 2 6 6 6 75/(2 %) 107.950(4¾) 44.70 44.45(1¾) 2 76.200 3 112 000 227 000 11 400 23 2 6 6 6 75/(2 %) 107.950(4¾) 44.70 44.45(1¾) 2 76.200 3 112 000 227 000 11 400 23 2 6 6 6 75/(2 %) 107.950(4¾) 44.70 44.45(1¾) 2 82.550 3 134 000 240 000 13 600 24 8 6 6 6 75/(2 %) 107.950(4¾) 44.70 44.45(1¾) 2 82.550 3 134 000 240 000 13 600 24 8 6 6 6 75/(2 %) 107.950(4¾) 44.70 44.45(1¾) 2 82.550 3 134 000 240 000 13 600 24 8 6 6 6 75/(2 %) 107.950(4¾) 44.70 44.45(1¾) 2 82.550 3 134 000 240 000 13 600 24 8 6 6 6 75/(2 %) 107.950(4¾) 44.70 44.45(1¾) 2 82.550 3 134 000 240 000 13 600 24 8 6 6 6 75/(2 %) 107.950(4¾) 44.70 44.45(1¾) 2 82.5550 3 134 000 240 000 13 600 24 8 6 6 6 75/(2 %) 107.950(4¾) 44.70 44.45(1¾) 2 82.5550 3 134 000 240 000 13 600	40 600/4 11/ \	65.088(2 %)	25.65	25.40(1)	1.5	50.800	0.5	49 500	86 000	5 050	8 80
44.450(1 $\frac{7}{4}$) 76.200(3) 44.70 44.45(1 $\frac{7}{4}$) 1.5 57.150 3.5 97 000 173 000 9 850 17 6 49.212(1 $\frac{1}{2}$) 82.550(3 $\frac{7}{4}$) 38.35 38.10(1 $\frac{7}{2}$) 2 63.500 1.5 88 000 158 000 8 950 16 6 50.800(2) 82.550(3 $\frac{7}{4}$) 38.35 25.40(1) 2 63.500 2.5 88 000 158 000 8 950 16 6 50.800(2) 82.550(3 $\frac{7}{4}$) 38.35 25.40(1) 2 63.500 2.5 88 000 158 000 8 950 16 7 50.800(2) 82.550(3 $\frac{7}{4}$) 38.35 25.40(1) 2 63.500 3 102 000 191 000 10 400 19 8 55.562(2 $\frac{7}{4}$) 88.900(3 $\frac{7}{2}$) 44.70 44.45(1 $\frac{7}{4}$) 2 69.850 1.5 107 000 209 000 10 900 21 3 57.150(2 $\frac{7}{4}$) 88.900(3 $\frac{7}{2}$) 38.35 38.10(1 $\frac{7}{2}$) 2 69.850 2.5 92 000 173 000 9400 17 6 60.325(2 $\frac{7}{4}$) 95.250(3 $\frac{7}{4}$) 38.35	42.002(1 7 ₁₆)	65.088(2 ⁹ / ₁₆)	32.00	31.75(1 1/4)	1.5	50.800	0.5	62 000	114 000	6 300	11 70
49.212(1 1%) 82.550(3 ¼) 38.35 38.10(1 ½) 2 63.500 1.5 88 000 158 000 8 950 16 6 675(2 ½) 49.212(1 1%) 82.550(3 ¼) 38.35 38.10(1 ½) 2 63.500 2 102 000 191 000 10 400 19 8 50.800(2) 82.550(3 ¼) 38.35 25.40(1) 2 63.500 2.5 88 000 158 000 8 950 16 6 50.800(2) 82.550(3 ¼) 44.70 44.45(1 ¾) 2 63.500 2.5 88 000 158 000 8 950 16 6 55.562(2 ¾6) 88.900(3 ½) 44.70 44.45(1 ¾) 2 69.850 1.5 107 000 209 000 10 900 21 3 57.150(2 ¼) 88.900(3 ½) 25.65 25.40(1) 2 69.850 0.5 66 000 112 000 6 700 11 4 57.150(2 ¼) 88.900(3 ½) 38.35 38.10(1 ½) 2 69.850 2.5 92 000 173 000 9 400 17 6 60.325(2 ¾6) 95.250(3 ¾) 44.70 44.45(1 ¾) 2 76.200 1.5 1	44 450/4 3/	76.200(3)	38.35	38.10(1½)	1.5	57.150	3.5	83 500	142 000	8 500	14 50
49.212(1 %6) 82.550(3 ¼) 44.70 44.45(1 ¾) 2 63.500 2 102 000 191 000 10 400 19 5 50.800(2) 82.550(3 ¼) 44.70 44.45(1 ¾) 2 63.500 3 102 000 191 000 10 400 19 5 55.562(2 ¾6) 88.900(3 ½) 44.70 44.45(1 ¾) 2 69.850 1.5 107 000 209 000 10 900 21 3 57.150(2 ¼) 88.900(3 ½) 38.35 38.10(1 ½) 2 69.850 3 107 000 209 000 10 900 21 3 60.325(2 ¾) 95.250(3 ¾) 38.35 38.10(1 ½) 2 76.200 1.5 112 000 227 000 11 400 23 2 63.500(½) 95.250(3 ¾) 44.70 44.45(1 ¾) 2 76.200 3 112 000 227 000 11 400 23 2 66.675(2 ¾6) 107.950(4 ¼) 44.70 44.45(1 ¾) 2 82.550 3 104 000 240 000 13 600 24 5	44.450(1 1/4)	76.200(3)	44.70	44.45(1 3/4)	1.5	57.150	3.5	97 000	173 000	9 850	17 60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40.040/4.15/.)	82.550(3 1/4)	38.35	38.10(1½)	2	63.500	1.5	88 000	158 000	8 950	16 10
50.800(2) 82.550(3 ¼) 44.70 44.45(1 ¾) 2 63.500 3 102 000 191 000 10 400 19 5 55.562(2 ¾6) 88.900(3 ½) 44.70 44.45(1 ¾) 2 69.850 1.5 107 000 209 000 10 900 21 3 57.150(2 ¼) 88.900(3 ½) 25.65 25.40(1) 2 69.850 0.5 66 000 112 000 6 700 11 4 57.150(2 ¼) 88.900(3 ½) 38.35 38.10(1 ½) 2 69.850 2.5 92 000 173 000 9 400 17 6 88.900(3 ½) 44.70 44.45(1 ¾) 2 69.850 3 107 000 209 000 10 900 21 3 60.325(2 ¾) 95.250(3 ¾) 44.70 44.45(1 ¾) 2 76.200 1.5 112 000 227 000 11 400 23 2 63.500(½) 95.250(3 ¾) 44.70 44.45(1 ¾) 2 76.200 2.5 96 000 188 000 9 800 19 3 66 675(2 ¾) 107.950(4 ¼) 44.70 44.45(1 ¾) 2 82.550 3 134 000 240 000	49.212(1 1/16)	82.550(3 1/4)	44.70	44.45(1 3/4)	2	63.500	2	102 000	191 000	10 400	19 50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F0.000(0)	82.550(3 1/4)	38.35	25.40(1)	2	63.500	2.5	88 000	158 000	8 950	16 10
57.150(2 ¼) 88.900(3 ½) 25.65 25.40(1) 2 69.850 0.5 66 000 112 000 6 700 11 4 57.150(2 ¼) 88.900(3 ½) 38.35 38.10(1 ½) 2 69.850 2.5 92 000 173 000 9 400 17 6 60.325(2 ¾) 95.250(3 ¾) 44.70 44.45(1 ¾) 2 76.200 1.5 112 000 227 000 11 400 23 2 63.500(½) 95.250(3 ¾) 38.35 38.10(1 ½) 2 76.200 2.5 96 000 188 000 9 800 19 3 95.250(3 ¾) 44.70 44.45(1 ¾) 2 76.200 3 112 000 227 000 11 400 23 2 66 675(2 ¾) 107.950(4 ¼) 44.70 44.45(1 ¾) 2 82.550 3 134 000 240 000 13 600 24 5	50.800(2)	82.550(3 1/4)	44.70	44.45(1 3/4)	2	63.500	3	102 000	191 000	10 400	19 50
57.150(2 ¼) 88.900(3 ½) 38.35 38.10(1 ½) 2 69.850 2.5 92 000 173 000 9 400 17 6 88.900(3 ½) 44.70 44.45(1 ¾) 2 69.850 3 107 000 209 000 10 900 21 3 60.325(2 ¾) 95.250(3 ¾) 44.70 44.45(1 ¾) 2 76.200 1.5 112 000 227 000 11 400 23 2 63.500(½) 95.250(3 ¾) 38.35 38.10(1 ½) 2 76.200 2.5 96 000 188 000 9 800 19 7 95.250(3 ¾) 44.70 44.45(1 ¾) 2 76.200 3 112 000 227 000 11 400 23 2 66.675(2 ¾) 107.950(4 ¼) 44.70 44.45(1 ¾) 2 82.550 3 134 000 240 000 13 600 24 5 66.675(2 ¾)	55.562(2 ³ / ₁₆)	88.900(3½)	44.70	44.45(1 ¾)	2	69.850	1.5	107 000	209 000	10 900	21 30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		88.900(3½)	25.65	25.40(1)	2	69.850	0.5	66 000	112 000	6 700	11 40
60.325(2¾) 95.250(3¾) 44.70 44.45(1¾) 2 76.200 1.5 112 000 227 000 11 400 23 2 63.500(½) 95.250(3¾) 38.35 38.10(1½) 2 76.200 2.5 96 000 188 000 9 800 19 3 95.250(3¾) 44.70 44.45(1¾) 2 76.200 3 112 000 227 000 11 400 23 2 66.675(2¾) 107.950(4¼) 44.70 44.45(1¾) 2 82.550 3 134 000 240 000 13 600 24 5	57.150(2 ¹ ⁄ ₄)	88.900(3 ½)	38.35	38.10(1 ½)	2	69.850	2.5	92 000	173 000	9 400	17 60
63.500(½) 95.250(3¾) 38.35 38.10(1½) 2 76.200 2.5 96 000 188 000 9 800 19 7 95.250(3¾) 44.70 44.45(1¾) 2 76.200 3 112 000 227 000 11 400 23 2 107.950(4¼) 44.70 44.45(1¾) 2 82.550 3 134 000 240 000 13 600 24 5		88.900(3 ½)	44.70	44.45(1 ¾)	2	69.850	3	107 000	209 000	10 900	21 30
63.500(½) 95.250(3¾) 44.70 44.45(1¾) 2 76.200 3 112 000 227 000 11 400 23 2 66.675(2¾) 107.950(4¼) 44.70 44.45(1¾) 2 82.550 3 134 000 240 000 13 600 24 5	60.325(2 3/8)	95.250(3 3/4)	44.70	44.45(1 3/4)	2	76.200	1.5	112 000	227 000	11 400	23 20
95.250(3¾) 44.70 44.45(1¾) 2 76.200 3 112 000 227 000 11 400 23 2 66 675(2¾) 107.950(4¼) 44.70 44.45(1¾) 2 82.550 3 134 000 240 000 13 600 24 5	C2 F00/1/	95.250(3 3/4)	38.35	38.10(1½)	2	76.200	2.5	96 000	188 000	9 800	19 10
66 675(2 %)	b3.5UU(½)	95.250(3 3/4)	44.70	44.45(1 3/4)	2	76.200	3	112 000	227 000	11 400	23 20
107.950(4 ¹ / ₄) 51.05 50.80(2) 2 82.550 5.5 146 000 268 000 14 900 27 4	00.075/0.5/	107.950(4 1/4)	44.70	44.45(1 3/4)	2	82.550	3	134 000	240 000	13 600	24 50
	66.675(2%)	107.950(4 1/4)	51.05	50.80(2)	2	82.550	5.5	146 000	268 000	14 900	27 40


NOTA: 1) Dimensione minima ammessa del raggio di raccordo r.

2) Spostamento assiale possibile dell'anello interno nei confronti dell'anello esterno.

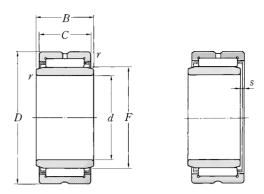
Numero di	giri limite	Appellativo	Dimen	sioni di mo	ntaggio	Massa
rpr grasso	n olio		$d_{ m a}$ min	mm D_{a} max	$r_{ m as}$ max	kg (approssimata)
6 000	9 000	MR283716+MI-232816	43	52	1.5	0.264
6 000	9 000	MR283720+MI-232820	43	52	1.5	0.330
6 000	9 000	MR283716+MI-242816	43	52	1.5	0.246
6 000	9 000	MR283720+MI-242820	43	52	1.5	0.307
5 500	8 000	MR324120+MI-243220	44.5	58.5	1.5	0.448
5 500	8 500	MR303920+MI-253020	46.5	55.5	1.5	0.368
5 500	8 000	MR324120+MI-253220	46	58.5	1.5	0.424
5 500	8 000	MR324116+MI-263216	48	58.5	1.5	0.317
5 500	8 000	MR324120+MI-263220	48	58.5	1.5	0.402
5 500	8 000	MR324116+MI-273216	49.5	58.5	1.5	0.300
5 500	8 000	MR324120+MI-273220	49.5	58.5	1.5	0.373
4 700	7 000	MR364824+MI-283624	51	69.5	1.5	0.732
4 700	7 000	MR364828+MI-283628	51	69.5	1.5	0.853
4 300	6 500	MR405224+MI-314024	56	74.5	2	0.848
4 300	6 500	MR405228+MI-314028	56	74.5	2	0.975
4 300	6 500	MR405224+MI-324024	59	74.5	2	0.812
4 300	6 500	MR405228+MI-324028	59	74.5	2	0.923
3 700	5 500 5 500	MR445628+MI-354428 MR445616+MI-364416	63.5 65	81 81	2	1.07 0.594
3 700 3 700 3 700	5 500 5 500	MR445624+MI-364424 MR445628+MI-364428	65 65	81 81	2	0.884
3 300	5 000	MR486028+MI-384828	68	87	2	1.25
3 300	5 000	MR486024+MI-404824	71.5	87	2	0.978
3 300	5 000	MR486028+MI-404828	71.5	87		1.14
3 300	5 000	MR526828+MI-425228	74.5	100	2	1.67
3 300	5 000	MR526832+MI-425232	74.5	100	2	1.92

Tipo MR+MI



d 69.850~127.000mm

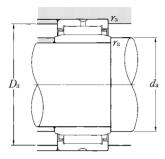
69.850(2¾) 74.612(2 ½) 107. 74.612(2 ½) 114. 76.200(3) 114. 79.375(3⅓) 120. 82.550(3¼) 127. 85.725(3⅙) 127. 88.900(3½) 133. 92.075(3⅙) 133.	.950(4½) 5 .300(4½) 5 .300(4½) 4 .300(4½) 5	51.05 51.05 54.70		2 2	F 82.550	s ²⁾	N	$C_{ m or}$	k gf $C_{ m r}$	$C_{ m or}$
69.850(2 ¾) 107. 74.612(2 ⅓) 114. 76.200(3) 114. 79.375(3 ⅓) 120. 82.550(3 ¼) 127. 85.725(3 ⅓) 127. 88.900(3 ½) 127. 133. 92.075(3 ⅙) 133.	.950(4 ½) 4 .950(4 ½) 5 .300(4 ½) 5 .300(4 ½) 4 .300(4 ½) 5	14.70 4 51.05 5 51.05 5 14.70 4	44.45(1 ¾) 50.80(2)	2			$C_{ m r}$	Cor	$C_{ m r}$	Cor
69.850(2¾) 74.612(2 ½) 107. 74.612(2 ½) 114. 76.200(3) 114. 79.375(3⅓) 120. 82.550(3¼) 127. 85.725(3⅙) 127. 88.900(3½) 133. 92.075(3⅙) 133.	.950(4½) 5 .300(4½) 5 .300(4½) 4 .300(4½) 5	51.05 51.05 54.70	50.80(2)		82.550					
74.612(2 ½) 114. 76.200(3) 114. 79.375(3 ½) 120. 82.550(3 ¼) 127. 85.725(3 ½) 127. 88.900(3 ½) 127. 133. 92.075(3 ½) 133.	.300(4½) 5 .300(4½) 4 .300(4½) 5	51.05 14.70		2		1.5	134 000	240 000	13 600	24 500
76.200(3) 114. 79.375(3 %) 120. 82.550(3 ¼) 127. 85.725(3 %) 127. 88.900(3 ½) 127. 133. 92.075(3 %) 133.	.300(4½) 4 .300(4½) 5	14.70	50.80(2)		82.550	3	146 000	268 000	14 900	27 400
76.200(3) 114. 79.375(3 ½) 120. 82.550(3 ¼) 127. 85.725(3 ¾) 127. 88.900(3 ½) 133. 92.075(3 ⅓) 133.	.300(4½) 5			2	88.900	3	154 000	295 000	15 700	30 000
79.375(3 ½) 120. 82.550(3 ½) 127. 85.725(3 ½) 127. 88.900(3 ½) 127. 133. 92.075(3 ½) 133.			44.45(1¾)	2	88.900	3	141 000	264 000	14 400	26 900
82.550(3 ½) 120. 127. 85.725(3 ¾) 127. 88.900(3 ½) 127. 133. 92.075(3 ¾) 133.	650(4 ³ ⁄ ₄) 5	1.05	50.80(2)	2	88.900	5.5	154 000	295 000	15 700	30 000
82.550(3 ½) 127. 85.725(3 ¾) 127. 88.900(3 ½) 127. 133. 92.075(3 ¾) 133.	.000(474)	51.05	50.80(2)	2.5	95.250	5.5	162 000	320 000	16 500	32 500
85.725(3 %) 127. 88.900(3 ½) 127. 133. 92.075(3 %) 133.	.650(4 ¾) 5	51.05	50.80(2)	2.5	95.250	2.5	162 000	320 000	16 500	32 500
88.900(3½) 127. 133. 92.075(3½) 133.	.000(5) 5	51.05	50.80(2)	2.5	101.600	2.5	169 000	345 000	17 200	35 500
88.900(3 ½) 133. 92.075(3 %) 133.	.000(5) 5	51.05	50.80(2)	2.5	101.600	4.5	169 000	345 000	17 200	35 500
92.075(3 %) 133.	.000(5) 5	51.05	50.80(2)	2.5	101.600	2.5	169 000	345 000	17 200	35 500
	.350(5 1/4) 5	51.05	50.80(2)	2.5	107.950	2.5	172 000	360 000	17 500	37 000
133.	.350(5 1/4) 5	51.05	50.80(2)	2.5	107.950	4.5	172 000	360 000	17 500	37 000
	.350(5 1/4) 5	51.05	50.80(2)	2.5	107.950	2.5	172 000	360 000	17 500	37 000
95.250(3 ³ ⁄ ₄) 152.	.400(6) 5	7.40	57.15(2 1/4)	2.5	114.300	3	238 000	435 000	24 300	44 500
152.	.400(6) 6	63.88	63.50(2½)	2.5	114.300	4	260 000	485 000	26 500	49 500
98.425(3 ½) 152.	.400(6) 5	57.40	57.15(2 1/4)	2.5	114.300	5.5	238 000	435 000	24 300	44 500
152.	.400(6) 6	83.88	63.50(2 ½)	2.5	114.300	7	260 000	485 000	26 500	49 500
165.	.100(6½) 5	51.05	50.80(2)	2.5	127.000	2.5	227 000	425 000	23 200	43 000
101.600(4) 165.	.100(6½) 5	57.40	57.15(2 1/4)	2.5	127.000	5.5	250 000	480 000	25 500	49 000
165.	.100(6½) 6	83.88	57.15(2 1/4)	2.5	127.000	7	273 000	535 000	27 800	54 500
107.950(4 ½) 165.	.100(6½) 5	57.40	57.15(2 1/4)	2.5	127.000	3	250 000	480 000	25 500	49 000
114.300(4½) 177.	.800(7) 6	3.88	63.50(2½)	2.5	139.700	5.5	285 000	585 000	29 100	59 500
114.300(4 /2)	.800(7) 7	76.58	76.20(3)	2.5	139.700	7	345 000	740 000	35 000	75 500
120.650(4 ³ ⁄ ₄) 184.	.150(7 ¼) 8	32.55	76.20(3)	3	146.050	3	360 000	775 000	36 500	79 000
127.000(5)	.500(7½) 6	63.88	63.50(2½)	3	152.400	7	310 000	630 000	31 500	64 000
190.	.500(7½) 7	76.58	76.20(3)	3	152.400	5.5	375 000	800 000	38 000	81 500
	(-/									


NOTA: 1) Dimensione minima ammessa del raggio di raccordo r.

2) Spostamento assiale possibile dell'anello interno nei confronti dell'anello esterno.

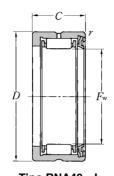
Numero di	giri limite	Appellativo	Dimen	sioni di mo	ntaggio	Massa
rpı grasso	m olio		$d_{ m a}$	mm $D_{ m a}$	$r_{ m as}$	kg
			min	max	max	(approssimata)
3 300	5 000	MR526828 +MI-445228	78	100	2	1.55
3 300	5 000	MR526832 +MI-445232	78	100	2	1.77
3 000	4 500	MR567232 +MI-475632	83	106.5	2	2.00
3 000	4 500	MR567228 +MI-485628	84	106.5	2	1.65
3 000	4 500	MR567232 +MI-485632	84	106.5	2	1.92
2 800	4 200	MR607632 +MI-506032	88.5	111.5	2.5	2.15
2 800	4 200	MR607632 +MI-526032	91.5	111.5	2.5	1.99
2 600	3 900	MR648032 +MI-526432	91.5	118	2.5	2.39
2 600	3 900	MR648032 +MI-546432	94.5	118	2.5	2.22
2 600	3 900	MR648032 +MI-566432	98	118	2.5	2.05
2 500	3 700	MR688432 +MI-566832	98	124.5	2.5	2.53
2 500	3 700	MR688432 +MI-586832	101	124.5	2.5	2.36
2 500	3 700	MR688432 +MI-606832	104.5	124.5	2.5	2.17
2 300	3 500	MR729636 +MI-607236	104.5	143.5	2.5	4.02
2 300	3 500	MR729640 +MI-607240	104.5	143.5	2.5	4.47
2 300	3 500	MR729636 +MI-627236	107.5	143.5	2.5	3.77
2 300	3 500	MR729640 +MI-627240	107.5	143.5	2.5	4.19
2 100	3 100	MR8010432+MI-648032	110.5	156	2.5	3.60
2 100	3 100	MR8010436+MI-648036	110.5	156	2.5	4.92
2 100	3 100	MR8010440+MI-648040	110.5	156	2.5	5.47
2 100	3 100	MR8010436+MI-688036	117	156	2.5	4.44
1 900	2 900	MR8811240+MI-728840	123.5	169	2.5	6.04
1 900	2 900	MR8811248+MI-728848	123.5	169	2.5	7.26
1 800	2 700	MR9211648+MI-769248	132	172	3	7.48
1 700	2 600	MR9612040+MI-809640	140	177.5	3	6.54
1 700	2 600	MR9612048+MI-809648	140	177.5	3	7.84

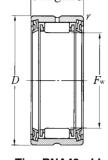
Tipo MR+MI

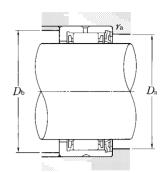


d 139.700~203.200mm

	D	imensioni	d'ingombro				dinamico	Coefficienti statico		statico
		mm (½	_{25.4} mm)				dillallico	N		gf
d	D	В	C	$\gamma_{ m s min}$ 1)	F	_S 2)	$C_{ m r}$	Cor	$C_{ m r}$	$C_{ m or}$
139.700(5 ½)	203.200(8)	63.88	63.50(2½)	3	165.100	6	325 000	680 000	33 000	69 500
109.700(372)	203.200(8)	76.58	76.20(3)	3	165.100	5.5	390 000	870 000	39 500	88 500
152.400(6)	231.775(9 1/8)	76.58	76.20(3)	3	184.150	8.5	435 000	915 000	44 500	93 000
165.100(6 ½)	244.475(9 %)	76.58	76.20(3)	3	196.850	8.5	455 000	990 000	46 500	101 000
177.800(7)	257.175(10 1/8)	76.58	76.20(3)	3	209.550	8.5	475 000	1 060 000	48 500	109 000
190.500(7½)	269.875(10 %)	76.58	76.20(3)	4	222.250	7	495 000	1 140 000	50 500	116 000
203.200(8)	282.575(11 1/8)	76.58	76.20(3)	4	234.950	7	510 000	1 210 000	52 000	124 000


NOTA: 1) Dimensione minima ammessa del raggio di raccordo r.


2) Spostamento assiale possibile dell'anello interno nei confronti dell'anello esterno.

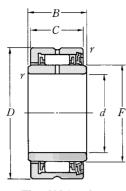


	Numero di	giri limite	Appellativo	Dimens	sioni di moi	ntaggio	Massa
	rpr grasso			$d_{ m a}$ min	mm Da max	$r_{ m as}$ max	kg (approssimata)
ĺ	1 600 1 600	2 400 2 400	MR10412840+MI-8810440 MR10412848+MI-8810448	152.5 152.5	190 190	3 3	6.86 8.22
	1 500	2 200	MR11614648+MI-9611648	165.5	219	3	12.2
Ī	1 300	2 000	MR12415448+MI-10412448	178	231.5	3	13.1
	1 300	1 900	MR13216248+MI-11213248	191	244	3	14.0
	1 200	1 800	MR14017048+MI-12014048	206.5	254	4	15.0
	1 100	1 700	MR14817848+MI-12814848	219	266.5	4	15.8

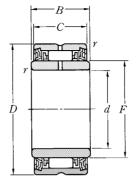
Tipo RNA49 · · L Tipo RNA49··LL

Tipo RNA49 · L (con tenuta singola)

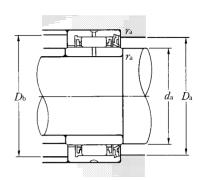
Tipo RNA49 · LL (con tenute ad entrambi i lati)


F_w 14∼58mm

Dimensi	oni d'		nbro	dinamico	oefficient statico	dinamic		Numero di giri limite rpm	Appe	llativo		ensio ontago mm		Massa kg
$F_{ m w}$	D	C	_{√S min} 1)	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	grasso	Tipo RNA49⋯L	Tipo RNA49··LL	$D_{ m a}$ max	$D_{ m b}$ max	r _{as}	(approssimata)
14 +0.027 +0.016	22	13	0.3	7 200	8 500	735	865	10 000		RNA4900LL	16	20	0.3	0.016
16 ^{+0.016} _{+0.016}	24	13	0.3	7 750	9 700	795	990	10 000		RNA4901LL	18	22	0.3	0.018
20 ^{+0.033} _{+0.020}	28	13	0.3	8 300	11 200	845	1 150	10 000		RNA4902LL	22	26	0.3	0.022
22 ^{+0.020} _{+0.020}	30	13	0.3	8 500	11 900	865	1 220	9 000		RNA4903LL	24	28	0.3	0.022
25 ^{+0.033} _{+0.020}	37	17	0.3	15 200	19 900	1 550	2 030	8 000	RNA4904L	RNA4904LL	28	35	0.3	0.055
30 ^{+0.033} _{+0.020}	42	17	0.3	16 000	22 600	1 640	2 300	6 500	RNA4905L	RNA4905LL	33	40	0.3	0.063
35 ^{+0.041} _{+0.025}	47	17	0.3	18 000	27 400	1 830	2 800	5 500	RNA4906L	RNA4906LL	38	45	0.3	0.072
42 ^{+0.041} _{+0.025}	55	20	0.6	22 700	39 500	2 320	4 000	4 800	RNA4907L	RNA4907LL	45	51	0.6	0.113
48 ^{+0.041} _{+0.025}	62	22	0.6	27 800	53 500	2 830	5 450	4 200	RNA4908L	RNA4908LL	51	58	0.6	0.154
52 ^{+0.049} _{+0.030}	68	22	0.6	28 600	57 000	2 920	5 800	3 800	RNA4909L	RNA4909LL	55	64	0.6	0.157
58 ^{+0.049} _{+0.030}	72	22	0.6	30 500	64 000	3 100	6 500	3 400	RNA4910L	RNA4910LL	61	68	0.6	0.160
NOTA: 1) Digital														

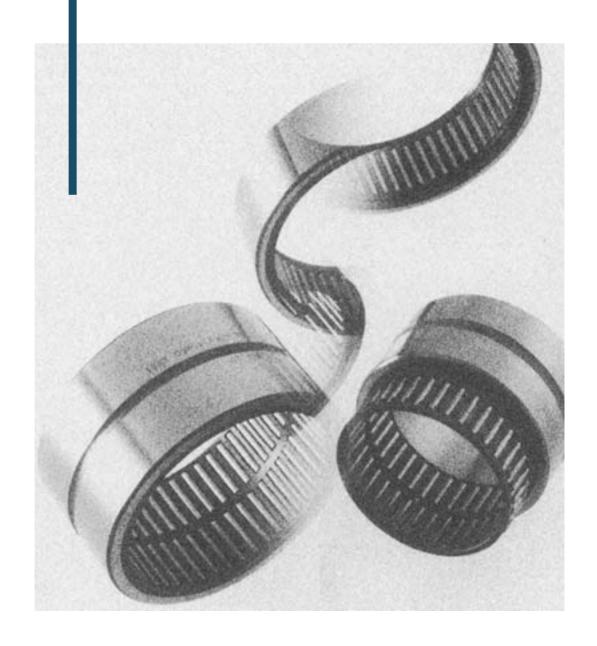

NOTA: 1) Dimensione minima ammessa del raggio di raccordo $\it r.$

Con anello interno


Tipo NA49 ·· L Tipo NA49 ·· LL

Tipo NA49 · L (con tenuta singola)

Tipo NA49 · LL (con tenute ad entrambi i lati)



d 10~50mm

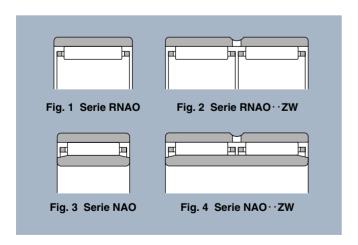
	Dimensioni d'ingombro mm					Coefficienti di carico dinamico statico dinamico statico N kgf				Numero di giri limite rpm	jiri limite rpm			imen mont			Massa kg
d	D	В	C	∕rs min 1)	F	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	grasso	Tipo NA49··L	Tipo RNA49··LL	da min	D_{a} max	$D_{ m b}$ max	$r_{ m as}$ max	(approssimata)
10	22	14	13	0.3	14	7 200	8 500	735	865	10 000	NA4900L	NA4900LL	12	16	20	0.3	
12	24	14	13	0.3	16	7 750	9 700	795	990	10 000	NA4901L	NA4901LL	14	18	22	0.3	0.028
15	28	14	13	0.3	20	8 300	11 200	845	1 150	10 000	NA4902L	NA4902LL	17	22	26	0.3	0.036
17	30	14	13	0.3	22	8 500	11 900	865	1 220	9 000	NA4903L	NA4903LL	19	24	28	0.3	0.039
20	37	18	17	0.3	25	15 200	19 900	1 550	2 030	8 000	NA4904L	NA4904LL	22	28	35	0.3	0.080
25	42	18	17	0.3	30	16 000	22 600	1 640	2 300	6 500	NA4905L	NA4905LL	27	33	40	0.3	0.093
30	47	18	17	0.3	35	18 000	27 400	1 830	2 800	5 500	NA4906L	NA4906LL	32	38	45	0.3	0.107
35	55	21	20	0.6	42	22 700	39 500	2 320	4 000	4 800	NA4907L	NA4907LL	39	45	51	0.6	0.175
40	62	23	22	0.6	48	27 800	53 500	2 830	5 450	4 200	NA4908L	NA4908LL	44	51	58	0.6	0.252
45	68	23	22	0.6	52	28 600	57 000	2 920	5 800	3 800	NA4909L	NA4909LL	49	55	64	0.6	0.290
50	72	23	22	0.6	58	30 500	64 000	3 100	6 500	3 400	NA4910L	NA4910LL	54	61	68	0.6	0.295

NOTA: 1) Dimensione minima ammessa del raggio di raccordo $\it r.$

Cuscinetti a rullini senza bordi, Separabili

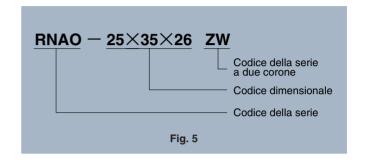
Cuscinetti a rullini senza bordi, separabili

I cuscinetti a rullini senza bordi, separabili, hanno l'anello esterno privo di bordi o di anelli di spalleggiamento laterali. Tale esecuzione rende l'anello esterno separabile dalla gabbia a rullini. Dato che l'anello esterno non può posizionare assialmente la gabbia, l'albero o l'alloggiamento devono essere previsti in modo tale da poter guidare assialmente la gabbia stessa.


Grazie al fatto che l'anello esterno e la gabbia sono separabili, tali elementi possono essere montati separatamente uno dall'altro sull'albero e nello alloggiamento. In tal modo viene semplificato il montaggio del cuscinetto.

Una particolarità del tipo di cuscinetto in esame è rappresentata dal fatto che, combinando adeguatamente l'anello esterno, l'anello interno e la gabbia può essere ottenuto il giuoco radiale desiderato. Tale particolarità rende il cuscinetto separabile adatto alle applicazioni che richiedono una più elevata precisione di rotazione.

Tipi ed esecuzioni


I cuscinetti a rullini separabili NTN includono la serie RNAO (senza anello interno), e la serie NAO (con anello interno). Le due serie possono poi ancora essere suddivise in due tipologie: una avente una gabbia con una sola corona di rullini, e l'altra avente una gabbia a due corone di rullini (suffisso ZW). L'anello esterno del cuscinetto munito di gabbia a due corone di rullini dispone di una gola ed un foro di lubrificazione (ved Fig. 4).

Le gabbie montate nei cuscinetti NTN separabili sono usualmente prodotte in lamiera di acciaio stampata. Vengono comunque anche impiegate delle gabbie in materiale plastico rinforzato con fibre di vetro o con fibre di carbonio (suffisso T2). Le gabbie in esecuzione T2 possono operare ad una temperatura massima di picco di 120°C; la temperatura massima continuativa di funzionamento è però di 100°C.

Appellativo

Gli appellativi dei cuscinetti NTN separabili comprendono il codice della serie (RNAO, NAO), il codice dimensionale (diametro del cerchio inscritto o diametro del foro×diametro esterno×larghezza) ed il suffisso (fig. 5).

Tolleranze dei cuscinetti

La precisione dimensionale, di forma e di rotazione dei cuscinetti a rullini NTN separabili, con anello interno, sono definite nel **Par. 6, "Tolleranze dei cuscinetti", Tabella 6.2,** alle pagg. A-28, 29.

I cuscinetti di produzione normale corrispondono alla classe di tolleranza 0 delle norme ISO (JIS); la NTN però, per le applicazioni che richiedono una precisione di rotazione molto più elevata, la NTN può fornire anche cuscinetti corrispondenti alle classi di tolleranza ISO (JIS) 4, 5 e 6. Per ulteriori dettagli preghiamo di prendere contatto con l'assistenza tecnica NTN.

La tolleranza dimensionale del cerchio inscritto ai rullini $(F_{\rm w})$ dei cuscinetti a rullini NTN separabili senza anello interno è conforme alla classe F6 delle norme ISO. Se l'anello esterno e la gabbia vengono forniti come gruppo, le due parti, sebbene separabili, devono essere montate insieme.

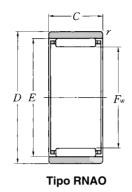
Per le applicazioni richiedenti una precisione particolarmente elevata, la NTN su richiesta può fornire un anello interno la cui superficie volvente è dotata di un sovrametallo di rettifica. In tal caso il cliente ha la possibilità di ottenere il giuoco richiesto rettificando la superficie dell'anello interno dopo che quest'ultimo sia stato montato sull'albero.

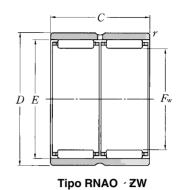
Accoppiamento del cuscinetto e giuoco interno

Il giuoco radiale dei cuscinetti a rullini separabili NTN con anello interno è indicato nel Par. 8 "Giuoco dei cuscinetti", Tabella 8.1, a pag. A-40. Poiché il campo del giuoco dei cuscinetti con elementi non intercambiabili è ristretto, questi ultimi devono essere montati come forniti.

Le tolleranze dimensionali (accoppiamenti) dell'albero e del foro di alloggiamento per il montaggio di un cuscinetto con anello interno variano a seconda del tipo e dell'ampiezza del carico, del diametro dell'albero e della dimensione del foro di alloggiamento e devono soddisfare le esigenze del Par. 7.3.2 "Accoppiamenti raccomandati", Tabella 7.2, a pag A-34, 35. La precisione di forma richiesta e la rugosità superficiale sono specificate nel Par. 14.3 "Precisione dell'albero e dell'alloggiamento", Tabella 14.4, a pag A-59.

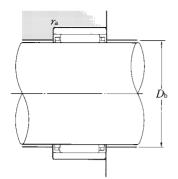
Il cuscinetto privo di anello interno usa l'albere come pista volvente. La tolleranza richiesta per il diametro dell'albero (diametro della pista) corrispondente al giuoco di funzionamento è indicata nel Par. 14.4 "Precisione della superficie della pista", Tabella 14.5, pag. A-59. La tolleranza dimensionale usata comunemente per il foro di alloggiamento è K7. Nel caso in cui venga presa in esame una tolleranza diversa da K7, si prega di contattare l'assistenza tecnica NTN.

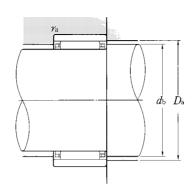

Per quanto riguarda la precisione di forma, la rugosità, e la durezza della superficie volvente ricavata sull'albero, vedere il **Par. 14.4 "Precisione della superficie della pista"**, **Tabella 14.5**, pag. A-59.

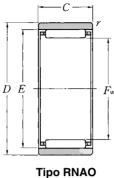

Dimensioni di montaggio

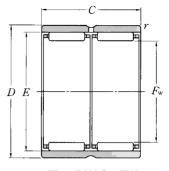
L'anello interno e quello esterno dei cuscinetti a rullini separabili, devono essere bloccati assialmente da uno spalleggiamento o da un anello elastico. Le dimensioni dello spalleggiamento e del raggio di raccordo $r_{\rm a}$ dell'albero sono indicate nelle tabelle dimensionali.

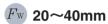
La gabbia deve essere guidata dalla superficie di uno spalleggiamento dell'albero o dell'alloggiamento; tale superficie di guida deve, come minimo, essere finita di tornitura fine e deve essere liscia e priva di bave.


Tipo RNAO
Tipo RNAO··ZW

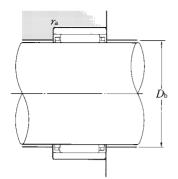


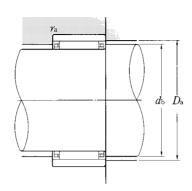

Dime	nsion	i d'ingo	mbro		Coefficienti di carico dinamico statico				Numero di giri limite		Appellativo		
	n	nm			dinamico			gf	rp	om			
									grasso	olio			
$F_{ m W}$	D	C	$r_{\rm s min}$ 1)	E	C_{r}	Cor	C_{r}	Cor					
5 +0.018 +0.010	10	8	0.15	8	2 640	2 190	269	224	27 000	40 000	RNAO- 5×10×8T2		
6 ^{+0.018} _{+0.010}	13	8	0.3	9	2 660	2 280	272	233	25 000	37 000	RNAO- 6×13×8T2		
7 +0.022 +0.013	14	8	0.3	10	2 670	2 350	272	239	23 000	34 000	RNAO- 7×14×8T2		
8 +0.022	15	10	0.3	11	4 000	4 100	410	420	21 000	32 000	RNAO -8×15×10T2		
+0.013	16	20	0.3	12	7 950	8 350	810	850	21 000	32 000	RNAO- 8×16×20ZWT2		
10 +0.022	17	10	0.3	13	4 550	5 100	460	520	19 000	28 000	RNAO-10×17×10T2		
+0.013	20	12	0.3	16	7 100	5 950	720	610	19 000	28 000	RNAO-10×20×12		
12 +0.027	19	13.5	0.3	15	6 000	7 700	615	785	17 000	26 000	RNAO-12×19×13.5		
+0.016	22	12	0.3	18	8 650	8 000	880	815	17 000	26 000	RNAO-12×22×12		
	22	13	0.3	18	8 300	10 100	845	1 030	16 000	24 000	RNAO-14×22×13		
14 ^{+0.027} _{+0.016}	22	20	0.3	18	11 800	16 000	1 210	1 630	16 000	24 000	RNAO-14×22×20ZW		
	26	12	0.3	20	9 350	9 150	955	930	16 000	24 000	RNAO-14×26×12		
15 +0.027	23	13	0.3	19	8 250	10 200	840	1 040	15 000	23 000	RNAO-15×23×13		
+0.016	23	20	0.3	19	11 700	16 100	1 200	1 640	15 000	23 000	RNAO-15×23×20ZW		
	24	13	0.3	20	9 050	11 800	925	1 200	15 000	23 000	RNAO-16×24×13		
16 ^{+0.027} _{+0.016}	24	20	0.3	20	12 900	18 500	1 310	1 890	15 000	23 000	RNAO-16×24×20ZW		
	28	12	0.3	22	11 700	12 500	1 190	1 280	15 000	23 000	RNAO-16×28×12		
	25	13	0.3	21	9 400	12 600	960	1 280	15 000	22 000	RNAO-17×25×13		
17 ^{+0.027} _{+0.016}	25	20	0.3	21	12 800	18 600	1 300	1 900	15 000	22 000	RNAO-17×25×20ZW		
	25	26	0.3	21	16 100	25 200	1 640	2 570	15 000	22 000	RNAO-17×25×26ZW		
	26	13	0.3	22	8 900	11 900	910	1 210	14 000	21 000	RNAO-18×26×13		
18 +0.027	26	20	0.3	22	12 700	18 800	1 290	1 910	14 000	21 000	RNAO-18×26×20ZW		
+0.016	30	12	0.3	24	12 300	13 800	1 250	1 410	14 000	21 000	RNAO-18×30×12		
	30	24	0.3	24	21 100	27 700	2 150	2 820	14 000	21 000	RNAO-18×30×24ZW		
	28	13	0.3	24	10 000	14 300	1 020	1 460	13 000	20 000	RNAO-20×28×13		
20 +0.033 +0.020	28	26	0.3	24	17 100	28 600	1 750	2 910	13 000	20 000	RNAO-20×28×26ZW		
	32	12	0.3	26	12 900	15 100	1 320	1 540	13 000	20 000	RNAO-20×32×12		



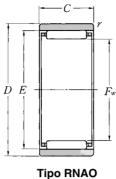

		sioni di taggio		Massa
d_{b}	D_{a}	$D_{ m b}$	$r_{ m as}$	kg
ав	max	D_0	max	(approssimata)
7.7	8.8	5.3	0.15	0.003
8.7	11	6.3	0.3	0.006
9.7	12	7.3	0.3	0.006
10.7	13	8.3	0.3	0.008
11.7	14	8.3	0.3	0.017
12.7	15	10.3	0.3	0.010
15.7	18	10.3	0.3	0.018
14.7	17	12.3	0.3	0.015
17.6	20	12.3	0.3	0.019
17.6	20	14.4	0.3	0.018
17.6	20	14.4	0.3	0.027
19.6	24	14.4	0.3	0.029
18.6	21	15.4	0.3	0.020
18.6	21	15.4	0.3	0.031
19.6	22	16.4	0.3	0.021
19.6	22	16.4	0.3	0.032
21.6	26	16.4	0.3	0.032
20.6	23	17.4	0.3	0.022
20.6	23	17.4	0.3	0.034
20.6	23	17.4	0.3	0.044
21.6	24	18.4	0.3	0.022
21.6	24	18.4	0.3	0.033
23.6	28	18.4	0.3	0.035
23.6	28	18.4	0.3	0.069
23.6	26	20.4	0.3	0.025
23.6	26	20.4	0.3	0.050
25.6	30	20.4	0.3	0.038

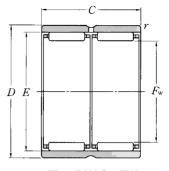
Tipo RNAO
Tipo RNAO··ZW

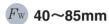




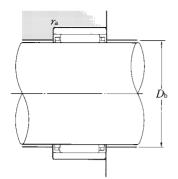
o RNAO Tipo RNAO · ZW

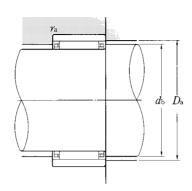

Dime	ension	i d'ing	ombro			Coefficien	ti di carico)	Numero d	li giri limite	Appellativo
					dinamico	statico	dinamico				
	r	nm			1	1	k	gf		om	
$F_{ m W}$	D	C	$r_{ m s min}$ 1) E	$C_{\rm r}$	$C_{ m or}$	$C_{\rm r}$	Cor	grasso	olio	
20 +0.033 +0.020	32	24	0.3	26	22 100	30 000	2 260	3 100	13 000	20 000	RNAO-20×32×24ZW
	30	13	0.3	26	10 200	15 200	1 040	1 550	12 000	18 000	RNAO-22×30×13
+0.033	30	26	0.3	26	17 500	30 500	1 790	3 100	12 000	18 000	RNAO-22×30×26ZW
22 +0.033 +0.020	35	16	0.3	29	18 700	22 700	1 910	2 310	12 000	18 000	RNAO-22×35×16
	35	32	0.3	29	32 000	45 500	3 300	4 650	12 000	18 000	RNAO-22×35×32ZW
	35	17	0.3	29	14 200	24 000	1 450	2 450	11 000	16 000	RNAO-25×35×17
25 +0.033	35	26	0.3	29	18 400	33 500	1 880	3 450	11 000	16 000	RNAO-25×35×26ZW
+0.020	37	16	0.3	32	19 500	24 700	1 990	2 520	11 000	16 000	RNAO-25×37×16
	37	32	0.3	32	33 500	49 500	3 400	5 050	11 000	16 000	RNAO-25×37×32ZW
26 +0.033 +0.020	39	13	0.3	30	11 800	19 200	1 200	1 960	10 000	15 000	RNAO-26×39×13
28 +0.033	40	16	0.3	35	21 200	28 400	2 160	2 900	9 500	14 000	RNAO-28×40×16
+0.020	40	32	0.3	35	36 500	57 000	3 700	5 800	9 500	14 000	RNAO-28×40×32ZW
	40	17	0.3	35	19 400	32 500	1 970	3 350	9 000	13 000	RNAO-30×40×17
30 +0.033	40	26	0.3	35	25 200	46 000	2 570	4 650	9 000	13 000	RNAO-30×40×26ZW
+0.020	42	16	0.3	37	21 900	30 500	2 230	3 100	9 000	13 000	RNAO-30×42×16
	42	32	0.3	37	37 500	60 500	3 850	6 200	9 000	13 000	RNAO-30×42×32ZW
32 ^{+0.041} _{+0.025}	42	13	0.3	37	14 500	23 000	1 480	2 350	8 500	13 000	RNAO-32×42×13
	45	13	0.3	40	15 200	25 100	1 550	2 560	7 500	11 000	RNAO-35×45×13
	45	17	0.3	40	20 000	36 000	2 040	3 650	7 500	11 000	RNAO-35×45×17
35 +0.041	45	26	0.3	40	26 100	50 000	2 660	5 100	7 500	11 000	RNAO-35×45×26ZW
+0.025	47	16	0.3	42	24 100	36 000	2 450	3 650	7 500	11 000	RNAO-35×47×16
	47	18	0.3	42	24 700	37 000	2 510	3 750	7 500	11 000	RNAO-35×47×18
	47	32	0.3	42	41 500	71 500	4 200	7 300	7 500	11 000	RNAO-35×47×32ZW
37 +0.041	47	13	0.3	42	15 900	27 100	1 620	2 770	7 000	11 000	RNAO-37×47×13
+0.025	52	18	0.3	44	26 300	41 000	2 680	4 150	7 000	11 000	RNAO-37×52×18
	50	17	0.3	45	21 800	41 500	2 220	4 250	6 500	10 000	RNAO-40×50×17
40 ^{+0.041} _{+0.025}	50	34	0.3	45	37 500	83 000	3 800	8 500	6 500	10 000	RNAO-40×50×34ZW
	55	20	0.3	47	31 000	51 500	3 150	5 250	6 500	10 000	RNAO-40×55×20
DTA: 4) Di				_1							



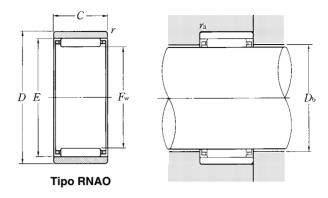

	mon	sioni di taggio		Massa
$d_{ m b}$	$D_{ m a}$	nm $D_{ m b}$	$r_{ m as}$	kg
ав	max	D_0	max	(approssimata)
25.6	30	20.4	0.3	0.080
25.6	28	22.4	0.3	0.027
25.6	28	22.4	0.3	0.054
28.4	33	22.4	0.3	0.059
28.4	33	22.4	0.3	0.118
28.4	33	25.6	0.3	0.053
28.4	33	25.6	0.3	0.076
31.4	35	25.6	0.3	0.060
31.4	35	25.6	0.3	0.119
29.4	37	26.6	0.3	0.060
34.4	38	28.6	0.3	0.061
34.4	38	28.6	0.3	0.122
34.4	38	30.6	0.3	0.060
34.4	38	30.6	0.3	0.094
36.4	40	30.6	0.3	0.069
36.4	40	30.6	0.3	0.137
36.4	40	32.6	0.3	0.049
39.4	43	35.6	0.3	0.053
39.4	43	35.6	0.3	0.069
39.4	43	35.6	0.3	0.091
41.4	45	35.6	0.3	0.078
41.4	45	35.6	0.3	0.089
41.4	45	35.6	0.3	0.156
41.4	45	37.6	0.3	0.056
43.4	50	37.6	0.3	0.125
44.4	48	40.6	0.3	0.074
44.4	48	40.6	0.3	0.152
46.2	53	40.6	0.3	0.145

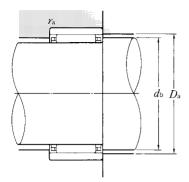
Tipo RNAO
Tipo RNAO··ZW



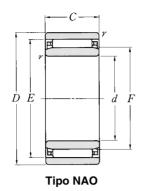


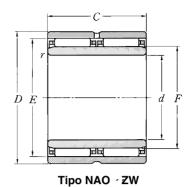
o RNAO Tipo RNAO · ZW


	Dime	ension	i d'ing	ombro		dinamico	Coefficien statico		o statico	Numero di giri limite		Appellativo		
		n	nm				N		gf	rp	om			
	$F_{ m W}$	D	C	$r_{ m smin}$ 1) _E	$C_{\rm r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	grasso	olio			
	10 +0.041	55	40	0.3	48	56 500	102 000	5 750	10 400	6 500	10 000	RNAO-40× 55×40ZW		
	+0.025													
		55	17	0.3	50	22 300	44 500	2 280	4 550	6 000	9 000	RNAO-45× 55×17		
4	+0.041 +0.025	55	34	0.3	50	38 500	89 500	3 900	9 100	6 000	9 000	RNAO-45× 55×34ZW		
	+0.023	62	20	0.3	53	36 000	59 000	3 650	6 000	6 000	9 000	RNAO-45× 62×20		
		62	40	0.3	53	61 500	118 000	6 250	12 000	6 000	9 000	RNAO-45 \times 62 \times 40ZW		
		62	20	0.3	55	27 900	62 000	2 850	6 300	5 500	8 000	RNAO-50× 62×20		
	+0.041	62	40	0.3	55	48 000	124 000	4 900	12 600	5 500	8 000	RNAO-50× 62×40ZW		
5	+0.025	65	20	0.3	58	38 500	67 500	3 950	6 850	5 500	8 000	RNAO-50× 65×20		
		65	40	0.6	58	66 500	135 000	6 750	13 700	5 500	8 000	RNAO-50× 65×40ZW		
		68	20	0.6	60	28 800	66 500	2 940	6 750	4 800	7 500	RNAO-55× 68×20		
		68	25	0.6	63	50 500	97 500	5 150	9 950	4 800	7 500	RNAO-55× 68×25		
5	55 +0.049 +0.030	68	40	0.6	60	49 500	133 000	5 050	13 500	4 800	7 500	RNAO-55× 68×40ZW		
	. 0.000	72	20	0.6	63	39 000	70 000	3 950	7 100	4 800	7 500	RNAO-55× 72×20		
		72	40	0.6	63	66 500	140 000	6 800	14 200	4 800	7 500	RNAO-55× 72×40ZW		
		75	46	1	68	76 000	170 000	7 750	17 400	4 400	6 500	RNAO-60× 75×46ZW		
6	60 +0.049 +0.030	78	20	1	68	40 000	75 000	4 100	7 650	4 400	6 500	RNAO-60× 78×20		
	. 0.000	78	40	1	68	69 000	150 000	7 050	15 300	4 400	6 500	RNAO-60× 78×40ZW		
	+0.049	85	30	1	73	61 000	132 000	6 200	13 400	4 100	6 000	RNAO-65× 85×30		
6	+0.030	85	60	1	73	104 000	263 000	10 600	26 800	4 100	6 000	RNAO-65× 85×60ZW		
	+0.049	90	30	1	78	65 500	149 000	6 700	15 200	3 800	5 500	RNAO-70× 90×30		
7	70 +0.043 +0.030	90	60	1	78	112 000	297 000	11 500	30 500	3 800	5 500	RNAO-70× 90×60ZW		
	+0.049	95	30	1	83	67 500	157 000	6 850	16 100	3 600	5 500	RNAO-75× 95×30		
7	75 +0.049 +0.030	95	60	1	83	115 000	315 000	11 800	32 000	3 600	5 500	RNAO-75× 95×60ZW		
		95	30	1	86	57 000	159 000	5 800	16 200	3 300	5 000	RNAO-80× 95×30		
	+0.049	95	56	1	88	105 000	284 000	10 700	29 000	3 300	5 000	RNAO-80× 95×56ZW		
3	30 +0.049 +0.030	100	30	1	88	69 000	166 000	7 050	17 000	3 300	5 000	RNAO-80×100×30		
		100	60	1	88	119 000	335 000	12 100	34 000	3 300	5 000	RNAO-80×100×60ZW		
8	35 +0.058 +0.036	105	25	1	93	61 500	146 000	6 250	14 900	3 100	4 700	RNAO-85×105×25		


		nsioni di taggio		Massa
7		mm		kg
db	D_{a} max	$D_{ m b}$	$r_{ m as}$ max	(approssimata)
47.2	53	40.6	0.3	0.275
49.2	53	45.6	0.3	0.083
49.2	53	45.6	0.3	0.165
52.2	60	45.6	0.3	0.175
52.2	60	45.6	0.3	0.377
54.2	60	50.6	0.3	0.140
54.2	60	50.6	0.3	0.295
57.2	63	50.6	0.3	0.168
57.2	61	50.6	0.6	0.355
59.4	64	55.8	0.6	0.166
62.4	64	55.8	0.6	0.200
59.4	64	55.8	0.6	0.310
62.4	68	55.8	0.6	0.216
62.4	68	55.8	0.6	0.425
67.2	70	60.8	1	0.461
67.2	73	60.8	1	0.255
67.2	73	60.8	1	0.500
72.2	80	66	1	0.464
72.2	80	66	1	0.951
77.2	85	71	1	0.499
77.2	85	71	1	1.00
82.2	90	76	1	0.520
82.2	90	76	1	1.04
85.2	90	81	1	0.405
87.2	90	81	1	0.755
87.2	95	81	1	0.580
87.2	95	81	1	1.10
92.2	100	86	1	0.459

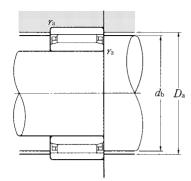
Tipo RNAO

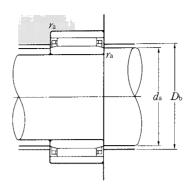

	Dime	ensior	ni d'ingo	ombro			Coefficien			Numero d	li giri limite	Appellativo
			mm				statico V				am.	
			mm				V	K	cgf	grasso	om olio	
	$F_{ m W}$	D	C	γ s min	1) E	$C_{\rm r}$	Cor	$C_{\rm r}$	Cor	3		
85	+0.058 +0.036	105	30	1	93	71 000	175 000	7 200	17 900	3 100	4 700	RNAO- 85×105×30
90	+0.058 +0.036	105	26	1	98	64 000	157 000	6 550	16 000	3 000	4 400	RNAO- 90×105×26
90	+0.036	110	30	1	98	72 500	184 000	7 400	18 800	3 000	4 400	RNAO- 90×110×30
	+0.058 +0.036	115	30	1	103	74 000	193 000	7 550	19 600	2 800	4 200	RNAO- 95×115×30
100	+0.058 +0.035	120	30	1	108	76 000	201 000	7 700	20 500	2 700	4 000	RNAO-100×120×30
NOTA: 4												



		sioni di		Massa
		taggio nm		kg
d _b	$D_{ m a}$ max	D_{b}	$r_{ m as}$ max	(approssimata)
92.2	100	86	1	0.585
97.2	100	91	1	0.373
97.2	105	91	1	0.610
102.2	110	96	1	0.640
107.2	115	101	1	0.694

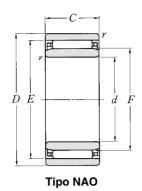
Con anello Interno

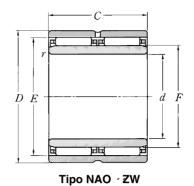

Tipo NAO ·· ZW



d 6∼30mm

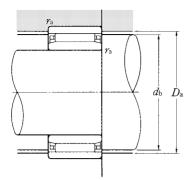
	Dim	ension	i d'ingom	bro		Coefficienti di carico dinamico statico dinamico statico			Numero di giri limite		Appellativo	
		n	nm				N	kç		rp	m	
J	D	a	1)	77	77	a	a	a	a	grasso	olio	
d	D	C	∕r _{s min} 1)	F	E	Cr	Cor	$C_{\rm r}$	$C_{ m or}$			
6	17	10	0.3	10	13	4 550	5 100	460	520	19 000	28 000	NAO- 6×17×10T2
7	20	12	0.3	10	16	7 100	5 950	720	610	19 000	28 000	NAO- 7×20×12
9	22	12	0.3	12	18	8 650	8 000	880	815	17 000	26 000	NAO- 9×22×12
	22	13	0.3	14	18	8 300	10 100	845	1 030	16 000	24 000	NAO-10×22×13
10	22	20	0.3	14	18	11 800	16 000	1 210	1 630	16 000	24 000	NAO-10 \times 22 \times 20ZW
	26	12	0.3	14	20	9 350	9 150	955	930	16 000	24 000	NAO-10×26×12
	24	13	0.3	16	20	9 050	11 800	925	1 200	15 000	23 000	NAO-12×24×13
12	24	20	0.3	16	20	12 900	18 500	1 310	1 890	15 000	23 000	NAO-12 \times 24 \times 20ZW
	28	12	0.3	16	22	11 700	12 500	1 190	1 280	15 000	23 000	NAO-12×28×12
	28	13	0.3	20	24	10 000	14 300	1 020	1 460	13 000	20 000	NAO-15×28×13
15	28	26	0.3	20	24	17 100	28 600	1 750	2 910	13 000	20 000	NAO-15×28×26ZW
	32	12	0.3	20	26	12 900	15 100	1 320	1 540	13 000	20 000	NAO-15×32×12
	30	13	0.3	22	26	10 200	15 200	1 040	1 550	12 000	18 000	NAO-17×30×13
17	30	26	0.3	22	26	17 500	30 500	1 790	3 100	12 000	18 000	NAO-17 \times 30 \times 26ZW
17	35	16	0.3	22	29	18 700	22 700	1 910	2 310	12 000	18 000	NAO-17×35×16
	35	32	0.3	22	29	32 000	45 500	3 300	4 650	12 000	18 000	NAO-17×35×32ZW
	35	17	0.3	25	29	14 200	24 000	1 450	2 450	11 000	16 000	NAO-20×35×17
20	35	26	0.3	25	29	18 400	33 500	1 880	3 450	11 000	16 000	NAO-20 \times 35 \times 26ZW
20	37	16	0.3	25	32	19 500	24 700	1 990	2 520	11 000	16 000	NAO-20×37×16
	37	32	0.3	25	32	33 500	49 500	3 400	5 050	11 000	16 000	NAO-20×37×32ZW
	40	17	0.3	30	35	19 400	32 500	1 970	3 350	9 000	13 000	NAO-25×40×17
25	40	26	0.3	30	35	25 200	46 000	2 570	4 650	9 000	13 000	NAO-25×40×26ZW
	42	16	0.3	30	37	21 900	30 500	2 230	3 100	9 000	13 000	NAO-25×42×16
	42	32	0.3	30	37	37 500	60 500	3 850	6 200	9 000	13 000	NAO-25×42×32ZW
29	42	13	0.3	32	37	14 500	23 000	1 480	2 350	8 500	13 000	NAO-29×42×13
	45	13	0.3	35	40	15 200	25 100	1 550	2 560	7 500	11 000	NAO-30×45×13
30	45	17	0.3	35	40	20 000	36 000	2 040	3 650	7 500	11 000	NAO-30×45×17
	45	26	0.3	35	40	26 100	50 000	2 660	5 100	7 500	11 000	NAO-30×45×26ZW

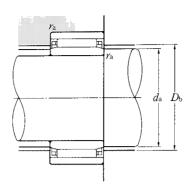




Dimensioni di Massa												
	Massa											
		montago mm	,,,,		kg							
$d_{ m a}$	db	$D_{\rm a}$	D_{b}	$r_{ m as}$								
min		max		max	(approssimata)							
8	12.7	15	10.3	0.3	0.014							
9	15.7	18	10.3	0.3	0.022							
11	17.6	20	12.3	0.3	0.024							
12	17.6	20	14.4	0.3	0.026							
12	17.6	20	14.4	0.3	0.039							
12	19.6	24	14.4	0.3	0.036							
14	19.6	22	16.4	0.3	0.030							
14	19.6	22	16.4	0.3	0.044							
14	21.6	26	16.4	0.3	0.040							
17	23.6	26	20.4	0.3	0.029							
17	23.6	26	20.4	0.3	0.075							
17	25.6	30	20.4	0.3	0.050							
19	25.6	28	22.4	0.3	0.042							
19	25.6	28	22.4	0.3	0.081							
19	28.4	33	22.4	0.3	0.078							
19	28.4	33	22.4	0.3	0.148							
22	28.4	33	25.6	0.3	0.076							
22	28.4	33	25.6	0.3	0.112							
22	31.4	35	25.6	0.3	0.082							
22	31.4	35	25.6	0.3	0.155							
27	34.4	38	30.6	0.3	0.088							
27	34.4	38	30.6	0.3	0.130							
27	36.4	40	30.6	0.3	0.086							
27	36.4	40	30.6	0.3	0.190							
31	36.4	40	32.6	0.3	0.062							
32	39.4	43	35.6	0.3	0.077							
32	39.4	43	35.6	0.3	0.102							
32	39.4	43	35.6	0.3	0.157							

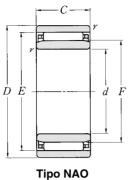
Con anello Interno

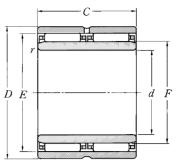

Tipo NAO ·· ZW



d 30~65mm

	Dimensioni d'ingombro						Coefficienti di carico dinamico statico				Numero di	i giri limite	Appellativo
			n	nm				N		gf	rp	m	
	d	D	C	γ _{s min} 1)	F	E	C _r	$C_{ m or}$	C_{r}	$C_{ m or}$	grasso	olio	
	a											44.000	NA 0 00
		47	16	0.3	35	42	24 100	36 000	2 450	3 650	7 500	11 000	NAO-30×47×16
3	30	47	18	0.3	35	42	24 700	37 000	2 510	3 750	7 500	11 000	NAO-30×47×18
		47 52	32 18	0.3 0.3	35 37	42 44	41 500 26 300	71 500 41 000	4 200 2 680	3 700 4 150	7 500 7 000	11 000 11 000	NAO-30×47×32ZW NAO-30×52×18
- 3	33	47	13	0.3	37	42	15 900	27 100	1 620	2 770	7 000	11 000	NAO-33×47×13
		50	17	0.3	40	45	21 800	41 500	2 220	4 250	6 500	10 000	NAO-35×50×17
3	35	50	34	0.3	40	45	37 500	83 000	3 800	8 500	6 500	10 000	$NAO-35\times50\times34ZW$
	~	55	20	0.3	40	47	31 000	51 500	3 150	5 250	6 500	10 000	NAO-35 \times 55 \times 20
		55	40	0.3	40	48	56 500	102 000	5 750	10 400	6 500	10 000	NAO-35×55×40ZW
		55	17	0.3	45	50	22 300	44 500	2 280	4 550	6 000	9 000	NAO-40×55×17
		55	34	0.3	45	50	38 500	89 500	3 900	9 100	6 000	9 000	$NAO-40\times55\times34ZW$
4	10	62	20	0.3	45	53	36 000	59 000	3 650	6 000	6 000	9 000	NAO-40×62×20
		62	40	0.3	45	53	61 500	118 000	6 250	12 000	6 000	9 000	$NAO-40\times62\times40ZW$
		65	20	0.3	50	58	38 500	67 500	3 950	6 850	5 500	8 000	NAO-40×65×20
		62	20	0.3	50	55	27 900	62 000	2 850	6 300	5 500	8 000	NAO-45×62×20
	15	62	40	0.3	50	55	48 000	124 000	4 900	12 600	5 500	8 000	$NAO-45\times62\times40ZW$
	13	72	20	0.6	55	63	39 000	70 000	3 950	7 100	4 800	7 500	NAO-45×72×20
		72	40	0.6	55	63	66 500	140 000	6 800	14 200	4 800	7 500	NAO-45×72×40ZW
		68	20	0.6	55	60	28 800	66 500	2 940	6 750	4 800	7 500	NAO-50×68×20
	50	68	40	0.6	55	60	49 500	133 000	5 050	13 500	4 800	7 500	$NAO-50\times68\times40ZW$
•	,	78	20	1	60	68	40 000	75 000	4 100	7 650	4 400	6 500	NAO-50×78×20
		78	40	1	60	68	69 000	150 000	7 050	15 300	4 400	6 500	NAO-50×78×40ZW
	55	85	30	1	65	73	61 000	132 000	6 200	13 400	4 100	6 000	NAO-55×85×30
•	ງວ	85	60	1	65	73	104 000	263 000	10 600	26 800	4 100	6 000	NAO-55×85×60ZW
	20	90	30	1	70	78	65 500	149 000	6 700	15 200	3 800	5 500	NAO-60×90×30
	60	90	60	1	70	78	112 000	297 000	11 500	30 500	3 800	5 500	NAO-60×90×60ZW
,	e E	95	30	1	75	83	67 500	157 000	6 850	16 100	3 600	5 500	NAO-65×95×30
	65	95	60	1	75	83	115 000	315 000	11 800	32 000	3 600	5 500	NAO-65 \times 95 \times 60ZW

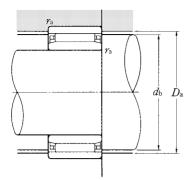


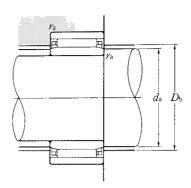


$d_{ m a}$	Massa kg				
min	db	$D_{ m a}$ max	Db	$r_{ m as}$ max	(approssimata)
32	41.4	45	35.6	0.3	0.109
32	41.4	45	35.6	0.3	0.119
32	41.4	45	35.6	0.3	0.205
32	43.4	50	37.6	0.3	0.177
35	41.4	45	37.6	0.3	0.085
37	44.4	48	40.6	0.3	0.113
37	44.4	48	40.6	0.3	0.225
37	46.2	53	40.6	0.3	0.190
37	47.2	53	40.6	0.3	0.360
42	49.2	53	45.6	0.3	0.127
42	49.2	53	45.6	0.3	0.250
42	52.2	60	45.6	0.3	0.230
42	52.2	60	45.6	0.3	0.385
42	57.2	63	50.6	0.3	0.279
47	54.2	60	50.6	0.3	0.192
47	54.2	60	50.6	0.3	0.385
49	62.4	68	55.8	0.6	0.335
49	62.4	68	55.8	0.6	0.660
54	59.4	64	55.8	0.6	0.230
54	59.4	64	55.8	0.6	0.440
55	67.2	73	60.8	1	0.410
55	67.2	73	60.8	1	0.755
60	72.2	80	66	1	0.680
60	72.2	80	66	1	1.35
65	77.2	85	71	1	0.720
65	77.2	85	71	1	1.45
70	82.2	90	76	1	0.770
70	82.2	90	76	1	1.54

Con anello Interno

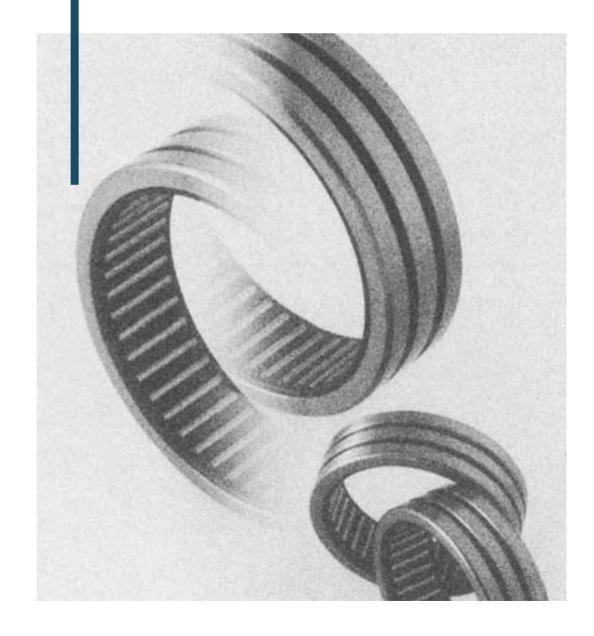
Tipo NAO ·· ZW




NAO Tipo NAO · ZW

d 70∼90mm

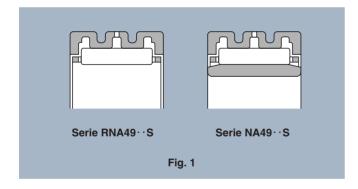
Dimensioni d'ingombro							dinamico	Coefficienti statico	dinamico	statico	Numero di	giri limite	Appellativo
				nm	\ _	_	_	N		gf	rpr grasso	n olio	
	d	D	C	$r_{\rm s min}$ 1		E	$C_{\rm r}$	$C_{ m or}$	$C_{\rm r}$	Cor			
		95	30	1	80	86	57 000	159 000	5 800	16 200	3 300	5 000	NAO-70× 95×30
	70	95	56	1	80	88	105 000	284 000	10 700	29 000	3 300	5 000	NAO-70× 95×56ZW
		100	30	1	80	88	69 000	166 000	7 050	17 000	3 300	5 000	NAO-70×100×30
		100	60	1	80	88	119 000	335 000	12 100	34 000	3 300	5 000	NAO-70×100×60ZW
	75	105	25	1	85	93	61 500	146 000	6 250	14 900	3 100	4 700	NAO-75×105×25
	75	105	30	1	85	93	71 000	175 000	7 200	17 900	3 100	4 700	NAO-75×105×30
	80	110	30	1	90	98	72 500	184 000	7 400	18 800	3 000	4 400	NAO-80×110×30
	85	115	30	1	95	103	74 000	193 000	7 550	19 600	2 800	4 200	NAO-85×115×30
	90	120	30	1	100	108	76 000	201 000	7 700	20 500	2 700	4 000	NAO-90×120×30


NOTA: 1) Dimensione minima ammessa del raggio di raccordo $\it r.$

	Massa				
		montag mm	•		kg
$d_{ m a}$ min	db	$D_{ m a}$ max	Db	$r_{ m as}$ max	(approssimata)
75	85.2	90	81	1	0.675
75 75	87.2	90	81	1	1.26
75	87.2	95	81	1	0.850
75	87.2	95	81	1	1.70
80	92.2	100	86	1	0.700
80	92.2	100	86	1	0.880
85	97.2	105	91	1	0.920
90	102.2	110	96	1	0.960
95	107.2	115	101	1	1.04

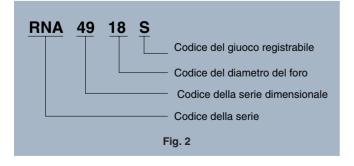
Cuscinetti a rullini con giuoco registrabile

Cuscinetti a rullini con giuoco registrabile


I cuscinetti con giuoco registrabile sono costituiti da un anello esterno e da una gabbia a rullini. L'anello esterno e la gabbia non sono separabili. Esercitando una pressione in senso assiale sull'anello esterno si manifesta una riduzione del diametro della pista di quest'ultimo con la conseguente riduzione del diametro di inviluppo dei rullini $(F_{\rm w})$. In altre parole, a seconda dell'entità della spinta assiale che si esercita varia la compressione in senso radiale e quindi si può registrare in modo preciso il valore del giuoco.

Il tipo di cuscinetto in esame viene usato per le applicazioni che richiedono una elevata precisione di rotazione come, ad esempio, i mandrini delle macchine utensili. Il gruppo di tolleranza dei cuscinetti a rullini con giuoco registrabile è della classe 4 della normativa ISO (JIS).

Tipi ed esecuzioni


I cuscinetti a rullini NTN con giuoco registrabile sono disponibili nelle due **serie RNA49··S** (senza anello interno) e **NA49··S** (con anello interno).

Le dimensioni d'ingombro dalla serie RNA49··S e NA49··S sono uguali rispettivamente a quelle dei cuscinetti a rullini RNA49 e NA49.

Appellativo

Gli appellativi dei cuscinetti a rullini NTN con giuoco registrabile comprendono il codice della serie, il codice della serie dimensionale, il codice del diametro del foro ed il suffisso.

Tolleranze dei cuscinetti

Poiché l'impiego dei cuscinetti a rullini NTN con giuoco registrabile è limitato ai meccanismi che richiedono una elevata precisione di rotazione, tali cuscinetti, per quanto riguarda la precisione dimensionale, di forma e di retazione, devono soddisfare la classe di tolleranza 4 delle norme ISO (JIS). Può anche essere raggiunta una precisione di rotazione maggiore con l'impiego di un anello interno speciale che viene finito di rettifica dopo montaggio e quindi provvisto del relativo sovrametallo. Per ulteriori dettagli preghiamo di prendere contatto con il servizio assistenza tecnica della NTN.

Accoppiamento e del cuscinetto e giuoco radiale

Il giuoco radiale dei cuscinetti della **serie NA49··S** con anello interno è inferiore al normale. La tolleranza dimensionale del diametro del cerchio inscritto ai rullini $(F_{\rm w})$ dei cuscinetti della **serie RNA49··S** senza anello interno è indicata nelle tabelle dimensionali. Quindi., scegliendo il valore del diametro dell'albero, si determina automaticamente il giuoco radiale.

Al fine di poter esercitare una pressione in senso assiale sull'anello esterno e di avere una riduzione del diametro della pista relativa, l'accoppiamento di quest'ultimo nello alloggiamento deve essere di tipo scorrevole o stretto (con una interferenza approssimativa di 5 μ m). Gli accoppiamenti del cuscinetto sull'albero e nello alloggiamento sono indicati nella **tabella 1**.

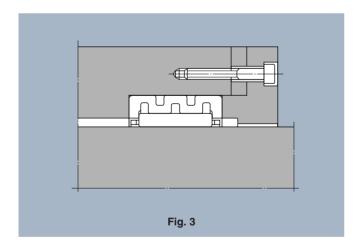
Tabella 1 Accoppiamenti con l'albero e l'alloggiamento

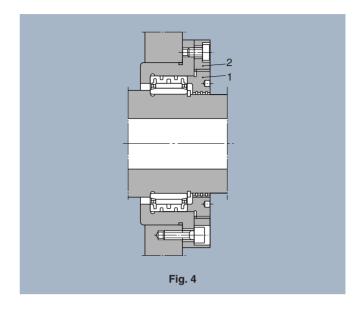
Cuscinetto	Albero	Alloggiamento
RNA49··S NA49··S	m5 k5	k4

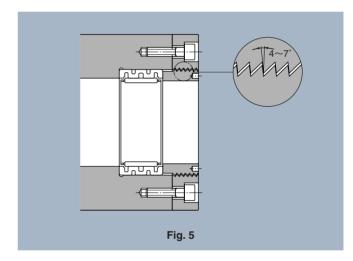
Esecuzione dell'albero e dell'alloggiamento

Per poter soddisfare le applicazioni richiedenti una elevata precisione di rotazione, il cuscinetto deve essere accoppiato in modo tale che sia ridotta al minimo l'inclinazione dell'anello esterno montato.

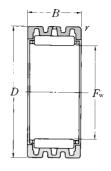
Perciò, la precisione di forma dell'albero e dello alloggiamento deve essere di gran lunga superiore a quella prevista per i normali cuscinetti a rullini.

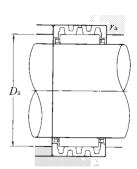

Tabella 2 Precisione dell'albero e dell'alloggiamento

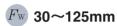

Caratteristica	Albero	Alloggiamento
Rotondità (max)	IT2	IT3
Cilindricità (max)	IT2	IT3
Ortogonalità delle piste (max)	IT3	IT3


Registrazione del giuoco radiale

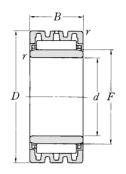
Il rapporto tra l'entità della compressione assiale e la riduzione del diametro del cerchio inscritto ai rullini ($F_{\rm w}$) dell'anello esterno è circa di 1/3. In altre parole, l'anello esterno deve essere compresso di 3 μ m per poter ottenere una riduzione del giuoco radiale di 1 μ m.

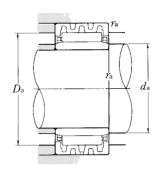

Per la registrazione del giuoco radiale, l'anello esterno deve essere compresso uniformemente in direzione parallela all'asse dell'albero. Come illustrato nell'esempio della Fig. 3, tra il coperchio e l'alloggiamento viene interposto un anello distanziatore il cui spessore può essere variato mediante lappatura o mediante la sostituzione dell'anello stesso, al fine di poter ottenere lo spessore corrispondente alla realizzazione della corsa assiale necessaria. Secondo il metodo illustrato nella Fig. 4, nell'alloggiamento viene posto un anello di bloccaggio (2) ed il coperchio filettato (1) viene ruotato sino ad annullare completamente il giuoco assiale rispetto alla superficie frontale dell'anello esterno. L'anello di bloccaggio viene quindi allentato ed il coperchio filettato (1) viene nuovamente avvitato per un valore predeterminato e quindi l'anello di bloccaggio viene stretto nuovamente mentre si fa ruotare l'albero. In tal modo si è ottenuta la registrazione del giuoco radiale. Si prega di notare che la filettatura di registrazione deve essere del tipo ad appoggio indicato dalla Fig. 5: Ciò per minimizzare la perdite di angolarità mentre viene mantenuta la precisione di montaggio del cuscinetto.





Tipo RNA49 · · S

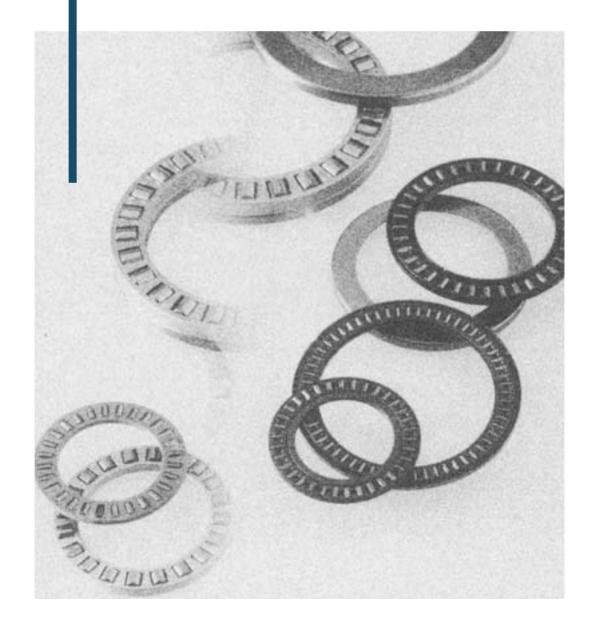




Dimensioni d'ingombro				dinamico	Coefficient statico	dinamico			di giri limite	Appellativo	mont	sioni di aggio m	Massa kg
					•		9.	grasso	olio		D _a	$r_{ m as}$	1.9
$F_{ m W}$	D	В	r _{s min} 1)	$C_{ m r}$	$C_{ m or}$	$C_{\rm r}$	$C_{ m or}$				max	max	(approssimata)
30 +0.031 +0.022	42	17	0.3	12 300	16 000	1 260	1 630	8 700	13 000	RNA 4905S	36	0.3	0.070
35 ^{+0.038} _{+0.028}	47	17	0.3	14 900	21 600	1 520	2 200	7 300	11 000	RNA 4906S	41	0.3	0.086
40 ^{+0.038} _{+0.028}	52	20	0.6	17 600	27 800	1 790	2 830	6 700	10 000	RNA49/32S	46	0.6	0.088
42 ^{+0.038} _{+0.028}	55	20	0.6	18 300	29 800	1 870	3 050	6 300	9 500	RNA 4907S	48	0.6	0.099
48 ^{+0.038} _{+0.028}	62	22	0.6	22 500	40 500	2 300	4 150	5 700	8 500	RNA 4908S	54	0.6	0.134
52 ^{+0.045} _{+0.035}	68	22	0.6	23 100	43 500	2 360	4 400	5 000	7 500	RNA 4909S	58	0.6	0.168
58 ^{+0.045} _{+0.035}	72	22	0.6	24 700	49 000	2 520	5 000	4 700	7 000	RNA 4910S	64	0.6	0.189
63 ^{+0.045} _{+0.035}	80	25	1	33 000	65 500	3 350	6 650	4 300	6 500	RNA 4911S	70	1	0.212
68 ^{+0.045} _{+0.035}	85	25	1	34 000	69 000	3 450	7 050	4 000	6 000	RNA 4912S	75	1	0.257
72 +0.045 +0.035	90	25	1	34 000	70 500	3 450	7 200	3 700	5 500	RNA 4913S	79	1	0.286
80 ^{+0.045} _{+0.035}	100	30	1	44 500	94 000	4 550	9 600	3 300	5 000	RNA 4914S	88	1	0.422
85 ^{+0.055} _{+0.040}	105	30	1	45 500	99 000	4 650	10 100	3 100	4 700	RNA 4915S	93	1	0.451
90 ^{+0.055} _{+0.040}	110	30	1	46 500	104 000	4 750	10 600	2 900	4 400	RNA 4916S	98	1	0.468
100 ^{+0.055} _{+0.040}	120	35	1.1	57 000	140 000	5 800	14 300	2 700	4 000	RNA 4917S	108	1	0.594
105 +0.055 +0.040	125	35	1.1	58 500	146 000	5 950	14 900	2 500	3 800	RNA 4918S	113	1	0.617
110 ^{+0.055} _{+0.040}	130	35	1.1	59 500	152 000	6 050	15 500	2 400	3 600	RNA 4919S	118	1	0.735
115 +0.055 +0.040	140	40	1.1	72 000	168 000	7 350	17 100	2 300	3 500	RNA 4920S	125	1	0.980
125 +0.065 +0.050	150	40	1.1	75 500	184 000	7 700	18 800	2 100	3 200	RNA 4922S	135	1	1.04

Con anello interno

Tipo NA49 ··· S



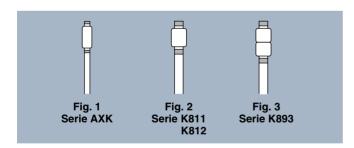
d 25~110mm

Dir	mensic	oni d'in	ngomk	oro		Coefficien statico		o statico	giri	nero di limite pm	Appellativo	Giuoco radiale prima del montaggio		ension ntaggi mm		Massa kg
d	D	В	γ s min	1) _F	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	grasso	olio		μm	$d_{ m a}$ min	D_{a} max	$r_{ m as}$ max	(approssimata)
25	42	17	0.3	30	12 300	16 000	1 260	1 630	8 700	13 000	NA 4905S	10~25	27	36	0.3	0.084
30	47	17	0.3	35	14 900	21 600	1 520	2 200		11 000	NA 4906S	12~25	32	41	0.3	0.099
32	52	20	0.6	40	17 600	27 800	1 790	2 830	6 700	10 000	NA49/32S	12~25	36	46	0.6	0.157
35	55	20	0.6	42	18 300	29 800	1 870	3 050	6 300	9 500	NA 4907S	15~30	39	48	0.6	0.164
40	62	22	0.6	48	22 500	40 500	2 300	4 150	5 700	8 500	NA 4908S	15~30	44	54	0.6	0.227
45	68	22	0.6	52	23 100	43 500	2 360	4 400	5 000	7 500	NA 4909S	15~35	49	58	0.6	0.257
50	72	22	0.6	58	24 700	49 000	2 520	5 000	4 700	7 000	NA 4910S	15~35	54	64	0.6	0.271
55	80	25	1	63	33 000	65 500	3 350	6 650	4 300	6 500	NA 4911S	15~35	60	70	1	0.382
60	85	25	1	68	34 000	69 000	3 450	7 050	4 000	6 000	NA 4912S	20~40	65	75	1	0.410
65	90	25	1	72	34 000	70 500	3 450	7 200	3 700	5 500	NA 4913S	20~40	70	79	1	0.427
70	100	30	1	80	44 500	94 000	4 550	9 600	3 300	5 000	NA 4914S	20~40	75	88	1	0.689
75	105	30	1	85	45 500	99 000	4 650	10 100	3 100	4 700	NA 4915S	25~45	80	93	1	0.740
80	110	30	1	90	46 500	104 000	4 750	10 600	2 900	4 400	NA 4916S	25~45	85	98	1	0.774
85	120	35	1.1	100	57 000	140 000	5 800	14 300	2 700	4 000	NA 4917S	25~45	91.5	108	1	1.18
90	125	35	1.1	105	58 500	146 000	5 950	14 900	2 500	3 800	NA 4918S	25~50	96.5	113	1	1.23
95	130	35	1.1	110	59 500	152 000	6 050	15 500	2 400	3 600	NA 4919S	25~50	101.5	118	1	1.40
100	140	40	1.1	115	72 000	168 000	7 350	17 100	2 300	3 500	NA 4920S	25~50	106.5	125	1	1.91
110	150	40	1.1	125	75 500	184 000	7 700	18 800	2 100	3 200	NA 4922S	30~60	116.5	135	1	2.12

Cuscinetti assiali a rullini ed a rulli cilindrici

Cuscinetti assiali a rullini ed a rulli cilindrici

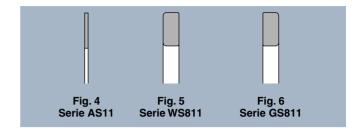
I cuscinetti assiali **NTN** sono costituiti da una gabbia a rullini od a rulli cilindrici disposti radialmente e da due ralle a disco. Essi possono sopportare delle spinte assiali in un solo senso.

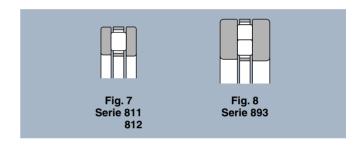

Se necessario, sia l'albero che l'alloggiamento possono costituire le piste volventi, senza l'impiego delle ralle; si possono così realizzare delle macchine compatte e leggere.

Secondo la teoria, con il tipo di cuscinetto assiale in esame, sarebbe impossibile ottenere un rotolamento perfetto poiché sulle superfici delle piste si manifesta dello strisciamento. Comunque, tale fenomeno non pone dei problemi nella maggior parte delle applicazioni pratiche ed i cuscinetti possono operare a dei regimi relativamente elevati.

Tipi ed esecuzioni

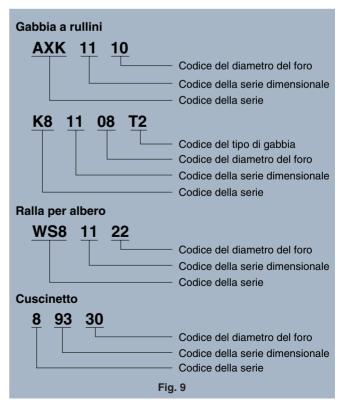
Le gabbie assiali NTN sono disponibili nella serie AXK, a rullini e nelle serie K811, K812 e K893 a rulli cilindrici. Gli alveoli delle gabbie della serie K811 e K812 alloggiano un solo rullo cilindrico mentre quelli delle gabbie della serie K893 ne contengono due.


Le gabbie della **serie AXK** sono in lamiera di acciaio stampata e sono munite di rullini. Le gabbie normali delle **serie K811**, **K812** e **K893** sono in lega di alluminio; come opzione possono essere in lamiera stampata (suffisso **J**) od in poliammide caricata in fibre di vetro o di carbonio (suffisso **T2**). Le gabbie **T2** possono operare sino ad una temperatura massima di 120°C; la temperatura continua massima di funzionamento è però di 100°C.


Le ralle dei cuscinetti assiali NTN sono disponibili nella esecuzione AS in lamiera di acciaio spessa 1mm temprata superficialmente e nelle esecuzioni massicce WS e GS.

Le ralle **AS** possono essere usate sia sull'albero che nello alloggiamento ma richiedono che la parte meccanica adiacente abbia sufficiente rigidità e buona precisione di forma. Prima del montaggio le ralle **AS** possono apparire un po' curvate. Tale fenomeno però non costituisce un problema poiché la planarità viene ripristinata col manifestarsi di una spinta assiale di una certa entità.

Il foro delle ralle **WS** viene alloggiato sull'albero; la superficie esterna delle ralle **GS** viene accoppiata nel foro di alloggiamento. Entrambe le ralle sono dotate di una grande rigidità di supporto ed elevata precisione di rotazione.



I cuscinetti delle **serie 811, 812** e **893** sono realizzati rispettivamente dalla combinazione delle gabbie assiali **K811, K812** e **K893** con le relative ralle **WS** e **GS**. I cuscinetti in esame sono dei tipi normali le cui serie dimensionali, specificate nelle norme JIS B 15123 (ISO 104) (Dimensioni d'ingombro dei cuscinetti volventi), sono rispettivamente 11, 12 e 93.

Appellativo

Gli appellativi delle gabbie, delle ralle e dei cuscinetti assiali NTN comprendono il codice della serie, il codice della serie dimensionale, il codice del diametro del foro ed il suffisso.

Tolleranze dei cuscinetti

La precisione dimensionale, di forma e di rotazione dei cuscinetti assiali NTN delle **serie 811, 812** e **893** sono indicate nel **Par. 6** "**Tolleranze dei cuscinetti**", **Tab. 6.3**, a pag. 30.

Il foro (D_{c1}) delle gabbie assiali a rullini ed a rulli cilindrici (**Serie AXK**, **K811**, **K812** e **K893**) è finito con tolleranza E11 (o E12 per i cuscinetti con suffisso **T2**). La superficie esterna (D_c) della **serie AXK** è finita con tolleranza c12 mentre quella delle **serie K811**, **K812** e **K893** è finita con tolleranza c13.

Esecuzione delle piste

Quando l'albero e l'alloggiamento sono utilizzati come piste volventi delle gabbie assiali, la superficie delle piste deve soddisfare le esigenze indicate nella **tabella 1**.

Tabella 1 Esecuzione delle piste

Caratteristica	Esigenza
Quadratura (max)	IT6 (IT4)
Finitura superficiale	0.4a
Durezza superficiale	HRC58∼64
Profondità effettiva di cementazione e tempra	Vedere la formula (14.1) a pag. A-59.

Osservazione: I dati in parentesi si riferiscono alle applicazioni che richiedono una elevata precisione di rotazione.

Guida della gabbia

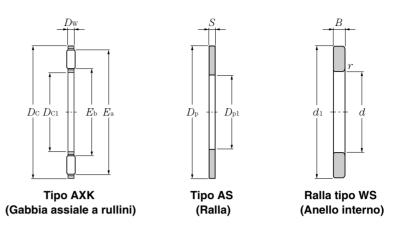
Al fine di poter soddisfare l'esigenza del centraggio durante il funzionamento, le gabbie assiali a rullini od a rulli (Serie AXK, K811, K812 e K893) devono essere guidate nel foro (lato albero) o sulla superficie esterna (lato alloggiamento).

Generalmente viene spesso scelta la guida nel foro grazie alla minore velocità relativa della gabbia. In particolare, la guida nel foro deve essere scelta per le applicazioni con elevati numeri di giri. Per la guida della gabbia deve essere scelta la tolleranza h8 per il diametro dell'albero (guida nel foro) e H9 per il diametro del foro di alloggiamento (guida sulla superficie esterna). La superficie di guida deve essere finita di rettifica.

Accoppiamento delle ralle

Le tolleranze per gli accoppiamenti degli alberi e degli alloggiamenti con le ralle del cuscinetto (tipo AS, WS e GS) sono indicate nella tabella 2 sotto riportata.

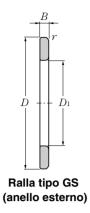
Tabella 2 Tolleranze per alberi ed alloggiamenti


Ralla del cuscinetto	Albero	Alloggiamento
Serie AS	h10	H11
Serie WS	h6	_
Serie GS		H7

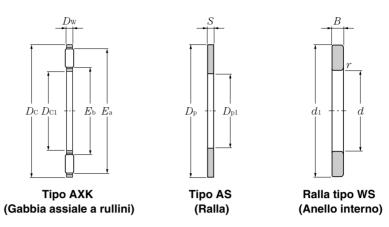
Dimensioni di montaggio

Le dimensioni per il montaggio sull'albero o nell'alloggiamento delle ralle tipo **WS** e **GS** sono indicate nelle tabelle dei cuscinetti.

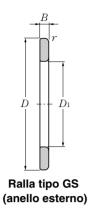
La superficie sulla quale viene montata la ralla tipo **AS** deve avere planarità e rigidezza sufficientemente uniformi da poter sopportare la completa superficie del cuscinetto.


Tipo AXK11 Tipo AS11 Tipo WS811 Tipo GS811

*D*_{c1} 10∼140mm

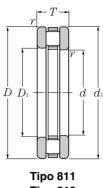

				D	dinamico	Coefficient statico		statico						
D	D	D	D	D	cr 2)	dinamioc	N		gf					
D _{c1} E11	<i>D</i> _c c12	<i>D</i> _w 0 -0.01	<i>D</i> _р e13	<i>D</i> _{p1} E12	S 2) ±0.05	d	<i>d</i> 1 -0.2 -0.5	D	D ₁ +0.5 +0.2	$B r_{ m s min}$ 1)	C_{a}	C_{oa}	$C_{ m a}$	C_{oa}
10	24	2	24	10	1	10	24	24	10	2.75 0 0.3	9 150	25 300	935	2 580
12	26	2	26	12	1	12	26	26	12	2.75 0 0.3	9 850	28 900	1 010	2 940
15	28	2	28	15	1	15	28	28	16	2.75 -0.060 0.3	11 300	36 000	1 150	3 700
17	30	2	30	17	1	17	30	30	18	2.75 ⁰ _{-0.060} 0.3	11 900	39 500	1 220	4 050
20	35	2	35	20	1	20	35	35	21	2.75 0 0.3	13 200	46 500	1 340	4 750
25	42	2	42	25	1	25	42	42	26	3 -0.060 0.6	14 600	58 000	1 490	5 900
30	47	2	47	30	1	30	47	47	32	3 00000 0.6	16 300	69 500	1 660	7 100
35	52	2	52	35	1	35	52	52	37	$3.5 \begin{array}{c} 0 \\ -0.075 \end{array} 0.6$	17 800	81 500	1 820	8 300
40	60	3	60	40	1	40	60	60	42	$3.5 \begin{array}{c} 0 \\ -0.075 \end{array} 0.6$	27 400	110 000	2 790	11 300
45	65	3	65	45	1	45	65	65	47	4 0 0.075 0.6	29 800	128 000	3 050	13 100
50	70	3	70	50	1	50	70	70	52	4 0 0.075 0.6	31 500	143 000	3 250	14 500
55	78	3	78	55	1	55	78	78	57	5 ⁰ _{-0.075} 0.6	38 000	186 000	3 850	19 000
60	85	3	85	60	1	60	85	85	62	4.75 ⁰ _{-0.075} 1	44 500	234 000	4 550	23 900
65	90	3	90	65	1	65	90	90	67	5.25 ⁰ _{-0.075} 1	46 500	254 000	4 750	25 900
70	95	4	95	70	1	70	95	95	72	5.25 ⁰ _{-0.075} 1	53 500	253 000	5 500	25 800
75	100	4	100	75	1	75	100	100	77	5.75 ⁰ _{-0.075} 1	55 000	266 000	5 650	27 100
80	105	4	105	80	1	80	105	105	82	5.75 ⁰ _{-0.075} 1	56 500	279 000	5 750	28 400
85	110	4	110	85	1	85	110	110	87	5.75 ⁰ _{-0.075} 1	57 500	291 000	5 900	29 700
90	120	4	120	90	1	90	120	120	92	6.5 _{-0.090} 1	71 000	390 000	7 250	39 500
100	135	4	135	100	1	100	135	135	102	7 0 1	90 500	550 000	9 200	56 500
110	145	4	145	110	1	110	145	145	112	7 00.090 1	93 500	590 000	9 550	60 500
120	155	4	155	120	1	120	155	155	122	7 0000 1	99 000	650 000	10 100	66 500
130	170	5	170	130	1	130	170	170	132	9 0 1	140 000	900 000	14 300	92 000
140	180	5	180	140	1	140	178	180	142	9.5 0 1	145 000	960 000	14 800	97 500
NOTA: 1)	Dimonoi	ono mi	nima am	maaaa	dol roc	raio di r	noordo a							

NOTA: 1) Dimensione minima ammessa del raggio di raccordo r. 2) Carico di misurazione superiore a 20kgf.

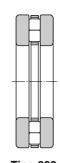


	di giri limite	gobbio cocialo	Арре	ellativo		riferi	sioni di mento nm	(1	Massa kg approssimata)	
grasso	olio	gabbia assiale a rullini	ralla	anello interno	anello esterno	Eb	$E_{ m a}$	AXK11	AS11	WS811 GS811
3 500	14 000	AXK1100	AS1100	WS81100	GS81100	11	21	0.0028	0.003	0.008
3 300	13 000	AXK1101	AS1101	WS81101	GS81101	13	23	0.003	0.0033	0.009
2 800	11 000	AXK1102	AS1102	WS81102	GS81102	17	27	0.0035	0.0035	0.01
2 500	10 000	AXK1103	AS1103	WS81103	GS81103	19	29	0.004	0.0038	0.011
2 100	8 500	AXK1104	AS1104	WS81104	GS81104	22	34	0.005	0.0051	0.014
1 800	7 000	AXK1105	AS1105	WS81105	GS81105	29	41	0.007	0.007	0.021
1 500	6 000	AXK1106	AS1106	WS81106	GS81106	35	46	0.008	0.008	0.025
1 400	5 500	AXK1107	AS1107	WS81107	GS81107	40	51	0.001	0.0091	0.033
1 200	4 700	AXK1108	AS1108	WS81108	GS81108	45	58	0.0185	0.0123	0.044
1 100	4 300	AXK1109	AS1109	WS81109	GS81109	50	63	0.0205	0.0136	0.055
1 000	3 900	AXK1110	AS1110	WS81110	GS81110	55	68	0.0235	0.0148	0.06
900	3 500	AXK1111	AS1111	WS81111	GS81111	60	76	0.0308	0.0189	0.095
800	3 200	AXK1112	AS1112	WS81112	GS81112	65	83	0.0390	0.0223	0.101
750	3 000	AXK1113	AS1113	WS81113	GS81113	70	88	0.04	0.0239	0.125
750	2 900	AXK1114	AS1114	WS81114	GS81114	74	93	0.06	0.0254	0.134
700	2 700	AXK1115	AS1115	WS81115	GS81115	79	98	0.061	0.027	0.155
650	2 600	AXK1116	AS1116	WS81116	GS81116	84	103	0.063	0.0284	0.163
600	2 400	AXK1117	AS1117	WS81117	GS81117	89	108	0.0668	0.0301	0.175
600	2 300	AXK1118	AS1118	WS81118	GS81118	94	118	0.086	0.0388	0.25
500	2 000	AXK1120	AS1120	WS81120	GS81120	105	133	0.112	0.0505	0.35
480	1 900	AXK1122	AS1122	WS81122	GS81122	115	143	0.122	0.0549	0.385
430	1 700	AXK1124	AS1124	WS81124	GS81124	125	153	0.131	0.0592	0.415
400	1 600	AXK1126	AS1126	WS81126	GS81126	136	167	0.205	0.074	0.663
380	1 500	AXK1128	AS1128	WS81128	GS81128	146	177	0.219	0.079	0.749

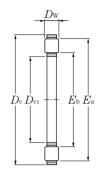
Tipo AXK11 Tipo AS11 Tipo WS811 Tipo GS811



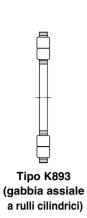
*D*_{c1} 150∼160mm

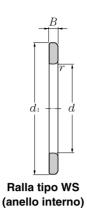


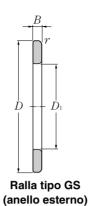
N		di giri limite		Арре	ellativo		riferi	sioni di mento nm		Massa kg approssimata	
gı	rasso	rpm olio	gabbia assiale a rullini	ralla	anello interno	anello esterno	$E_{ m b}$	E _a	AXK11	AS11	WS811 GS811
	350	1 400	AXK1130	AS1130	WS81130	GS81130	156	187	0.232	0.084	0.796
	330	1 300	AXK1132	AS1132	WS81132	GS81132	166	197	0.246	0.089	0.842

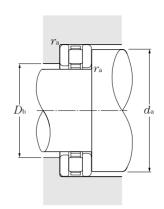

Tipo 811 Tipo 812 Tipo 893

Tipo 893 (cuscinetto)

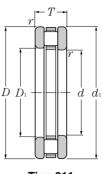


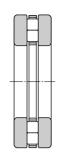

Tipo K811, Tipo K812 (gabbia assiale a rulli cilindrici)


d 10~60mm

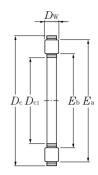

Dimensioni d'ingombro										dinamico	Coefficienti o	di carico dinamico	statico	Numero o	li giri limite
				mı							N	kg		rı	om
d	D	<i>d</i> 1 -0.2 -0.5	D ₁ +0.5 +0.2	T	D _{c1} ²⁾ E11	$D_{ m c}$ a13	$D_{ m w}$ 0 -0.010	В h11	$r_{\rm s min}$ 1)	$C_{ m a}$	C_{oa}	$C_{ m a}$	Coa	grasso	olio
10	24	24	10	9	10	24	3.5	2.75	0.3	10 800	21 500	1 110	2 190	3 400	13 000
12	26	26	12	9	12	26	3.5	2.75	0.3	11 500	23 900	1 170	2 430	3 000	12 000
15	28	28	16	9	15	28	3.5	2.75	0.3	12 900	28 600	1 310	2 920	2 800	11 000
17	30	30	18	9	17	30	3.5	2.75	0.3	13 400	31 000	1 370	3 150	2 500	10 000
20	35	35	21	10	20	35	4.5	2.75	0.3	20 200	46 500	2 060	4 700	2 100	8 500
25	42	42	26	11	25	42	5	3	0.6	27 300	68 000	2 780	6 900	1 800	7 000
	47	47	32	11	30	47	5	3	0.6	27 800	72 500	2 840	7 400	1 500	6 000
30	52	52	32	16	30	52	7.5	4.25	0.6	53 500	129 000	5 450	13 100	1 500	6 000
	60	60	32	18	30	60	5.5	6.25	1	54 000	166 000	5 500	16 900	1 300	5 000
	52	52	37	12	35	52	5	3.5	0.6	31 000	87 000	3 150	8 900	1 400	5 500
35	62	62	37	18	35	62	7.5	5.25	1	54 500	139 000	5 550	14 200	1 200	4 900
	68	68	37	20	35	68	6	7	1	66 000	214 000	6 750	21 800	1 200	4 600
	60	60	42	13	40	60	6	3.5	0.6	43 000	121 000	4 350	12 400	1 200	4 800
40	68	68	42	19	40	68	9	5	1	74 500	190 000	7 600	19 400	1 100	4 400
	78	78	42	22	40	78	7	7.5	1	85 000	277 000	8 700	28 300	1 000	4 000
	65	65	47	14	45	65	6	4	0.6	45 500	135 000	4 650	13 800	1 100	4 400
45	73	73	47	20	45	73	9	5.5	1	82 000	222 000	8 350	22 600	1 000	4 100
	85	85	47	24	45	85	7.5	8.25	1	102 000	345 000	10 400	35 000	900	3 600
	70	70	52	14	50	70	6	4	0.6	48 000	150 000	4 900	15 300	1 000	4 000
50	78	78	52	22	50	78	9	6.5	1	85 000	238 000	8 650	24 200	950	3 800
	95	95	52	27	50	95	8	9.5	1.1	125 000	445 000	12 700	45 000	800	3 200
	78	78	57	16	55	78	6	5	0.6	62 500	215 000	6 350	21 900	900	3 600
55	90	90	57	25	55	90	11	7	1	121 000	340 000	12 300	34 500	830	3 300
	105	105	57	30	55	105	9	10.5	1.1	158 000	570 000	16 100	58 000	730	2 900
	85	85	62	17	60	85	7.5	4.75	1	69 000	215 000	7 000	21 900	830	3 300
60	95	95	62	26	60	95	11	7.5	1	125 000	365 000	12 800	37 000	780	3 100
	110	110	62	30	60	110	9	10.5	1.1	162 000	600 000	16 500	61 500	680	2 700

NOTA: 1) Dimensione minima ammessa del raggio di raccordo r. 2) La tolleranza dimensionale per i cuscinetti con suffisso T2 è E12.

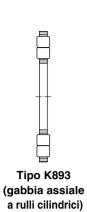


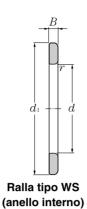


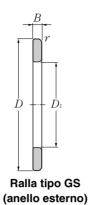
	Appe	llativo		Dimens riferin			mensioni nontaggi mm			Massa kg	
cuscinetto	gabbia assiale a rulli cilindrici	anello interno	anello esterno	$E_{ m b}$	E_{a}	$d_{ m a}$ min	$D_{ m b}$ max	$r_{ m as}$ max	811 812 893	K811 K812 K893	WS GS
81100T2	K81100T2	WS81100	GS81100	12	23	21	14	0.3	0.0195	0.0035	0.008
81101T2	K81101T2	WS81101	GS81101	14	25	23	16	0.3	0.022	0.004	0.009
81102T2	K81102T2	WS81102	GS81102	16	27	25	18	0.3	0.026	0.006	0.010
81103T2	K81103T2	WS81103	GS81103	18	29	27	20	0.3	0.030	0.008	0.011
81104T2	K81104T2	WS81104	GS81104	21	34	32	23	0.3	0.140	0.012	0.014
81105T2	K81105T2	WS81105	GS81105	27	40	39	28	0.6	0.060	0.018	0.021
81106T2	K81106T2	WS81106	GS81106	32	45	44	33	0.6	0.070	0.020	0.025
81206	K81206	WS81206	GS81206	32	50	48	33	0.6	0.014	0.050	0.045
89306	K89306	WS89306	GS89306	32	59	56	34	1	0.250	0.046	0.100
81107T2	K81107T2	WS81107	GS81107	37	50	49	38	0.6	0.090	0.024	0.033
81207	K81207	WS81207	GS81207	37	60	56	41	1	0.235	0.065	0.085
89307	K89307	WS89307	GS89307	37	67	64	40	1	0.360	0.064	0.150
81108T2	K81108T2	WS81108	GS81108	42	58	56	44	0.6	0.135	0.035	0.044
81208	K81208	WS81208	GS81208	43	66	63	44	1	0.265	0.085	0.090
89308	K89308	WS89308	GS89308	43	76	74	46	1	0.520	0.100	0.210
81109T2	K81109T2	WS81109	GS81109	47	63	61	49	0.6	0.150	0.040	0.055
81209	K81209	WS81209	GS81209	48	71	68	49	1	0.310	0.100	0.105
89309	K89309	WS89309	GS89309	48	83	81	51	1	0.670	0.140	0.270
81110T2	K81110T2	WS81110	GS81110	52	68	66	54	0.6	0.165	0.045	0.060
81210	K81210	WS81210	GS81210	53	76	73	54	1	0.385	0.105	0.140
89310	K89310	WS89310	GS89310	53	93	90	58	1	0.940	0.180	0.380
81111J	K81111J	WS81111	GS81111	57	76	75	58	0.6	0.250	0.060	0.095
81211	K81211	WS81211	GS81211	58	87	83	61	1	0.610	0.190	0.210
89311	K89311	WS89311	GS89311	59	103	100	64	1	1.270	0.240	0.520
81112	K81112	WS81112	GS81112	63	82	80	65	1	0.285	0.083	0.101
81212	K81212	WS81212	GS81212	64	92	88	66	1	0.660	0.200	0.230
89312	K89312	WS89312	GS89312	64	108	105	69	1	1.350	0.250	0.550

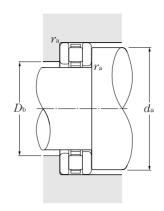

Tipo 811 Tipo 812 Tipo 893

Tipo 811 Tipo 812 (cuscinetto)

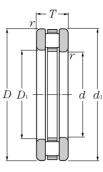

Tipo 893 (cuscinetto)

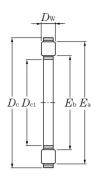



Tipo K811, Tipo K812 (gabbia assiale a rulli cilindrici)


d 65~130mm

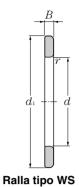
			Dimen	sioni	d'ingor	nbro				Coefficienti di carico dinamico statico			Numero di giri limite		
			_	mı				_	1)		N	kg	f	•	m
d	D	<i>d</i> ₁ -0.2 -0.5	D ₁ +0.5 +0.2	T	D _{c1}	<i>D</i> _c a13	<i>D</i> _w 0 -0.010	В h11	∕r _{s min} 1)	$C_{ m a}$	Coa	$C_{ m a}$	C_{oa}	grasso	olio
	90	90	67	18	65	90	7.5	5.25	1	73 000	236 000	7 400	24 100	780	3 100
65	100	100	67	27	65	100	11	8	1	130 000	385 000	13 200	39 500	730	2 900
	115	115	67	30	65	115	9	10.5	1.1	166 000	635 000	17 000	64 500	650	2 600
	95	95	72	18	70	95	7.5	5.25	1	76 500	257 000	7 800	26 200	730	2 900
70	105	105	72	27	70	105	11	8	1	134 000	410 000	13 700	42 000	680	2 700
	125	125	72	34	70	125	10	12	1.1	205 000	790 000	20 900	81 000	600	2 400
	100	100	77	19	75	100	7.5	5.75	1	78 000	268 000	7 950	27 300	680	2 700
75	110	110	77	27	75	110	11	8	1	138 000	435 000	14 100	44 500	650	2 600
	135	135	77	36	75	135	11	12.5	1.5	239 000	920 000	24 400	94 000	550	2 200
	105	105	82	19	80	105	7.5	5.75	1	79 500	279 000	8 100	28 400	650	2 600
80	115	115	82	28	80	115	11	8.5	1	142 000	460 000	14 500	47 000	630	2 500
	140	140	82	36	80	140	11	12.5	1.5	246 000	970 000	25 100	98 500	530	2 100
	110	110	87	19	85	110	7.5	5.75	1	83 000	300 000	8 450	30 500	630	2 500
85	125	125	88	31	85	125	12	9.5	1	169 000	550 000	17 200	56 500	580	2 300
	150	150	88	39	85	150	12	13.5	1.5	281 000	1 100 000	28 600	113 000	500	2 000
	120	120	92	22	90	120	9	6.5	1	112 000	395 000	11 400	40 500	580	2 300
90	135	135	93	35	90	135	14	10.5	1.1	213 000	680 000	21 700	69 500	530	2 100
	155	155	93	39	90	155	12	13.5	1.5	289 000	1 160 000	29 500	118 000	480	1 900
	135	135	102	25	100	135	11	7	1	158 000	555 000	16 100	57 000	500	2 000
100	150	150	103	38	100	150	15	11.5	1.1	243 000	795 000	24 800	81 000	480	1 900
	170	170	103	42	100	170	13	14.5	1.5	335 000	1 370 000	34 500	140 000	430	1 700
	145	145	112	25	110	145	11	7	1	165 000	605 000	16 800	61 500	480	1 900
110	160	160	113	38	110	160	15	11.5	1.1	259 000	885 000	26 400	90 000	450	1 800
	190	190	113	48	110	190	15	16.5	2	430 000	1 770 000	44 000	180 000	400	1 600
400	155	155	122	25	120	155	11	7	1	172 000	655 000	17 500	66 500	450	1 800
120	170	170	123	39	120	170	15	12	1.1	264 000	930 000	26 900	94 500	430	1 700
4	170	170	132	30	130	170	12	9	1	197 000	755 000	20 100	77 000	400	1 600
130	190	187	133	45	130	190	19	13	1.5	360 000	1 210 000	36 500	123 000	380	1 500

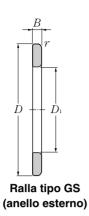


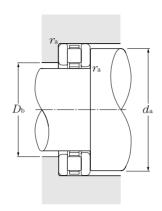


	Appe	llativo		Dimens riferin	nento		mensioni nontaggi mm			Massa kg	
cuscinetto	gabbia assiale a rulli cilindrici	anello interno	anello esterno	$E_{ m b}$	$E_{ m a}$	$d_{ m a}$ min	D _b	r _{as}	811 812 893	K811 K812 K893	WS GS
81113	K81113	WS81113	GS81113	68	87	85	70	1	0.340	0.090	0.125
81213	K81213	WS81213	GS81213	69	97	93	71	1	0.775	0.215	0.280
89313	K89313	WS89313	GS89313	69	113	110	74	1	1.430	0.260	0.580
81114	K81114	WS81114	GS81114	73	92	90	74	1	0.365	0.097	0.135
81214	K81214	WS81214	GS81214	74	102	98	76	1	0.815	0.225	0.295
89314	K89314	WS89314	GS89314	74	123	120	80	1	1.930	0.340	0.800
81115	K81115	WS81115	GS81115	78	97	95	80	1	0.425	0.115	0.155
81215J	K81215J	WS81215	GS81215	79	107	103	81	1	0.860	0.240	0.310
89315	K89315	WS89315	GS89315	80	132	129	85	1.5	2.410	0.470	0.970
81116	K81116	WS81116	GS81116	83	102	100	85	1	0.445	0.119	0.165
81216	K81216	WS81216	GS81216	84	112	106	86	1	0.950	0.250	0.350
89316	K89316	WS89316	GS89316	85	137	134	90	1.5	2.530	0.490	1.020
81117	K81117	WS81117	GS81117	88	107	105	89	1	0.475	0.125	0.175
81217	K81217	WS81217	GS81217	89	122	116	92	1	1.280	0.300	0.490
89317	K89317	WS89317	GS89317	90	147	144	96	1.5	3.140	0.590	1.280
81118	K81118	WS81118	GS81118	93	117	114	95	1	0.670	0.170	0.250
81218J	K81218J	WS81218	GS81218	94	132	126	97	1	1.820	0.540	0.640
89318	K89318	WS89318	GS89318	95	152	149	101	1.5	3.280	0.620	1.330
81120	K81120	WS81120	GS81120	104	132	128	106	1	1.000	0.300	0.350
81220	K81220	WS81220	GS81220	106	147	139	109	1	2.240	0.620	0.810
89320	K89320	WS89320	GS89320	105	167	163	110	1.5	4.190	0.810	1.690
81122	K81122	WS81122	GS81122	114	142	138	116	1	1.100	0.325	0.385
81222	K81222	WS81222	GS81222	116	156	149	119	1	2.450	0.685	0.880
89322	K89322	WS89322	GS89322	116	186	183	122	2	6.030	1.150	2.440
81124	K81124	WS81124	GS81124	124	152	148	126	1	1.170	0.340	0.415
81224	K81224	WS81224	GS81224	126	166	159	129	1	2.690	0.730	0.980
81126	K81126	WS81126	GS81126	135	166	162	137	1	1.740	0.415	0.663
81226	K81226	WS81226	GS81226	137	186	173	140	1.5	4.200	1.140	1.530

Tipo 811 Tipo 812




Tipo K811, Tipo K812 (gabbia assiale a rulli cilindrici)


d 140~160mm

140 200 197 143 46 140 200 19 13.5 1.5 370 000 1 280 000 38 000 130 000 350 1 40 150 190 188 152 31 150 190 12 9.5 1 214 000 870 000 21 800 89 000 350 1 40																
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Dimen	sioni	d'ingo	nbro								Numero d	i giri limite
$ \frac{d}{d} = \frac{D}{D} = \frac{d_1}{d_1} = \frac{D_1}{D} = \frac{D}{D} = \frac{D_0}{D} = \frac{D}{D} = \frac{D}{$											dinamico					
140 180 178 142 31 140 180 12 9.5 1 206 000 815 000 21 000 83 000 380 1 50 140 180 178 142 31 140 180 12 9.5 1 206 000 815 000 21 000 83 000 380 1 50 150 190 188 152 31 150 190 12 9.5 1 214 000 870 000 21 89 000 350 1 40	d	D	d_1	D_1			D_{α}	D_{w}	R	_{Vo min} 1)		N	Κį	gt	rp	om Olio
140 200 197 143 46 140 200 19 13.5 1.5 370 000 1 280 000 38 000 130 000 350 1 40 150 190 188 152 31 150 190 12 9.5 1 214 000 870 000 21 800 89 000 350 1 40	a	D	-0.2 -0.5	+0.5 +0.2	1			0 -0.010		7 s ituit	C_{a}	C_{oa}	$C_{ m a}$	C_{oa}	grasso	Ollo
200 197 143 46 140 200 19 13.5 1.5 370 000 1 280 000 38 000 130 000 350 1 40 150 190 188 152 31 150 190 12 9.5 1 214 000 870 000 21 800 89 000 350 1 40	140															1 500
		200	197	143	46	140	200	19	13.5	1.5	370 000	1 280 000	38 000	130 000	350	1 400
160 200 198 162 31 160 200 12 9.5 1 221 000 930 000 22 600 95 000 330 1 30 1 30 1 30 1 30 1 30 1 30	150	190	188	152	31	150	190	12	9.5	1	214 000	870 000	21 800	89 000	350	1 400
	160	200	198	162	31	160	200	12	9.5	1	221 000	930 000	22 600	95 000	330	1 300


(anello interno)

		Appel			Dimens riferin	nento	n	mension nontaggi mm			Massa kg	
C	cuscinetto	gabbia assiale a rulli cilindrici	anello interno	anello esterno	$E_{ m b}$	$E_{ m a}$	$d_{ m a}$ min	$D_{ m b}$ max	r _{as} max	811 812 893	K811 K812 K893	WS GS
	81128	K81128	WS81128	GS81128	145	176	172	147	1	1.950	0.450	0.750
	81228	K81228	WS81228	GS81228	147	196	188	150	1.5	4.570	1.200	1.690
	81130	K81130	WS81130	GS81130	155	186	182	157	1	2.070	0.470	0.800
	81132	K81132	WS81132	GS81132	165	196	192	167	1	2.190	0.500	0.840

Cuscinetti combinati

Cuscinetti combinati

I cuscinetti combinati NTN sono costituiti essenzialmente da un cuscinetto radiale a rullini ed un cuscinetto assiale per il supporto rispettivamente del carico radiale e della spinta assiale.

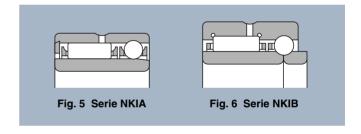
In confronto alla disposizione di un cuscinetto radiale a rullini ed un cuscinetto assiale a rullini od a rulli cilindrici, ciascuno montato separatamente su di un albero comune, i cuscinetti combinati rappresentano una configurazione salva-spazio che consente un progetto molto compatto delle macchine.

Le configurazioni possibili del cuscinetto assiale che può essere combinato col cuscinetto radiale a rullini sono: cuscinetto assiale a sfere, cuscinetto assiale a rullini od a rulli cilindrici, cuscinetto obliquo a sfere, cuscinetto a sfere a tre punti di contatto, cuscinetto assiale a rullini a doppio effetto e cuscinetto assiale a rulli cilindrici a doppio effetto.

Tipi ed esecuzioni

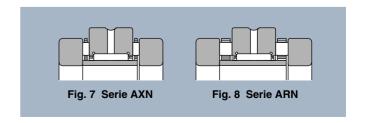
Il cuscinetto combinato NTN viene caratterizzato dal tipo di cuscinetto assiale che viene accoppiato a quello radiale a rullini. Si ha quindi: il cuscinetto assiale a sfere (nella serie NKX), il cuscinetto assiale a rulli cilindrici (nella serie NKXR), il cuscinetto a sfere a contatto obliquo (nella serie NKIA), il cuscinetto a sfere a tre punti di contatto (nella serie NKIB), il cuscinetto assiale a rullini a doppio effetto (nella serie AXN) e quello assiale a doppio effetto a rulli cilindrici (nella serie ARN).

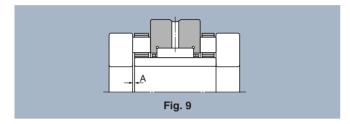
I cuscinetti combinati delle **serie NKX** e **NKXR** possono sopportare dei carichi assiali monodirezionali relativamente elevati e possono essere bloccati assialmente.


Quando vengono usati a coppie e montati contrapposti i cuscinetti sopra citati possono sopportare delle spinte assiali in entrambe le direzioni e quindi possono essere bloccati assialmente. Comunque, poiché essi non possono assorbire delle elevate espansioni assiali, devono essere montati sugli alberi più corti la cui espansione termica è ridotta.

La variante con un coperchio parapolvere dei cuscinetti **NKX** ed **NKXR** (suffisso **Z**) può essere maneggiata con facilità poiché il cuscinetto assiale non può essere separato dal gruppo. Tale soluzione evita anche la centrifugazione del grasso all'interno del cuscinetto assiale.

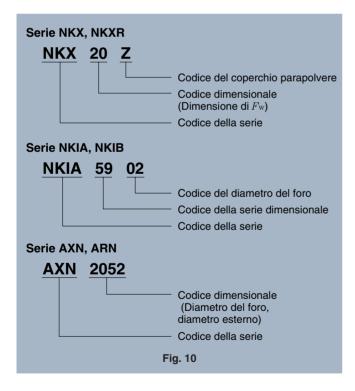
Generalmente, il cuscinetto radiale a rullini dei cuscinetti combinati utilizza l'albero come pista volvente evitando l'impiego di un anello interno. Comunque, quando l'albero non è adatto a fungere da pista volvente, esso può incorporare anche un anello interno. La classe di tolleranza del diametro del cerchio inscritto $(F_{\rm w})$ del cuscinetto a rullini è della classe F6, la stessa dei normali cuscinetti a rullini.


I cuscinetti assiali delle serie NKIA e NKIB sono a sfere rispettivamente a contatto obliquo ed a tre punti di contatto; essi possono sopportare dei carichi assiali relativamente bassi (ca. il 25% del carico radiale) ma hanno la possibilità di raggiungere elevati regimi di rotazione. La serie NKIA può sopportare dei carichi assiali monodirezionali mentre la serie NKIB sopporta dei carichi assiali in entrambe le direzioni e può essere bloccato assialmente (il campo del giuoco assiale dei cuscinetti serie NKIB montati in sede varia da 0.1 a 0.2mm). Gli anelli interni di entrambe le serie sono separabili. In particolare, gli anelli interni dei cuscinetti serie NKIB possono essere divisi in due parti.


Con entrambe le serie l'anello interno e quello esterno di un singolo cuscinetto **non sono intercambiabili** con quelli di altri cuscinetti. Perciò ciascun cuscinetto deve essere usato come fornito. I cuscinetti della **serie NKIB** devono essere montati in modo tale che non esista del giuoco tra le due parti dell'anello interno.

Fatta eccezione per la larghezza (B) dei cuscinetti della serie NKIB con anello interno montato, le dimensioni d'ingombro dei cuscinetti serie NKIA e NKIB sono in accordo con la serie dimensionale 59.

Nei cuscinetti delle **serie AXN** e **ARN** sono previsti dei cuscinetti assiali a rullini od a rulli cilidrici ad entrambi i lati dell'anello esterno del cuscinetto radiale a rullini. L'anello esterno del cuscinetto radiale a rullini ha due facciate laterali che costituiscono le piste volventi dei due cuscinetti assiali a rullini od a rulli cilindrici. Grazie alla possibilità di sopportare delle spinte assiali relativamente elevate, le **serie AXN** ed **ARN** sono usate esclusivamente per il sopporto delle viti a sfere di precisione.



Normalmente, per poter precaricare il cuscinetto e quindi aumentarne la rigidità, le due ralle laterali vengono spinte assialmente una contro l'altra. I valori dei precarichi normali e quelli delle conseguenti coppie di rotolamento sono riportati nelle tabelle dimensionali. La NTN può anche fornire dei cuscinetti speciali il cui precarico, stabilito in precedenza, viene ottenuto dopo aver imposto un giuoco "A" di valore predeterminato tra una delle due ralle dei cuscinetti assiali e l'anello interno del cuscinetto radiale. Per ulteriori informazioni si prega di prendere contatto con l'assistenza tecnica NTN.

Appellativo

Gli appellativi dei cuscinetti combinati **NTN** comprendono il codice della serie, il codice della serie dimensionale, il codice della dimensione ed il suffisso.

Tolleranze dei cuscinetti

Vedere al **Par. 6.** "tolleranze dei cuscinetti", **Tabella 6.2**, pagg. A-28, 29 per le tolleranze dei cuscinetti radiali a rullini non indicate nelle tabelle dimensionali. Per le tolleranze dei cuscinetti assiali, ved, la **Tab. 6.3** a pag.

A-30. Notare che le tolleranze delle **serie NTN AXN** e **ARN** sono limitate alle classi 5 e 4 delle normative ISO (JIS). (Le tolleranze del difetto radiale di rotazione dei cuscinetti delle **serie AXN** e **ARN** sono riportate nella **Tabella 1**).

Tabella 1 Difetto radiale di rotazione dei cuscinetti delle serie AXN e ARN Unità in μ m

					, , , , , , , , , , , , , , , , , , ,
del cuscinet esterno de	ominale del foro to d o diametro l cuscinetto D .	di rot dell'anel	radiale • azione lo interno	rotazio anello	idiale di ne dello esterno
Oltre	Incluso	classe 5	classe 4	classe 5	classe 4
18	30	4	3	_	_
30	50	5	4		
50	80	5	4	8	5
80	120	_	_	10	6
120	150		-	11	7

- $\textbf{ 1} \ \, \text{Determinato mediante selezionature del diametro} \ d$
- 2 Determinato mediante selezionature del diametro D

Giuoco radiale

Il giuoco radiale delle serie NKX+IR, NKXR+IR, NKIA e NKIB è in accordo con quanto indicato nel Par. 8 "Giuoco interno del cuscinetto", Tabella 8.1, a pag. A-40. I cuscinetti delle serie sopra indicate vengono usualmente prodotti con giuoco normale.

I giuochi radiali dei cuscinetti delle **serie AXN** e **ARN** sono speciali e sono specificati nelle tabelle dimensionali.

Accoppiamento dei cuscinetti

Nella **Tabella 2** sono indicati gli accoppiamenti sugli alberi e negli alloggiamenti per i cuscinetti radiali a rullini. Le ralle dei cuscinetti assiali delle **serie NKX** e **NKXR** vengono montate in alloggiamenti il cui diametro del foro sia maggiore almeno di 0.5 mm del diametro D_1 o D_2 delle ralle stesse. L'interferenza delle **serie NKIA** e **NKIB** non deve eccedere il valore corrispondente alle tolleranze k5/M6.

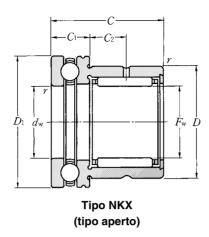
Tabella 2 Accoppiamento con albero ed alloggiamento

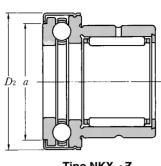
Appellativo della serie	Albero	Alloggiamento
Serie NKX, NKXR	k5	K6 (M6)
Serie NKIA, NKIB	k5	M6
Serie AXN, ARN	j5	J6

Osservazione: Gli accoppiamenti in parentesi si riferiscono alle applicazioni che richiedono una rigidità maggiore.

Calcolo della durata

La durata teorica (*L*) di un cuscinetto combinato può essere determinata inserendo i risultati dei calcoli seguenti nella formula sotto riportata.

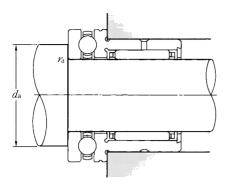

Calcolare la durata teorica (L_r) del cuscinetto radiale a rullini conseguente al carico radiale operativo.


Calcolare la durata teorica (La) del cuscinetto assiale conseguente al carico assiale operativo.

$$L = \frac{1}{\left(\frac{1}{L_{r}^{1.1}} + \frac{1}{L_{a}^{1.1}}\right)^{0.91}} \dots (1)$$

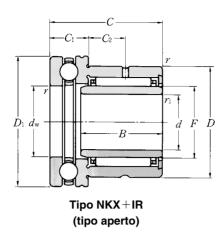
Senza anello interno

Tipo NKX Tipo NKX∵Z



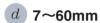
Tipo NKX · Z (con coperchio)

*F*_w 10∼70mm

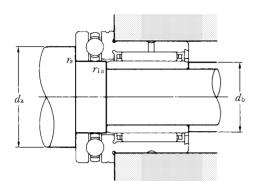

			Dimer	ısioni d'ir			Coefficient	i di carico					
			2		.9	_				dinamico	statico	dinamico	
$F_{ m W}$	$d_{ m w}$	D	D_1	$egin{array}{c} m{m}m{m} \ D_2 \end{array}$	C	C_1	C_2	a	_{√2 min} 1)	1	N Radi	kg	f
		D	D_1	D2	0 -0.25	0 -0.20	C2	a	/smm /	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	Cor
10 ^{+0.022} _{+0.013}	10 +0.040 +0.025	19	24	25	23	9	6.5	19.7	0.3	5 450	6 450	555	660
12 ^{+0.027} _{+0.016}	12 ^{+0.050} +0.032	21	26	27	23	9	6.5	21.7	0.3	6 000	7 700	615	785
15 ^{+0.027} _{+0.016}	15 ^{+0.050} _{+0.032}	24	28	29	23	9	6.5	23.7	0.3	8 250	10 200	840	1 040
17 ^{+0.027} _{+0.016}	17 ^{+0.050} _{+0.032}	26	30	31	25	9	8	25.7	0.3	10 400	14 400	1 060	1 460
20 ^{+0.033} _{+0.020}	20 +0.061 +0.040	30	35	36	30	10	10.5	30.7	0.3	16 400	27 100	1 670	2 760
25 ^{+0.033} _{+0.020}	25 ^{+0.061} _{+0.040}	37	42	43	30	11	9.5	37.7	0.6	14 200	24 000	1 450	2 450
30 ^{+0.033} _{+0.020}	30 +0.061 +0.040	42	47	48	30	11	9.5	42.7	0.6	22 300	39 500	2 280	4 000
35 +0.041 +0.025	35 ^{+0.075} _{+0.050}	47	52	53	30	12	9	47.7	0.6	20 000	36 000	2 040	3 650
40 ^{+0.041} _{+0.025}	40 +0.075 +0.050	52	60	61	32	13	10	55.7	0.6	25 900	52 500	2 650	5 350
45 ^{+0.041} _{+0.025}	45 ^{+0.075} _{+0.050}	58	65	66.5	32	14	9	60.5	0.6	27 600	59 000	2 810	6 000
50 ^{+0.041} _{+0.025}	50 ^{+0.075} +0.050	62	70	71.5	35	14	10	65.5	0.6	27 900	62 000	2 850	6 300
60 ^{+0.049} _{+0.030}	60 +0.060	72	85	86.5	40	17	12	80.5	1	29 800	71 500	3 050	7 300
70 ^{+0.049} _{+0.030}	70 +0.090 +0.060	85	95	96.5	40	18	11	90.5	1	36 500	86 000	3 700	8 750



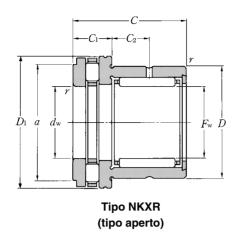
dinamico		dinamico k	statico gf	Numero di giri limite rpm grasso olio		Appe Tipo	ellativo	mont	sioni di taggio nm	(appro	ssa ssimata) g Tipo
$C_{ m a}$	C_{oa}	C _a	C_{oa}	gracee	Olio	NKX	NKX…Z	min	max	NKX	NKX··Z
10 000	14 000	1 020	1 420	6 700	9 500	NKX10T2	NKX10T2Z	18	0.3	0.037	0.039
10 300	15 400	1 050	1 570	6 400	9 200	NKX12T2	NKX12T2Z	20	0.3	0.042	0.044
10 500	16 800	1 070	1 710	6 200	8 800	NKX15T2	NKX15T2Z	23	0.3	0.044	0.048
10 800	18 200	1 100	1 850	6 000	8 500	NKX17T2	NKX17T2Z	25	0.3	0.051	0.056
14 200	24 700	1 450	2 520	5 200	7 500	NKX20T2	NKX20T2Z	29	0.3	0.085	0.090
19 600	37 000	1 990	3 800	4 600	6 500	NKX25T2	NKX25T2Z	35	0.6	0.125	0.132
20 400	42 000	2 080	4 300	4 300	6 200	NKX30T2	NKX30T2Z	40	0.6	0.140	0.148
20 400	44 500	2 080	4 550	3 900	5 600	NKX35T2	NKX35T2Z	45	0.6	0.167	0.175
26 900	63 000	2 740	6 400	3 500	5 000	NKX40	NKX40Z	52	0.6	0.216	0.225
27 900	69 000	2 840	7 050	3 200	4 600	NKX45	NKX45Z	57	0.6	0.252	0.265
28 800	75 500	2 930	7 700	3 100	4 500	NKX50	NKX50Z	62	0.6	0.302	0.318
41 500	113 000	4 200	11 500	2 600	3 700	NKX60	NKX60Z	75	1	0.465	0.484
43 000	127 000	4 400	12 900	2 400	3 400	NKX70	NKX70Z	85	1	0.612	0.635

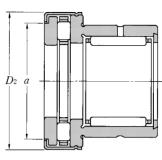

Con anello interno

Tipo NKX+IR
Tipo NKX··Z+IR



Tipo NKX · Z+IR (con coperchio)

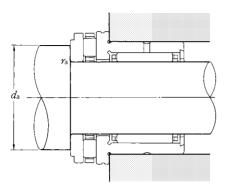

				_													441.1				
				D	imens	ioni	d'ing	jomb	ro					dinamico	statico		efficient co statico			dinamico	statico
			_	_		_	~	~	~	_		4)	4)		N		kgf	I	N	kgt	
d	l,	$d_{ m W}$	D	D_1	D_2	В	C 0 -0.25	C ₁ 0 -0.20	C_2	F	a	r _{s min} ¹)	$\gamma_{ m 1smin}$ 1)	$C_{ m r}$	Ra Cor	diale Cr	$C_{ m or}$	$C_{ m a}$	C _{oa}	siale Ca	Coa
7	,	10 +0.040 +0.025	19	24	25	16	23	9	6.5	10	19.7	0.3	0.3	5 450	6 450	555	660	10 000	14 000	1 020	1 420
9)	12 ^{+0.050} _{+0.032}	21	26	27	16	23	9	6.5	12	21.7	0.3	0.3	6 000	7 700	615	785	10 300	15 400	1 050	1 570
12	2	15 ^{+0.050} _{+0.032}	24	28	29	16	23	9	6.5	15	23.7	0.3	0.3	8 250	10 200	840	1 040	10 500	16 800	1 070	1 710
14	ļ	17 ^{+0.050} _{+0.032}	26	30	31	17	25	9	8	17	25.7	0.3	0.3	10 400	14 400	1 060	1 460	10 800	18 200	1 100	1 850
17	,	20 +0.061 +0.040	30	35	36	20	30	10	10.5	20	30.7	0.3	0.3	16 400	27 100	1 670	2 760	14 200	24 700	1 450	2 520
20)	25 ^{+0.061} _{+0.040}	37	42	43	20	30	11	9.5	25	37.7	0.6	0.3	14 200	24 000	1 450	2 450	19 600	37 000	1 990	3 800
25	;	30 +0.061 +0.040	42	47	48	20	30	11	9.5	30	42.7	0.6	0.3	22 300	39 500	2 280	4 000	20 400	42 000	2 080	4 300
30)	35 ^{+0.075} _{+0.050}	47	52	53	20	30	12	9	35	47.7	0.6	0.3	20 000	36 000	2 040	3 650	20 400	44 500	2 080	4 550
35		40 +0.075 +0.050	52	60	61	20	32	13	10	40	55.7	0.6	0.3	25 900	52 500	2 650	5 350	26 900	63 000	2 740	6 400
40)	45 ^{+0.075} _{+0.050}	58	65	66.5	20	32	14	9	45	60.5	0.6	0.3	27 600	59 000	2 810	6 000	27 900	69 000	2 840	7 050
45	;	50 ^{+0.075} +0.050	62	70	71.5	25	35	14	10	50	65.5	0.6	0.6	27 900	62 000	2 850	6 300	28 800	75 500	2 930	7 700
50)	60 +0.090	72	85	86.5	25	40	17	12	60	80.5	1	1	29 800	71 500	3 050	7 300	41 500	113 000	4 200	11 500
60)	70 +0.090 +0.060	85	95	96.5	25	40	18	11	70	90.5	1	1	36 500	86 000	3 700	8 750	43 000	127 000	4 400	12 900



Nume giri li rpi	mite		Арр	ellativo		-J	mon i	sioni di taggio nm		(appro	assa essimata) kg
grasso	OllO	Tip	po NKX+IR	Tipo	NKX··Z+IR	da min	$d_{ m b}$ min	r _{as}	r _{1as} max	Tipo NKX+IR	Tipo NKX··Z+IR
6 700	9 500	NKX10T	2+IR 7×10×16	NKX10T2	Z+IR 7×10×16	18	9	0.3	0.3	0.042	0.044
6 400	9 200	NKX12T	2+IR 9×12×16	NKX12T2	Z+IR 9×12×16	20	11	0.3	0.3	0.048	0.050
6 200	8 800	NKX15T	2+IR12×15×16	NKX15T2	Z+IR12×15×16	23	14	0.3	0.3	0.052	0.056
6 000	8 500	NKX17T	2+IR14×17×17	NKX17T2	Z+IR14×17×17	25	16	0.3	0.3	0.061	0.066
5 200	7 500	NKX20T	2+IR17×20×20	NKX20T2	Z+IR17×20×20	29	19	0.3	0.3	0.099	0.104
4 600	6 500	NKX25T	2+IR20×25×20	NKX25T2	Z+IR20×25×20	35	22	0.6	0.3	0.152	0.159
4 300	6 200	NKX30T	2+IR25×30×20	NKX30T2	Z+IR25×30×20	40	27	0.6	0.3	0.173	0.181
3 900	5 600	NKX35T	2+IR30×35×20	NKX35T2	Z+IR30×35×20	45	32	0.6	0.3	0.205	0.213
3 500	5 000	NKX40	+IR35×40×20	NKX40Z	+IR35×40×20	52	37	0.6	0.3	0.260	0.269
3 200	4 600	NKX45	+IR40×45×20	NKX45Z	+IR40×45×20	57	42	0.6	0.3	0.293	0.316
3 100	4 500	NKX50	+IR45×50×25	NKX50Z	+IR45×50×25	62	48	0.6	0.6	0.373	0.389
2 600	3 700	NKX60	+IR50×60×25	NKX60Z	+IR50×60×25	75	55	1	1	0.635	0.654
2 400	3 400	NKX70	+IR60×70×25	NKX70Z	+IR60×70×25	85	65	1	1	0.814	0.837

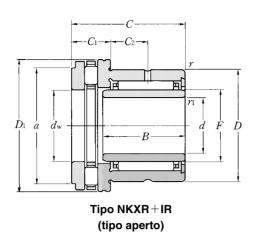
Senza anello interno

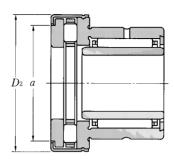
Tipo NKXR Tipo NKXR··Z



Tipo NKXR · Z (con coperchio)

*F*_w 15∼50mm

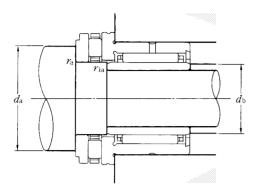

$F_{\rm w} = \frac{15}{0.027} + \frac{0.027}{0.016} + \frac{0.050}{0.025} + \frac{0.00}{0.025} + \frac{0.00}{0.025} + \frac{0.00}{0.025} + \frac{0.00}{0.025} + \frac{0.00}{0.025} + \frac{0.00}{0.025} + \frac{0.000}{0.025} + \frac{0.000}{$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cor
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	001
20 +0.033 +0.020 +0.041 +0.040 +0.075 +0.025 20 +0.061 +0.025 +0.061 +0.041 +0.025 30 +0.041 +0.025 +0.050 +0.051 +0.050 +0.050 +0.025 30 +0.041 +0.025 +0.050 +0.050 +0.050 +0.050 +0.025 30 +0.041 +0.025 +0.050 +0.050 +0.050 +0.050 +0.025 30 +0.041 +0.025 +0.050 +0.050 +0.050 +0.025 +0.0	1 040
25 +0.033 +0.020 +0.061 +0.040 +0.025 +0.040 37 42 43 30 11 9.5 37.7 0.6 14 200 24 000 1 450 30 +0.033 +0.020 +0.061 +0.020 +0.040 +0.025 +0.040 +0.025 +	1 460
30 +0.033 +0.033 +0.040 +0.040 42 47 48 30 11 9.5 42.7 0.6 22 300 39 500 2 280 35 +0.041 +0.025 +0.025 +0.050 +0.050 +0.050 +0.050 +0.050 +0.050 +0.050 +0.025 +0.050 +0.05	2 760
35 +0.041 +0.025 +0.050 +0.050 +0.050 +0.050 +0.050 +0.050 +0.025 +0.	2 450
40 +0.041 +0.025 40 +0.075 +0.025 52 60 61 32 13 10 55.7 0.6 25 900 52 500 2 650 45 +0.041 +0.025 45 +0.050 +0.050 58 65 66.5 32 14 9 60.5 0.6 27 600 59 000 2 810	4 000
45 $^{+0.041}_{+0.025}$ 45 $^{+0.075}_{+0.050}$ 58 65 66.5 32 14 9 60.5 0.6 27 600 59 000 2 810	3 650
	5 350
50 +0.041 +0.025 50 +0.050 62 70 71.5 35 14 10 65.5 0.6 27 900 62 000 2 850	6 000
	6 300



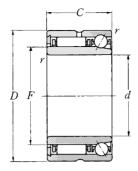
dinamico	statico N	nti di caric dinamico k siale		giri l	ero di imite om olio	Арро	ellativo	mont	sioni di taggio nm	(approssimata) kg Tipo Tipo		
C_{a}	C_{oa}	Ca	Coa	grasso	Ollo	Tipo NKXR	Tipo NKXR··Z	min	max	NKXR	NKXR··Z	
12 900	28 600	1 310	2 920	2 800	11 000	NKXR15T2	NKXR15T2Z	25	0.3	0.048	0.052	
13 400	31 000	1 370	3 150	2 500	10 000	NKXR17T2	NKXR17T2Z	27	0.3	0.050	0.053	
20 200	46 500	2 060	4 700	2 100	8 500	NKXR20T2	NKXR20T2Z	32	0.3	0.090	0.095	
27 300	68 000	2 780	6 900	1 800	7 000	NKXR25T2	NKXR25T2Z	39	0.6	0.128	0.135	
27 800	72 500	2 840	7 400	1 500	6 000	NKXR30T2	NKXR30T2Z	44	0.6	0.162	0.169	
31 000	87 000	3 150	8 900	1 400	5 500	NKXR35T2	NKXR35T2Z	49	0.6	0.184	0.195	
43 000	121 000	4 350	12 400	1 200	4 800	NKXR40T2	NKXR40T2Z	56	0.6	0.226	0.237	
45 500	135 000	4 650	13 800	1 100	4 400	NKXR45T2	NKXR45T2Z	61	0.6	0.267	0.286	
48 000	150 000	4 900	15 300	1 000	4 000	NKXR50T2	NKXR50T2Z	66	0.6	0.309	0.329	

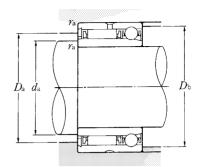
Con anello interno

Tipo NKXR+IR
Tipo NKXR··Z+IR



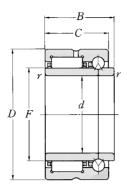
Tipo NKXR · Z+IR (con coperchio)

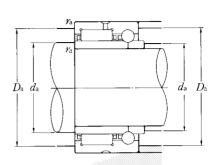

d 12~45mm


				D	imens	ioni	d'inç	joml	oro							Co	efficient	ti di cario	0		
															statico	dinami					
			_	_	_		m	~	~			4)	4)		N _		kgf		N	kg 	f
d	d	W	D	D_1	D_2	В	C 0 -0.25	C ₁ 0 -0.20	C_2	F	a	r _{s min} ¹)	$r_{ m lsmin}$ 1)	C_{r}	$C_{ m or}$	diale Cr	$C_{ m or}$	C_{a}	C_{oa}	siale Ca	Coa
12	15 +	-0.050 -0.032	24	28	29	16	23	9	6.5	15	23.7	0.3	0.3	8 250	10 200	840	1 040	12 900	28 600	1 310	2 920
14	17 +		26	30	31	17	25	9	8	17	25.7	0.3	0.3	10 400	14 400	1 060	1 460	13 400	31 000	1 370	3 150
17		-0.061 -0.040	30	35	36	20	30	10	10.5	20	30.7	0.3	0.3	16 400	27 100	1 670	2 760	20 200	46 500	2 060	4 700
20		-0.061 -0.040	37	42	43	20	30	11	9.5	25	37.7	0.6	0.3	14 200	24 000	1 450	2 450	27 300	68 000	2 780	6 900
25		-0.061 -0.040	42	47	48	20	30	11	9.5	30	42.7	0.6	0.3	22 300	39 500	2 280	4 000	27 800	72 500	2 840	7 400
30		-0.075 -0.050	47	52		20		12	9	35	47.7	0.6	0.3	20 000	36 000	2 040	3 650	31 000	87 000	3 150	8 900
35		-0.075 -0.050	52	60	61	20	32	13	10	40	55.7	0.6	0.3	25 900	52 500	2 650	5 350		121 000	4 350	12 400
40	45 +	-0.075 -0.050	58	65	66.5	20	32	14	9	45	60.5	0.6	0.3	27 600	59 000	2 810	6 000	45 500	135 000	4 650	13 800
45	50 +	-0.075 -0.050	62	70	71.5	25	35	14	10	50	65.5	0.6	0.6	27 900	62 000	2 850	6 300	48 000	150 000	4 900	15 300

Numero di giri limite rpm	Appel	llativo		mont	sioni di a ggio nm		(appros	ssa ssimata)
grasso olio	Tipo NKXR+IR	Tipo NKXR··Z+IR	$d_{ m a}$ min	$d_{ m b}$ min	$r_{ m as}$ max	r _{1as} max	Tipo NKXR+IR	Tipo NKXR··Z+IR
2 800 11 000	NKXR15T2+IR12×15×16	NKXR15T2Z+IR12×15×16	25	14	0.3	0.3	0.056	0.060
2 500 10 000	NKXR17T2+IR14×17×17	NKXR17T2Z+IR14×17×17	27	16	0.3	0.3	0.060	0.063
2 100 8 500	NKXR20T2+IR17×20×20	NKXR20T2Z+IR17×20×20	32	19	0.3	0.3	0.105	0.110
1 800 7 000	NKXR25T2+IR20×25×20	NKXR25T2Z+IR20×25×20	39	22	0.6	0.3	0.155	0.162
1 500 6 000	NKXR30T2+IR25×30×20	NKXR30T2Z+IR25×30×20	44	27	0.6	0.3	0.197	0.202
1 400 5 500	NKXR35T2+IR30×35×20	NKXR35T2Z+IR30×35×20	49	32	0.6	0.3	0.224	0.235
1 200 4 800	NKXR40T2+IR35×40×20	NKXR40T2Z+IR35 \times 40 \times 20	56	37	0.6	0.3	0.270	0.281
1 100 4 400	NKXR45T2+IR40×45×20	NKXR45T2Z+IR40×45×20	61	42	0.6	0.3	0.318	0.337
1 000 4 000	NKXR50T2+IR45×50×25	NKXR50T2Z+IR45×50×25	66	48	0.6	0.6	0.379	0.400

Tipo NKIA59


d 15∼70mm


D	imensi	oni d'i	ngoml	oro			C	oefficient	i di carico				Num	ero di
					dinamico				dinamico				_	limite
		mm				N Ra	κί diale	gf	N		siale	gf	grasso	om olio
d	D	C	F	<i>γ</i> _{s min} 1)	$C_{ m r}$	Cor	C_{r}	Cor	C_{a}	C_{oa}	C_{a}	Coa		
15	28	18	20	0.3	9 500	13 400	970	1 370	2 340	3 050	239	310	13 000	20 000
17	30	18	22	0.3	10 100	14 900	1 030	1 520	2 530	3 550	258	360	12 000	18 000
20	37	23	25	0.3	16 500	22 100	1 680	2 250	4 700	6 150	480	625	11 000	16 000
22	39	23	28	0.3	17 500	24 800	1 790	2 530	4 900	6 750	500	690	9 500	14 000
25	42	23	30	0.3	17 400	25 000	1 770	2 550	5 100	7 350	520	750	8 500	13 000
30	47	23	35	0.3	19 400	30 500	1 980	3 100	5 400	8 550	550	870	7 500	11 000
35	55	27	42	0.6	25 700	46 000	2 630	4 700	7 400	12 300	755	1 260	6 500	9 500
40	62	30	48	0.6	31 000	61 000	3 150	6 250	7 750	14 000	790	1 430	5 500	8 500
45	68	30	55	0.6	33 000	69 500	3 350	7 100	8 500	17 100	870	1 740	5 000	7 500
50	72	30	60	0.6	33 500	73 500	3 450	7 500	8 800	18 700	900	1 910	4 300	6 500
55	80	34	63	1	44 500	95 500	4 500	9 700	14 300	33 000	1 460	3 350	4 300	6 500
60	85	34	68	1	45 500	101 000	4 600	10 300	14 800	36 000	1 510	3 650	4 000	6 000
65	90	34	75	1	46 000	106 000	4 700	10 800	15 200	39 000	1 550	4 000	3 700	5 500
70	100	40	80	1	62 500	146 000	6 350	14 900	18 600	47 500	1 890	4 850	3 300	5 000
NOTA														

NOTA: 1) Dimensione minima ammessa del raggio di raccordo r. Osservazione: Questo cuscinetto può sopportare un carico assiale monodirezionale.

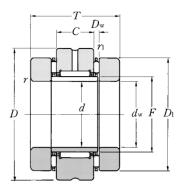
Appellativo		Dimens monta	aggio		Massa kg
	$d_{ m a}$ min	$D_{ m a}$ max	$D_{ m b}$ max	$r_{ m as}$ max	(approssimata)
NKIA 5902	17.5	22	25.5	0.3	0.050
NKIA 5903	19.5	24	27.5	0.3	0.056
NKIA 5904	22.5	28	34.5	0.3	0.111
NKIA59/22	24.5	31	36.5	0.3	0.120
NKIA 5905	27.5	33	39.5	0.3	0.130
NKIA 5906	32.5	38	44.5	0.3	0.147
NKIA 5907	40	45	50	0.6	0.243
NKIA 5908	45	51	57	0.6	0.347
NKIA 5909	50	58	63	0.6	0.401
NKIA 5910	55	63	67	0.6	0.410
NKIA 5911	61	66.5	74	1	0.590
NKIA 5912	66	71.5	79	1	0.632
NKIA 5913	71	78.5	84	1	0.708
NKIA 5914	76	84	94	1	1.05

Tipo NKIB59

d 15∼70mm

	Dimensioni d'ingombro					dinamiaa	ototico			i di carico dinamico	atatiaa	dinamiaa	ototico		ero di
		n	ım				N		gf	N		kg		_	limite om
d	D	B 0 -0.3	C	F	<i>γ</i> _{s min} 1)	$C_{ m r}$	Rac $C_{ m or}$	diale $C_{ m r}$	$C_{ m or}$	$C_{ m a}$	C_{oa}	siale $C_{ m a}$	C_{oa}	grasso	olio
15	28	20	18	20	0.3	10 800	13 600	1 100	1 390	2 750	4 200	280	430	13 000	20 000
17		20	18	22	0.3	11 200	14 600	1 140	1 490	2 960	4 900	300	495		18 000
20	37	25	23	25	0.3	21 300	25 500	2 170	2 600	4 650	7 400	475	755	11 000	16 000
22	39	25	23	28	0.3	23 200	29 300	2 360	2 990	5 000	8 650	510	880	9 500	14 000
25	42	25	23	30	0.3	24 000	31 500	2 450	3 200	5 150	9 250	525	945	8 500	13 000
30	47	25	23	35	0.3	25 500	35 500	2 600	3 600	5 600	11 200	570	1 140	7 500	11 000
35	55	30	27	42	0.6	32 000	50 000	3 300	5 100	7 050	14 900	720	1 520	6 500	9 500
40	62	34	30	48	0.6	43 500	66 500	4 450	6 800	8 700	19 400	890	1 980	5 500	8 500
45	68	34	30	52	0.6	46 000	73 000	4 700	7 450	9 100	21 400	925	2 180	5 000	7 500
50	72	34	30	58	0.6	48 000	80 000	4 900	8 150	9 600	24 300	980	2 480	4 300	6 500
55	80	38	34	63	1	58 500	99 500	6 000	10 100	11 400	29 400	1 170	3 000	4 300	6 500
60	85	38	34	68	1	61 500	108 000	6 250	11 000	11 800	32 000	1 200	3 250	4 000	6 000
65	90	38	34	72	1	62 500	112 000	6 350	11 400	12 100	34 000	1 240	3 500	3 700	5 500
70	100	45	40	80	1	85 500	156 000	8 750	15 900	15 900	44 500	1 620	4 550	3 300	5 000

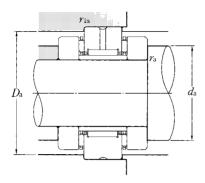
¹⁾ Dimensione minima ammessa del raggio di raccordo \it{r} .


Osservazione: 1) Questo cuscinetto può sopportare carichi assiali bidirezionali.

²⁾ Il cuscinetto a sfere di questo cuscinetto combinato ha una gabbia in resina sintetica che permette una temperatura massima di funzionamento di 120°C; la temperatura massima continuativa di funzionamento è però di 100°C.

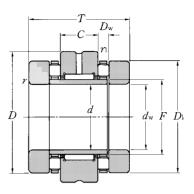
B-140

Appellativo		mension nontaggi		Massa
	d_{a}	mm D a	$r_{ m as}$	kg
	min	max	max	(approssimata)
NKIB 5902R	17.5	25.5	0.3	0.052
NKIB 5903R	19.5	27.5	0.3	0.058
NKIB 5904R	22.5	34.5	0.3	0.107
NKIB59/22R	24.5	36.5	0.3	0.122
NKIB 5905R	27.5	39.5	0.3	0.134
NKIB 5906R	32.5	44.5	0.3	0.151
NKIB 5907R	40	50	0.6	0.247
NKIB 5908R	45	57	0.6	0.320
NKIB 5909R	50	63	0.6	0.380
NKIB 5910R	55	67	0.6	0.385
NKIB 5911R	61	74	1	0.555
NKIB 5912R	66	79	1	0.595
NKIB 5913R	71	84	1	0.640
NKIB 5914R	76	94	1	0.985


Tipo AXN

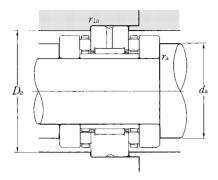
d 20∼50mm

		Din	nensic	ni d'in	gomb	ro						C	oefficien	ti di carico)		
										dinamico		dinamico		dinamico	statico		
d	$d_{ m W}$	D	D_1	T	C	F	D_{w}	r _{s min} 1)	r _{1s min} 1)		N Rad	diale	kgf		N Assi		cgf
			-0.20 -0.50	0	0 -0.130					C_{r}	$C_{ m or}$	$C_{\rm r}$	Cor	C_{a}	C_{oa}	C_{a}	Coa
20	20 +0.061 +0.040	52	42	40	16	25	2	0.6	0.6	15 100	22 400	1 540	2 280	14 600	58 000	1 490	5 900
25	25 ^{+0.061} _{+0.040}		47	44	20	30	2	0.6	0.6	22 100	34 000	2 260	3 500	16 300	69 500	1 660	7 100
30	30 ^{+0.061} _{+0.040}		52	44	20	35	2	0.6	0.6	24 800	41 500	2 520	4 250	17 800	81 500	1 820	8 300
35	35 ^{+0.075} _{+0.050}	70	60	48	20	40	3	1	0.6	26 400	47 000	2 700	4 800	27 400	110 000	2 790	11 300
40	40 ^{+0.075} _{+0.050}	75	65	48	20	45	3	1	0.6	28 000	52 500	2 860	5 400	29 800	128 000	3 050	13 100
45	45 ^{+0.075} _{+0.050}		70	54	25	50	3	1	0.6	38 500	74 500	3 950	7 550	31 500	143 000	3 250	14 500
50	50 ^{+0.075} _{+0.050}	90	78	54	25	55	3	1	0.6	41 000	82 000	4 150	8 400	38 000	186 000	3 850	19 000


NOTA: 1) Dimensione minima ammessa del raggio di raccordo r o $r_{\rm 1}$.

Numero di giri limite		Appellativo	rad	oco iale			sioni di aggio		Preca	rico	Coppia al	Massa	
rpm	n olio		μ	m	J	m	m		N	kgf	N·mm	kgf·mm	kg
grasso	Ollo		min	max	$d_{ m a}$ min	$D_{ m a}$ max	$r_{ m as}$ max	r _{1as} max					(approssimata)
1 800	7 000	AXN2052	10	30	39	46	0.6	0.6	1 300	130	330	33	0.400
1 500	6 000	AXN2557	10	30	44	51	0.6	0.6	1 450	145	400	40	0.520
1 400	5 500	AXN3062	10	40	50	56	0.6	0.6	1 600	160	550	55	0.590
1 200	4 700	AXN3570	10	40	56	64	1	0.6	2 450	245	900	90	0.800
1 100	4 300	AXN4075	10	40	62	69	1	0.6	2 650	265	1 050	105	0.890
1 000	3 900	AXN4580	10	40	67	74	1	0.6	2 800	280	1 200	120	1.00
900	3 500	AXN5090	15	50	75	83	1	0.6	3 400	340	1 600	160	1.42

NOTA: 2) Coppia allo spunto corrispondente al precarico normale.


Tipo ARN

d 20∼70mm

	Dimensioni d'ingombro									dinamico	statico			ti di carico dinamico		dinamico	statico
,	7	D	<i>P</i>	mm T	a	F	D	r _{s min} 1)	1)		N		kgf		N	kç	gf
d	dw	D	<i>D</i> ₁ -0.20 -0.50	0 -0.370	C 0 -0.130	_	D_{W}	7's min '	71s min '	C_{r}	$C_{ m or}$	diale $C_{ m r}$	Cor	C_{a}	Assi C_{oa}	ale Ca	Coa
20	20 +0.061	52	42	46	16	25	5	0.6	0.6	15 100	22 400	1 540	2 280	27 300	68 000	2 780	6 900
20	20 +0.061 +0.040	62	52	60	20	30	7.5	1	0.6	22 100	34 000	2 260	3 500	53 500	129 000	5 450	13 100
25	25 ^{+0.061} _{+0.040}	57	47	50	20	30	5	0.6	0.6	22 100	34 000	2 260	3 500	27 800	72 500	2 840	7 400
25	25 ^{+0.061} _{+0.040}	72	62	60	20	35	7.5	1	0.6	24 800	41 500	2 520	4 250	54 500	139 000	5 550	14 200
30	30 ^{+0.061} _{+0.040}	62	52	50	20	35	5	0.6	0.6	24 800	41 500	2 520	4 250	31 000	87 000	3 150	8 900
30	30 ^{+0.061} _{+0.040}	80	68	66	20	40	9	1	0.6	26 400	47 000	2 700	4 800	74 500	190 000	7 600	19 400
35	35 ^{+0.075} _{+0.050}	70	60	54	20	40	6	1	0.6	26 400	47 000	2 700	4 800	43 000	121 000	4 350	12 400
35	35 ^{+0.075} _{+0.050}	85	73	66	20	45	9	1	0.6	28 000	52 500	2 860	5 400	82 000	222 000	8 350	22 600
40	40 +0.075	75	65	54	20	45	6	1	0.6	28 000	52 500	2 860	5 400	45 500	135 000	4 650	13 800
40	40 +0.075 +0.050	90	78	75	25	50	9	1	0.6	38 500	74 500	3 950	7 550	85 000	238 000	8 650	24 200
45	45 ^{+0.075} _{+0.050}	80	70	60	25	50	6	1	0.6	38 500	74 500	3 950	7 550	48 000	150 000	4 900	15 300
45	45 ^{+0.075} _{+0.050}	105	90	82	25	55	11	1	0.6	41 000	82 000	4 150	8 400	121 000	340 000	12 300	34 500
50	50 ^{+0.075} _{+0.050}	90	78	60	25	55	6	1	0.6	41 000	82 000	4 150	8 400	62 500	215 000	6 350	21 900
50	50 ^{+0.075} _{+0.050}	110	95	82	25	60	11	1.1	0.6	41 000	85 000	4 200	8 700	125 000	365 000	12 800	37 000
55	55 ^{+0.090} _{+0.060}	115	100	82	25	65	11	1.1	0.6	44 500	98 000	4 550	10 000	130 000	385 000	13 200	39 500
60	60 +0.090	120	105	82	25	70	11	1.1	0.6	45 000	91 500	4 600	9 350	134 000	410 000	13 700	42 000
65	65 ^{+0.090} _{+0.060}	125	110	82	25	75	11	1.1	0.6	55 000	104 000	5 600	10 600	138 000	435 000	14 100	44 500
70	70 +0.090	130	115	82	25	80	11	1.1	0.6	57 000	119 000	5 800	12 200	142 000	460 000	14 500	47 000

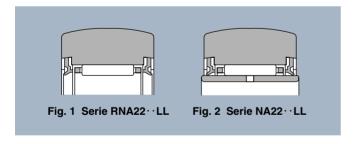
NOTA: 1) Dimensione minima ammessa del raggio di raccordo r o $r_{\rm 1}$.

giri l	ero di limite	Appellativo	rad	oco iale		mont	sioni di aggio		Preca			o spunto ²⁾	Massa
grasso	om olio		μ	m	d_{a}	$D_{ m a}$	$r_{ m as}$	$r_{ m las}$	N	kgf	N·mm	kgf∙mm	kg
g			min	max	min	max	max	max					(approssimata)
1 800	7 000	ARN2052T2	10	30	39	46	0.6	0.6	2 500	250	430	43	0.440
1 500	6 000	ARN2062	10	30	48	56	1	0.6	4 950	495	1 150	115	0.910
1 500	6 000	ARN2557T2	10	30	44	51	0.6	0.6	2 600	260	500	50	0.560
1 200	4 900	ARN2572	10	40	56	66	1	0.6	5 050	505	1 400	140	1.22
1 400	5 500	ARN3062T2	10	40	49	56	0.6	0.6	2 900	290	650	65	0.630
1 100	4 400	ARN3080	10	40	63	73	1	0.6	6 900	690	2 100	210	1.54
1 200	4 800	ARN3570T2	10	40	56	64	1	0.6	3 950	395	1 050	105	0.850
1 000	4 100	ARN3585	10	40	68	77	1	0.6	7 600	760	2 500	250	1.67
1 100	4 400	ARN4075T2	10	40	61	69	1	0.6	4 200	420	1 250	125	0.930
950	3 800	ARN4090	10	40	73	87	1	0.6	7 850	785	2 850	285	2.15
1 000	4 000	ARN4580T2	10	40	66	74	1	0.6	4 450	445	1 550	155	1.16
850	3 300	ARN45105	15	50	83	96	1	0.6	11 200	1 120	4 350	435	3.16
900	3 600	ARN5090	15	50	75	83	1	0.6	5 800	580	2 050	205	1.48
800	3 100	ARN50110	15	50	88	101	1	0.6	11 600	1 160	4 900	490	3.38
750	2 900	ARN55115	15	50	93	106	1	0.6	12 000	1 200	5 500	550	3.61
700	2 700	ARN60120	15	50	98	111	1	0.6	12 400	1 240	6 000	600	3.81
650	2 600	ARN65125	15	50	103	116	1	0.6	12 800	1 280	6 500	650	4.00
650	2 500	ARN70130	15	50	106	121	1	0.6	13 200	1 320	7 000	700	4.25
11074 8) 6		nunto corrispondent											

NOTA: 2) Coppia allo spunto corrispondente al precarico normale.

Rotelle/Perni folli

Rotelle (Rulli di appoggio)

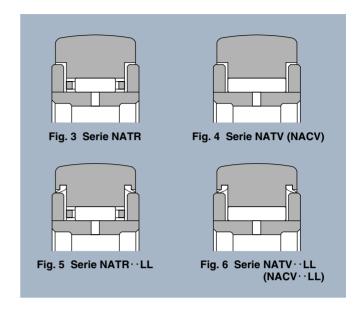

Le rotelle o rulli di appoggio NTN sono dei cuscinetti progettati specificatamente per i meccanismi nei quali l'anello esterno rotola su di una pista. Tali meccanismi includono i rulli eccentrici, i rulli di guida, i rulli per bilancieri, i rulli per eccentrici ed i rulli di pressione.

Dato il tipo di impiego, l'anello esterno delle rotelle è stato previsto a parete spessa al fine di poter sopportare carichi elevati o ad urto. La superficie esterna dell'anello esterno (superficie del contatto volvente) è disponibile sia di forma sferica che di forma cilindrica. L'anello esterno sferico riduce la concentrazione dei carichi sugli spigoli che si manifesta sulla superficie di contatto tra la pista ed il rullo. In confronto a quello sferico, l'anello esterno cilindrico (suffisso X) vanta una maggiore capacità di carico come rullo di appoggio.

Tipi ed esecuzioni

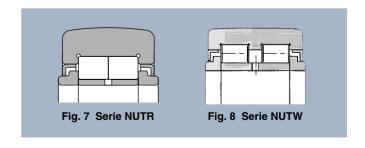
Le rotelle NTN includono le seguenti serie: RNA22 (senza anello interno) e NA22 (con anello interno) con anello esterno senza guida assiale e NATR, NATV, NACV e NUTR, NUTW aventi l'anello esterno guidato assialmente.

Le serie RNA22 e NA22 sono costituite da un anello esterno nel quale si trovano una gabbia a rullini e due anelli di tenuta in gomma sintetica con armatura in acciaio; tali componenti non sono separabili. Poiché il cuscinetto è mobile in senso assiale, l'albero deve avere delle ralle o delle flange per la guida dell'anello esterno.

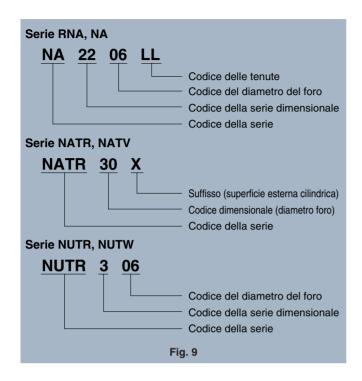


Nelle serie NATR, NATV, e NACV l'anello esterno è guidato assialmente da due ralle laterali montate forzate nell'anello interno. I cuscinetti della serie NATR sono muniti di una gabbia a rullini. Le serie NATV e NACV sono a pieno riempimento di rullini e quindi, rispetto alla serie NATR, possono sopportare carichi maggiori; il loro regime massimo di rotazione è comunque inferiore.

Nelle rotelle NTN, la luce stretta tra l'anello esterno e quello interno costituisce un labirinto che provvede alla tenuta. Per una tenuta migliore esiste un tipo di cuscinetto Suffisso LL) che incorpora due anelli in gomma posti tra l'anello esterno e quello interno.


Le dimensioni d'ingombro della **serie NACV** sono in pollici.

I rulli di appoggio della **serie NUTR** hanno un pieno riempimento di rulli cilindrici disposti in due corone. In


confronto alle rotelle a pieno riempimento di rullini, essi hanno una maggiore capacità di carico e sono quindi adatti alle applicazioni con carichi gravosi. Nell'anello esterno della serie in esame sono montati forzati due anelli in lamiera che formano un labirinto con le ralle che si trovano ad entrambi i lati dell'anello interno questi, oltre ad assicurare una tenuta efficace, mantengono in posizione le ralle stesse. La guida assiale dell'anello esterno avviene tra i suoi bordi integrali e le superfici laterali dei rulli cilindrici; in tal modo è anche garantito l'assorbimento di spinte assiali di una certa entità. Per eliminare il giuoco, l'anello interno e le due ralle devono essere tenuti bloccati.

Per evitare il contatto tra le superfici laterali dei rulli cilindrici, l'anello esterno della **serie NUTW**, in confronto a quello della **serie NUTR**, ha un anello centrale integrale. Come risultato, quest'ultimo cuscinetto sopporta in modo efficace i carichi assiali o la sollecitazione da parte di momenti e, in confronto alla **serie NUTR**, ha una rotazione più regolare. La lubrificazione risulta anche migliorata grazie al maggior volume disponibile per il grasso.

Appellativi

Gli appellativi delle rotelle NTN comprendono il codice della serie, il codice della serie dimensionale, il codice della dimensione ed il suffisso.

Tolleranze

La precisione dimensionale del diametro del foro (d), del diametro esterno cilindrico (D), della larghezza dell'anello esterno (C), la precisione di forma e quella di rotazione delle rotelle o rulli di appoggio NTN sono riportate nel Par. 6 "Tolleranze dei cuscinetti", Tabella 6.2, alle pagg. A-28, 29 (ISO (JIS) classe 0). Le tolleranze della larghezza dell'anello interno assemblato (B), del diametro esterno sferico (D) e così pure del diametro del cerchio inscritto $(F_{\rm w})$ della serie RNA22 sono indicate nelle tabelle dei cuscinetti allegate.

Accoppiamenti e giuoco radiale

La classe di tolleranza dell'albero per il cuscinetto completo di anello interno è g6 (h6). Se la superficie dell'albero viene usata direttamente come pista volvente, (Serie RNA22), la classe di tolleranza deve essere k5 (k6). Usualmente, l'anello esterno di una rotella NTN non viene montato in un alloggiamento.

Tabella 1 Giuoco radiale

Dimensioni in μ m

	etro del inscritto		Giuoco												
	(mm)	O	2	Norr	nale	С	3	C4							
oltre	incl	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.						
3	6	0	10	3	17	15	30	20	40						
6	10	0	12	5	20	15	30	25	45						
10	18	0	15	5	25	15	35	30	55						
18	30	0	20	10	30	20	40	40	65						
30	50	0	25	10	40	25	55	50	80						
50	80	0	30	15	50	30	65	60	100						
80	100	0	35	20	55	35	75	70	115						

Dimensioni di montaggio

Se un cuscinetto non permette la guida del proprio anello esterno, come avviene nella **serie RNA 22** o **NA22**, l'albero deve essere provvisto di una flangia o di ralle che ne permettano la guida assiale. La superficie di guida dovrebbe di preferenza essere indurita e l'altezza di guida deve essere almeno pari al 50% dello spessore dell'anello esterno.

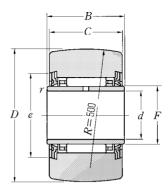
Come minimo, la superficie di guida deve essere finita di tornitura fine e deve essere liscia e priva di bave.

La superficie laterale di montaggio delle rotelle delle serie NATR, NATV, NACV e NUTR, NUTW, affinchè le relative ralle laterali possano essere in pieno contatto, deve adottare come minimo la dimensione e specificata nelle tabelle dimensionali allegate.

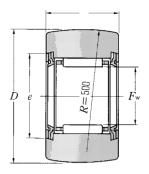
Lubrificazione

Le rotelle aventi le tenute in gomma sintetica (suffisso LL) e quelle dei tipi a pieno riempimento sono prelubrificate con del grasso al sapone di litio e possono operare in un campo di temperatura da -25° C a $+100^{\circ}$ C. Il grasso all'interno del cuscinetto può essere rinnovato tramite un foro esistente nell'anello interno. Le rotelle devono essere montate in modo tale che il foro non si trovi in una zona soggetta al carico.

Le **serie NATV**, **NACV**, **NUTR** e **NUTW**, essendo dei tipi a pieno riempimento, devono essere rilubrificate più di frequente dei tipi con gabbia.


Capacità di carico come rotelle

La capacità di carico come rotelle è definita dal massimo carico radiale statico che può essere sopportato dalla superficie di contatto tra la pista e la rotella e varia a seconda della durezza della pista stessa. I valori della capacità di carico delle rotelle, indicati nelle tabelle dimensionali, si riferiscono ad una durezza della pista HRC40. La capacità di carico come rotella per una particolare durezza della pista, diversa da 40HRC, può essere determinata moltiplicando la capacità di carico come rotella, fornita dalle tabelle dimensionali, per l'appropriato fattore di correzione G, riportato nella **Tabella 2**. Se la capacità di carico come rotella eccede il coefficiente di carico Cm di un cuscinetto, Cm deve essere considerata la effettiva capacità di carico come rotella del cuscinetto.


Tabella 2 Fattore di correzione G

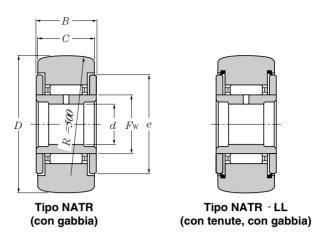
Durezza	Fattore di	correzione G
HRC	Superficie cilindrica	Superficie sferica
20	0.37	0.22
25	0.46	0.31
30	0.58	0.45
35	0.75	0.65
40	1.00	1.00
45	1.40	1.70
50	2.00	2.80
55	2.80	4.70

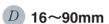
Tipo NA22··LL Tipo RNA22··LL

Tipo NA22 · LL (con anello interno)

Tipo RNA22 · LL (senza anello interno)

D 19∼90mm

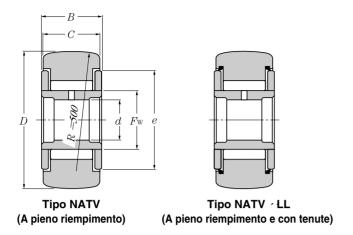

		Dii	mensi	oni d'ingomb	oro				Coefficient	i di carico dinamico	statico		enti di ca	rico della	rotella
				mm					N	k			N	kg	j f
D 0 -0.05	В	C	d	$F_{ m w}$	e	F	r _{s min} 1)	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	Cor	anello esterno sferico	anello esterno cilindrico	anello esterno sferico	anello esterno cilindrico
19	12	11.8	6	10 +0.022 +0.013	16	10	0.3	4 300	3 950	435	405	1 380	4 400	141	445
24	12	11.8	8	12 ^{+0.027} _{+0.016}	18	12	0.3	4 850	4 900	495	500	1 900	5 500	193	565
30	14	13.8	10	14 ^{+0.027} _{+0.016}	20	14	0.3	7 200	8 500	735	865	2 620	7 550	267	770
32	14	13.8	12	16 ^{+0.027} _{+0.016}	22	16	0.3	7 750	9 700	795	990	2 860	8 050	291	820
35	14	13.8	15	20 +0.033 +0.020	26	20	0.3	9 500	13 400	970	1 370	3 200	8 800	325	900
40	16	15.8	17	22 +0.033 +0.020	28	22	0.3	10 100	14 900	1 030	1 520	3 850	10 900	390	1 110
47	18	17.8	20	25 ^{+0.033} _{+0.020}	33	25	0.3	16 500	22 100	1 680	2 250	4 700	14 800	480	1 510
52	18	17.8	25	30 +0.033 +0.020	38	30	0.3	17 400	25 000	1 770	2 550	5 550	16 400	565	1 670
62	20	19.8	30	35 ^{+0.041} _{+0.025}	43	35	0.3	20 900	33 500	2 130	3 400	6 950	22 200	710	2 260
72	23	22.7	35	42 +0.041 +0.025	50	42	0.6	25 700	46 000	2 630	4 700	8 050	28 700	820	2 930
80	23	22.7	40	48 +0.041 +0.025	57	48	0.6	27 800	53 500	2 830	5 450	9 800	32 000	1 000	3 250
85	23	22.7	45	52 ^{+0.049} _{+0.030}	62	52	0.6	28 600	57 000	2 920	5 800	10 400	34 000	1 060	3 450
90	23	22.7	50	58 ^{+0.049} _{+0.030}	68	58	0.6	30 500	64 000	3 100	6 500	11 400	36 000	1 160	3 650


NOTA: 1) Dimensione minima ammessa del raggio di raccordo r.
2) Il suffisso del cuscinetto con anello esterno cilindrico è **X**.

Esempio: NA2203XLL L'anello esterno è prodotto con tolleranze della classe 0 della normativa ISO (JIS).

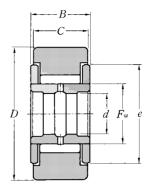
Numero di giri limite	Appellativo	Massa (approssimata)
rpm grasso	Tipo Tipo NA22··LL ²⁾ RNA22··LL ²⁾	kg Tipo Tipo NA22…LL RNA22…LL
10 000	NA22/6LL RNA22/6LL	0.023 0.018
10 000	NA22/8LL RNA22/8LL	0.035 0.027
10 000	NA2200LL RNA2200LL	0.060 0.052
9 500	NA2201LL RNA2201LL	0.067 0.057
7 500	NA2202LL RNA2202LL	0.075 0.060
7 000	NA2203LL RNA2203LL	0.113 0.094
6 000	NA2204LL RNA2204LL	0.176 0.152
5 000	NA2205LL RNA2205LL	0.209 0.179
4 300	NA2206LL RNA2206LL	0.322 0.284
3 600	NA2207LL RNA2207LL	0.506 0.432
3 100	NA2208LL RNA2208LL	0.623 0.530
2 900	NA2209LL RNA2209LL	0.638 0.545
2 600	NA2210LL RNA2210LL	0.682 0.563

Tipo NATR
Tipo NATV
Tipo NATV
Tipo NATV



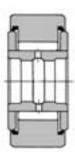
	Dimensioni d	'ingo	mbro		Coefficienti di carico dinamico statico				Coefficienti di carico della rotella				Numero di giri limite	
	mm	1				N		gf		N	ŀ	cgf	rpı	m
D 0 -0.05	B C	d	e	$F_{ m w}$	$C_{ m r}$	Cor	$C_{ m r}$	Cor	anello esterno sferico	anello esterno cilindrico	anello esterno sferico	anello esterno cilindrico	grasso	olio
16	12 0 11	5	12	8	3 850	3 950	395	400	1 080	3 400	110	350	% 19 000	% 25 000
10	12 ^{-0.180} 11	5	12	8	6 250	8 900	640	910	1 080	3 400	110	350	%13 000	% 16 000
10	12 ₀ 11	6	14	10	4 500	5 100	460	520	1 380	4 050	141	415	% 15 000	%20 000
19	12 ^{-0.180} 11	6	14	10	7 200	11 200	735	1140	1 380	4 050	141	415	10 000	%13 000
0.4	15 ₀ 14	8	19	12	6 600	7 300	675	745	1 900	6 650	193	680	%12 000	% 16 000
24	15 ^{-0.180} 14	8	19	12	10 300	15 500	1 050	1 580	1 900	6 650	193	680	8 500	%11 000
20	15 ₀ 14	10	23	15	7 500	9 100	765	930	2 620	7 700	267	785	10 000	%13 000
30	15 ^{-0.180} 14	10	23	15	11 700	19 500	1 190	1 980	2 620	7 700	267	785	6 500	8 500
	15 ₀ 14	12	25	17	8 500	11 100	865	1 130	2 860	8 200	291	835	9 000	% 12 000
32	15 ^{-0.180} 14	12	25	17	12 600	22 100	1 280	2 250	2 860	8 200	291	835	6 000	7 500
0.5	19 ₀ 18	15	27	20	13 000	20 100	1 320	2 050	3 200	11 900	325	1 220	7 500	10 000
35	19 ^{-0.210} 18	15	27	20	18 000	37 000	1 830	3 750	3 200	11 900	325	1 220	5 000	6 500
40	21 ₀ 20	17	32	22	13 600	22 100	1 390	2 250	3 850	14 500	390	1 480	7 000	9 000
40	21 -0.210 20	17	32	22	18 900	40 500	1 930	4 150	3 850	14 500	390	1 480	4 500	6 000
47	25 ₀ 24	20	37	25	20 300	33 000	2 070	3 350	4 700	21 000	480	2 150	6 000	8 000
47	25 ^{-0.210} 24	20	37	25	28 400	60 000	2 900	6 100	4 700	21 000	480	2 150	4 000	5 000
50	25 ₀ 24	25	42	30	22 300	39 500	2 280	4 000	5 500	23 300	565	2 370	5 000	6 500
52	25 ^{-0.210} 24	25	42	30	31 000	72 000	3 150	7 350	5 500	23 300	565	2 370	3 300	4 500
60	29 ₀ 28	30	51	38	35 000	64 000	3 600	6 550	6 950	33 000	710	3 350	4 000	5 500
62	29 -0.210 28	30	51	38	46 500	112 000	4 750	11 400	6 950	33 000	710	3 350	2 600	3 500
72	29 ₀ 28	35	58	44.5	38 000	74 500	3 850	7 600	8 050	37 000	820	3 750	3 300	4 500
12	29 ^{-0.210} 28	35	58	44.5	51 000	130 000	5 200	13 300	8 050	37 000	820	3 750	2 200	2 900
90	32 ₀ 30	40	66	50	48 500	90 000	4 950	9 150	9 800	44 500	1 000	4 500	3 000	4 000
80	32 ^{-0.250} 30	40	66	50	67 500	167 000	6 850	17 100	9 800	44 500	1 000	4 500	2 000	2 600
85	32 0 30	45	71	55	50 500	97 500	5 150	9 950	10 400	47 000	1 060	4 800	2 700	3 600
	32 0 30	50	76	60	52 000	105 000	5 300	10 700	11 400	50 000	1 160	5 100	2 500	3 300
90	32 ^{-0.250} 30	50	76	60	74 500	200 000	7 600	20 400	11 400	50 000	1 160	5 100	1 600	2 100
NOTA													. 100 (110)	

NOTA: 1) Il suffisso del cuscinetto con anello esterno cilindrico è X. L'anello esterno è prodotto con tolleranze della classe 0 della normativa ISO (JIS).


Riferimento: Il numero di giri limite dei cuscinetti con tenute marcati ※ è approssimativamente di 10 000 rpm.

Арр	pellativo 1)	Massa
Tipo NATR	Tipo NATR··LL Tipo NATV··LL	kg (approssimata)
NATR5	•	, , ,
NATV5	NATR5LL NATV5LL	0.018 0.020
		0.000
NATR6	NATR6LL	0.025
NATV6	NATV6LL	0.027
NATR8	NATR8LL	0.042
NATV8	NATV8LL	0.044
NATR10	NATR10LL	0.061
NATV10	NATV10LL	0.065
NATR12	NATR12LL	0.069
NATV12	NATV12LL	0.074
NATR15	NATR15LL	0.098
NATV15	NATV15LL	0.102
NATR17	NATR17LL	0.140
NATV17	NATV17LL	0.145
NATR20	NATR20LL	0.246
NATV20	NATV20LL	0.254
NATR25	NATR25LL	0.275
NATV25	NATV25LL	0.285
NATR30	NATR30LL	0.470
NATV30	NATV30LL	0.481
NATR35	NATR35LL	0.635
NATV35	NATV35LL	0.647
NATR40	NATR40LL	0.875
NATV40	NATV40LL	0.890
NATR45	NATR45LL	0.910
NATR50	NATR50LL	0.960
NATV50	NATV50LL	0.990

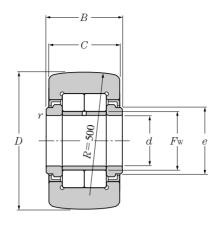
Serie in pollici


Tipo NACV··X Tipo NACV…XLL

Tipo NACV · X (a pieno riempimento)

D 19.050~152.400mm

		Dimensioni d'i	ngombro				dinamico	Coefficienti	di carico dinamico	statico
		mm (½5.4m	nm)					N	kç	
<i>D</i> 0 -0.025	B 0 -0.250	C 0 -0.130	d		e	$F_{ m w}$	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	Cor
19.050(3/4)	14.288(%)	12.700(½)	6.350(1/4)	+0.005 -0.010	15.5	11	7 800	12 700	795	1 290
22.225(%)	14.288(%)	12.700(½)	6.350(1/4)	+0.005 -0.010	15.5	11	7 800	12 700	795	1 290
25.400(1)	17.462(11/16)	15.875(%)	7.938(5/16)	+0.005 -0.010	19.5	14	11 300	18 100	1 150	1 850
28.575(1 1/8)	17.462(11/16)	15.875(%)	7.938(5/16)	+0.005 -0.010	19.5	14	11 300	18 100	1 150	1 850
31.750(1 1/4)	20.638(13/16)	19.050(¾)	9.525(¾)	+0.005 -0.010	25	18.47	17 300	34 000	1 770	3 450
34.925(1 ¾)	20.638(13/16)	19.050(¾)	9.525(¾)	+0.005 -0.010	25	18.47	17 300	34 000	1 770	3 450
38.100(1½)	23.812(15/16)	22.225(%)	11.112(7/16)	+0.005 -0.010	27	21	20 700	44 500	2 110	4 550
41.275(1 %)	23.812(15/16)	22.225(%)	11.112(7/16)	+0.005 -0.010	27	21	20 700	44 500	2 110	4 550
44.450(1 ¾)	26.988(1 1/16)	25.400(1)	12.700(½)	+0.005 -0.010	31.5	24.65	28 000	59 000	2 850	6 000
47.625(1 ¾)	26.988(1 1/16)	25.400(1)	12.700(½)	+0.005 -0.010	31.5	24.65	28 000	59 000	2 850	6 000
50.800(2)	33.338(1 5/16)	31.750(1 1/4)	15.875(5/8)	+0.005 -0.010	36.5	26.71	40 500	86 000	4 150	8 800
57.150(2 1/4)	33.338(1 5/16)	31.750(1 1/4)	15.875(5/8)	+0.005 -0.010	36.5	26.71	40 500	86 000	4 150	8 800
63.500(2 ½)	39.688(1 %)	38.100(1½)	19.050(¾)	+0.005 -0.010	44	31.15	54 000	118 000	5 500	12 000
69.850(2 ³ / ₄)	39.688(1 %)	38.100(1½)	19.050(¾)	+0.005 -0.010	44	31.15	54 000	118 000	5 500	12 000
76.200(3)	46.038(1 13/16)	44.450(1 3/4)	25.400(1)	+0.002 -0.013	53	36.85	75 500	174 000	7 700	17 700
82.550(3 1/4)	46.038(1 13/16)	44.450(1 3/4)	25.400(1)	+0.002 -0.013	53	36.85	75 500	174 000	7 700	17 700
88.900(3 ½)	52.388(2 1/16)	50.800(2)	28.575(1 1/8) ^{+0.002} -0.013	60	44.5	83 500	210 000	8 500	21 400
101.600(4)	58.738(2 ⁵ / ₁₆)	57.150(2 1/4)	31.750(1 1/4) ^{+0.002} -0.013	63	44.5	105 000	240 000	10 700	24 500
127.000(5)	73.025(2 1/8)	69.850(2 3/4)	44.450(1 ¾) ^{+0.002} -0.013	89	68.7	188 000	515 000	19 100	52 500
152.400(6)	85.725(3 3/8)	82.550(3 1/4)	57.150(2 1/4) ^{+0.002} -0.013	110	81.35	256 000	660 000	26 100	67 500

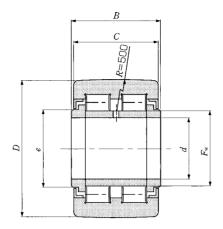


Tipo NACV · XLL (a pieno riempimento, con tenute)

Coeffic	cienti di car	ico della ro		giri	nero di limite	Арр	pellativo	Massa (approssimata)
anello esterno cilindrico	anello esterno sferico	_	anello esterno sferico	grasso	olio	Tipo NACV··X ¹⁾	Tipo NACV··XLL ¹⁾	Tipo NACV··X
4 600	1 380	470	140	9 000	%11 000	NACV12X	NACV12XLL	0.027
5 350	1 710	545	174	9 000	%11 000	NACV14X	NACV14XLL	0.036
7 400	2 060	755	210	7 100	9 200	NACV16X	NACV16XLL	0.059
8 350	2 430	850	248	7 100	9 200	NACV18X	NACV18XLL	0.073
11 400	2 840	1 160	290	5 400	7 000	NACV20X	NACV20XLL	0.109
12 500	3 250	1 280	330	5 400	7 000	NACV22X	NACV22XLL	0.132
16 300	3 600	1 660	365	4 800	6 200	NACV24X	NACV24XLL	0.177
17 600	4 050	1 800	410	4 800	6 200	NACV26X	NACV26XLL	0.218
21 600	4 400	2 200	450	4 100	5 300	NACV28X	NACV28XLL	0.281
23 200	4 850	2 360	495	4 100	5 300	NACV30X	NACV30XLL	0.327
31 000	5 300	3 150	540	3 700	4 800	NACV32X	NACV32XLL	0.454
35 000	6 200	3 550	635	3 700	4 800	NACV36X	NACV36XLL	0.585
44 500	7 200	4 550	735	3 200	4 100	NACV40X	NACV40XLL	0.902
49 000	8 250	5 000	840	3 200	4 100	NACV44X	NACV44XLL	1.05
64 000	9 150	6 500	935	2 700	3 500	NACV48X	NACV48XLL	1.39
69 000	10 000	7 050	1 020	2 700	3 500	NACV52X	NACV52XLL	1.66
86 000	11 100	8 800	1 130	2 200	2 800	NACV56X	NACV56XLL	2.19
112 500	13 200	11 500	1 350	2 200	2 800	NACV64X	NACV64XLL	3.22
165 500	17 900	16 900	1 830	1 500	1 900	NACV80X	NACV80XLL	6.08
239 500	22 100	24 400	2 250	1 200	1 500	NACV96X	NACV96XLL	10.0

Riferimento: Il numero di giri limite dei cuscinetti con tenute marcati "%" è approssimativamente di 10 000 rpm.

Tipo NUTR2 Tipo NUTR3



D 35∼110mm

	Dimensioni d'ingombro mm								Coefficient statico			Coeffic	cienti di car	ico della	rotella	Numero di giri limite	Appellativo 2)	Massa
70		7	, a	.1		77		N		k	gf		1	kgf		rpm		kg
D 0 -0.0		Е		a	e	F'w	₹s min 1)	$C_{ m r}$	$C_{ m or}$	$C_{\rm r}$	$C_{ m or}$	anello esterno sferico	anello esterno a cilindrico	sferico	anello esterno cilindrico	grasso		(approssimata)
35	5	19 _{-0.}	_{.210} 18	15	20	19	0.3	22 300	25 700	2 280	2 620	3 200	11 900	325	1 220	5 500	NUTR202	0.100
40	0	21 _{-0.}	₂₁₀ 20	17	22	21.5	0.3	24 100	29 100	2 450	2 970	3 850	14 500	390	1 480	4 700	NUTR203	0.147
42	2	19 -0	₂₁₀ 18	15	20	19	0.3	22 300	25 700	2 280	2 620	4 100	14 300	415	1 460	5 500	NUTR302	0.160
47	7	21 0					0.3	24 100	29 100		2 970	4 700	17 000	480	1 740	4 700	NUTR303	0.222
		25 ⁻⁰	²¹⁰ 24	20	27	25.5	0.3	38 500	48 000	3 950	4 900	4 700	21 000	480	2 150	4 000	NUTR204	0.245
52	2	25 ₀	24	20	27	25.5	0.3	38 500	48 000	3 950	4 900		23 300	565	2 370	4 000	NUTR304	0.321
	-	25 ⁻⁰	²¹⁰ 24	25	31	30	0.3	42 500	57 500	4 350	5 850	5 550	23 300	565	2 370	3 300	NUTR205	0.281
62	2	25 ₀	24	25	31	30	0.3	42 500	57 500	4 350	5 850		27 800		2 830	3 300	NUTR305	0.450
		29 -0	²¹⁰ 28	30	38	35	0.3	56 500	72 500	5 750	7 400	6 950	33 000	710	3 350	2 900	NUTR206	0.466
72	2	29 0	28	30	38	35	0.3	56 500	72 500	5 750	7 400	8 050	38 500	820	3 900	2 900	NUTR306	0.697
	-	29 -0	. ²¹⁰ 28	35	44	41.5	0.6	62 000	85 500	6 350	8 700	8 050	37 000	820	3 750	2 400	NUTR207	0.630
80			21028						85 500	6 350	8 700		41 000			2 400	NUTR307	0.840
		32 _0	₂₅₀ 30	40	51	47.5	0.6	87 000	125 000	8 850	12 700	9 800	44 500	1 000	4 500	2 100	NUTR208	0.817
85	5	32 _{-0.}	₂₅₀ 30	45	55	52.5	0.6	92 000	137 000	9 350	14 000	10 400	47 000	1 060	4 800	1 900	NUTR209	0.883
90		32 ₀					0.6		125 000				50 000	1 160	5 100	2 100	NUTR308	1.13
		32 -0.	^{.250} 30	50	60	57	0.6	96 500	150 000	9 800	15 300	11 400	50 000	1 160	5 100	1 800	NUTR210	0.950
100	0	32 ₋₀	₂₅₀ 30	45	55	52.5	0.6	92 000	137 000	9 350	14 000	13 000	55 500	1 330	5 650	1 900	NUTR309	1.40
110	0	32 ₋₀	25030	50	60	57	0.6	96 500	150 000	9 800	15 300	14 700	61 000	1 500	6 200	1 800	NUTR310	1.69
NOT		4) D:-						aggio di rac										

NOTA: 1) Dimensione minima ammessa del raggio di raccordo r.
2) Il suffisso del cuscinetto con anello esterno cilindrico è X. L'anello esterno è prodotto con tolleranze della classe 0 della normativa ISO (JIS). Esempio: NUTR208X

Serie metrica **Tipo NUTW2**

D 35∼90mm

	Dimensioni d'ingombro mm						dinamico	Coefficien statico	ti di cari dinamico		Coeffi	cienti di car	ico della rotella	Numero di	Appellativo 2)	Massa	
			D 0					N			gf		١	kgf	rpm		kg
0 -0.	05		B C	a	e	F_{w}	rs min 1)	$C_{ m r}$	Cor	$C_{\rm r}$	$C_{ m or}$	anello esterno sferico	anello esterno a cilindrico	anello esterno anello es sferico cilindr			(approssimata)
3	5	22 .	0 ·0.210 ²	l 15	20	19	0.3	24 100	28 300	2 460	2 880	3 200	14 200	325 1 4	0 5 500	NUTW202	0.115
4	0	24 .	0 0.210 2 3	3 17	22	21.5	0.3	26 000	32 000	2 650	3 250	3 850	17 100	390 1 7	0 4 700	NUTW203	0.167
4	7	29 .	0 .0.210 2 8	3 20	27	25.5	0.3	40 500	51 500	4 150	5 250	4 700	25 100	480 25	0 4 000	NUTW204	0.280
5	2	29 .	0 .0.210 2 8	3 25	31	30	0.3	45 000	61 500	4 600	6 250	5 550	27 700	565 28	0 3 300	NUTW205	0.322
6	2	35 .	0 .0.21034	1 30	38	35	0.3	59 500	77 000	6 050	7 900	6 950	41 000	710 4 20	0 2 900	NUTW206	0.549
7	2	35 .	0 .0.21034	1 35	44	41.5	0.6	65 000	91 000	6 650	9 250	8 050	46 000	820 47	0 2 400	NUTW207	0.747
8	0	38 .	0 . _{0.250} 36	6 40	51	47.5	0.6	90 500	131 000	9 250	13 400	9 800	54 500	1 000 5 5	0 2 100	NUTW208	0.953
8	5	38 .	0 .0.250 3 6	3 45	55	52.5	0.6	95 500	144 000	9 750	14 700	10 400	58 000	1 060 5 9	0 1 900	NUTW209	1.03
9	0	38 .	0 . _{0.250} 36	5 50	60	57	0.6	100 000	158 000	10 200	16 100	11 400	61 500	1 160 6 2	0 1 800	NUTW210	1.11

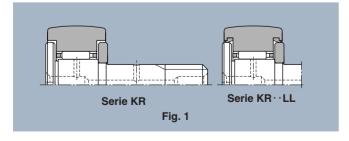
NOTA: 1) Dimensione minima ammessa del raggio di raccordo r.
2) Il suffisso del cuscinetto con anello esterno cilindrico è X. L'anello esterno è prodotto con tolleranze della classe 0 della normativa ISO (JIS).
Esempio: NUTW208X

Perni folli

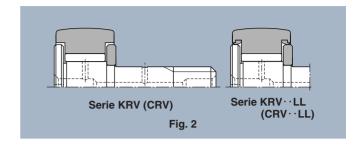
Perni folli

I perni folli **NTN** sono essenzialmente delle rotelle o rulli di appoggio il cui anello esterno è concepito per rotolare su di una pista. Le applicazioni tipiche sono uguali a quelle delle rotelle descritte a pag. 148. Il perno che funge da anello interno ha un'estremità filettata per permettere una facile installazione con un dado esagonale.

L'anello esterno è guidato in direzione assiale da una flangia posta al termine del perno e da una ralla che è montata forzata nel perno stesso. L'anello esterno del cuscinetto è a parete spessa e, come avviene per le rotelle vere e proprie, è disponibile con superficie esterna sferica e cilindrica. (Il suffisso per l'anello esterno cilindrico è X).

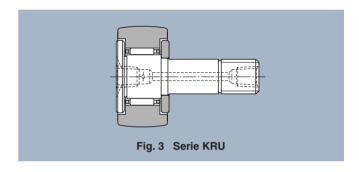

Tipi ed esecuzioni

I perni folli NTN sono disponibili in tre serie base: la serie KR con gruppo volvente costituito da una gabbia che trattiene e guida i rullini; la serie KRV e CRV (in pollici) con gruppo volvente a pieno riempimento di rullini e la serie NUKR con gruppo volvente costituito da un pieno riempimento di rulli cilindrici disposti in due corone.

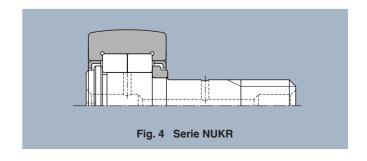

Le serie KRU e KRVU con perno eccentrico sono delle varianti delle serie KR e KRV. Diversamente dalla serie CRV (in pollici), esse hanno le stesse dimensioni d'ingombro ma i coefficienti di carico differiscono da quelli dei perni con dimensioni metriche delle serie KR (KRU), KRV (KRVU) e NUKR.

Le gabbie montate nei perni folli sono in lamiera di acciaio stampata. Comunque, possono anche essere utilizzate delle gabbie ottenute per iniezione in poliammide rinforzata in fibre di vetro o di carbonio (suffisso **T2**). Le gabbie **T2** permettono una massima temperatura d'impiego di 120°C ma la loro temperatura massima di impiego continuativo è di 100°C.

La serie KR, essendo munita di gabbia, è idonea all'impiego ad elevati regimi di rotazione. In confronto alla configurazione a pieno riempimento, la serie KR all'interno ha un maggior volume disponibile per il grasso il che permette lunghi periodi di rilubrificazione. E' inoltre disponibile la variante (suffisso LL) munita di anelli di tenuta in gomma sintetica disposti tra l'anello esterno e la flangia da un lato e tra l'anello esterno e quello riportato dal lato opposto.

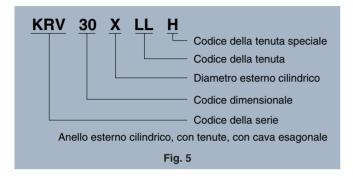


In confronto alla **serie KR**, i perni folli della **serie KRV** possiedono un maggior numero di rullini e quindi sono adatti alle applicazioni con carichi gravosi ma permettono regimi di rotazione inferiori. E' disponibile anche una variante munita di anelli di tenuta (suffisso **LL**). Poiché il



cuscinetto in esame ha un minor volume disponibile per il grasso, esso richiede intervalli di rilubrificazione più corti. I perni folli della **serie CRV** hanno struttura e caratteristiche similari.

I perni folli delle **serie KRU** e **KRVU** sono delle varianti delle **serie KR** e **KRV** e sono muniti di un perno eccentrico (con eccentricità da 0.5 a 1.0 mm) per permettere la modifica della posizione di montaggio nel foro che alloggia il perno.



In confronto ai cuscinetti a pieno riempimento di rullini, i perni folli della serie NUKR hanno una maggiore capacità di carico e sono quindi adatti alle applicazioni in presenza di carichi gravosi e ad urto, poichè hanno un gruppo volvente costituito da un pieno riempimento di rulli cilindrici disposti in due corone. Essi sono guidati in direzione assiale tramite la superficie interna dei bordi dell'anello esterno e quella laterale dei rulli cilindrici e possono sopportare anche dei carichi assiali di una certa entità. Sebbene essi abbiano una configurazione a pieno riempimento, il loro numero di giri limite è superiore a quello dei perni folli della serie KRV. Il loro anello esterno incorpora dei lamierini con sezione ad "L" che, in combinazione con la flangia da un lato e l'anello riportato del lato opposto, formano una tenuta a labirinto. Essendoci uno spazio limitato disponibile per il grasso, i perni folli della serie NUKR richiedono frequenti rilubrificazioni.

Appellativo

Gli appellativi dei perni folli NTN comprendono: il codice della serie, codice della dimensione (diametro esterno) ed il suffisso. Le dimensioni della **serie CRV** sono riportate con un intervallo di 1/16 di pollice.

Tolleranze

Nel Par. 6 "Tolleranze dei cuscinetti", Tabelle 6.2 e 6.3 (ISO (JIS) classe 0) alle pagine da A-28, 30 è indicata la precisione dimensionale del diametro esterno cilindrico (D) e così pure quella della larghezza dell'anello esterno (C), la precisione di forma e quella di rotazione dei perni folli NTN.

Le tolleranze relative al diametro esterno sferico (D) e quella del diametro del perno ($d\mathfrak{1}$) sono indicate nelle tabelle allegate.

Dimensioni di montaggio

Le tolleranze dimensionali degli alloggiamenti dei perni folli sono H7 per le serie metriche (serie KR, KRV, NUKR, KRU e KRVU) ed F7 per la serie in pollici (serie CRV).

Se il rullo è soggetto ad un carico ad urto, il giuoco tra il perno ed il foro di montaggio deve essere tenuto il più ridotto possibile. Il giuoco radiale raccomandato si trova nel paragrafo "**Perni folli**", **Tabella 1**, a pag. B-149.

Lubrificazione

I perni folli aventi le tenuta in gomma sintetica (suffisso LL) e quelli a pieno riempimento sono prelubrificati con un grasso al sapone di litio e possono operare in un campo di temperatura da $-25\,^{\circ}$ C a $+100\,^{\circ}$ C. L'interno del cuscinetto può essere rilubrificato tramite l'apposito ingrassatore che si trova sulla superficie laterale al lato del cuscinetto (superficie della flangia) o sulla superficie laterale del lato filettato. Tutti i fori non utilizzati per la lubrificazione devono essere chiusi. L'ingrassatore ed il coperchietto di chiusura necessari sono inclusi nella confezione e devono essere istallati nel perno prima del montaggio.

La **Tabella 1** riporta le dimensioni degli ingrassatori tipo **NIP** previsti per i perni folli **NTN**. Ai perni folli **tipo NUKR**, il cui diametro esterno è di 100 mm o superiore, viene applicato un ingrassatore tipo A-PT da 1/8" (JIS B 1575)

dal lato della filettatura. Il foro di lubrificazione nella flangia al lato opposto è tappato.

Il coperchietto può essere forzato nel foro di lubrificazione con, per esempio. il mandrino le cui dimensioni sono riportate nella **Tabella 2**.

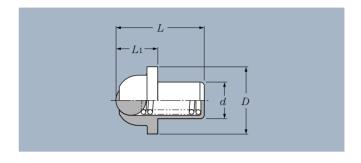
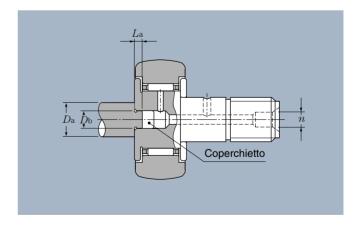


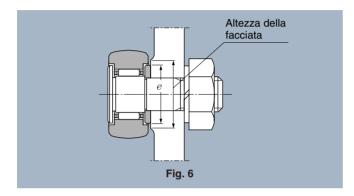
Tabella 1 Ingrassatori

Codice dim		Appellativo dell'ingrassatore	Dimensioni mm						
Metrico	In pollici		d	D	L	L_1			
_	8	NIP-B3	3	7.5	9	5.5			
16~26	10~18	NIP-B4	4	7.5	10	5.5			
30~40	20~44	NIP-B6	6	8	13	6			
47~90	48~96	NIP-B8	8	10	16	7			

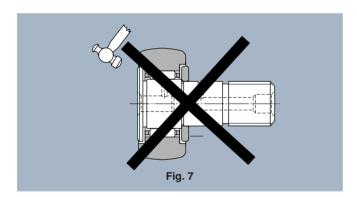
Larghezza tra i piar
$B = \emptyset L$
B

i	Appellativo dell'ingrassatore	D	imens mm		i		
		d	Н	l	L	B	
	NIP-X30	M4×0.7	13.9	4	5	7	
	JIS A-M6F	M6×0.75	13.5	4	5.4	7	
	JIS A-PT1/8	PT1/8	20	6	9.5	10	

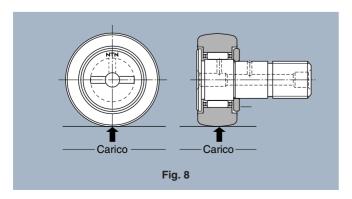


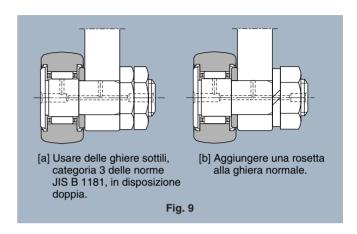

Tabella 2 Mandrino per il piantaggio del coperchietto

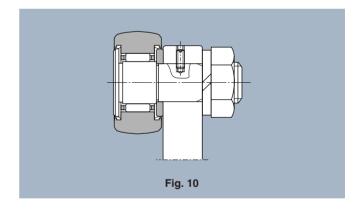
Dimensioni in mm


Diametro foro di lubrificazione n	Dimen	sioni del r $D_{\rm b} {}^{\rm 0}_{\rm -0.1}$	mandrino $L_{\rm a} \stackrel{0}{=} 0.1$
3	8	2.8	1.5
4	10	3.8	1.5
6	12	5.8	1.5
8	15	7.8	2.5

Montaggio

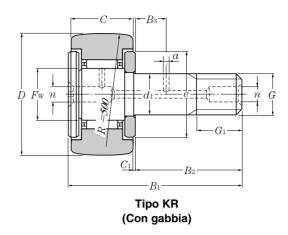

(1) L'altezza della facciata di appoggio del rullo del perno folle deve essere maggiore della dimensione "e" (Fig. 6) indicata nelle tabelle dei cuscinetti. Lo smusso del foro di alloggiamento del perno deve essere il più piccolo possibile (approssimativamente 0.5×45) al fine di permettere un posizionamento corretto della facciata della ralla laterale del rullo.


(2) Non battere direttamente col martello sul bordo del perno. Gli impatti possono rompere il bordo o causare problemi di rotazione.


(3) La posizione del foro di lubrificazione, posto sulla pista del perno, è indicata dal marchio NTN impresso sulla facciata del perno stesso al lato del rullo ed il foro deve essere posizionato in una zona non soggetta al carico (od il lato dove non agisce il carico). Se il foro di lubrificazione è posizionato nella zona di carico si può avere una riduzione della durata.

(4) Se il rullo è soggetto a vibrazioni gravose che possono allentare la vite di montaggio, per la soluzione del problema può essere usato il metodo di montaggio illustrato dalla Fig. 9.

- (5) Il perno è soggetto a sollecitazione di flessione ed alla trazione conseguente al tiro della filettatura. Perciò, lo sforzo di chiusura della vite non deve superare il valore indicato nelle tabelle dei cuscinetti. Se la coppia di chiusura della vite è troppo elevata, la filettatura si può rompere.
- (6) Il foro che si trova al centro del perno, perpendicolare all'asse, può essere usato per il bloccaggio come indicato nella Fig. 10, o per il reingrassaggio.

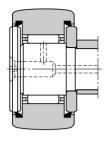


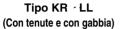
- (7) Installare e registrare il perno eccentrico secondo la seguente procedura.
 - 1 Inserire il perno nel foro di montaggio in modo tale che il marchio NTN (indicante il foro di lubrificazione) rispetto alla direzione del carico sia posizionato come illustrato dalla Fig. 8. Serrare quindi leggermente la ghiera. A questo punto lasciare che il perno sia libero di ruotare.
 - ② Per registrare il giuoco con la relativa superficie di contatto, ruotare il perno usando il taglio per il cacciavite presente nella testa del perno o montando nel perno l'inserto filettato a testa cava disponibile.
 - ③ Quando la registrazione è completata, bloccare il perno stringendo la ghiera con la coppia di serraggio indicata nelle tabelle dimensionali.

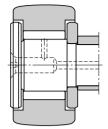
Capacità di carico della rotella

La capacità di carico è definita come il massimo carico radiale statico che può essere sopportato tra la superficie della pista di contatto e quella del rullo. La capacità di carico varia a seconda della durezza della pista; i valori relativi, riportati sulle tabelle dimensionali sono validi per una durezza della pista HRC40. La capacità di carico corrispondente ad una durezza della pista diversa da HRC40 si ottiene moltiplicando la capacità indicata sulle tabelle dimensionali per il fattore di correzione "G" della **Tabella 2** del paragrafo "**Rotelle**", a pag. B-149.

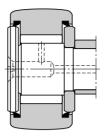
Tipo KR
Tipo KR··LL
Tipo KRV
Tipo KRV··LL

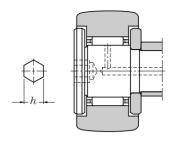

D 10∼62mm


					Dir	nensioni d'ingom	bro						
D 0 -0.050	C	d_1	$F_{ m w}$	Bı	B_2	mm G	G_1	C_1	n	B_3	a	e	h
10	7	3 0	4.0	17	9	M 3×0.5	5	0.5	_	_	_	7	2.53)
-10	7	3 ^{-0.010}	4.0	17	9	M 3×0.5	5	0.5			_	7	2.53)
12	8	4 0	4.8	20	11	M 4×0.7	6	0.5	_	_	_	8.5	$2.5^{3)}$
	8	4 -0.012	4.8	20	11	M 4×0.7	6	0.5	_	_	_	8.5	2.5 ³⁾
13	9	5 0	5.75	23	13	M 5×0.8	7.5	0.5	_	_	_	9.5	3 ³⁾
	9	5 -0.012	5.75	23	13	M 5×0.8	7.5	0.5	_	_	_	9.5	3 ³⁾
16	11	6 0	8	28	16	M 6×1	8	0.6	42)	_	_	12	3
10	11	6 ^{-0.012}	8	28	16	M 6×1	8	0.6	4 ²⁾	_	_	12	3
19	11	8 0	10	32	20	M 8×1.25	10	0.6	42)	_	_	14	4
13	11	8 ^{-0.015}	10	32	20	M 8×1.25	10	0.6	4 ²⁾	_	_	14	4
22	12	10 0	12	36	23	M10×1.25	12	0.6	4	_	_	17	4
	12	10 ^{-0.015}	12	36	23	M10×1.25	12	0.6	4			17	4
26	12	10 0	12	36	23	M10×1.25	12	0.6	4	_	_	17	4
20	12	10 -0.015	12	36	23	M10×1.25	12	0.6	4			17	4
30	14	12 0	15	40	25	M12×1.5	13	0.6	6	6	3	23	6
	14	12 ^{-0.018}	15	40	25	M12×1.5	13	0.6	6	6	3	23	6
32	14	12 0	15	40	25	M12×1.5	13	0.6	6	6	3	23	6
32	14	12 -0.018	15	40	25	M12×1.5	13	0.6	6	6	3	23	6
35	18	16 0	18	52	32.5	M16×1.5	17	0.8	6	8	3	27	6
33	18	16 -0.018	18	52	32.5	M16×1.5	17	0.8	6	8	3	27	6
40	20	18 0	22	58	36.5	M18×1.5	19	0.8	6	8	3	32	6
-10	20	18 ^{-0.018}	22	58	36.5	M18×1.5	19	0.8	6	8	3	32	6
47	24	20 0	25	66	40.5	M20×1.5	21	0.8	8	9	4	37	8
-+1	24	20 -0.021	25	66	40.5	M20×1.5	21	0.8	8	9	4	37	8
52	24	20 0	25	66	40.5	$M20 \times 1.5$	21	0.8	8	9	4	37	8
32	24	20 -0.021	25	66	40.5	M20×1.5	21	0.8	8	9	4	37	8
62	29	24 _{-0.021}	30	80	49.5	M24×1.5	25	0.8	8	11	4	44	8


NOTA: 1) Il suffisso dei cuscinetti con l'anello esterno cilindrico è X. L'anello esterno è prodotto in conformità alle tolleranze della classe 0 ISO (JIS). Esempio: KR22XLL

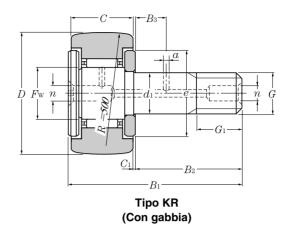
²⁾ Il foro di lubrificazione è previsti solo dal lato del perno dove si trova il rullo.


Perni folli NTN



Tipo KRV

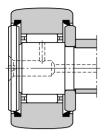
Tipo KRV · LL (A pieno riempimento) (A pieno riempimento e con tenute)

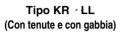

Tipo KR · H (Con cava per chiave a brugola)

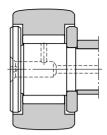
	pefficienti			Coeffic	ienti di car	ico della	rotella	Numero di	giri limite	col	sima opia	Appe	llativo	Mas (appross		Diametro del perno
	N	ŀ	kgf		N	kg	gf	rp	m	di ser	raggio			kg	,	mm
$C_{ m r}$	Cor	$C_{ m r}$	Cor	anello esterno sferico	anello esterno a cilindrico	anello esterno sferico	anello estemo cilindrico	grasso	olio	N·m	kgf⋅m	Tipo NR 1) Tipo KRV Ti	-	Tipo KR	Tipo KRV	
1 51	0 1 140	154	116	560	1 360	57	139	%27 000	% 40 000	0.5	0.05	KR10T2H/3A	KR10T2LLH	0.005	_	3
2 33	2 400	238	244	560	1 360	57	139	%25 000	%32 000	0.5	0.05	KRV10H	KRV10LLH	_ (0.005	3
2 03	0 1 550	207	159	725	1 790	74	183	%25 000	%36 000	1	0.1	KR12T2H/3A	KR12T2LLH	0.008	_	4
3 35	3 550	340	360	725	1 790	74	183	%20 000	%27 000	1	0.1	KRV12H	KRV12LLH	_ (800.0	4
2 48	0 2 070	253	211	805	2 220	82	226	%23 000	%33 000	2	0.2	KR13T2H/3A	KR13T2LLH	0.010	_	5
4 30	5 050	435	510	805	2 220	82	226	%17 000	%22 000	2	0.2	KRV13H	KRV13LLH	_ (0.011	5
3 85	3 950	395	400	1 080	3 400	110	350	%19 000	%25 000	3	0.3	KR16	KR16LL	0.019	_	6
6 25	0 8 900	640	910	1 080	3 400	110	350	%13 000	% 16 000	3	0.3	KRV16	KRV16LL	_ (0.020	6
4 50	5 100	460	520	1 380	4 050	141	415	%15 000	%20 000	8	0.8	KR19	KR19LL	0.031	_	8
7 20	0 11 200	735	1 140	1 380	4 050	141	415	10 000	% 13 000	8	0.8	KRV19	KRV19LL	_ (0.032	8
5 05	0 6 250	515	635	1 690	5 150	172	525	%12 000	% 16 000	15	1.5	KR22	KR22LL	0.046	_	10
7 90	0 13 300	810	1 360	1 690	5 150	172	525	8 500	%11 000	15	1.5	KRV22	KRV22LL	— (0.047	10
5 05	0 6 250	515	635	2 120	6 100	216	620	%12 000	% 16 000	15	1.5	KR26	KR26LL	0.059	_	10
7 90	0 13 300	810	1 360	2 120	6 100	216	620	8 500	%11 000	15	1.5	KRV26	KRV26LL	— (0.061	10
7 50	9 100	765	930	2 620	7 700	267	785	10 000	%13 000	22	2.2	KR30	KR30LL	0.087	_	12
11 70	0 19 500	1 190	1 980	2 620	7 700	267	785	6 500	8 500	22	2.2	KRV30	KRV30LL	<u> </u>	0.089	12
7 50	9 100	765	930	2 860	8 200	291	835	10 000	%13 000	22	2.2	KR32	KR32LL	0.097	_	12
11 70	0 19 500	1 190	1 980	2 860	8 200	291	835	6 500	8 500	22	2.2	KRV32	KRV32LL	— (0.100	12
11 80	0 17 300	1 210	1 760	3 200	11 900	325	1 220	8 000	%11 000	58	5.8	KR35	KR35LL	0.169	_	16
17 20	33 000	1 750	3 400	3 200	11 900	325	1 220	5 500	7 000	58	5.8	KRV35	KRV35LL	_ (0.172	16
13 60	0 22 100	1 390	2 250	3 850	14 500	390	1 480	7 000	9 000	87	8.7	KR40	KR40LL	0.248	_	18
18 90	0 40 500	1 930	4 150	3 850	14 500	390	1 480	4 500	6 000	87	8.7	KRV40	KRV40LL	_ (0.252	18
20 30	33 000	2 070	3 350	4 700	21 000	480	2 150	6 000	8 000	120	12	KR47	KR47LL	0.386	-	20
28 30	0 60 000	2 890	6 100	4 700	21 000	480	2 150	4 000	5 000	120	12	KRV47	KRV47LL	_ (0.390	20
20 30	33 000	2 070	3 350	5 550	23 300	565	2 370	6 000	8 000	120	12	KR52	KR52LL	0.461	_	20
28 30	0 60 000	2 890	6 100	5 550	23 300	565	2 370	4 000	5 000	120	12	KRV52	KRV52LL	_ (0.465	20
29 10	55 000	2 960	5 650	6 950	34 500	710	3 500	5 000	6 500	220	22	KR62	KR62LL	0.790	-	24

NOTA: 3) La cava per chiave a brugola è normale. Una non ha il foro di alimentazione del grasso. Riferimenti: 1. Il numero di giri limite dei cuscinetti con tenuta marcati ¾ è approssimativamente di 10 000 rpm.

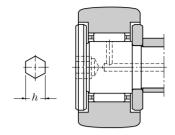
^{2.} La gabbia dei cuscinetti con suffisso T2 è in materiale plastico; la massima temperatura ammessa è di 120°C per breve durata: La massima temperatura continuativa di funzionamento è di 100°C od inferiore.

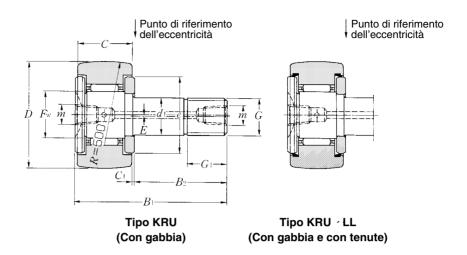

Tipo KR
Tipo KR··LL
Tipo KRV
Tipo KRV··LL




D 62∼90mm

					Dir	mensioni d'ingor	nbro						
D 0 -0.050	C	d1	$F_{ m w}$	B_1	B_2	$egin{array}{c} mm \\ G \end{array}$	G_1	C_1	n	B_3	a	e	h
62	29	24 ⁰ _{-0.021}	30	80	49.5	M24×1.5	25	0.8	8	11	4	44	8
72	29 29	24 ₀ 24 ^{-0.021}	30 30	80 80	49.5 49.5	M24×1.5 M24×1.5	25 25	0.8	8 8	11 11	4 4	44 44	8 8
80	35 35	30 ₀ 30 ^{-0.021}	38 38	100 100	63 63	M30×1.5 M30×1.5	32 32	1 1	8 8	15 15	4 4	53 53	8 8
85	35	30 _{-0.021}	38	100	63	M30×1.5	32	1	8	15	4	53	8
90	35 35	30 ₀ 30 ^{-0.021}	38 38	100 100	63 63	M30×1.5 M30×1.5	32 32	1	8 8	15 15	4 4	53 53	8 8

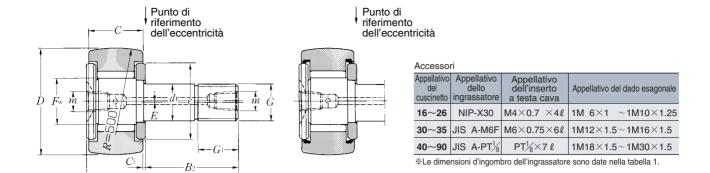

NOTA: 1) Il suffisso dei cuscinetti con l'anello esterno cilindrico è X. L'anello esterno è prodotto in conformità alle tolleranze della classe 0 ISO (JIS). Esempio: KR62XLL


Tipo KRV Tipo KRV · LL (A pieno riempimento) (A pieno riempimento e con tenute)

Tipo KR · H (Con cava per chiave a brugola)

din		efficienti statico d			Coeffic	ienti di car	ico della	rotella	Numero di g	jiri limite	cor	sima opia raggio	Ар	pellativo		ssimata)	Diametro del perno
		N		c	anello esterno	N anello esterno		anello esterno	rpr grasso	m olio		kgf·m		Tipo NR··LL ¹⁾	Tipo	Tipo	mm
20	C _r	Cor	Cr	Cor	sferico	cilindrico	sferico	cilindrico	3 300	4 500	220	22	KRV62	Tipo KRV··LL KRV62LL	KR —	0.800	24
	9 000	96 500				34 500											
	9 100	55 000 96 500				38 500 38 500		3 900 3 900	5 000 3 300	6 500 4 500	220 220	22 22	KR72 KRV72	KR72LL KRV72LL	1.04	1.05	24 24
	1 000	86 500				53 000			40 00	5 500	450	45	KR80	KR80LL	1.55	1.00	30
		144 000				53 000			2 600	3 500	450	45	KRV80	KRV80LL	I.33	1.56	30
		86 500							4 000	5 500	450	45	KR85	KR85LL	1.74	_	30
		86 500							4 000	5 500	450	45	KR90	KR90LL	1.95	_	30
		144 000							2 600	3 500	450	45	KRV90	KRV90LL	_	1.97	30

Tipo KRU··LL Tipo KRVU Tipo KRVU··LL

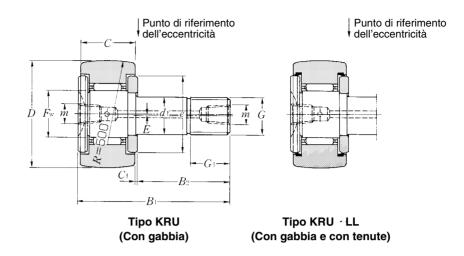

D 16∼80mm

					Dimen	sioni d'ingom	bro					C	oefficienti statico		o statico
						mm							N		kgf
D 0	C	d_1	$F_{\rm w}$	B_1	B_2	G	G_1	C_1	e	m	E	a	a	a	a
0 -0.050											eccentricità	$C_{\rm r}$	$C_{ m or}$	$C_{ m r}$	Cor
16	11	6 0	8	28	16	M 6×1	8	0.6	12	$M4 \times 0.7^{2)}$	0.25	3 850	3 950	395	400
	11	6 -0.012	8	28	16	M 6×1	8	0.6	12	$M4 \times 0.7^{2)}$	0.25	6 250	8 900	640	910
19	11	8 0	10	32	20	M 8×1.25	10	0.6	14	$M4 \times 0.7^{2)}$	0.25	4 500	5 100	460	520
19	11	8 -0.015	10	32	20	M 8×1.25	10	0.6	14	$M4 \times 0.7^{2)}$	0.25	7 200	11 200	735	1 140
00	12	10 ₀	12	36	23	M10×1.25	12	0.6	17	M4×0.7	0.3	5 050	6 250	515	635
22	12	10 -0.015	12	36	23	M10×1.25	12	0.6	17	M4×0.7	0.3	7 900	13 300	810	1 360
	12	10 ₀	12	36	23	M10×1.25	12	0.6	17	M4×0.7	0.3	5 050	6 250	515	635
26	12	10 -0.015	12	36	23	M10×1.25	12	0.6	17	M4×0.7	0.3	7 900	13 300	810	1 360
	14	12 ₀	15	40	25	M12×1.5	13	0.6	23	M6×0.75	0.4	7 500	9 100	765	930
30	14	12 -0.018	15	40	25	M12×1.5	13	0.6	23	M6×0.75	0.4	11 700	19 500	1 190	1 980
	14	12 ₀	15	40	25	M12×1.5	13	0.6	23	M6×0.75	0.4	7 500	9 100	765	930
32	14	12 -0.018	15	40	25	M12×1.5	13	0.6	23	M6×0.75	0.4	11 700	19 500	1 190	1 980
	18	16 o	18	52	32.5	M16×1.5	17	0.8	27	M6×0.75	0.5	11 800	17 300	1 210	1 760
35	18	16 -0.018	18	52	32.5	M16×1.5	17	0.8	27	M6×0.75	0.5	17 200	33 000	1 750	3 400
	20	18 ₀	22	58	36.5	M18×1.5	19	0.8	32	PT ¹ / ₈	0.6	13 600	22 100	1 390	2 250
40	20	18 -0.018	22	58	36.5	M18×1.5	19	0.8	32	PT1/8	0.6	18 900	40 500	1 930	4 150
	24	20 0	25	66	40.5	M20×1.5	21	0.8	37	PT ¹ / ₈	0.7	20 300	33 000	2 070	3 350
47	24	20 -0.021	25	66	40.5	M20×1.5	21	0.8	37	PT ¹ / ₈	0.7	28 300	60 000	2 890	6 100
	24	20 0	25	66	40.5	M20×1.5	21	0.8	37	PT ¹ / ₈	0.7	20 300	33 000	2 070	3 350
52	24	20 -0.021	25	66	40.5	M20×1.5	21	0.8	37	PT ¹ / ₈	0.7	28 300	60 000	2 890	6 100
	29	24 0	30	80	49.5	M24×1.5	25	0.8	44	PT ¹ / ₈	0.8	29 100	55 000	2 960	5 650
62	29	24 ^{-0.021}	30	80	49.5	M24×1.5	25	0.8	44	PT ¹ / ₈	0.8	39 000	96 500	3 950	9 850
	29	24 0	30	80	49.5	M24×1.5	25	0.8	44	PT ¹ / ₈	0.8	29 100	55 000	2 960	5 650
72	29	24 ^{-0.021}	30	80	49.5	$M24\times1.5$ $M24\times1.5$	25	0.8	44	PT ¹ / ₈	0.8	39 000	96 500	3 950	9 850
	35	30 0	38	100	63	M30×1.5	32	1	53	PT ¹ / ₈	1.0	44 000	86 500	4 500	8 800
80	35	30 ^{-0.021}	38	100	63	M30×1.5	32	1	53	PT ¹ / ₈	1.0		144 000	5 800	
	00		00	100	00	111007.110	02	,	-00	1/8	1.0	37 000		3 000	
NOTA:	1) II out	fficos dei ouco	inotti c	on l'onel	lo octorno	cilindrico à X	diamet	o ootorn	o "D" do	ll'analla aatarn	o di guanto	augainatta à	prodotto in o	ocordo all	o ologoo O

NOTA: 1) Il suffisso dei cuscinetti con l'anello esterno cilindrico è X. Il diametro esterno "D" dell'anello esterno di questo cuscinetto è prodotto in accordo alla classe 0 delle norme ISO (JIS). Esempio: KRU52XLL

²⁾ Il foro filettato si trova solo sulla superficie laterale del cuscinetto.

 $-B_1$

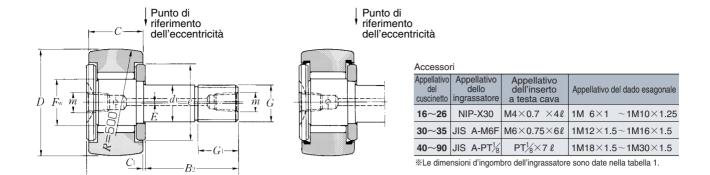


Tipo KRVU Tipo KRVU · LL (A pieno riempimento) (A pieno riempimento e con tenute)

Coeffic	cienti di ca	rico della	rotella	Numero d	i giri limite	cop	sima opia raggio	App	ellativo		ssa ssimata)	Diametro del perno
	N		kgf		om 			1)	1)	k	g	mm
anello esterno sferico	anello esterno cilindrico	anello esterno sferico	anello esterno cilindrico	grasso	olio	N·m	kgf∙m	Tipo KRU 1) Tipo KRVU	Tipo KRVU··LL	Tipo KRU	Tipo KRVU	
1 080	3 400	110	350	% 19 000	%25 000	3	0.3	KRU16	KRU16LL	0.019	_	6
1 080	3 400	110	350	%13 000	% 16 000	3	0.3	KRVU16	KRVU16LL	_	0.020	6
1 380	4 050	141	415	% 15 000	%20 000	8	0.8	KRU19	KRU19LL	0.031	_	8
1 380	4 050	141	415	10 000	% 13 000	8	8.0	KRVU19	KRVU19LL	_	0.032	8
1 690	5 150	172	525	% 12 000	% 16 000	15	1.5	KRU22	KRU22LL	0.046	_	10
1 690	5 150	172	525	8 500	%11 000	15	1.5	KRVU22	KRVU22LL	_	0.047	10
2 120	6 100	216	620	%12 000	% 16 000	15	1.5	KRU26	KRU26LL	0.059	_	10
2 120	6 100	216	620	8 500	%11 000	15	1.5	KRVU26	KRVU26LL	_	0.061	10
2 620	7 700	267	785	10 000	%13 000	22	2.2	KRU30	KRU30LL	0.087	_	12
2 620	7 700	267	785	6 500	8 500	22	2.2	KRVU30	KRVU30LL	_	0.089	12
2 860	8 200	291	835	10 000	%13 000	22	2.2	KRU32	KRU32LL	0.097	_	12
2 860	8 200	291	835	6 500	8 500	22	2.2	KRVU32	KRVU32LL	_	0.100	12
3 200	11 900	325	1 220	8 000	%11 000	58	5.8	KRU35	KRU35LL	0.169	_	16
3 200	11 900	325	1 220	5 500	7 000	58	5.8	KRVU35	KRVU35LL	_	0.172	16
3 850	14 500	390	1 480	7 000	9 000	87	8.7	KRU40	KRU40LL	0.248	_	18
3 850	14 500	390	1 480	4 500	6 000	87	8.7	KRVU40	KRVU40LL	_	0.252	18
4 700	21 000	480	2 150	6 000	8 000	120	12	KRU47	KRU47LL	0.386	_	20
4 700	21 000	480	2 150	4 000	5 000	120	12	KRVU47	KRVU47LL	_	0.390	20
5 550	23 300	565	2 370	6 000	8 000	120	12	KRU52	KRU52LL	0.461	_	20
5 550	23 300	565	2 370	4 000	5 000	120	12	KRVU52	KRVU52LL	_	0.465	20
6 950	34 500	710	3 500	5 000	6 500	220	22	KRU62	KRU62LL	0.790	_	24
6 950	34 500	710	3 500	3 300	4 500	220	22	KRVU62	KRVU62LL	_	0.800	24
8 050	38 500	820	3 900	5 000	6 500	220	22	KRU72	KRU72LL	1.04	_	24
8 050	38 500	820	3 900	3 300	4 500	220	22	KRVU72	KRVU72LL	_	1.05	24
9 800	53 000	1 000	5 400	4 000	5 500	450	45	KRU80	KRU80LL	1.55	_	30
9 800	53 000	1 000	5 400	2 600	3 500	450	45	KRVU80	KRVU80LL	_	1.56	30
					arcati "※" è appr							

Osservazione: Il numero di giri limite dei cuscinetti con tenuta marcati "%" è approssimativamente di 10 000 rpm.

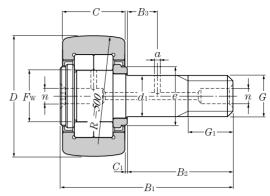
Tipo KRU··LL Tipo KRVU Tipo KRVU··LL



D 85∼90mm

		00111111													
					Dime	nsioni d'ingom	bro					dinamico	oefficienti statico		o statico
						mm							N Statico		kgf
<i>D</i> 0 -0.050	C	d_1	$F_{ m w}$	<i>B</i> ₁	B_2	G	G_1	C_1	e	m	E eccentricità	$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$
85	35	30 _{-0.021}	38	100	63	M30×1.5	32	1	53	PT1/8	1.0	44 000	86 500	4 500	8 800
90	35 35	30 ₀ 30 ^{-0.021}	38 38	100 100	63 63	M30×1.5 M30×1.5	32 32	1	53 53	PT ¹ / ₈ PT ¹ / ₈	1.0 1.0	44 000 57 000	86 500 144 000	4 500 5 800	8 800 14 700

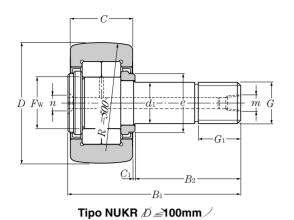
NOTA: 1) Il suffisso dei cuscinetti con l'anello esterno cilindrico è X. Il diametro esterno "D" dell'anello esterno di questo cuscinetto è prodotto in accordo alla classe 0 delle norme ISO (JIS). Esempio: KRU85XLL

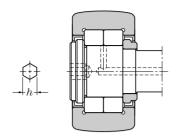

 $-B_1$

Tipo KRVU Tipo KRVU · LL
(A pieno riempimento) (A pieno riempimento e con tenute)

٨	anello esterno anello esterno anello esterno			rp	giri limite	cop	sima pia aggio	Арр	ellativo	(appros		Diametro del perno mm
	anello estemo cilindrico			grasso	olio	N∙m	kgf∙m	Tipo KRU 1) Tipo KRVU	Tipo KRU··LL 1) Tipo KRVU··LL	Tipo KRU	Tipo KRVU	
10 400	56 000	1 060	5 750	4 000	5 500	450	45	KRU85	KRU85LL	1.74	_	30
sferico 10 400 11 400	cilindrico	sferico	cilindrico	4 000 2 600	5 500 5 500 3 500	450 450 450	45 45 45			KRU	KRVU	30 30 30

Tipo NUKR

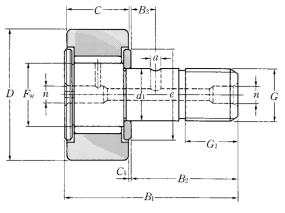



Tipo NUKR Ø <100mm / A due corone, a pieno /riempimento e con tenute/

D 35∼180mm

						Dimensioni d'in	gombro							
						mm								
<i>D</i> 0 -0.050	C	d_1	$F_{ m w}$	B_1	B_2	G	G_1	C_1	n	m	B_3	a	e	h
35	18	16 _{-0.018}	19	52	32.5	M16×1.5	17	0.8	6	_	8	3	21	6
40	20	18 _{-0.018}	21.5	58	36.5	M18×1.5	19	0.8	6	_	8	3	23	6
47	24	20 -0.021	25.5	66	40.5	M20×1.5	21	0.8	8	_	9	4	27	8
52	24	20 0 -0.021	30	66	40.5	M20×1.5	21	0.8	8	_	9	4	31	8
62	29	24 ⁰ _{-0.021}	35	80	49.5	M24×1.5	25	0.8	8	_	11	4	38	8
72	29	24 ⁰ _{-0.021}	41.5	80	49.5	M24×1.5	25	0.8	8	_	11	4	44	8
80	35	30 -0.021	47.5	100	63	M30×1.5	32	1	8	_	15	4	51	8
90	35	30 -0.021	47.5	100	63	M30×1.5	32	1	8	_	15	4	51	8
100	43	36 _{-0.025}	48.5	120	74	M36×1.5	38	1.5	8	PT ¹ / ₈	_	_	53	14
120	50	42 ⁰ _{-0.025}	60.5	140	87	M42×1.5	44	1.5	8	PT ¹ / ₈	_	_	66	14
140	57	48 0 -0.025	65	160	100	M48×1.5	52	1.5	8	PT ¹ / ₈	_	_	72.5	14
150	60	52 _{-0.030}	75.5	170	107	M52×1.5	52	1.5	8	PT ¹ / ₈	_	_	85.5	17
160	63	56 _{-0.030}	80.5	180	113	M56×3	58	2	8	PT ¹ / ₈	_	_	89.5	17
170	66	60 _{-0.030}	86	190	120	M60×3	58	2	8	PT ¹ / ₈	_	_	96.5	17
180	72	64 -0.030	91.5	200	124	M64×3	65	2	8	PT ¹ / ₈	_	_	103.5	17

NOTA: 1) Il suffisso dei cuscinetti con l'anello esterno cilindrico è X. L'anello esterno è prodotto in conformità alle tolleranze della classe 0 ISO (JIS). Esempio: NUKR52X

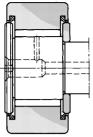

Tipo NUKR · H (Con cava per chiave a brugola)

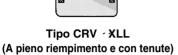
	Coefficient			Coeffic	ienti di ca	rico della	rotella	Numero di		ssima	Appellativo	Massa	Diametro
dinamico	statico N	dinamico k	statico gf	ı	N	kg	gf	giri limite rpm		ppia rraggio		(approssimata)	del perno mm
$C_{ m r}$	Cor	$C_{ m r}$	Cor	anello esterno sferico	anello esterno cilindrico			grasso	N∙m	kgf∙m	Tipo NUKR 1)	Tipo NUKR	
22 300	25 700	2 280	2 620	3 200	11 900	325	1 220	5 500	58	5.8	NUKR 35	0.165	16
24 100	29 100	2 450	2 970	3 850	14 500	390	1 480	4 700	87	8.7	NUKR 40	0.242	18
38 500	48 000	3 950	4 900	4 700	21 000	480	2 150	4 000	120	12	NUKR 47	0.380	20
42 500	57 500	4 350	5 850	5 550	23 300	565	2 370	3 300	120	12	NUKR 52	0.450	20
56 500	72 500	5 750	7 400	6 950	34 500	710	3 500	2 900	220	22	NUKR 62	0.795	24
62 000	85 500	6 350	8 700	8 050	38 500	820	3 900	2 400	220	22	NUKR 72	1.01	24
101 000	151 000	10 300	15 400	9 800	53 000	1 000	5 400	2 100	450	45	NUKR 80	1.54	30
101 000	151 000	10 300	15 400	11 400	59 000	1 160	6 100	2 100	450	45	NUKR 90	1.96	30
119 000	167 000	12 100	17 000	13 000	79 000	1 300	8 050	2 000	500	50	NUKR100	3.08	36
172 000	266 000	17 600	27 100	16 400	113 000	1 670	11 500	1 700	1 000	100	NUKR120	5.17	42
201 000	294 000	20 500	30 000	20 000	152 000	2 040	15 500	1 500	1 500	150	NUKR140	7.98	48
258 000	380 000	26 300	39 000	22 000	173 000	2 250	17 600	1 300	2 000	200	NUKR150	9.70	52
274 000	400 000	27 900	41 000	24 000	194 000	2 450	19 800	1 200	2 500	250	NUKR160	11.7	56
320 000	475 000	32 500	48 500	26 000	218 000	2 650	22 200	1 100	3 000	300	NUKR170	13.9	60
365 000	555 000	37 500	56 500	27 900	253 000	2 840	25 800	1 000	3 500	350	NUKR180	17.0	64

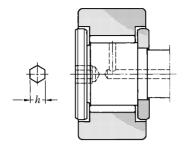
Perni folli

Serie in pollici

Tipo CRV··X
Tipo CRV··XLL

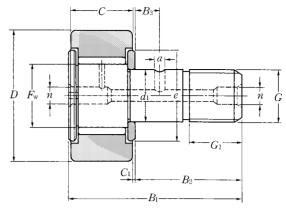

Tipo CRV · X
(A pieno riempimento)


D 12.700~127.00mm


	Dimensioni d'ingombro													
.	<i>a</i>				ım (½ _{5.4} mn		<i>a</i>	~		T.			,	
D 0 -0.025	C 0 -0.130	#0.025	$F_{ m w}$	<i>B</i> ₁	B_2	G	G_1	C_1	n	B_3	a	e	h	
12.700(½)	8.731(11/32)	4.826(-)	5.75	23	12.7	NO-10-32UNF	6.4	0.8	32)	_	_	10	1/8	
	9.525(3/8)	4.826(-)	5.75	27	15.9	NO-10-32UNF	6.4	0.8	3 ²⁾	_	_	10	1/8	
15.875(5⁄8)	10.319(13/32)	6.350(1/4)	8.11	27.8	15.9	½-28UNF	7.9	0.8	42)	_	-	12.5	1/8	
	11.112(7/16)	6.350(1/4)	8.11	31.8	19.1	½-28UNF	7.9	0.8	42)		_	12.5	1/8	
19.050(¾)	12.700(½)	9.525(¾)	11	36.5	22.2	³ / ₈ -24UNF	9.5	0.8	4	6.35	3	15.5	3/16	
22.225(%)	12.700(½)	9.525(3/8)	11	36.5	22.2	³ ⁄ ₈ -24UNF	9.5	0.8	4	6.35	3	15.5	3/16	
25.400(1)	15.875(5/8)	11.112(7/16)	14	43	25.4	½ ₁₆ -20UNF	12.7	0.8	4	6.35	3	19.5	1/4	
28.575(1 1/8)	15.875(5/8)	11.112(7/16)	14	43	25.4	$\frac{7}{16}$ -20UNF	12.7	0.8	4	6.35	3	19.5	1/4	
31.750(1 1/4)	19.050(¾)	12.700(½)	18.47	52.4	31.8	½-20UNF	15.9	0.8	6	7.94	3	25	1/4	
34.925(1 ¾)	19.050(¾)	12.700(½)	18.47	52.4	31.8	$\frac{1}{2}$ -20UNF	15.9	0.8	6	7.94	3	25	1/4	
38.100(1 ½)	22.225(%)	15.875(5/8)	21	61.9	38.1	½-18UNF	19.1	0.8	6	9.53	4	27	⁵ / ₁₆	
41.275(1 5/8)	22.225(%)	15.875(5/8)	21	61.9	38.1	½-18UNF	19.1	0.8	6	9.53	4	27	⁵ / ₁₆	
44.450(1 ¾)	25.400(1)	19.050(¾)	24.65	71.4	44.5	³ ⁄ ₄ -16UNF	22.2	0.8	6	11.11	4	36.5	⁵ / ₁₆	
47.625(1 ¾)	25.400(1)	19.050(¾)	24.65	71.4	44.5	³ ⁄ ₄ -16UNF	22.2	0.8	6	11.11	4	36.5	⁵ / ₁₆	
50.800(2)	31.750(1 1/4)	22.225(%)	26.71	84.1	50.8	⅓-14UNF	25.4	0.8	6	12.7	5	36.5	7/16	
57.150(2 1/4)	31.750(1 1/4)	22.225(%)	26.71	84.1	50.8	½-14UNF	25.4	0.8	6	12.7	5	36.5	7/16	
63.500(2 ½)	38.100(1½)	25.400(1)	31.15	96.8	57.2	1-14UNF	28.6	0.8	6	14.29	5	44	1/2	
69.850(2 3/4)	38.100(1 ½)	25.400(1)	31.15	96.8	57.2	1-14UNF	28.6	0.8	6	14.29	5	44	1/2	
76.200(3)	44.450(1 ¾)	31.750(1 1/4)	36.85	109.5	63.5	1 ½-12UNF	31.8	0.8	8	15.88	5	53	5/8	
82.550(3 1/4)	44.450(1 ¾)	31.750(1 1/4)	36.85	109.5	63.5	1 ½-12UNF	31.8	0.8	8	15.88	5	53	5/8	
88.900(3 ½)	50.800(2)	34.925(1 ¾)	44.5	122.2	69.9	1 ³ ⁄ ₈ -12UNF	34.9	0.8	8	17.46	5	60	5/8	
101.600(4)	57.150(2 1/4)	38.100(1½)	44.5	147.6	88.9	1 ½-12UNF	38.1	0.8	8	19.05	5	63	3/4	
127.000(5)	69.850(2 ¾)	50.800(2)	68.7	200	128.6	2-12UNF	65.1	0.8	8	22.23	5	89	<i>7</i> ⁄ ₈	

NOTA: 1) Un cuscinetto con superficie esterna sferica non ha il suffisso "X" nell'appellativo. Il diametro esterno "D" dell'anello esterno di questo cuscinetto con superficie esterna sferica (R=500) è prodotto con una tolleranza di $_{0.05}^{0}$. Esempio: **CRV8**

Perni folli

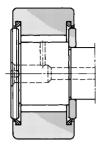

Tipo CRV · H (Con cava per chiave abrugola)

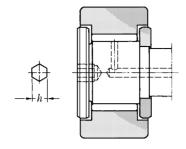
	Coefficienti di carico dinamico statico		Coefficienti di carico della rotella				Numero d	i giri limite	Mass	pia	Appe	llativo	Massa (approssimata)	
	N	ŀ	kgf		N	kç	gf		om	di seri				kg
$C_{ m r}$	Cor	$C_{ m r}$	$C_{ m or}$	anello esterno sferico	anello esterno cilindrico	anello esterno sferico	anello esterno cilindrico	grasso	olio	N·m	kgf⋅m	Tipo CRV··X 1)	Tipo CRV··XLL ¹⁾	Tipo CRV··X
3 200	3 450	325	350	2 090	790	213	81	%17 000	%22 000	2	0.2	CRV8X	CRV8XLL	0.010
3 750	4 250	380	430	2 310	790	235	81	※17 000	%22 000	2	0.2	CRV8-1X	CRV8-1XLL	0.011
5 300	7 150	540	725	3 000	1 080	310	110	% 12 000	% 15 000	4	0.4	CRV10X	CRV10XLL	0.020
5 950	8 250	605	840	3 300	1 080	335	110	%12 000	%15 000	4	0.4	CRV10-1X	CRV10-1XLL	0.022
7 800	12 700	795	1 290	4 600	1 380	470	140	9 000	%11 000	15	1.5	CRV12X	CRV12XLL	0.038
7 800	12 700	795	1 290	5 350	1 710	545	174	9 000	%11 000	15	1.5	CRV14X	CRV14XLL	0.048
11 300	18 100	1 150	1 850	7 400	2 060	755	210	7 100	9 200	22	2.2	CRV16X	CRV16XLL	0.080
11 300	18 100	1 150	1 850	8 350	2 430	850	248	7 100	9 200	22	2.2	CRV18X	CRV18XLL	0.096
17 300	34 000	1 770	3 450	11 400	2 840	1 160	290	5 400	7 000	32	3.2	CRV20X	CRV20XLL	0.140
17 300	34 000	1 770	3 450	12 500	3 250	1 280	330	5 400	7 000	32	3.2	CRV22X	CRV22XLL	0.165
20 700	44 500	2 110	4 550	16 300	3 600	1 660	365	4 800	6 200	58	5.8	CRV24X	CRV24XLL	0.240
20 700	44 500	2 110	4 550	17 600	4 050	1 800	410	4 800	6 200	58	5.8	CRV26X	CRV26XLL	0.280
28 000	59 000	2 850	6 000	21 600	4 400	2 200	450	4 100	5 300	120	12	CRV28X	CRV28XLL	0.400
28 000	59 000	2 850	6 000	23 200	4 850	2 360	495	4 100	5 300	120	12	CRV30X	CRV30XLL	0.440
40 500	86 000	4 150	8 800	31 000	5 300	3 150	540	3 700	4 800	170	17	CRV32X	CRV32XLL	0.650
40 500	86 000	4 150	8 800	35 000	6 200	3 550	635	3 700	4 800	170	17	CRV36X	CRV36XLL	0.780
54 000	117 000	5 500	11 900	44 500	7 200	4 550	735	3 200	4 100	240	24	CRV40X	CRV40XLL	1.20
54 000	117 000	5 500	11 900	49 000	8 250	5 000	840	3 200	4 100	240	24	CRV44X	CRV44XLL	1.34
75 500	174 000	7 700	17 700	64 000	9 150	6 500	935	2 700	3 500	470	47	CRV48X	CRV48XLL	1.92
75 500	174 000	7 700	17 700	69 000	10 000	7 050	1 020	2 700	3 500	470	47	CRV52X	CRV52XLL	2.20
83 500	210 000	8 500	21 400	86 500	11 100	8 800	1 130	2 200	2 800	630	63	CRV56X	CRV56XLL	2.92
105 000	240 000	10 700	24 500	113 000	13 200	11 500	1 350	2 200	2 800	810	81	CRV64X	CRV64XLL	4.32
188 000	515 000	19 100	52 500	165 000	17 900	16 900	1 830	1 500	1 900	1 900	190	CRV80X	CRV80XLL	8.80

NOTA: 2) Il foro di lubrificazione è posto sulla superficie frontale lato rullo. La cava per chiave a brugola non ha il foro di lubrificazione. Osservazione: Il numero di giri limite dei cuscinetti con tenuta marcati "%" è approssimativamente di 10 000 rpm.

Serie in pollici

Tipo CRV··X
Tipo CRV··XLL




Tipo CRV · X
(A pieno riempimento)

D 152.400mm

				Dimensi	oni d'ing	ombro							
<i>D</i> 0 -0.025	C 0 -0.130	#0.025	$F_{ m w}$	B_1	m (½ _{5.4} mm)) G	G_1	C_1	n	B_3	a	e	h
152.400(6)	82.550(31/4)	63.500(2½)	81.35	236.6	152.4	2½-12UNF	76.2	0.8	8	25.4	5	110	1

NOTA: 1) Un cuscinetto con superficie esterna sferica non ha il suffisso "X" nell'appellativo. Il diametro esterno "D" dell'anello esterno di questo cuscinetto con superficie esterna sferica (R=500) è prodotto con una tolleranza di $_{0.05}^{0}$. Esempio: **CRV96**

Tipo CRV · XLL (A pieno riempimento e con tenute)

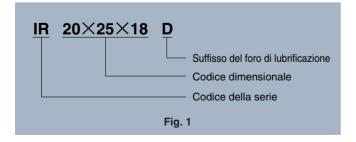
Tipo CRV · H (Con cava per chiave abrugola)

dinamico	oefficient statico N	dinamico	statico			rico della		Numero di gi		Massima coppia di serraggio	Appe	llativo	Massa (approssimata)
$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$	anello esterno sferico	N anello esterno cilindrico		gf anello esterno cilindrico	rpm grasso	olio	N·m kgf·m	Tipo CRV··X 1)	Tipo CRV··XLL ¹⁾	kg Tipo CRV··X
	660 000		67 500	240 000				1 200	1 500	3 500 350	CRV96X	CRV96XLL CRV96XLL	15.3

Anelli interni / Rullini / Anelli elastici / Anelli di tenuta

Anelli Interni

Molti cuscinetti a rullini non hanno l'anello interno poiché la stessa superficie dell'albero viene utilizzata come pista volvente. Comunque, se l'albero non può essere temprato superficialmente e rettificato, noi raccomandiamo l'uso degli anelli interni NTN descritti in questo paragrafo.


Gli anelli interni NTN sono prodotti in acciaio al cromo con alto tenore di carbonio per cuscinetti volventi e, dopo il trattamento termico, sono rettificati di precisione. Quando lo spostamento assiale dell'albero rispetto allo alloggiamento è elevato o se vengono impiegati degli anelli di tenuta esterni al cuscinetto, noi raccomandiamo l'impiego di anelli interni di larghezza maggiorata.

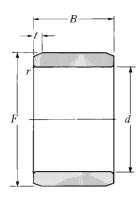
Tipi ed esecuzioni

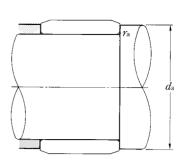
Gli anelli interni NTN sono disponibili nella serie IR, con dimensioni d'ingombro metriche, e nella serie MI con dimensioni in pollici. Entrambe le estremità degli anelli interni sono smussate per facilitare il montaggio. Gli anelli interni marcati con asterisco hanno uno smusso ridotto al fine di poter permettere uno spostamento assiale maggiore. La NTN offre anche degli anelli interni con foro di lubrificazione posto nella mezzeria dell'anello stesso suffisso D). Per una precisione di rotazione molto più elevata, la pista dell'anello interno può essere finita di rettifica dopo che l'anello sia stato montato sull'albero. Per poter soddisfare tale esigenza la NTN può fornire degli anelli interni la cui superficie esterna ha un sovrametallo di rettifica. Per maggiori dettagli prendere contatto con l'assistenza tecnica NTN.

Appellativo

Gli appellativi degli anelli interni NTN comprendono il codice della serie,(IR o MI), il codice dimensionale (diametro interno $(d)\times$ diametro della pista $(F)\times$ larghezza (B)) ed il suffisso. Le dimensioni della **serie MI** (denominate in pollici) sono indicate con intervalli di 1/16 di pollice

Tolleranze degli anelli interni


La precisione dimensionale del diametro del foro (d), della larghezza (B) e del raggio di raccordo $(r_{\rm smin})$, la precisione di forma e quella di rotazione degli anelli interni NTN sono indicate nel **Paragrafo 6 "Tolleranze dei cuscinetti"**, **Tabelle 6.2** e **6.4**, alle pagg. A-28, 29, 31. Le tolleranze normali degli anelli interni NTN corrispondono alla classe 0 delle norme JIS/ISO. Comunque, la NTN può produrre degli anelli interni nelle classi di tolleranza JIS/ISO 4, 5 e 6.


Le tolleranze del diametro della pista (*F*) nelle tabelle dimensionali indicano che, quando gli anelli interni vengono combinati con i cuscinetti a rullini, il giuoco radiale risultante diventa normale (**Par. 8 "Giuoco del cuscinetto", Tabella 8.1**, pag. A-40).

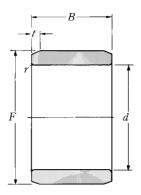
Nel caso venga preso in considerazione un giuoco diverso da quello normale, preghiamo di consultare l'assistenza tecnica NTN.

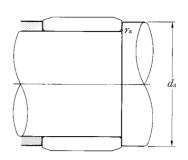
Anelli interni NTN

Tipo IR

d 5∼10mm

	Dimensio	ni d'ingomb	oro		Appellativo	Dimens monta	Massa	
		mm				m		kg
d	F ¹⁾	В	_{7's min} 2)	t		d _a min	$r_{ m as}$ max	(approssimata)
	7	10	0.15	1	IR 5× 7×10	6.2	0.15	0.0014
5	8 0 -0.006	12	0.3	1	IR 5× 8×12	7	0.3	0.0028
	8	16	0.3	_	%IR 5× 8×16	7	0.3	0.0038
	8	10	0.15	1	IR 6× 8×10	7.2	0.15	0.0017
	9	12	0.3	1	IR 6× 9×12	8	0.3	0.0032
6	9 0	16	0.3	1	IR 6× 9×16	8	0.3	0.0043
0	10 ^{-0.006}	10	0.3	1	IR 6×10×10	8	0.3	0.0037
	10	12	0.3	_	%IR 6×10×12D	8	0.3	0.0046
	10	13	0.3	1	IR 6×10×13	8	0.3	0.0050
	9	10	0.15	1	IR 7× 9×10	8.2	0.15	0.0019
	10 0	10.5	0.3	1	IR 7×10×10.5	9	0.3	0.0031
7	10 -0.006	12	0.3	1	IR 7×10×12	9	0.3	0.0036
	10	16	0.3	1	IR 7×10×16	9	0.3	0.0049
	12 0 -0.008	16	0.3	1	IR 7×12×16	9	0.3	0.0093
	10 0 -0.006	11	0.15	1	IR 8×10×11	9.2	0.15	0.0024
	12	10	0.3	1	IR 8×12×10	10	0.3	0.0048
8	12	10.5	0.3	1	IR 8×12×10.5	10	0.3	0.0050
0	12 ⁰ _{-0.008}	12	0.3	_	%IR 8×12×12D	10	0.3	0.0057
	12	12.5	0.3	1	IR 8×12×12.5	10	0.3	0.0059
	14	16	0.3	1	IR 8×14×16	10	0.3	0.013
	12	11	0.3	1	IR 9×12×11	11	0.3	0.0041
9	12 ₀	12	0.3	1	IR 9×12×12	11	0.3	0.0045
9	12 -0.008	16	0.3	1	IR 9×12×16	11	0.3	0.0061
	15	16	0.3	1	IR 9×15×16	11	0.3	0.014
	13	12.5	0.3	1	IR10×13×12.5	12	0.3	0.0052
	14	12	0.3	1	IR10×14×12	12	0.3	0.0073
10	14 0	13	0.3	1	IR10×14×13	12	0.3	0.0074
10	14 -0.008	14	0.3	_	%IR10×14×14D	12	0.3	0.0080
	14	16	0.3	_	%IR10×14×16	12	0.3	0.0092
	14	20	0.3	1	IR10×14×20	12	0.3	0.012


NOTA:
1) La tolleranza di questa dimensione permette un giuoco normale quando l'anello interno è combinato con un cuscinetto a rullini che ne sia privo.
2) Valore minimo del raggio di raccordo r.


Osservazioni: 1. Il suffisso "D" specifica che l'anello interno dispone di un foro di lubrificazione.
2. Un anello interno il cui appellativo contiene il simbolo "%" ha le estremità con smusso ridotto.

B-179

Anelli interni NTN

Tipo IR

d 10∼15mm

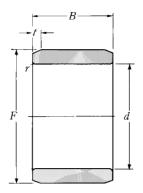
March Marc		Dimensio	ni d'ingomb	pro		Appellativo	Dimen mont	Massa	
d F¹) B r _{x-me} ² t min max (approsimata) 10 15 15.5 0.3 1 IR10×15×15.5 12 0.3 0.012 16 16 16 0.3 1 IR10×15×20.5 12 0.3 0.015 15 12 0.3 1 IR10×16×16 12 0.3 0.015 15 12 0.3 1 IR12×15×12.5 14 0.3 0.0061 15 12.5 0.3 1 IR12×15×12.5 14 0.3 0.0061 15 16.5 0.3 1 IR12×15×12.5 14 0.3 0.0078 15 16.5 0.3 1 IR12×15×12.5 14 0.3 0.0080 15 16.0 0.3 1.5 IR12×15×12.5 14 0.3 0.0079 16 12 0.3 1.5 IR12×16×12 14 0.3 0.0079 12 16.0			mm						kg
10	d	F ¹⁾	В	γ _{s min} 2)	t				(approssimata)
16			15.5	0.3	1	IR10×15×15.5	12	0.3	0.012
16	10	15 ⁰ _{-0.008}	20.5	0.3	1	IR10×15×20.5	12	0.3	0.015
15 12.5 0.3 1 IR12×15×12.5 14 0.3 0.0061 15 16 0.3 1 IR12×15×16 14 0.3 0.0078 15 16.5 0.3 - #IR12×15×25.5 14 0.3 0.0080 15 22.5 0.3 - #IR12×15×25.5 14 0.3 0.011 16 12 0.3 1.5 IR12×16×13 14 0.3 0.0087 16 0.008 14 0.3 - #IR12×16×16 14 0.3 0.0095 16 16 0.3 1.5 IR12×16×16 14 0.3 0.0095 16 16 0.3 1.5 IR12×16×16 14 0.3 0.0095 16 16 0.3 1.5 IR12×16×20 14 0.3 0.011 16 20 0.3 1.5 IR12×16×20 14 0.3 0.015 17 20.5 0.3 1.5 IR12×17×20.5 14 0.3 0.019 17 25.5 0.3 1.5 IR12×17×20.5 14 0.3 0.019 17 25.5 0.3 1.5 IR12×17×25.5 14 0.3 0.018 18 16 0.3 1.5 IR12×17×25.5 14 0.3 0.018 14 17 0.008 17 0.3 1.5 IR12×18×16 14 0.3 0.018 18 16 0.3 1.5 IR12×18×16 14 0.3 0.0095 18 16 0.3 1.5 IR12×18×16 17 0.3 0.0095 18 16 0.3 1.5 IR15×18×12.5 17 0.3 0.0095 18 16 0.3 1.5 IR15×18×12.5 17 0.3 0.0096 18 16 0.3 1.5 IR15×18×12.5 17 0.3 0.0096 18 16 0.3 1.5 IR15×18×12.5 17 0.3 0.0096 18 0.00 16 0.3 1.5 IR15×18×12.5 17 0.3 0.0096 18 0.00 16 0.3 1.5 IR15×18×12.5 17 0.3 0.0096 18 0.00 16 0.3 1.5 IR15×18×12.5 17 0.3 0.010 18 0.00 16 0.3 1.5 IR15×18×20.5 17 0.3 0.015 19 16 0.3 1.5 IR15×18×20.5 17 0.3 0.015 19 16 0.3 1.5 IR15×18×20.5 17 0.3 0.015 20 0.3 1.5 IR15×18×20.5 17 0.3 0.015 20 0.4 0.00 13 0.3 1.5 IR15×19×20 17 0.3 0.015 20 12 0.3 1.5 IR15×19×20 17 0.3 0.016 20 14 0.3 - #IR15×20×12 17 0.3 0.016 20 14 0.3 - #IR15×20×14 17 0.3 0.015			16	0.3	1	IR10×16×16	12	0.3	0.015
15 16 0.3 1 IR12×15×16 14 0.3 0.0078 15 16.5 0.3 -		15	12	0.3	1	IR12×15×12	14	0.3	0.0058
15		15	12.5	0.3	1	IR12×15×12.5	14	0.3	0.0061
15		15	16	0.3	1	IR12×15×16	14	0.3	0.0078
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		15	16.5	0.3	_	%IR12×15×16.5	14	0.3	0.0080
12		15	22.5	0.3	_	%IR12×15×22.5	14	0.3	0.011
12 16 0.008 14 0.3 - 0.0095 RI12×16×16 14 0.3 0.0095 16 16 0.3 1.5 R12×16×16 14 0.3 0.011 16 20 0.3 1.5 R12×16×20 14 0.3 0.014 16 22 0.3 1.5 R12×16×22 14 0.3 0.015 17 20.5 0.3 1.5 R12×17×20.5 14 0.3 0.019 0.019 17 25.5 0.3 1.5 R12×17×25.5 14 0.3 0.024 0.024 18 16 0.3 1.5 R12×18×16 14 0.3 0.018 14 17 0.008 17 0.3 1.5 R14×17×17 16 0.3 0.0095 18 16 0.3 1.5 R15×18×12.5 17 0.3 0.0095 18 16 0.3 1.5 R15×18×16.5 17 0.3 0.0093 18 0 16.5 0.3 1.5 R15×18×16.5 17 0.3 0.0093 18 0 16.5 0.3 1.5 R15×18×16.5 17 0.3 0.0096 18 0 0.008 17.5 0.3 1.5 R15×18×16.5 17 0.3 0.010 18 0 0.009 17.5 0.3 1.5 R15×18×20.5 17 0.3 0.010 18 0 0.009 17.5 0.3 1.5 R15×18×10.5 17 0.3 0.010 18 0 0.009 17.5 0.3 1.5 R15×18×20.5 17 0.3 0.010 19 10 0 0.3 1.5 0.3 1.5 0.5 0.3 1.5 0.5 0.3 1.5 0.000 R15×19×10 0.0 17 0.3 0.010 10 0 0 0 0 0 0 0.0 1.5 0.000 R15×19×20×12 0.000 R17 0.3 0.010		16	12	0.3	1.5	IR12×16×12	14	0.3	0.0079
16 -0.008	10	16 ₀	13	0.3	1.5	IR12×16×13	14	0.3	0.0087
16 20 0.3 1.5 IR12×16×20 14 0.3 0.014 16 22 0.3 1.5 IR12×16×22 14 0.3 0.015 17 20.5 0.3 1.5 IR12×17×20.5 14 0.3 0.019 17 25.5 0.3 1.5 IR12×18×16 14 0.3 0.024 18 16 0.3 1.5 IR12×18×16 14 0.3 0.018 14 17	12	16 ^{-0.008}	14	0.3	_	%IR12×16×14D	14	0.3	0.0095
16 22 0.3 1.5 IR12×16×22 14 0.3 0.015 17 20.5 0.3 1.5 IR12×17×20.5 14 0.3 0.019 17 25.5 0.3 1.5 IR12×17×25.5 14 0.3 0.024 18 16 0.3 1.5 IR12×18×16 14 0.3 0.018 14 17		16	16	0.3	1.5	IR12×16×16	14	0.3	0.011
17		16	20	0.3	1.5	IR12×16×20	14	0.3	0.014
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		16	22	0.3	1.5	IR12×16×22	14	0.3	0.015
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		17	20.5	0.3	1.5	IR12×17×20.5	14	0.3	0.019
14 17		17	25.5	0.3	1.5	IR12×17×25.5	14	0.3	0.024
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		18	16	0.3	1.5	IR12×18×16	14	0.3	0.018
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	17 ⁰ -0.008	17	0.3	1.5	IR14×17×17	16	0.3	0.0095
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		18	12.5	0.3	1.5	IR15×18×12.5	17	0.3	0.0072
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		18	16	0.3	1.5	IR15×18×16	17	0.3	0.0093
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		18 ₀	16.5	0.3	1.5	IR15×18×16.5	17	0.3	0.0096
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		18 ^{-0.008}	17.5	0.3	1.5	IR15×18×17.5	17	0.3	0.010
15 19 16 0.3 1.5 IR15×19×16 17 0.3 0.013 19 20 0.3 1.5 IR15×19×20 17 0.3 0.016 20 12 0.3 1.5 IR15×20×12 17 0.3 0.012 20 13 0.3 1.5 IR15×20×13 17 0.3 0.014 20 14 0.3 - *IR15×20×14D 17 0.3 0.015 20 18 0.3 1.5 IR15×20×18 17 0.3 0.019		18	20.5	0.3	1.5	IR15×18×20.5	17	0.3	0.012
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		18	25.5	0.3	1.5	IR15×18×25.5	17	0.3	0.015
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	19	16	0.3	1.5	IR15×19×16	17	0.3	0.013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		19	20	0.3	1.5	IR15×19×20	17	0.3	0.016
20 14 0.3 - %IR15×20×14D 17 0.3 0.015 20 18 0.3 1.5 IR15×20×18 17 0.3 0.019			12	0.3	1.5	IR15×20×12	17	0.3	0.012
20 14 0.3 - %IR15×20×14D 17 0.3 0.015 20 18 0.3 1.5 IR15×20×18 17 0.3 0.019		20 -0.009	13	0.3	1.5	IR15×20×13	17	0.3	0.014
			14	0.3	_	%IR15×20×14D	17	0.3	0.015
20 20.5 0.3 1.5 IR15×20×20.5 17 0.3 0.021		20	18	0.3	1.5	IR15×20×18	17	0.3	0.019
		20	20.5	0.3	1.5	IR15×20×20.5	17	0.3	0.021

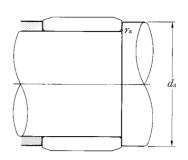
NOTA:
1) La tolleranza di questa dimensione permette di gioccio.
2) Valore minimo del raggio di raccordo r.

Osservazioni:
1. Il suffisso "D" specifica che l'anello interno dispone di un foro di lubrificazione.
2. Un anello interno il cui appellativo contiene il simbolo "*" ha le estremità con smusso ridotto.

B-180 NOTA: 1) La tolleranza di questa dimensione permette un giuoco normale quando l'anello interno è combinato con un cuscinetto a rullini che ne sia privo.

d 15∼20mm


	Dimensio	ni d'ingomb	oro		Appellativo		sioni di aggio	Massa
		mm					nm	kg
d	$F^{1)}$	В	_{√s min} 2)	t		$d_{ m a}$ min	$r_{ m as}$ max	(approssimata)
	20	23	0.3	_	%IR15×20×23	17	0.3	0.024
	20 0	26	0.3	1.5	IR15×20×26	17	0.3	0.027
15	20 -0.009	30.5	0.3	1.5	IR15×20×30.5	17	0.3	0.032
	22	20	0.6	1.5	IR15×22×20	19	0.6	0.032
	20	16	0.3	1.5	IR17×20×16	19	0.3	0.011
	20	16.5	0.3	1.5	IR17×20×16.5	19	0.3	0.011
	20	20	0.3	1.5	IR17×20×20	19	0.3	0.014
	20	20.5	0.3	_	%IR17×20×20.5	19	0.3	0.014
	20	30.5	0.3	_	%IR17×20×30.5	19	0.3	0.021
	21	16	0.3	1.5	IR17×21×16	19	0.3	0.014
	21	20	0.3	_	%IR17×21×20	19	0.3	0.018
17	22 ₀	13	0.3	1.5	IR17×22×13	19	0.3	0.015
17	22 -0.009	14	0.3	_	%IR17×22×14D	19	0.3	0.016
	22	16	0.3	_	%IR17×22×16	19	0.3	0.019
	22	18	0.3	1.5	IR17×22×18	19	0.3	0.021
	22	20.5	0.3	1.5	IR17×22×20.5	19	0.3	0.024
	22	23	0.3	_	%IR17×22×23	19	0.3	0.027
	22	26	0.3	1.5	IR17×22×26	19	0.3	0.030
	22	32	0.3	1.5	IR17×22×32	19	0.3	0.036
	24	20	0.6	1.5	IR17×24×20	21	0.6	0.034
	24	16	0.3	1.8	IR20×24×16	22	0.3	0.017
	24	20	0.3	_	%IR20×24×20	22	0.3	0.021
	24	28.5	0.3	_	%IR20×24×28.5	22	0.3	0.030
	25	12.5	0.3	1.8	IR20×25×12.5	22	0.3	0.016
	25	16	0.3	_	%IR20×25×16	22	0.3	0.021
20	25 _{-0.009}	16.5	0.3	1.8	IR20×25×16.5	22	0.3	0.022
	25	17	0.3	1.8	IR20×25×17	22	0.3	0.022
	25	18	0.3	_	%IR20×25×18D	22	0.3	0.024
	25	20	0.3	_	%IR20×25×20	22	0.3	0.027
	25	20.5	0.3	1.8	IR20×25×20.5	22	0.3	0.028
	25	23	0.3	1.8	IR20×25×23	22	0.3	0.031
NOTA: 1) La	a tolloranza di guosto	dimensione r	ermette un aiu	oco normale d	uando l'anello interno è combinato c	on un cuscinett	a rullini che ne	sia privo


NOTA:
1) La tolleranza di questa dimensione permette un giuoco normale quando l'anello interno è combinato con un cuscinetto a rullini che ne sia privo.
2) Valore minimo del raggio di raccordo r.

Osservazioni: 1. Il suffisso "D" specifica che l'anello interno dispone di un foro di lubrificazione.
2. Un anello interno il cui appellativo contiene il simbolo "%" ha le estremità con smusso ridotto.

B-181

Tipo IR

d 20∼28mm

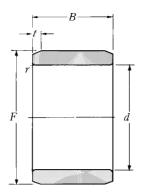
	Dimension	ni d'ingomb	oro		Appellativo		sioni di aggio	Massa
		mm					nm	kg
d	F ¹⁾	В	∕r _{s min} 2)	t		$d_{ m a}$ min	$r_{ m as}$ max	(approssimata)
	25	26	0.3	1.8	IR20×25×26	22	0.3	0.034
	25	26.5	0.3	_	%IR20×25×26.5	22	0.3	0.036
20	25 ₀	30	0.3	1.8	IR20×25×30	22	0.3	0.041
20	25 ^{-0.009}	32	0.3	1.8	IR20×25×32	22	0.3	0.041
	25	38.5	0.3	_	%IR20×25×38.5	22	0.3	0.053
	28	20	0.6	1.8	IR20×28×20	24	0.6	0.045
	26	16	0.3	1.8	IR22×26×16	24	0.3	0.017
	26	20	0.3	_	%IR22×26×20	24	0.3	0.022
	28	17	0.3	1.8	IR22×28×17	24	0.3	0.030
22	28 _{-0.009}	20	0.3	1.8	IR22×28×20	24	0.3	0.035
	28	20.5	0.3	1.8	IR22×28×20.5	24	0.3	0.036
	28	23	0.3	1.8	IR22×28×23	24	0.3	0.042
	28	30	0.3	_	%IR22×28×30	24	0.3	0.054
	29	20	0.3	_	%IR25×29×20	27	0.3	0.026
	29	30	0.3	1.8	IR25×29×30	27	0.3	0.039
	30	12.5	0.3	1.8	IR25×30×12.5	27	0.3	0.020
	30	16	0.3	1	IR25×30×16	27	0.3	0.024
	30	16.5	0.3	1.8	IR25×30×16.5	27	0.3	0.026
	30	17	0.3	1.8	IR25×30×17	27	0.3	0.027
	30	18	0.3	_	%IR25×30×18	27	0.3	0.030
	30 0 -0.009	20	0.3	1.8	IR25×30×20	27	0.3	0.033
25	30	20.5	0.3	1.8	IR25×30×20.5	27	0.3	0.034
	30	23	0.3	1.8	IR25×30×23	27	0.3	0.038
	30	26	0.3	1.8	IR25×30×26	27	0.3	0.041
	30	26.5	0.3	_	%IR25×30×26.5	27	0.3	0.043
	30	30	0.3	1.8	IR25×30×30	27	0.3	0.050
	30	32	0.3	1	IR25×30×32	27	0.3	0.054
	30	38.5	0.3	_	%IR25×30×38.5	27	0.3	0.064
	32 _{+0.008}	22	0.6	1.8	IR25×32×22	29	0.6	0.052
	32	30.5	0.6	1.8	IR25×32×30.5	29	0.6	0.072
28	32 +0.008 -0.002	17	0.3	1.8	IR28×32×17	30	0.3	0.025

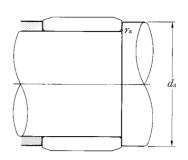
NOTA: 1) La tolleranza di questa dimensione permette un giuoco normale quando l'anello interno è combinato con un cuscinetto a rullini che ne sia privo.
2) Valore minimo del raggio di raccordo r.

Osservazioni: Un anello interno il cui appellativo contiene il simbolo "%" ha le estremità con smusso ridotto.

d 28∼35mm

		ni d'ingomb	oro		Appellativo	mont	sioni di aggio nm	Massa kg
						d_{a}	$r_{ m as}$	
d	F 1)	В	∕r _{s min} 2)	t		min	max	(approssimata)
	32	20	0.3	1.8	IR28×32×20	30	0.3	0.028
28	32 ^{+0.008} -0.002	23	0.3	1.8	IR28×32×23	30	0.3	0.034
	32	30	0.3	_	%IR28×32×30	30	0.3	0.044
29	32 ^{+0.008} _{-0.002}	13	0.3	1.8	IR29×32×13	31	0.3	0.015
	35	12.5	0.3	1.8	IR30×35×12.5	32	0.3	0.024
	35	13	0.3	1.3	IR30×35×13	32	0.3	0.025
	35	16	0.3	_	%IR30×35×16	32	0.3	0.031
	35	16.5	0.3	1.8	IR30×35×16.5	32	0.3	0.032
	35	17	0.3	1.8	IR30×35×17	32	0.3	0.032
	35	18	0.3	_	%IR30×35×18D	32	0.3	0.035
	35	20	0.3	_	%IR30×35×20	32	0.3	0.038
30	35 ^{+0.008} _{-0.002}	20.5	0.3	1.8	IR30×35×20.5	32	0.3	0.039
	35	23	0.3	1.8	IR30×35×23	32	0.3	0.044
	35	26	0.3	1.8	IR30×35×26	32	0.3	0.050
	35	30	0.3	_	%IR30×35×30	32	0.3	0.059
	35	32	0.3	1.8	IR30×35×32	32	0.3	0.063
	37	18	0.3	1.8	IR30×37×18	32	0.3	0.050
	37	22	0.6	1.8	IR30×37×22	34	0.6	0.061
	38	20	0.6	_	%IR30×38×20	34	0.6	0.065
	37	20	0.3	2	IR32×37×20	34	0.3	0.040
	37	30	0.3	_	%IR32×37×30	34	0.3	0.063
32	38 ₀	32	0.3	2	IR32×38×32	34	0.3	0.082
32	40 ^{-0.011}	20	0.6	2	IR32×40×20	36	0.6	0.068
	40	27	0.6	2	IR32×40×27	36	0.6	0.092
	40	36	0.6	2	IR32×40×36	36	0.6	0.124
33	37 ⁰ _{-0.011}	13	0.3	2	IR33×37×13	35	0.3	0.022
	40	12.5	0.3	2	IR35×40×12.5	37	0.3	0.027
05	40 ₀	16.5	0.3	2	IR35×40×16.5	37	0.3	0.037
35	40 -0.011	17	0.3	2	IR35×40×17	37	0.3	0.038
	40	20	0.3	2	IR35×40×20	37	0.3	0.044
NOTA: 1) L	a tallaranza di guanta	dimensione	ormatta un aiu	ooo normala a	 uando l'anello interno è combinato c	on un quaginette	a a willini aha na	ala mulua


NOTA:
1) La tolleranza di questa dimensione permette un giuoco normale quando l'anello interno è combinato con un cuscinetto a rullini che ne sia privo.
2) Valore minimo del raggio di raccordo r.


Osservazioni: 1. Il suffisso "D" specifica che l'anello interno dispone di un foro di lubrificazione.
2. Un anello interno il cui appellativo contiene il simbolo "%" ha le estremità con smusso ridotto.

B-183

Anelli interni NTN

Tipo IR

d 35∼45mm

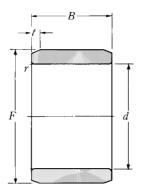
	Dimensio	oni d'ingomb	ro		Appellativo		sioni di aggio	Massa
		mm					nm	kg
d	F ¹⁾	В	r _{s min} 2)	t		$d_{ m a}$ min	$r_{ m as}$ max	(approssimata)
	40	20.5	0.3	2	IR35×40×20.5	37	0.3	0.046
	40	30	0.3	_	%IR35×40×30	37	0.3	0.068
	40	34	0.3	1.8	IR35×40×34	37	0.3	0.079
	40	40	0.3	2	IR35×40×40	37	0.3	0.091
35	42 ₀	20	0.6	1.8	IR35×42×20	39	0.6	0.064
33	42 -0.011	21	0.6	_	%IR35×42×21	39	0.6	0.068
	42	23	0.6	_	%IR35×42×23D	39	0.6	0.074
	42	27	0.6	2	IR35×42×27	39	0.6	0.080
	42	36	0.6	2	IR35×42×36	39	0.6	0.117
	43	22	0.6	2	IR35×43×22	39	0.6	0.081
00	43 ₀	20	0.3	1.8	IR38×43×20	40	0.3	0.048
38	43 -0.011	30	0.3	_	%IR38×43×30	40	0.3	0.074
	45	16.5	0.3	2	IR40×45×16.5	42	0.3	0.042
	45	17	0.3	2	IR40×45×17	42	0.3	0.043
	45	20	0.3	2	IR40×45×20	42	0.3	0.051
	45	20.5	0.3	2	IR40×45×20.5	42	0.3	0.053
	45	26.5	0.3	_	%IR40×45×26.5	42	0.3	0.068
	45	30	0.3	2	IR40×45×30	42	0.3	0.077
40	45 ₀	34	0.3	2	IR40×45×34	42	0.3	0.088
40	45 -0.011	40	0.3	2	IR40×45×40	42	0.3	0.106
	48	22	0.6	2	IR40×48×22	44	0.6	0.092
	48	23	0.6	_	%IR40×48×23	44	0.6	0.097
	48	30	0.6	2	IR40×48×30	44	0.6	0.123
	48	40	0.6	2	IR40×48×40	44	0.6	0.170
	50	20	0.3	8.0	IR40×50×20	44	0.3	0.106
	50	22	1	2	IR40×50×22	45	1	0.118
40	47 ₀	20	0.3	2	IR42×47×20	44	0.3	0.053
42	47 -0.011	30	0.3	2	IR42×47×30	44	0.3	0.080
A =	50 ₀	20	0.3	2	IR45×50×20	47	0.3	0.057
45	50 -0.011	25	0.6	2	IR45×50×25	49	0.6	0.071

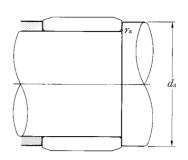
NOTA:
1) La tolleranza di questa dimensione permete di gidacci.
2) Valore minimo del raggio di raccordo r.

Osservazioni: 1. Il suffisso "D" specifica che l'anello interno dispone di un foro di lubrificazione.
2. Un anello interno il cui appellativo contiene il simbolo "%" ha le estremità con smusso ridotto.

B-184 1) La tolleranza di questa dimensione permette un giuoco normale quando l'anello interno è combinato con un cuscinetto a rullini che ne sia privo.

d 45∼55mm


	Dimensio	ni d'ingomb	oro		Appellativo	Dimens monta	nggio	Massa
		mm				$d_{ m a}$	n $r_{ m as}$	kg
d	$F^{1)}$	В	₹s min 2)	t		min	max	(approssimata)
	50	25.5	0.3	_	%IR45×50×25.5	47	0.3	0.074
	50 ₀	32	0.6	_	%IR45×50×32	49	0.6	0.092
	50 ^{-0.011}	35	0.6	2	IR45×50×35	49	0.6	0.101
	50	40	0.3	1.5	IR45×50×40	47	0.3	0.115
	52	22	0.6	2	IR45×52×22	49	0.6	0.088
45	52	23	0.6	_	%IR45×52×23D	49	0.6	0.093
	52	30	0.6	2	IR45×52×30	49	0.6	0.123
	52 ^{+0.008} _{-0.004}	40	0.6	2	IR45×52×40	49	0.6	0.164
	55	20	0.6	2	IR45×55×20	49	0.6	0.116
	55	22	1	2	IR45×55×22	50	1	0.130
	55	40	0.6	2	IR45×55×40	49	0.6	0.173
	55	20	0.6	2	IR50×55×20	54	0.6	0.063
	55	25	0.6	2	IR50×55×25	54	0.6	0.078
	55	35	0.6	2	IR50×55×35	54	0.6	0.112
	55	40	0.6	2	IR50×55×40	54	0.6	0.128
	58	22	0.6	2	IR50×58×22	54	0.6	0.113
50	58 +0.008	23	0.6	_	%IR50×58×23D	54	0.6	0.119
50	58 ^{-0.004}	30	0.6	2	IR50×58×30	54	0.6	0.159
	58	40	0.6	2	IR50×58×40	54	0.6	0.209
	60	20	1	2	IR50×60×20	55	1	0.129
	60	25	1	2	IR50×60×25	55	1	0.163
	60	28	1.1	2	IR50×60×28	56.5	1	0.183
	60	40	1	2	IR50×60×40	55	1	0.262
	60	25	0.6	2.2	IR55×60×25	59	0.6	0.086
	60	35	0.6	2	IR55×60×35	59	0.6	0.121
	63	25	1	2	IR55×63×25	60	1	0.141
55	63 ₀	34	1	2.2	IR55×63×34	60	1	0.192
55	63 ^{-0.013}	45	1	2.2	IR55×63×45	60	1	0.256
	65	28	1.1	2.2	IR55×65×28	61.5	1	0.206
	65	30	1	2.2	IR55×65×30	60	1	0.220
	65	60	1	1.5	IR55×65×60	60	1	0.440
NOTA: 1) L	o tolloronzo di guanto	, dimensione n	armatta un aiu		uando l'anello interno è combinato o	an un quasinatta	م ماه نمالات م	


NOTA:
1) La tolleranza di questa dimensione permette un giuoco normale quando l'anello interno è combinato con un cuscinetto a rullini che ne sia privo.
2) Valore minimo del raggio di raccordo r.

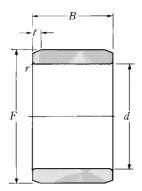
Osservazioni: 1. Il suffisso "D" specifica che l'anello interno dispone di un foro di lubrificazione.
2. Un anello interno il cui appellativo contiene il simbolo "%" ha le estremità con smusso ridotto.

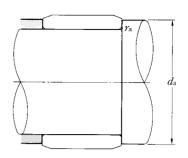
B-185

Tipo IR

d 60∼75mm

	Dimensio	ni d'ingom	bro		Appellativo		sioni di aggio	Massa
		mm					ım	kg
d	F ¹⁾	В	_{7's min} 2)	t		$d_{ m a}$ min	$r_{ m as}$ max	(approssimata)
	68	25	1	2.2	IR60×68×25	65	1	0.152
	68	34	1	2.2	IR60×68×34	65	1	0.206
	68	35	0.6	2.2	IR60×68×35	64	0.6	0.213
60	68 ₀	45	1	2.2	IR60×68×45	65	1	0.270
60	70 -0.013	25	1	2.2	IR60×70×25	65	1	0.195
	70	28	1.1	2.2	IR60×70×28	66.5	1	0.216
	70	30	1	2.2	IR60×70×30	65	1	0.232
	70	60	1	2.2	IR60×70×60	65	1	0.463
	72	25	1	2.2	IR65×72×25	70	1	0.142
	72	34	1	2.2	IR65×72×34	70	1	0.193
	72	45	1	2.2	IR65×72×45	70	1	0.259
C.F.	73 ₀	25	0.6	2.2	IR65×73×25	69	0.6	0.164
65	73 ^{-0.013}	35	0.6	2.2	IR65×73×35	69	0.6	0.232
	75	28	1.1	2.2	IR65×75×28	71.5	1	0.240
	75	30	1	2.2	IR65×75×30	70	1	0.256
	75	60	1	2.2	IR65×75×60	70	1	0.513
	80	25	1	2.2	IR70×80×25	75	1	0.224
	80	28	1.1	2.2	IR70×80×28	76.5	1	0.250
	80	30	1	2.2	IR70×80×30	75	1	0.267
70	80 ₀	35	1	2.2	IR70×80×35	75	1	0.313
70	80 ^{-0.013}	40	1	2.2	IR70×80×40	75	1	0.358
	80	54	1	2.2	IR70×80×54	75	1	0.483
	80	56	1	2.2	IR70×80×56	75	1	0.502
	80	60	1	2.2	IR70×80×60	75	1	0.540
	85	25	1	2.2	IR75×85×25	80	1	0.238
	85	30	1	2.2	IR75×85×30	80	1	0.287
75	85 ₀	35	1	2.2	IR75×85×35	80	1	0.336
75	85 ^{-0.015}	40	1	2.2	IR75×85×40	80	1	0.385
	85	54	1	2.2	IR75×85×54	80	1	0.515
	90	32	1.1	2.2	IR75×90×32	81.5	1	0.480


NOTA: 1) La tolleranza di questa dimensione permette un giuoco normale quando l'anello interno è combinato con un cuscinetto a rullini che ne sia privo.
2) Valore minimo del raggio di raccordo r.


d 80∼100mm

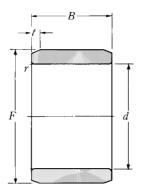
	Dimensio	ni d'ingom	bro		Appellativo	Dimens monta		Massa
		mm				mr		kg
	1)		2)			$d_{ m a}$	$r_{ m as}$	
d	F ¹⁾	В	∕r _{s min} 2)	t		min	max	(approssimata)
	90	25	1	2.2	IR 80× 90×25	85	1	0.254
	90	30	1	2.2	IR 80× 90×30	85	1	0.304
80	90 0	35	1	2.2	IR 80× 90×35	85	1	0.355
00	90 -0.015	40	1	2.2	IR 80× 90×40	85	1	0.408
	90	54	1	2.2	IR 80× 90×54	85	1	0.543
	95	32	1.1	2.2	IR 80× 95×32	86.5	1	0.510
	95	26	1	2.5	IR 85× 95×26	90	1	0.280
	95	30	1	2.5	IR 85× 95×30	90	1	0.323
	95	36	1	2.5	IR 85× 95×36	90	1	0.398
85	100 -0.015	32	1.1	2.5	IR 85×100×32	91.5	1	0.530
	100	35	1.1	2.5	IR 85×100×35	91.5	1	0.580
	100	46	1.1	2.5	IR 85×100×46	91.5	1	0.760
	100	63	1.1	2.5	IR 85×100×63	91.5	1	1.05
	100	26	1	2.5	IR 90×100×26	95	1	0.294
	100	30	1	2.5	IR 90×100×30	95	1	0.340
	100	36	1	2.5	IR 90×100×36	95	1	0.406
90	105 0 -0.015	32	1.1	2.5	IR 90×105×32	96.5	1	0.560
	105	35	1.1	2.5	IR 90×105×35	96.5	1	0.610
	105	46	1.1	2.5	IR 90×105×46	96.5	1	0.800
	105	63	1.1	2.5	IR 90×105×63	96.5	1	1.11
	105	26	1	2.5	IR 95×105×26	100	1	0.313
	105	36	1	2.5	IR 95×105×36	100	1	0.430
	110 ₀	32	1.1	2.5	IR 95×110×32	101.5	1	0.590
95	110 ^{-0.015}	35	1.1	2.5	IR 95×110×35	101.5	1	0.640
	110	46	1.1	2.5	IR 95×110×46	101.5	1	0.850
	110	63	1.1	2.5	IR 95×110×63	101.5	1	1.17
	110	30	1.1	2.5	IR100×110×30	106.5	1	0.375
	110 0	40	1.1	2.5	IR100×110×40	106.5	1	0.505
100	115 ^{-0.015}	32	1.1	2.5	IR100×115×32	106.5	1	0.620
	115	40	1.1	2.5	IR100×115×40	106.5	1	0.775
NOTA: 1) La to	olleranza di questa di	mensione per	mette un giuoco	normale quar	 ndo l'anello interno è combinato con	un cuscinetto a r	ullini che ne sia	privo.

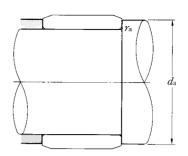
2) Valore minimo del raggio di raccordo r.

Tipo IR

d 100~160mm

	Dimensio	ni d'ingom	bro		Appellativo	Dimens monta	sioni di aggio	Massa
		mm				m	m	kg
d	F ¹⁾	В	γ _{s min} 2)	t		$d_{ m a}$ min	r _{as} max	(approssimata)
100	115 0 -0.015	54	1.1	2.5	IR100×115×54	106.5	1	1.09
	120 ₀	30	1	2.5	IR110×120×30	115	1	0.440
110	1200.015	40	1.1	2.5	IR110×120×40	116.5	1	0.580
110	125 ₀	40	1.1	2.5	IR110×125×40	116.5	1	0.840
	125 ^{-0.018}	54	1.1	2.5	IR110×125×54	116.5	1	1.16
	130	30	1	2.2	IR120×130×30	125	1	0.440
	130	40	1.1	2.5	IR120×130×40	126.5	1	0.590
120	135 _{-0.018}	40	2	2.5	IR120×135×40	129	2	0.870
	135	45	1.1	2.5	IR120×135×45	126.5	1	0.980
	135	60	1.1	2.5	IR120×135×60	126.5	1	1.25
	145	32	1.5	3	IR130×145×32	138	1.5	0.780
	145	35	1.1	3	IR130×145×35	136.5	1	0.855
130	145 0	42	1.5	3	IR130×145×42	138	1.5	1.05
130	150 ^{-0.018}	50	1.5	3	IR130×150×50	138	1.5	1.69
	150	52	2	3	IR130×150×52	139	2	1.75
	150	67	1.5	3	IR130×150×67	138	1.5	2.25
	155	32	1.5	3	IR140×155×32	148	1.5	0.840
	155	35	1.1	3	IR140×155×35	146.5	1	0.917
140	155 0	42	1.5	3	IR140×155×42	148	1.5	1.10
140	160 ^{-0.018}	50	1.5	3	IR140×160×50	148	1.5	1.70
	160	52	2	3	IR140×160×52	149	2	1.78
	160	67	1.5	3	IR140×160×67	148	1.5	2.30
	165	32	1.5	3	IR150×165×32	158	1.5	0.900
	165	40	1.1	3	IR150×165×40	156.5	1	1.12
150	165 -0.017 -0.035	42	1.5	3	IR150×165×42	158	1.5	1.18
	170	52	2	3	IR150×170×52	159	2	2.00
	170	60	2	3	IR150×170×60	159	2	2.35
160	175 _{-0.017}	40	1.1	3	IR160×175×40	166.5	1	1.20
160	180 -0.035	60	2	3	IR160×180×60	169	2	2.50


NOTA: 1) La tolleranza di questa dimensione permette un giuoco normale quando l'anello interno è combinato con un cuscinetto a rullini che ne sia privo.
2) Valore minimo del raggio di raccordo r.


d 170∼380mm

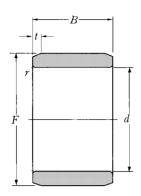
	Dimensio	oni d'ingom	bro		Appellativo	Dimens monta		Massa
		mm				mı	n	kg
d	F ¹⁾	В	∕r _{s min} 2)	t		$d_{ extsf{a}}$ min	$r_{ m as}$ max	(approssimata)
	185 _{-0.013}	45	1.1	3	IR170×185× 45	176.5	1	1.45
170	190 -0.043	60	2	3	IR170×190× 60	179	2	2.65
100	195 _{-0.013}	45	1.1	3	IR180×195× 45	186.5	1	1.51
180	205 -0.043	69	2	3	IR180×205× 69	189	2	4.10
190	210 _{-0.020}	50	1.5	3.5	IR190×210× 50	198	1.5	2.41
190	215 ^{-0.050}	69	2	3.5	IR190×215× 69	199	2	4.10
200	220 _{-0.020}	50	1.5	3.5	IR200×220× 50	208	1.5	2.49
200	225 -0.050	80	2.1	3.5	IR200×225× 80	211	2	5.10
220	240 _{-0.033}	50	1.5	3.5	IR220×240× 50	228	1.5	2.75
	245 ^{-0.063}	80	2.1	3.5	IR220×245× 80	231	2	5.70
240	265 _{-0.037}	60	2	3.5	IR240×265× 60	249	2	4.60
240	265 -0.069	80	2.1	3.5	IR240×265× 80	251	2	6.30
260	285 -0.064	60	2	4	IR260×285× 60	269	2	4.98
	290 -0.092	100	2.1	4	IR260×290×100	271	2	10.0
280	305 -0.064	69	2	4	IR280×305× 69	289	2	6.20
	310 -0.092	100	2.1	4	IR280×310×100	291	2	10.8
300	330 -0.062	80	2.1	4	IR300×330× 80	311	2	9.30
	340 -0.098	118	3	4	IR300×340×118	313	2.5	18.5
320	350 -0.062	80	2.1	5	IR320×350× 80	331	2	9.80
	360 -0.098	118	3	5	IR320×360×118	333	2.5	20.0
340	370 -0.062	80	2.1	5	IR340×370× 80	351	2	10.1
	380 -0.098	118	3	5	IR340×380×118	353	2.5	22.0
360	390 -0.090	80	2.1	5	IR360×390× 80	371	2	10.9
	400 -0.126	118	3	5	IR360×400×118	373	2.5	22.0
380	415 -0.080	100	2.1	5	IR380×415×100	391	2	18.5
	430 -0.120	140	4	5	IR380×430×140	396	3	35.0
NOTA: 1) Lat	allavanna di sucata di	imanalana na	matta un aiuana	narmala avar	 	un augainatta a r	ullini aha na aia	n with an

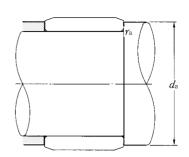
NOTA: 1) La tolleranza di questa dimensione permette un giuoco normale quando l'anello interno è combinato con un cuscinetto a rullini che ne sia privo.
2) Valore minimo del raggio di raccordo r.

Tipo IR

d 400~440mm

	Dimensio	oni d'ingom	ibro		Appellativo		sioni di aggio	Massa
		mm				m	m	kg
d	F ¹⁾	В	√ s min 2)	t		$d_{ m a}$ min	$r_{ m as}$ max	(approssimata)
400	450 ^{-0.080} _{-0.120}	140	4	5	IR400×450×140	416	3	36.5
420	470 ^{-0.105} _{-0.145}	140	4	5	IR420×470×140	436	3	38.2
440	490 ^{-0.105} -0.145	160	4	5	IR440×490×160	456	3	46.5


NOTA: 1) La tolleranza di questa dimensione permette un giuoco normale quando l'anello interno è combinato con un cuscinetto a rullini che ne sia privo.
2) Valore minimo del raggio di raccordo r.


B-190

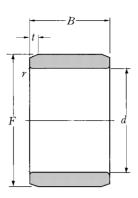
Anelli interni NTN

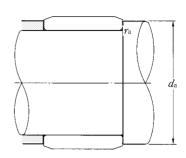
Serie in pollici

Tipo MI

d 9.525~34.925mm

	Dimensioni d'ingor	mbro			Appellativo		sioni di aggio	Massa kg
	,					$d_{ m a}$	$r_{ m as}$	ING
d	F 1)	B	$\gamma_{\rm s min}$ 2)	t		min	max	(approssimata)
	14.288(%)	12.95	0.6	_	※МІ-060908	13.5	0.6	0.013
9.525(¾)	15.875(½) 0 -0.008	19.30	0.6	1	MI-061012	13.5	0.6	0.019
	15.875(%)	25.65	0.6	1	MI-061016	13.5	0.6	0.025
	19.050(¾)	16.13	1	_	※МІ-081210	17.5	1	0.020
12.700(½)	19.050(3/4) 0 0 0 0 0 0	19.30	1	_	%МІ-081212	17.5	1	0.024
	19.050(¾)	25.65	1	_	※МІ-081216	17.5	1	0.032
	22.225(1/8)	9.78	1	_	※МІ-101406	21	1	0.014
1E 07E/5∕\	22.225(%)	12.95	1	_	%MI-101408	21	1	0.018
15.875(%)	22.225(%) -0.009	19.30	1	_	※MI-101412	21	1	0.027
	22.225(%)	25.65	1	_	%МІ-101416	21	1	0.036
10.050/3/	25.400(1) ₀	19.30	1	_	%МІ-121612	24	1	0.034
19.050(¾)	25.400(1) ^{-0.009}	25.65	1	_	ЖМІ-121616	24	1	0.045
	28.575(1 1/8)	12.95	1	_	※MI-141808	27	1	0.027
22.225(%)	28.575(1 1/8) 0	19.30	1	_	※MI-141812	27	1	0.040
22.225(/8)	28.575(1 1/8) -0.009	25.65	1	_	※MI-141816	27	1	0.052
	28.575(1 1/8)	32.00	1	_	※МІ-141820	27	1	0.066
	31.750(1 1/4)	19.30	1	_	ЖМІ-162012	30.5	1	0.039
25.400(1)	31.750(1 1/4) +0.008 -0.002	25.65	1	_	%МІ-162016	30.5	1	0.052
	31.750(1 1/4)	32.00	1	_	※МІ-162020	30.5	1	0.065
	34.925(1 ³ / ₈)	12.95	1	_	※МІ-182208	33.5	1	0.032
28.575(1 1/8)	34.925(1 ³ / ₈) ^{+0.008} _{-0.002}	25.65	1	_	%MI-182216	33.5	1	0.063
	34.925(1 ¾)	32.00	1	_	%MI-182220	33.5	1	0.079
24 750/4 1/2	38.100(1½) ₀	25.65	1.5	_	※МІ-202416	37	1.5	0.075
31.750(1 1/4)	38.100(1½) -0.011	32.00	1.5	_	※МІ-202420	37	1.5	0.094
00.000(4.5/)	41.275(1 ½) ₀	25.65	1.5	2	MI-212616	40	1.5	0.093
33.338(1 5/16)	41.275(1 ⁵ / ₈) ^{-0.011}	32.00	1.5	2	MI-212620	40	1.5	0.116
04.005/4.34	41.275(1 ⁵ ⁄ ₈) ₀	16.13	1.5	2	MI-222610	40	1.5	0.073
34.925(1 ¾)	44.450(1 ¾) ^{-0.011}	25.65	1.5	2	MI-222816	41.5	1.5	0.117


NOTA: 1) La tolleranza di questa dimensione permette un giuoco normale quando l'anello interno è combinato con un cuscinetto a rullini che ne sia privo.
2) Valore minimo del raggio di raccordo r.


Osservazione: Un anello interno il cui appellativo contiene il simbolo "*" ha le estremità con smusso ridotto.

Anelli interni NTN

Serie in pollici

Tipo MI

d 34.925~98.425mm

	Dimensioni d'ingo	mbro			Appellativo	Dimens monta		Massa
	mm (½ _{5.4} mm)					mr $d_{ m a}$	ກ $_{\mathcal{V}_{\mathrm{as}}}$	kg
d	$F^{ extsf{1})}$	В	$\gamma_{\rm s min}$ 2)	t		min	max	(approssimata)
34.925(1 ¾)	44.450(1 ¾) 0 -0.011	32.00	1.5	2	MI-222820	41.5	1.5	0.146
38.100(1½)	44.450(1 ³ / ₄) ₀ 44.450(1 ³ / ₄) ^{-0.011}	19.30 25.65	1.5 1.5	2	MI-242812 MI-242816	43 43	1.5 1.5	0.062 0.083
20 600/1 9/ \	47.625(1 ½) 0 -0.011	32.00	1.5	2	MI-253020	46	1.5	0.083
39.000(1 /16)								
41.275(1 %)	50.800(2) +0.008 -0.004	25.65	1.5	2	MI-263216	48	1.5	0.140
	50.800(2)	32.00	1.5	2	MI-263220	48	1.5	0.175
44.450(1 ³ / ₄)	57.150(2 1/4) +0.008	38.35	1.5	2	MI-283624	51	1.5	0.310
	57.150(2 ¹ ⁄ ₄) ^{-0.004}	44.70	1.5	2	MI-283628	51	1.5	0.360
50.800(2)	63.500(2½) ₀	38.35	2	2	MI-324024	59	2	0.340
50.600(2)	63.500(2½) -0.013	44.70	2	2	MI-324028	59	2	0.420
	69.850(2 ³ / ₄)	25.65	2	2.2	MI-364416	65	2	0.257
57.150(2 1/4)	69.850(2 ³ / ₄) ⁰ _{-0.013}	38.35	2	2.2	MI-364424	65	2	0.384
	69.850(2 ³ / ₄)	44.70	2	2.2	MI-364428	65	2	0.447
14	76.200(3) ₀	38.35	2	2.2	MI-404824	71.5	2	0.417
63.500(2 ½)	76.200(3) ^{-0.013}	44.70	2	2.2	MI-404828	71.5	2	0.486
00 000 00 50	82.550(3 1/4) 0	44.70	2	2.2	MI-425228	74.5	2	0.648
66.675(2 5%)	82.550(3 1/4) -0.015	51.05	2	2.2	MI-425232	74.5	2	0.740
69.850(2 ³ / ₄)	82.550(3 1/4) 0 -0.015	44.70	2	2.2	MI-445228	78	2	0.530
70,000(0)	88.900(3½) ₀	44.70	2	2.2	MI-485628	84	2	0.574
76.200(3)	88.900(3½) -0.015	51.05	2	2.2	MI-485632	84	2	0.655
79.375(3 ½)	95.250(3¾) 0 -0.015	51.05	2.5	2.2	MI-506032	88.5	2.5	0.862
85.725(3 3/8)	101.600(4) 0 -0.015	51.05	2.5	2.5	MI-546432	94.5	2.5	0.930
92.075(3 %)	107.950(4 1/4) 0 -0.015	51.05	2.5	2.5	MI-586832	101	2.5	1.00
95.250(3 ¾)	114.300(4½) 0 -0.015	57.40	2.5	2.5	MI-607236	104	2.5	1.40
00 405/0 7/	114.300(4½) 0	57.40	2.5	2.5	MI-627236	107.5	2.5	1.15
98.425(3 %)	114.300(4½) ₀ 114.300(4½) -0.015	63.88	2.5	2.5	MI-627240	107.5	2.5	1.28
NOTA: 4) I = 4=II====					1 11 11 11 11 11 11		m - 1	

NOTA: 1) La tolleranza di questa dimensione permette un giuoco normale quando l'anello interno è combinato con un cuscinetto a rullini che ne sia privo.
2) Valore minimo del raggio di raccordo r.

d 101.600~203.200mm

	Dimensioni d'ingoi mm (½5.4mm)	mbro			Appellativo	Dimens monta	nggio	Massa kg
		_	2)			$d_{ m a}$	ras	
d	F ¹⁾	В	∕r _{s min} 2)	t		min	max	(approssimata)
101 600/4)	127.000(5)	51.05	2.5	2.5	MI-648032	110.5	2.5	1.82
101.600(4)	127.000(5) ⁰ _{-0.018} 127.000(5)	57.40 63.88	2.5 2.5	2.5 2.5	MI-648036 MI-648040	110.5 110.5	2.5 2.5	2.05 2.28
114.300(4 ½)	139.700(5½) 0	63.88	2.5	2.5	MI-728840	123.5	2.5	2.58
114.300(4 /2)	139.700(5 ½) -0.018	76.58	2.5	2.5	MI-728848	123.5	2.5	3.10
120.650(4 3/4)	146.050(5 ¾) 0 -0.018	76.58	3	3	MI-769248	132	3	3.18
127.000(5)	152.400(6) ₀	63.88	3	3	MI-809640	140	3	2.80
127.000(3)	152.400(6) ^{-0.018}	76.58	3	3	MI-809648	140	3	3.35
139.700(5 ½)	165.100(6½) -0.010	63.88	3	3	MI-8810440	152.5	3	2.84
103.700(372)	165.100(6½) -0.028	76.58	3	3	MI-8810448	152.5	3	3.40
152.400(6)	184.150(7 ¹ ⁄ ₄) ^{-0.013} _{-0.033}	76.58	3	3	MI-9611648	165.5	3	4.80
165.100(6 ½)	196.850(7 ¾) -0.013	76.58	3	3	MI-10412448	178	3	5.30
177.800(7)	209.550(8 1/4) -0.013	76.58	3	3	MI-11213248	191	3	5.60
190.500(7 ½)	222.250(8 ¾) -0.020	76.58	4	3	MI-12014048	206.5	4	6.10
203.200(8)	234.950(9 1/4) -0.063	76.58	4	3.5	MI-12814848	219	4	6.50

NOTA: 1) La tolleranza di questa dimensione permette un giuoco normale quando l'anello interno è combinato con un cuscinetto a rullini che ne sia privo.
2) Valore minimo del raggio di raccordo r.

Rullini

I rullini NTN sono prodotti in acciaio al cromo ad alto tenore di carbonio per cuscinetti volventi e, dopo trattamento termico di tempra, sono rettificati e lappati. La loro durezza è da HRC60 a 65. Oltre all'impiego come corpi volventi, i rullini NTN possono anche essere forniti come componenti singoli per l'impiego come spine ed alberi.

Configurazione dei rullini

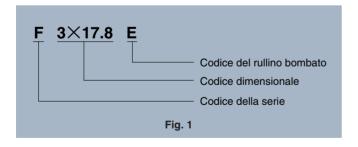

L'esecuzione normale dei rullini prevede le superfici laterali piane ed è denominata **tipo F**; il **tipo A** è speciale ed ha le superfici laterali arrotondate. La **NTN** produce anche dei rullini con configurazione speciale delle superfici laterali e così pure i rullini aventi la linea di contatto modificata o bombata per ridurre la possibilità della concentrazione di carico sugli spigoli (suffisso **E**). Per maggiori dettagli contattare l'assistenza tecnica **NTN**.

Tabella 1 Configurazione delle superfici laterali

Tipo	Descrizione	Configurazione
F	Piana	
Α	Bombata	
R	Sferica	
С	Con naselli	

Appellativo

Gli appellativi dei rullini **NTN** comprendono il codice della serie (configurazione delle superfici laterali), il codice dimensionale (diametro $(D_w) \times \text{lunghezza}$ (L_w)), ed il suffisso.

Tolleranze dei rullini

I rullini NTN sono prodotti con precisione dimensionale e di forma corrispondenti alla norma JIS B 1506 (ISO 3096, 6193). (Vedere la **Tabella 2**)

Tabella 2 Tolleranze dei rullini

Dimensioni in μ m

Tabolia 2 Tollorari20 dollramini	B 11110110110111 111
Caratteristica	Tolleranze e limiti
Tolleranza del diametro medio D_{W}	0~-10
Limite dello scostamento del diametro medio D_{W} (max)	2
Rotondità e cilindricità del diametro D_{W}	1.0 (<i>L</i> w/ <i>D</i> w≤6) 1.5 (<i>L</i> w/ <i>D</i> w>6)
Limite della lunghezza $L_{ m W}$	h13

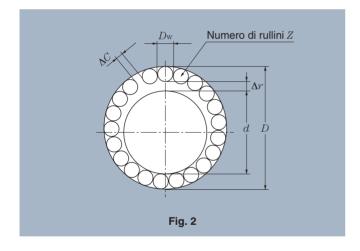
I rullini il cui scostamento del diametro medio non supera i 2 μ m sono forniti in gruppi confezionati: I gruppi di selezionatura dei rullini sono codificati con i seguenti colori delle strisce adesive: rosso, blu, azzurro, nero e bianco. I rullini delle confezioni aventi strisce adesive di colore diverso non devono essere mescolati.

Tabella 3 Codice colore dalla striscia adesiva

Codice colore della striscia adesiva	Campo di tolleranza μm	Classe
Rosso Blu Azzurro Nero Bianco	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Normale
Grigio Verde Marrone Giallo	-5~- 7 -6~- 8 -7~- 9 -8~-10	Quasi normale

Impiego dei rullini

Quando i rullini normali vengono impiegati per realizzare dei cuscinetti a pieno riempimento, il diametro dell'albero (d), il diametro del foro (D), il giuoco circonferenziale (ΔC) ed il giuoco radiale (Δr) possono essere determinati come indicato di seguito, in relazione al diametro $(D_{\rm W})$ ed al numero dei rullini (Z) (**Fig. 2**).


SI deve innanzi tutto determinare il valore del giuoco circonferenziale (ΔC) con la formula (1). Il giuoco radiale (Δr) viene scelto come indicato nel **Par. 8** "**Giuoco del cuscinetto**", **Tabella 1**, a pag. A-40, a seconda del diametro dell'albero ed alle condizioni operative. Generalmente, un cuscinetto a pieno riempimento richiede un giuoco radiale superiore a quello di una gabbia a rullini.

$$\Delta C = (0.005 \sim 0.020) \times Z \text{ mm (min.)} \cdots (1)$$

Successivamente, tramite le formule (2) e (3) si determina il diametro minimo del foro (D) ed il diametro massimo dell'albero (d).

$$D = \left[\frac{1}{\sin\left(\frac{\pi}{Z}\right)} + 1 \right] \cdot D_{w} + \frac{\Delta C}{\pi} \quad \text{mm (min.)}$$
 (2)

$$d=D-2D_W-\Delta r$$
 mm (max.) ······(3)

Se si vuole realizzare un'autottrattenuta dei rullini nel foro (cuscinetto Keystone), il massimo diametro di quest'ultimo (D) può essere determinato con la formula (4) in base al diametro minimo dei rullini ($D_{\rm w \, min}$) ed il numero degli stessi (Z). La **tabella 4** riporta il fattore K.

$$D=K \cdot D_{w \min} \mod (\max.) \cdots (4)$$

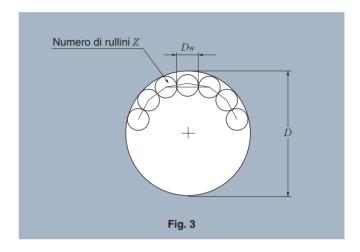
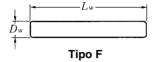
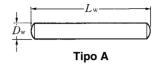




Tabella 4 Fattore K

Z	K	Z	K
8	3.6763333	17	6.4536463
9	3.9709394	18	6.7689303
10	4.2727719	19	7.0846088
11	4.5789545	20	7.4006100
12	4.8879667	21	7.7168786
13	5.1989251	22	8.0333713
14	5.5112799	23	8.3500534
15	5.8246707	24	8.6668970
16	6.1388508	25	8.9838796

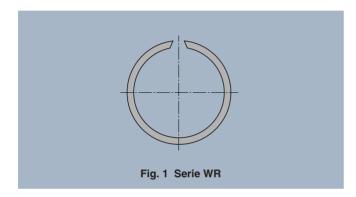
Tipo F Tipo A

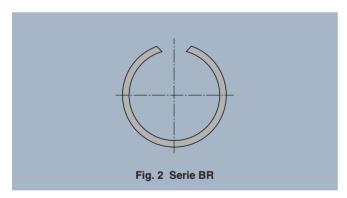
*D*_w 1.5∼4.5mm

Dimensioni d'ingombro		Арре	Massa	
	mm			kg
70				per
D_{W}	L_{w}	estremità piana	estremità arrotondata	1 000 pezzi
	5.8	F1.5× 5.8	A1.5× 5.8	0.080
	6.8	F1.5× 6.8	A1.5× 6.8	0.090
1.5	7.8	F1.5× 7.8	A1.5× 7.8	0.104
	9.8	F1.5× 9.8	A1.5× 9.8	0.131
	11.8	F1.5×11.8	A1.5×11.8	0.159
	13.8	F1.5×13.8	A1.5×13.8	0.186
	6.8	F2 × 6.8	A2 × 6.8	0.158
	7.8	F2 × 7.8	$A2 \times 7.8$	0.183
	9.8	F2 × 9.8	A2 \times 9.8	0.232
2	11.8	F2 ×11.8	A2 ×11.8	0.281
2	13.8	F2 ×13.8	A2 ×13.8	0.330
	15.8	F2 ×15.8	A2 ×15.8	0.379
	17.8	F2 ×17.8	A2 ×17.8	0.428
	19.8	F2 ×19.8	A2 ×19.8	0.477
	7.8	F2.5× 7.8	A2.5× 7.8	0.284
	9.8	F2.5× 9.8	A2.5× 9.8	0.351
	11.8	F2.5×11.8	A2.5×11.8	0.438
	13.8	F2.5×13.8	$A2.5 \times 13.8$	0.514
2.5	15.8	F2.5×15.8	$A2.5 \times 15.8$	0.591
	17.8	F2.5×17.8	A2.5×17.8	0.668
	19.8	F2.5×19.8	A2.5×19.8	0.745
	21.8	F2.5×21.8	A2.5×21.8	0.821
	23.8	F2.5×23.8	A2.5×23.8	0.898
	9.8	F3 × 9.8	A3 × 9.8	0.556
	11.8	F3 ×11.8	A3 ×11.8	0.671
	13.8	F3 ×13.8	A3 ×13.8	0.784
3	15.8	F3 ×15.8	A3 ×15.8	0.897
	17.8	F3 ×17.8	A3 ×17.8	1.01
	19.8	F3 ×19.8	A3 ×19.8	1.12
	21.8	F3 ×21.8	A3 ×21.8	1.23

	imensioni 'ingombro	Арре	Massa	
	mm			kg
D	$L_{ m W}$	estremità piana	estremità arrotondata	per 1 000 pezzi
	23.8	F3 ×23.8	A3 ×23.8	1.34
3	25.8	F3 ×25.8	A3 ×25.8	1.45
	27.8	F3 ×27.8	A3 ×27.8	1.56
	11.8	F3.5×11.8	A3.5×11.8	0.849
	13.8	F3.5×13.8	A3.5×13.8	1.00
	15.8	F3.5×15.8	A3.5×15.8	1.15
	17.8	F3.5×17.8	A3.5×17.8	1.30
	19.8	F3.5×19.8	A3.5×19.8	1.45
3.	. 5 21.8	F3.5×21.8	A3.5×21.8	1.60
	23.8	F3.5×23.8	A3.5×23.8	1.75
	25.8	F3.5×25.8	A3.5×25.8	1.90
	29.8	F3.5×29.8	A3.5×29.8	2.20
	31.8	F3.5×31.8	A3.5×31.8	2.35
	34.8	F3.5×34.8	A3.5×34.8	2.58
	13.8	F4 ×13.8	A4 ×13.8	1.27
	15.8	F4 ×15.8	A4 ×15.8	1.50
	17.8	F4 ×17.8	A4 ×17.8	1.70
	19.8	F4 ×19.8	A4 ×19.8	1.89
	21.8	F4 ×21.8	A4 ×21.8	2.09
	23.8	F4 ×23.8	A4 ×23.8	2.26
4	25.8	F4 ×25.8	A4 ×25.8	2.48
	27.8	F4 ×27.8	A4 ×27.8	2.68
	29.8	F4 ×29.8	A4 ×29.8	2.87
	31.8	F4 ×31.8	A4 ×31.8	3.07
	34.8	F4 ×34.8	A4 ×34.8	3.31
	37.8	F4 ×37.8	A4 ×37.8	3.62
	39.8	F4 ×39.8	A4 ×39.8	3.82
	17.8	F4.5×17.8	A4.5×17.8	2.11
4.	.5 19.8	F4.5×19.8	A4.5×19.8	2.36
	21.8	F4.5×21.8	A4.5×21.8	2.61

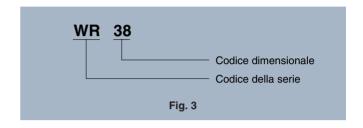
*D*_w 4.5∼5mm


ďing	ensioni gombro mm	Арре	Massa kg	
$D_{ m W}$	Lw	estremità piana	estremità arrotondata	per 1 000 pezzi
	23.8	F4.5×23.8	A4.5×23.8	2.86
	25.8	F4.5×25.8	A4.5×25.8	3.11
	29.8	F4.5×29.8	A4.5×29.8	3.62
4.5	31.8	F4.5×31.8	A4.5×31.8	3.87
4.5	34.8	F4.5×34.8	A4.5×34.8	4.25
	37.8	F4.5×37.8	A4.5×37.8	4.63
	39.8	F4.5×39.8	A4.5×39.8	4.88
	44.8	F4.5×44.8	A4.5×44.8	5.51
	19.8	F5 ×19.8	A5 ×19.8	2.89
	21.8	F5 ×21.8	A5 ×21.8	3.20
	23.8	F5 ×23.8	A5 ×23.8	3.52
	25.8	F5 ×25.8	A5 ×25.8	3.82
5	29.8	F5 ×29.8	A5 ×29.8	4.45
3	31.8	F5 ×31.8	A5 ×31.8	4.74
	34.8	F5 ×34.8	A5 ×34.8	5.11
	37.8	F5 ×37.8	A5 ×37.8	5.55
	39.8	F5 ×39.8	A5 ×39.8	5.85
	49.8	F5 ×49.8	A5 ×49.8	7.33


Anelli elastici

Gli anelli elastici per i cuscinetti a rullini permettono il bloccaggio assiale o la guida assiale rispettivamente degli anelli e della gabbia. La loro forma è uguale a quella del **tipo C** definito nella norma JIS B 2806. Comunque, la **NTN** produce gli anelli elastici specifici per i cuscinetti a rullini di sezione molto più piccola grazie alla ridotta altezza (h) della sezione. Essi sono prodotti da trafilato in acciaio duro e le loro superfici sono trattate chimicamente.

Tipi di anelli elastici

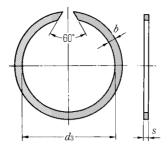

Gli anelli elastici sono disponibili nella **serie WR** per albero o esterna e nella **serie BR** per alloggiamento o interna.

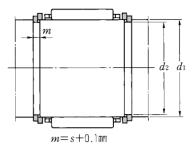
Appellativo

L'appellativo degli anelli elastici comprende il codice della serie (**WR** o **BR**) ed il codice dimensionale. Il codice dimensionale della **serie BR** indica il diametro del foro di alloggiamento dell'anello.

Numero di giri limite

Per numero di giri limite si intende quel numero di giri al quale l'anello elastico si apre e si allenta a causa della forza centrifuga. Il numero di giri limite della **serie WR** o anello elastico per esterno è indicato nelle tabelle dimensionali.

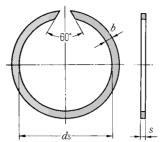

Istruzioni di montaggio

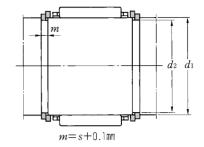

Per guidare la gabbia in direzione assiale, si raccomanda di interporre un distanziale tra la gabbia e l'anello elastico.

Lo smontaggio del cuscinetto a rullini può risultare difficoltoso se quest'ultimo è installato in una zona dove sia difficile posizionare l'attrezzo di smontaggio. Per il caso citato si consiglia di usare un anello elastico normale corrispondente alla normativa JIS B 2804 (anelli di trattenuta tipo C). Usando un anello elastico normale bisogna però tener conto della compatibilità con l'altezza del cuscinetto a rullini.

Per albero

Tipo WR

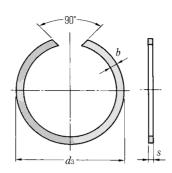


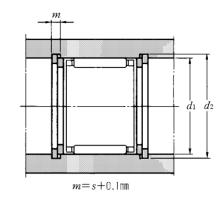

Appellativo		Numero di giri limite				
			mn	n		rpm
	d_1	d_3 max	b	<i>S</i> ±0.06	d_2	
WR 4	4	3.7	8.0	0.5	3.8	275 000
WR 5	5	4.7	1	0.5	4.8	192 000
WR 6	6	5.6	1.1	0.7	5.7	141 000
WR 7	7	6.5	1.2	0.7	$6.7_{-0.09}^{0}$	134 000
WR 8	8	7.4	1.3	1	7.6	108 000
WR 9	9	8.4	1.3	1	8.6	80 000
WR10	10	9.4	1.3	1	9.6	68 000
WR11	11	10.2	1.3	1	10.5	64 500
WR12	12	11.2	1.3	1	11.5	53 000
WR13	13	12.2	1.3	1	12.5	49 600
WR14	14	13.1	1.5	1.2	13.5 ₀	45 900
WR15	15	14	1.75	1.2	14.4 -0.11	44 500
WR16	16	15	1.75	1.2	15.4	38 000
WR17	17	16	1.75	1.2	16.4	34 500
WR18	18	17	1.75	1.2	17.4	30 000
WR19	19	17.9	1.75	1.2	18.4	28 900
WR20	20	18.7	1.75	1.2	19.2	26 200
WR21	21	19.7	1.75	1.2	20.2	23 400
WR22	22	20.7	1.75	1.2	21.2	20 800
WR23	23	21.7	1.75	1.2	22.2	19 500
WR24	24	22.5	1.75	1.2	23 0 -0.13	18 100
WR25	25	23.5	1.75	1.2	24	16 400
WR26	26	24.5	1.75	1.2	25	14 800
WR28	28	26.5	2.3	1.5	27	15 400
WR29	29	27.5	2.3	1.5	28	14 400
WR30	30	28.5	2.3	1.5	29	13 200
WR32	32	30.2	2.3	1.5	30.8 0	13 300
WR35	35	33.2	2.3	1.5	33.8 ^{-0.16}	10 700

Appellativo		Dime	nsioni	d'ingom	ibro	Numero di giri limite
			m	m		rpm
	d_1	d3	b	S	d_2	·
		max		±0.06		
WR 37	37	35.2	2.3	1.5	35.8	9 200
WR 38	38	36.2	2.3	1.5	36.8	8 700
WR 40	40	37.8	2.3	1.5	38.5	8 100
WR 42	42	39.8	2.3	1.5	40.5	7 000
WR 43	43	40.8	2.3	1.5	41.5 ⁰ -0.16	6 800
WR 45	45	42.8	2.3	1.5	43.5	5 800
WR 47	47	44.8	2.3	1.5	45.5	5 500
WR 48	48	45.8	2.3	1.5	46.5	5 300
WR 50	50	47.8	2.3	1.5	48.5	4 800
WR 52	52	49.8	2.3	1.5	50.5	4 300
WR 55	55	52.6	2.3	1.5	53.5	4 400
WR 58	58	55.6	2.3	1.5	56.5	3 900
WR 60	60	57.6	2.3	1.5	58.5	3 500
WR 61	61	58.6	2.3	1.5	59.5	3 300
WR 62	62	59.6	2.3	1.5	60.5	3 200
WR 63	63	60.6	2.3	1.5	61.5	3 100
WR 64	64	61.6	2.3	1.5	62.5 ⁰ -0.19	2 900
WR 65	65	62.6	2.3	1.5	63.5	2 800
WR 68	68	65.4	2.8	2	66.2	2 900
WR 70	70	67.4	2.8	2	68.2	2 700
WR 72	72	69.4	2.8	2	70.2	2 600
WR 73	73	70.4	2.8	2	71.2	2 500
WR 75	75	72.4	2.8	2	73.2	2 300
WR 80	80	77.4	2.8	2	78.2	1 950
WR 85	85	82	3.4	2.5	83	2 300
WR 90	90	87	3.4	2.5	88 0	2 000
WR 95	95	92	3.4	2.5	93 -0.22	1 750
WR100	100	97	3.4	2.5	98	1 560

Per albero

Tipo WR

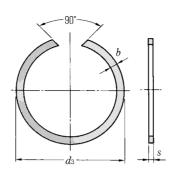


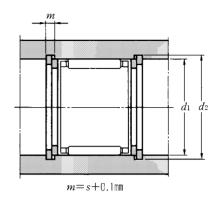

Appellativo	Dimensioni d'ingombro						Numero di giri limite
	,		m		,		rpm
	d_1	d_3 max	b	S ±0.06	d_2		
WD405	405		0.4		100.7		1 000
WR105	105	101.7	3.4	2.5	102.7		1 390
WR110	110	106.7	3.4	2.5	107.7	0	1 240
WR115	115	111.7	3.4	2.5	112.7	U.LL	1 100
WR120	120	116.7	3.4	2.5	117.7		1 000
WR125	125	121.7	3.4	2.5	122.7		920
WR130	130	126.7	3.4	2.5	127.7		830
WR135	135	131.6	4	2.5	132.4		830
WR140	140	136.6	4	2.5	137.4		760
WR145	145	141.6	4	2.5	142.4		690
WR150	150	146.6	4	2.5	147.4	0	640
WR155	155	151.6	4	2.5	152.4	-0.25	590
WR160	160	156.6	4	2.5	157.4		550
WR165	165	161.6	4	2.5	162.4		500
WR170	170	166.6	4	2.5	167.4		470
WR175	175	171.6	4	2.5	172.4		440
WR180	180	175.6	5	3	177		430
WR185	185	180.6	5	3	182		590
WR190	190	185.6	5	3	187		540
WR195	195	190.6	5	3	192		510
WR200	200	195.6	5	3	197		480
WR210	210	205.6	5	3	207		420
WR220	220	215.6	5	3	217	0 -0.29	380
WR225	225	220.6	5	3	222		360
WR230	230	225.6	5	3	227		350
WR240	240	235.6	5	3	237		310
WR250	250	245.6	5	3	247		270
WR260	260	253	7.5	4	255	0	430
WR265	265	258	7.5	4	260	-0.32	410

Appellativo	Dimensioni d'ingombro					Numero di giri limite	
			m	m			rpm
	d1	d_3	b	S	d_2		·
		max		±0.06			
WR270	270	263	7.5	4	265		380
WR280	280	273	7.5	4	275		360
WR285	285	278	7.5	4	280	_	350
WR290	290	283	7.5	4	285	0	340
WR300	300	293	7.5	4	295	-0.32	300
WR305	305	298	7.5	4	300		290
WR310	310	303	7.5	4	305		280
WR320	320	313	7.5	4	315		260
WR330	330	323	7.5	4	325		240
WR340	340	333	7.5	4	335		220
WR350	350	343	7.5	4	345		210
WR360	360	353	7.5	4	355	_ 0	190
WR370	370	363	7.5	4	365	-0.36	180
WR380	380	373	7.5	4	375		170
WR390	390	383	7.5	4	385		160
WR400	400	393	7.5	4	395		150

Per alloggiamento

Tipo BR




Appellativo	Dimensioni d'ingombro						
			mm				
	d_1	d_3	b	S	d_2		
		min		±0.06			
BR 7	7	7.5	1	8.0	7.3		
BR 8	8	8.5	1	0.8	8.3	+0.09 0	
BR 9	9	9.5	1.1	8.0	9.3		
BR10	10	10.6	1.2	8.0	10.4		
BR11	11	11.6	1.3	1	11.4		
BR12	12	12.7	1.3	1	12.4	_	
BR13	13	13.8	1.3	1	13.5	+0.11	
BR14	14	14.8	1.3	1	14.5	0	
BR15	15	15.8	1.3	1	15.5	_	
BR16	16	16.8	1.6	1.2	16.5		
BR17	17	17.8	1.6	1.2	17.5		
BR18	18	18.9	1.75	1.2	18.5		
BR19	19	19.9	1.75	1.2	19.6		
BR20	20	21	1.75	1.2	20.6		
BR21	21	22	1.75	1.2	21.6	_	
BR22	22	23	1.75	1.2	22.6		
BR23	23	24	1.75	1.2	23.6	+0.13	
BR24	24	25.2	1.75	1.2	24.8	0	
BR25	25	26.2	1.75	1.2	25.8		
BR26	26	27.2	1.75	1.2	26.8		
BR27	27	28.2	1.75	1.2	27.8	_	
BR28	28	29.2	1.75	1.2	28.8		
BR29	29	30.2	1.75	1.2	29.8		
BR30	30	31.4	2.3	1.5	31	_	
BR31	31	32.4	2.3	1.5	32		
BR32	32	33.4	2.3	1.5	33	+0.16 0	
BR33	33	34.4	2.3	1.5	34		
BR34	34	35.4	2.3	1.5	35		

Appellativo	Dimensioni d'ingombro						
		mm					
	d_1	d_3	b	S	d_2		
		min		±0.06			
BR35	35	36.4	2.3	1.5	36		
BR36	36	37.8	2.3	1.5	37.2	_	
BR37	37	38.8	2.3	1.5	38.2		
BR38	38	39.8	2.3	1.5	39.2		
BR39	39	40.8	2.3	1.5	40.2		
BR40	40	41.8	2.3	1.5	41.2		
BR41	41	42.8	2.3	1.5	42.2	+0.16	
BR42	42	43.8	2.3	1.5	43.2	0	
BR43	43	44.8	2.3	1.5	44.2		
BR44	44	45.8	2.3	1.5	45.2		
BR45	45	46.8	2.3	1.5	46.2	_	
BR46	46	47.8	2.3	1.5	47.2		
BR47	47	48.8	2.3	1.5	48.2		
BR48	48	49.8	2.3	1.5	49.2		
BR49	49	50.8	2.3	1.5	50.2		
BR50	50	51.8	2.3	1.5	51.2		
BR52	52	54.3	2.3	1.5	53.5	_	
BR53	53	55.3	2.3	1.5	54.5		
BR54	54	56.3	2.3	1.5	55.5		
BR55	55	57.3	2.3	1.5	56.5	_	
BR57	57	59.3	2.3	1.5	58.5	+0.19	
BR58	58	60.3	2.3	1.5	59.5	0	
BR60	60	62.3	2.3	1.5	61.5	_	
BR61	61	63.3	2.3	1.5	62.5		
BR62	62	64.3	2.3	1.5	63.5		
BR63	63	65.3	2.3	1.5	64.5		
BR64	64	66.3	2.3	1.5	65.5		
BR65	65	67.3	2.3	1.5	66.5		

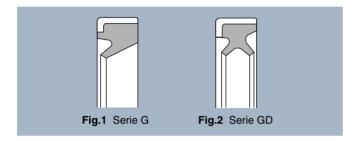
Per alloggiamento

Tipo BR

Appellativo		Dimensioni d'ingombro									
			mn								
	d_1	d_3	b	S	d_2						
		min		±0.06							
BR 66	66	68.3	2.3	1.5	67.5	_					
BR 68	68	70.3	2.3	1.5	69.5						
BR 70	70	72.3	2.3	1.5	71.5						
BR 72	72	74.6	2.8	2	73.8	_					
BR 73	73	75.6	2.8	2	74.8	+0.19					
BR 74	74	76.6	2.8	2	75.8	U					
BR 75	75	77.6	2.8	2	76.8	_					
BR 76	76	78.6	2.8	2	77.8						
BR 77	77	79.6	2.8	2	78.8						
BR 78	78	80.6	2.8	2	79.8						
BR 79	79	81.6	2.8	2	80.8						
BR 81	81	83.6	2.8	2	82.8						
BR 82	82	84.6	2.8	2	83.8	_					
BR 83	83	85.6	2.8	2	84.8						
BR 85	85	87.6	2.8	2	86.8						
BR 86	86	88.6	2.8	2	87.8	_					
BR 88	88	91	3.4	2.5	90						
BR 90	90	93	3.4	2.5	92						
BR 92	92	95	3.4	2.5	94	_+0.22					
BR 93	93	96	3.4	2.5	95	0					
BR 95	95	98	3.4	2.5	97						
BR 97	97	100	3.4	2.5	99	_					
BR 98	98	101	3.4	2.5	100						
BR100	100	103	3.4	2.5	102						
BR102	102	105.3	3.4	2.5	104.3						
BR103	103	106.3	3.4	2.5	105.3						
BR105	105	108.3	3.4	2.5	107.3						
BR107	107	110.3	3.4	2.5	109.3						

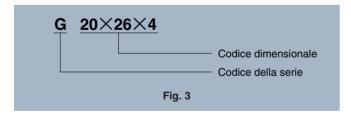
Appellativo	Dimensioni d'ingombro						
			mm				
	d_1	d3	b	S	d_2		
		min		±0.06			
BR108	108	111.3	3.4	2.5	110.3		
BR110	110	113.3	3.4	2.5	112.3		
BR112	112	115.3	3.4	2.5	114.3	+0.22	
BR113	113	116.3	3.4	2.5	115.3	0	
BR115	115	118.3	3.4	2.5	117.3		
BR117	117	120.3	3.4	2.5	119.3		
BR118	118	121.3	3.4	2.5	120.3		
BR120	120	123.3	3.4	2.5	122.3		
BR123	123	126.3	3.4	2.5	125.3	_	
BR125	125	128.3	3.4	2.5	127.3		
BR127	127	130.3	3.4	2.5	129.3		
BR130	130	133.3	3.4	2.5	132.3	_	
BR133	133	136.3	3.4	2.5	135.3		
BR135	135	138.3	3.4	2.5	137.3		
BR137	137	140.3	3.4	2.5	139.3	_	
BR140	140	143.6	4	2.5	142.6	+0.25	
BR143	143	146.6	4	2.5	145.6	0	
BR150	150	153.6	4	2.5	152.6	_	
BR153	153	156.6	4	2.5	155.6		
BR160	160	163.6	4	2.5	162.6		
BR163	163	166.6	4	2.5	165.6	_	
BR165	165	168.6	4	2.5	167.6		
BR170	170	173.6	4	2.5	172.6		
BR173	173	176.6	4	2.5	175.6	_	
BR175	175	178.6	4	2.5	177.6		
BR180	180	183.6	4	2.5	182.6		
BR183	183	186.6	4	2.5	185.6	+0.29	
BR190	190	194.5	5	3	193	0	

Appellativo		Dime	nsioni d	'ingomb	ro						
		mm									
	d_1	d_3	b	I S	d_2						
		min		±0.06							
BR195	195	199.5	5	3	198						
BR200	200	204.5	5	3	203	_					
BR205	205	209.5	5	3	208						
BR210	210	214.5	5	3	213	+0.29					
BR215	215	219.5	5	3	218	0 _					
BR220	220	224.5	5	3	223						
BR225	225	229.5	5	3	228						
BR230	230	234.5	5	3	233						
BR240	240	244.5	5	3	243						
BR250	250	254.5	5	3	253						
BR260	260	267	7.5	4	265	+0.32					
BR270	270	277	7.5	4	275	0					
BR280	280	287	7.5	4	285						
BR300	300	307	7.5	4	305						
BR320	320	327	7.5	4	325						
BR325	325	332	7.5	4	330						
BR350	350	357	7.5	4	355	_					
BR355	355	362	7.5	4	360						
BR360	360	367	7.5	4	365	+0.36					
BR375	375	382	7.5	4	380	0					
BR380	380	387	7.5	4	385						
BR385	385	392	7.5	4	390						
BR395	395	402	7.5	4	400	_					
BR400	400	407	7.5	4	405						
BR415	415	422	7.5	4	420						
BR420	420	427	7.5	4	425	+0.40					
BR440	440	447	7.5	4	445	- 0					


Anelli di tenuta

Anelli di tenuta

Gli anelli di tenuta, specifici per i cuscinetti a rullini, hanno una sezione limitata per poter essere applicati con tali tipi di cuscinetti. Essi rappresentano delle tenute a contatto in gomma sintetica rinforzate da un'armatura in acciaio. Gli anelli di tenuta per cuscinetti a rullini hanno un campo di temperatura di funzionamento da -25° C a $+100^{\circ}$ C.

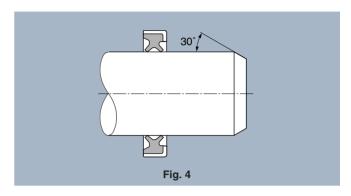

Tipi di anelli di tenuta

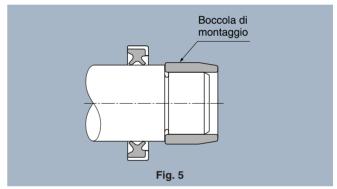
Gli anelli di tenuta per i cuscinetti a rullini sono disponibili nella **serie G**, ad un solo labbro, e nella **serie GD**, a doppio labbro. Per condizioni operative speciali, come con temperature di funzionamento superiori a 120°C, si prega di consultare l'assistenza tecnica NTN.

Quando la sede della tenuta è buona e le condizioni di lubrificazione sono altrettanto buone, le tenute ad un solo labbro della **serie G** possono operare sino ad una velocità periferica di 10 m/sec e quelle a doppio labbro della **serie GD** sino a 6 m/sec.

Gli appellativi degli anelli di tenuta comprendono il codice della serie (**G** o **GD**) ed il codice dimensionale (diametro interno×diametro esterno×larghezza).

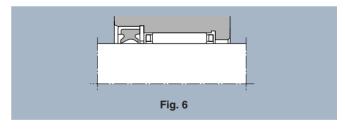
Istruzioni di montaggio

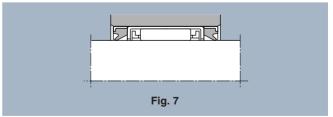

Per poter raggiungere un funzionamento affidabile, la superficie di tenuta deve essere tempratata e finita di rettifica. Se, come superficie di tenuta viene usata la pista di un anello interno, quest'ultimo dovrà essere di larghezza maggiorata.

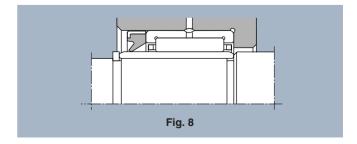

Per evitare che il labbro e la superficie di tenuta vengano danneggiati durante il montaggio, l'estremità dell'albero o quella dell'alloggiamento devono avere un invito conico (**Fig. 4**). Se l'estremità dell'albero non è nè smussata nè arrotondata, si raccomanda l'uso di una boccola di montaggio come quella illustrata nella **Fig. 5**.

Con tolleranza dell'alloggiamento da G7 a R7, l'anello

di tenuta ha una interferenza sufficiente.

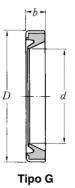

Per la lubrificazione del labbro, applicare del grasso a quest'ultimo prima del montaggio.

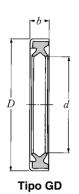




Applicazioni tipiche di anelli di tenuta

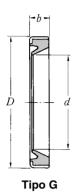
Le **figure da 6** a **8** illustrano le combinazioni tipiche degli anelli di tenuta per i cuscinetti a rullini.

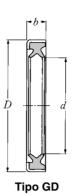




Anelli di tenuta

Tipo G Tipo GD

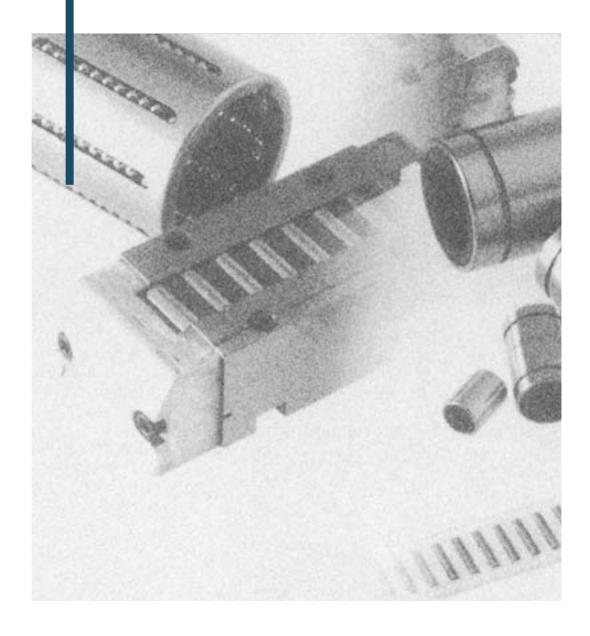

Арре	ellativo	Di	mensioni d	li	Ma	ssa
			ingombro mm		X 10)-3 kg
		d	$D^{1)}$	b		ŭ
Tipo G	Tipo GD		+	-0.2 0	G	GD
G $4 \times 8 \times 2$	_	4	8	2	0.18	_
$G 5 \times 9 \times 2$	_	5	9 +0.081	2	0.19	_
G 5×10×2	_	5	10 +0.023	2	0.22	_
G 6×10×2	_	6	10	2	0.21	_
G 6×12×2	_	6	12	2	0.38	_
G 7×11×2		7	11	2	0.25	_
G 7×14×2	_	7	14	2	0.52	_
G 8×12×3	_	8	12	3	0.41	_
G 8×15×3		8	15	3	0.74	_
G 9×13×3	_	9	13 ^{+0.098} _{+0.028}	3	0.44	_
G 9×16×3	_	9	16	3	0.69	_
G10×14×3	_	10	14	3	0.50	_
G10×17×3	_	10	17	3	0.87	_
G12×16×3	_	12	16	3	0.56	_
G12×18×3		12	18	3	0.86	_
G12×19×3	_	12	19	3	0.94	_
G13×19×3	_	13	19	3	0.87	_
G14×20×3	GD14×20×3	14	20	3	0.96	0.99
G14×21×3	$GD14\times21\times3$	14	21	3	1.1	1.1
G14×22×3	GD14×22×3	14	22	3	1.3	1.2
G15×21×3	GD15×21×3	15	21	3	1.0	1.0
G15×23×3	GD15×23×3	15	23 +0.119 +0.035	3	1.3	1.3
G16×22×3	GD16×22×3	16	22	3	1.3	1.1
G16×24×3	GD16×24×3	16	24	3	1.3	1.3
G16×25×3	GD16×25×3	16	25	3	1.6	1.6
G17×23×3	GD17×23×3	17	23	3	1.3	1.1
G17×25×3	GD17×25×3	17	25	3	1.5	1.4
G18×24×3	GD18×24×3	18	24	3	1.2	1.2


Арре	Di	imen	sioni d	li	Massa			
			ingo	mbro				
				nm		X10 ⁻³ kg		
Tipo G	Tipo GD	d	$D^{1)}$		<i>b</i> -0.2	G	GD	
про С	Tipo GD				0	G	GD	
G18×26×4	GD18×26×4	18	26		4	1.8	1.8	
G19×27×4	GD19×27×4	19	27		4	2.0	1.9	
G20×26×4	$GD20\times26\times4$	20	26		4	1.8	1.8	
G20×28×4	GD20×28×4	20	28	+0.119 +0.035	4	2.1	2.1	
G21×29×4	GD21×29×4	21	29		4	2.2	2.1	
G22×28×4	GD22×28×4	22	28		4	1.8	1.9	
G22×30×4	GD22×30×4	22	30		4	2.2	2.3	
G24×32×4	$GD24 \times 32 \times 4$	24	32		4	2.5	2.4	
G25×32×4	GD25×32×4	25	32		4	2.3	2.2	
G25×33×4	GD25×33×4	25	33		4	2.5	2.5	
G25×35×4	GD25×35×4	25	35		4	2.6	2.6	
G26×34×4	GD26×34×4	26	34		4	2.6	2.6	
G28×35×4	GD28×35×4	28	35		4	2.4	2.5	
G28×37×4	GD28×37×4	28	37		4	3.1	2.8	
G29×37×4	GD29×37×4	29	37		4	2.7	2.7	
G29×38×4	GD29×38×4	29	38		4	3.2	2.9	
G30×37×4	GD30×37×4	30		+0.143 +0.043	4	2.7	2.6	
G30×40×4	GD30×40×4	30	40		4	3.6	3.3	
G32×42×4	GD32×42×4	32	42		4	3.7	3.9	
G32×45×4	GD32×45×4	32	45		4	5.1	5.2	
G35×42×4	GD35×42×4	35	42		4	3.0	2.9	
G35×45×4	GD35×45×4	35	45		4	4.1	3.6	
G37×47×4	GD37×47×4	37	47		4	4.0	3.8	
G38×48×4	GD38×48×4	38	48		4	4.4	4.0	
G40×47×4	GD40×47×4	40	47		4	3.3	3.5	
G40×50×4	GD40×50×4	40	50		4	4.6	4.0	
G40×52×5	GD40×52×5	40	52	+0.173	5	4.8	4.7	
G42×52×4	GD42×52×4	42	52	+0.053	4	4.7	4.2	

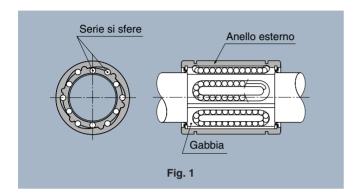
NOTA: 1) La tolleranza del diametro esterno rappresenta la media delle misure di due punti equidistanti della superficie esterna.

Anelli di tenuta

Tipo G Tipo GD

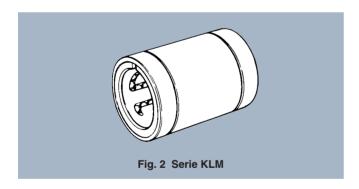


Арре	ellativo		mensioni d ingombro mm	li		nssa 0-3 kg
		d	$D^{1)}$	b		o - kg
Tipo G	Tipo GD		+	-0.2 0	G	GD
G43×53×4	GD43×53×4	43	53	4	4.8	4.3
G45×52×4	$GD45 \times 52 \times 4$	45	52	4	3.8	3.8
G45×55×4	GD45×55×4	45	55 +0.173 +0.053	4	5.2	5.5
G50×58×4	GD50×58×4	50	58	4	4.5	5.2
G50×62×5	$GD50 \times 62 \times 5$	50	62	5	10.4	10

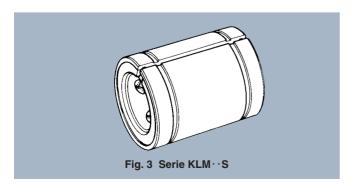

NOTA: 1) La tolleranza del diametro esterno rappresenta la media delle misure di due punti equidistanti della superficie esterna.

Manicotti a sfere per movimenti lineari: massicci ed in lamiera stampata

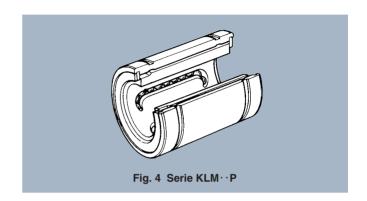
Manicotti a sfere per movimenti lineari: massicci ed in lamiera stampata


Da quattro a nove serie di sfere sono equamente distribuite nell'anello esterno (cilindro esterno). Le sfere ricircolano in direzione assiale guidate dalla gabbia permettendo il movimento lineare illimitato all'albero. Il tipo di cuscinetto non è idoneo al movimento di rotazione.

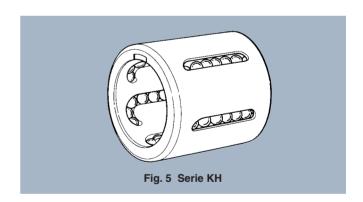
Tipi ed esecuzioni


I manicotti a sfere NTN per movimenti lineari sono disponibili in esecuzione massiccia ed in lamiera stampata nelle **serie KLM**, **KLM··S** con giuoco registrabile, nel tipo aperto **KLM··P** e **KH**.

La serie normale **KLM** è cilindrica ed è valida per le applicazioni più comuni. L'elevata rigidità dell'anello esterno assicura un movimento lineare silenzioso e


regolare.

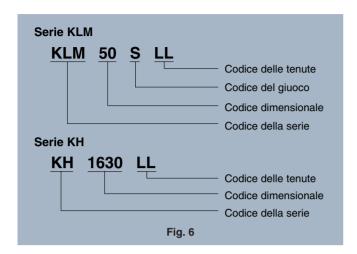
L'anello esterno e la gabbia del tipo con giuoco registrabile della **serie KLM··S** hanno un'apertura assiale. Il giuoco radiale rispetto all'albero può essere registrato tramite l'alloggiamento. Applicando una pressione in senso radiale all'anello esterno si provoca


una contrazione del diametro del cerchio inscritto ($F_{\rm w}$).

L'anello esterno e la gabbia della **serie KLM··P**, in esecuzione aperta, sono mancanti di un segmento ad arco, corrispondente ad una serie di sfere (da 50° a 60°). Come risultato il manicotto ha la possibilità di passare sopra ad un supporto dell'albero. Il giuoco radiale della

bussola può anche essere registrato.

Come i manicotti normali della **serie KLM**, gli astucci a sfere della **serie KH** hanno un anello esterno cilindrico che viene ricavato mediante profondo stampaggio di precisione da lamiera di acciaio. La limitata sezione della **serie KH** contribuisce alla progettazione di sistemi


compatti e leggeri per movimenti lineari.

L'anello esterno delle **serie KLM**, **KLM··S** e **KLM··P** è un pezzo massiccio ricavato da lavorazione meccanica le cui dimensioni d'ingombro: diametro del cerchio inscritto (F_w) , diametro esterno (D), e larghezza (C) sono identiche per tutte le serie dei manicotti. In confronto ai tipi massicci della **serie KLM**, il diametro esterno (D) degli astucci a sfere della **serie KH** in lamiera stampata, ha dimensioni minori a parità di diametro albero (F_w) .

Le serie KLM, KLM··S, KLM··P e le serie KH con diametro del cerchio inscritto maggiore/uguale a 12mm sono anche disponibili con anelli di tenuta in gomma sintetica ad uno o ad entrambi i lati (suffisso L o LL).

Appellativo

L'appellativo dei manicotti massicci a sfere per movimenti lineari NTN comprende il codice della serie, il

codice dimensionale ed il suffisso. Il codice dimensionale della **serie KLM** è il diametro dell'albero $(F_{\rm w})$ e, per la **serie KH** comprende il diametro dell'albero $(F_{\rm w})$ ed il diametro esterno (D)

Tolleranze

Con i manicotti massicci della **serie KLM**, le tolleranze delle dimensioni d'ingombro: il diametro del cerchio inscritto $(F_{\mathbf{w}})$, il diametro esterno (D) e la larghezza (C), sono riportate nelle tabelle dimensionali. La **NTN** può fornire dei prodotti di precisione superiore. Per i dettagli relativi, si prega di prendere contatto con l'assistenza tecnica **NTN**.

Essendo a parete sottile, l'anello esterno degli astucci a sfere **serie KH** in lamiera stampata subisce delle deformazioni inevitabili durante il processo di produzione, particolarmente in fase di trattamento termico. Comunque, quando gli astucci sono montati forzati in un foro di alloggiamento di dimensioni appropriate, le deformazioni vengono corrette e l'anello esterno recupera le proprie funzioni di progetto. Consultare l'assistenza tecnica **NTN** per il metodo di misura.

Accoppiamenti

Usando un albero ed un alloggiamento aventi le tolleranze indicate nella **Tabella 1** si può ottenere un giuoco radiale appropriato. Se è desiderato un giuoco radiale inferiore o si vuole applicare un precarico, si deve registrare il giuoco radiale usando un alloggiamento aperto o si devono fare degli accoppiamenti delle varie selezionature.

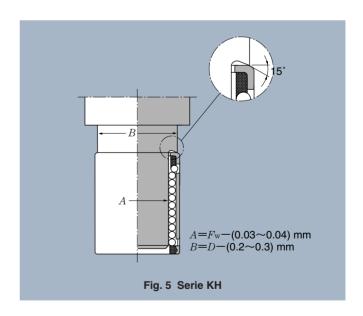
Tabella 1 Accoppiamenti

Serie	Albero	Alloggiamento
Serie KLM tipo massiccio	g6 (g5)	H7 (H6)
Serie HK in lamiera stampata	h6 (j5)	H7 (H6) Acciaio K7 (K6) Lega leggera

Nota: Le tolleranze in parentesi sono valide per le applicazioni di elevata precisione o per applicazioni in verticale.

Esecuzione dell'albero e dell'alloggiamento

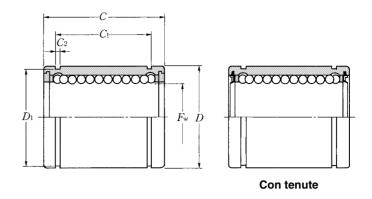
L'albero e l'alloggiamento per il montaggio dei manicotti massicci ed in lamiera stampata NTN per movimenti lineari devono soddisfare le prescrizioni della **Tabella 2**.


Table 2 Esecuzione dell'albero e dell'alloggiamento

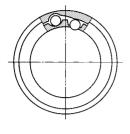
Caratteristica	Albero	Alloggiamento
Rotondità (max)	IT3	IT4
Cilindricità (max)	IT2	IT4
Rugosità superficiale (max)	0.4a	1.6a
Durezza superficiale	HRC58~64	_
Profondità dello strato temprato (min)	0.4mm	_

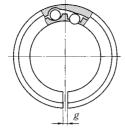
Montaggio

Il bloccaggio nell'alloggiamento dei tipi massicci delle **serie KLM** con la sola interferenza è insufficiente; deve quindi essere usato un anello elastico per ottenere un bloccaggio assiale nell'alloggiamento.


In confronto, gli astucci in lamiera stampata della **serie KH** vengono montati con accoppiamento forzato nell'alloggiamento. Non è quindi necessario un bloccaggio assiale nell'alloggiamento mediante anello elastico o dispositivo simile. Per il montaggio forzato degli astucci, premere con un mandrino sul lato recante la marcatura (lato indurito) dell'anello esterno. Come illustrato in **Fig. 7**.

Accessori


La NTN produce anche alberi, supporti ritti ed alloggiamenti ottimizzati per i manicotti per movimenti lineari. Per ulteriori dettagli, contattare l'assistenza tecnica NTN.

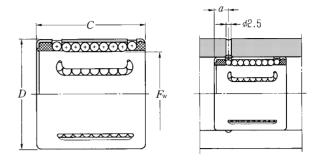

Tipo KLM ·· SLL
Tipo KLM ·· SLL
Tipo KLM ·· PLL

F_w 3∼40mm

		Dime	nsioni d mm	J	ro				dinamico	efficient statico	dinamic		Appellativo	di corone	Massa kg
$F_{ m w}$	D	C	C_1 ± 0.240	C_2	D_1	g	h	θ	$C_{ m r}$	$C_{ m or}$	$C_{\rm r}$	$C_{ m or}$		di sfere	(Approssimata)
3 ⁰ _{-0.008}	7 0 -0.010	10 0 -0.120	_	_	_	_	_	_	51	40	5	4	KLM03	4	0.002
4 ⁰ _{-0.008}		12 0 -0.120	_	_	_	_	_	_	71	52	7	5.5	KLM04	4	0.003
5 ⁰ _{-0.009}	10 0 -0.010		_	_	_	_	_	_	118	90	12	9	KLM05	4	0.005
6 ⁰ _{-0.009}	12 0 -0.010	19 0 -0.120	13.3	1.1	11.5	_	_	_	130	107	13	11	KLM06	4	0.009
o 0	15 ⁰ _{-0.010}	17 ⁰ _{-0.120}	11.3	1.1	14.3	_	_	_	116	94	12	9.5	KLM08	4	0.012
-0.009	15 -0.010 15 -0.010	24 -0.120	17.3	1.1	14.3	_	_	_	234	187	24	19	KLM08-1	4	0.017
10 $^{0}_{-0.009}$	19 0 -0.012	29 -0.120	21.7	1.3	18	_	_	_	435	297	45	30	KLM10	4	0.028
12 $^{0}_{-0.009}$	22 0 -0.012	32 -0.120	22.7	1.3	21	_	_	_	480	380	49	39	KLM12	5	0.042
13 ⁰ _{-0.009}	23 -0.012	32 -0.120	22.7	1.3	22	_	_	_	540	455	55	47	KLM13	5	0.045
	28	37	26.5	1.6	27	_	_	_	875	670	89	68	KLM16	5	0.075
16 $^{0}_{-0.009}$	28 -0.012	37 ⁰ _{-0.120}	26.5	1.6	27	0.6	_	_	875	670	89	68	KLM16S	5	0.075
	28	37	26.5	1.6	27	_	8.2	60°	875	670	89	68	KLM16P	4	0.062
	32	42	30.3	1.6	30.5	_	_	_	1 190	985	121	100	KLM20	6	0.10
20 $^{0}_{-0.010}$	32 -0.014		30.3	1.6	30.5	0.6	_	_	1 190	985	121	100	KLM20S	6	0.10
	32	42	30.3	1.6	30.5		8.6	50°	1 190	985	121	100	KLM20P	5	0.085
0	40	59	40.7	1.85	38	_	_	_	2 640	2 340	269	239	KLM25	6	0.22
25 $^{0}_{-0.010}$			40.7	1.85	38	0.6	_	_	2 640	2 340	269	239	KLM25S	6	0.22
	40	59	40.7	1.85	38		10.8	50°	2 640	2 340	269	239	KLM25P	5	0.19
0	45	64	44.2	1.85	43	_	_	_	2 540	2 360	259	241	KLM30	6	0.26
30 $^{0}_{-0.010}$			44.2	1.85	43	0.6	_	_	2 540	2 360	259	241	KLM30S	6	0.26
	45	64	44.2	1.85	43		13.0	50°	2 540	2 360	259	241	KLM30P	5	0.22
0	52	70	49.2	2.2	49	_	_	_	3 400	2 970	345	305	KLM35	6	0.40
35 -0.012	52 -0.017			2.2	49	1.2	_	_ =0°	3 400	2 970	345	305	KLM35S	6	0.40
	52	70	49.2	2.2	49		15.1	50°	3 400	2 970	345	305	KLM35P	5	0.34
40 0	60 -0.017	80 -0.120	60.3	2.1	57	_	-	_	3 950	3 750	400	385	KLM40	6	0.62
-0.012	60 _{-0.017} 60 _{-0.017}	80 -0.120	60.3	2.1	57	1.2	_	_	3 950	3 750	400	385	KLM40S	6	0.62

Tipo KLM (Tipo normale)

Tipo KLM · S (Con giuoco registrabile)

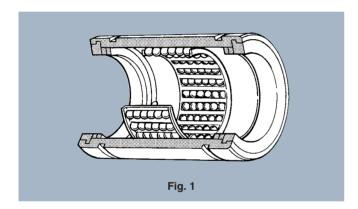

Tipo KLM · P (Tipo aperto)

*F*_w 40∼100mm

			Dimens	ioni d'ino	gombro)					pefficient statico d			Appellativo	Numero di corone	Massa
	-	_		mm	~					N	I	kg	ıf		di sfere	kg
	$F_{ m W}$	D	C	$C_1 \pm 0.300$	C_2	D_1	g	h	θ	$C_{\rm r}$	Cor	$C_{\rm r}$	Cor			(Approssimata)
	40 0 -0.012	60 0 -0.017	80 0 -0.120	60.3	2.1	57	_	17.2	50°	3 950	3 750	400	385	KLM40P	5	0.53
		80	100	73.6	2.6	76.5	_	_	_	7 200	6 650	735	680	KLM50	6	1.5
	50 ⁰ _{-0.012}	80 -0.017	100 0 -0.120	73.6	2.6		1.2	_	_	7 200	6 650	735	680	KLM50S	6	1.5
		80	100	73.6	2.6	76.5	_	21.4	50°	7 200	6 650	735	680	KLM50P	5	1.3
	•	90	110	84.6	3.15	86.5	_	_	_	8 550	7 600	870	775	KLM60	6	1.9
	60 $^{0}_{-0.015}$		110 -0.150		3.15	86.5	1.2	_	_	8 550	7 600	870	775	KLM60S	6	1.9
		90	110	84.6	3.15	86.5	_	25.8	50°	8 550	7 600	870	775	KLM60P	5	1.6
		120	140	105.1	4.15	116	_	_	_	15 600	13 500	1 600	1 380	KLM80	6	4.3
	80 -0.015	120 -0.020	140 -0.150	105.1	4.15	116	1.2	_	_		13 500			KLM80S	6	4.3
		120	140	105.1	4.15	116	_	34.3	50°	15 600	13 500	1 600	1 380	KLM80P	5	3.7
	0	150	175	125.1	4.15	145	_	_	_	28 700	23 900	2 930	2 440	KLM100	6	8.5
1	00 -0.020	150 -0.025	175 -0.200	125.1	4.15	145	1.2	_	_	28 700	23 900	2 930	2 440	KLM100S	6	8.5
		150	175	125.1	4.15	145	_	42.7	50°	28 700	23 900	2 930	2 440	KLM100P	5	7.3

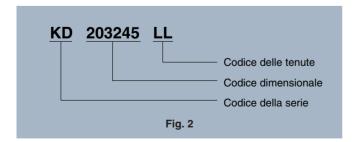
Tipo KH Tipo KH··LL

	Dimensioni m	d'ingomb m	oro	Appellativo	dinamico	Coefficienti statico	di carico dinamico	statico gf	Numero di corone di sfere	Massa kg
$F_{ m W}$	D	C	a ¹⁾		$C_{ m r}$	$C_{ m or}$	$C_{ m r}$	$C_{ m or}$		(Approssimata)
6	12	22	4	KH0622	380	225	39	23	4	0.007
8	15	24	5	KH0824	420	255	43	26	4	0.012
10	17	26	5	KH1026	480	325	49	33	4	0.015
12	19	28	6	KH1228	605	495	62	51	5	0.018
14	21	28	6	KH1428	600	505	61	51	5	0.021
16	24	30	7	KH1630	775	600	79	61	5	0.027
20	28	30	7	KH2030	1 050	880	107	90	6	0.033
25	35	40	8	KH2540	1 930	1 560	197	159	6	0.066
30	40	50	8	KH3050	2 700	2 450	275	250	7	0.095
40	52	60	9	KH4060	4 250	4 000	435	410	8	0.18
50	62	70	9	KH5070	5 300	5 700	540	580	9	0.24
	sietanza dalla									


Manicotti per movimenti lineari e di rotazione

Una gabbia munita di parecchie serie di sfere disposte circonferenzialmente e composte ciascuna da un certo numero di sfere, può eseguire dei movimenti circonferenziali ed assiali rispetto all'anello esterno. Il cuscinetto lineare a sfere può quindi ruotare ed eseguire dei movimenti rettilinei alterni (di valore limitato) sull'albero.

Tipi e caratteristiche


La lunghezza della corsa possibile del cuscinetto è pari al doppio della corsa assiale della gabbia all'interno dell'anello esterno. Ad entrambe le estremità dell'anello esterno si trovano degli anelli elastici che bloccano la gabbia. Tra gli anelli elastici e la gabbia si trovano delle molle ad anello ondulato per proteggere la gabbia dagli urti e dalla possibile usura.

La NTN è anche in grado di produrre una variante (suffisso LL) il cui anello esterno è munito di anelli di tenuta in gomma ad entrambi i lati.

Appellativo

Gli appellativi dei manicotti **NTN** per movimento lineare e rotazione comprendono il codice della serie (**KD**), il codice dimensionale (diametro del cerchio inscritto $F_{\rm w}$, il diametro esterno D, la larghezza C) ed il suffisso.

Tolleranze

Le tolleranze dei manicotti della serie KD sono riportate nella **Tabella. 1**.

Tabella 1 Tolleranze dei manicotti

Caratteristica	Tolleranze e limiti
Diametro del cerchio inscritto (F_w)	F6
Diametro esterno dell'anello esterno (D)	h5

Accoppiamenti e giuoco radiale

I manicotti a sfere NTN per movimento lineare e rotazione vengono impiegate con il giuoco radiale minimo possibile: In particolare, se l'albero è posto in verticale od è richiesta una precisione più elevata, si raccomanda di eseguire una combinazione di selezionature di bussole ed alberi per ottenere un giuoco radiale da 0 a -10 μ m (precarico).

Gli accoppiamenti con l'albero e l'alloggiamento sono riportati dalla **Tabella. 2**.

Tabella 2 Accoppiamenti

Condizioni operative	Albero	Alloggiamento
Applicazioni normali	k5 (m5)	H6 (H7)
Albero verticale od elevata precisione	n5 (p5) ¹	J6 (J7)

Accoppiamenti selettivi

Nota: I valori in parentesi sono validi per le applicazioni con elevata precisione.

Esecuzione dell'albero e dell'alloggiamento

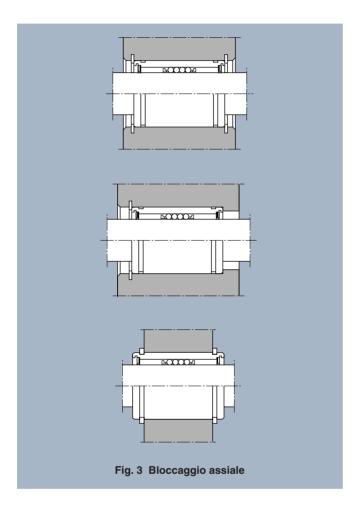
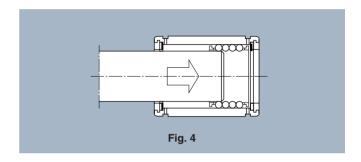
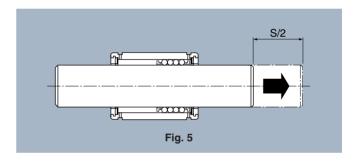
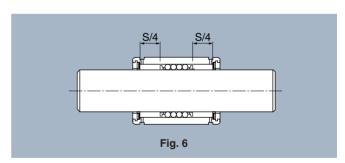

La **Tabella 3** indica le prescrizioni per l'albero e l'alloggiamento quando la superficie dell'albero viene usata direttamente come pista volvente.

Table 3 Esecuzione dell'albero e dell'alloggiamento

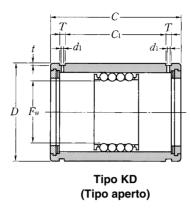
Caratteristica	Albero	Alloggiamento
Rotondità (max)	IT2	IT4
Cilindricità (max)	IT2	IT4
Rugosità superficiale (max)	0.4a	1.6a
Durezza superficiale	HRC58~64	_
Profondità dello strato temprato (min)	0.4mm	_

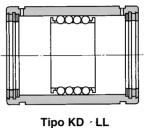

Montaggio


La sola interferenza non garantisce il bloccaggio del manicotto nell'alloggiamento; questa deve quindi essere fissata assialmente per mezzo di anelli elastici, (vedere la **Fig. 3**).



Per poter assicurare che, al montaggio dell'albero, la gabbia sia posizionata al centro dell'anello esterno, portare innanzi tutto la gabbia in una posizione estrema inserendo l'albero nell'anello esterno già montato nell'alloggiamento (**Fig. 4**).


A questo punto, portare con cura l'albero nella posizione media della corsa e poi spostarlo di mezza corsa (**Fig. 5**). In seguito, fare arretrare l'albero ancora di mezza corsa ed in tal modo la gabbia si viene a trovare nella mezzeria dell'anello esterno e l'albero alla metà della propria corsa (**Fig. 6**).



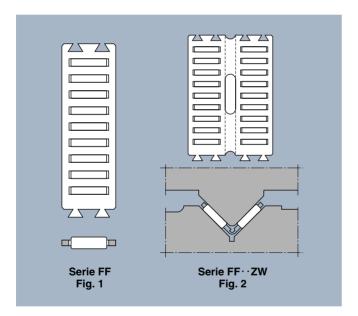
Tipo KD Tipo KD··LL

Tipo KD · LL (Con anelli di tenuta)

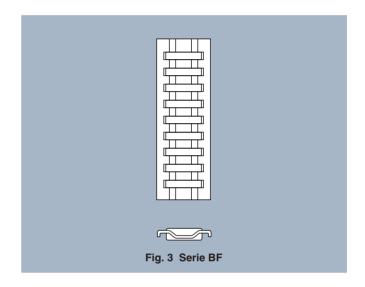
F_w 10∼80mm

	Dimensioni d'ingombro mm						Арр	ellativo	Co dinamico	Massa (Approssimata)							
F _w	<i>D</i> h5	C ¹⁾	T	t	d_1	C_1	Max. corsa	C_1	Max. corsa	Tipo KD	Tipo KD··LL	$C_{ m r}$	N	$C_{ m r}$	g f $C_{ m or}$	Tipo KD	g Tipo KD··LL
10	19	30	1.7	0.4	1.5	22.7	27	15.5	19	KD101930	KD101930LL	725	535	74	55	0.028	0.030
12	23	32	1.7	0.4	1.5	24.5	30	17.1	22	KD122332	KD122332LL	925	725	94	74	0.052	0.055
16	28	37	1.7	0.5	1.5	29.1	33	21.1	26	KD162837	KD162837LL	1 490	1 070	152	110	0.073	0.078
20	32	45	2.2	0.5	2	35.8	55	26.8	46	KD203245	KD203245LL	1 680	1 230	171	125	0.100	0.105
25	37	45	2.2	0.6	2	35.8	55	26.8	46	KD253745	KD253745LL	1 890	1 410	193	144	0.115	0.120
30	45	65	2.7	0.7	2.5	53.5	81	45.1	73	KD304565	KD304565LL	3 850	3 100	390	315	0.265	0.265
35	52	70	2.7	0.7	2.5	58.5	90	50.1	79	KD355270	KD355270LL	4 200	3 500	430	355	0.405	0.405
40	60	80	2.7	0.7	2.5	68.3	103	59.9	93	KD406080	KD406080LL	5 900	4 750	600	485	0.635	0.635
45	65	80	2.7	0.7	2.5	68.3	103	59.9	93	KD456580	KD456580LL	6 450	5 300	655	540	0.675	0.680
50	72	100	3.2	1	3	86.4	136	77.4	125	KD5072100	KD5072100LL	8 500	6 850	870	695	1.00	1.02
55	80	100	3.2	1	3	86.4	136	77.4	125	KD5580100	KD5580100LL	9 250	7 550	945	770	1.34	1.36
60	85	100	3.2	1	3	86.4	136	77.4	122	KD6085100	KD6085100LL	9 900	8 250	1 010	845	1.41	1.43
70	95	100	3.2	1	3	86.4	136	77.4	122	KD7095100	KD7095100LL	10 600	9 000	1 090	920	1.61	1.63
80	110	100	3.2	1.2	3	86	129	77	116	KD80110100	KD80110100LL	13 300	10 900	1 360	1 110	2.37	2.40

NOTA: 1) La tolleranza della larghezza $C \ e^{0}_{-0.120} \ per F_{w} \le 50 \ mm; \ 0.150 \ per F_{w} > 50 \ mm.$

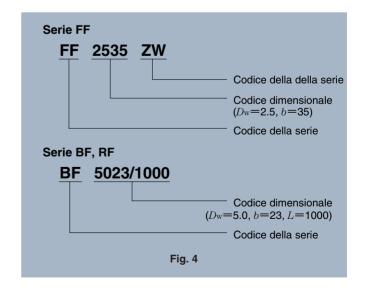

Gabbie piane

Le gabbie piane **NTN** vengono normalmente inserite tra due superfici piane opposte ed assicurano un movimento rettilineo alterno regolare e silenzioso caratterizzato da un limitato coefficiente di attrito.


Tipi ed esecuzioni

Le gabbie piane della **serie FF** hanno la struttura in resina poliammide ed entrambe le estremità hanno degli innesti a coda di rondine (uno positivo e l'altro negativo) per permettere un facile collegamento del numero di elementi necessari.

La serie FF··ZW ha due serie affiancate di rullini; la parte di collegamento centrale della gabbia è flessibile. La gabbia piana, riscaldata ad una temperatura tra 70°C e 90°C in un bagno d'olio può essere piegata all'angolo desiderato. L'angolazione ottenuta può essere resa permanente se la gabbia viene mantenuta nella posizione desiderata e lasciata raffreddare per parecchi secondi. In tal modo la gabbia può essere montata tra due piste con sezione a "V".



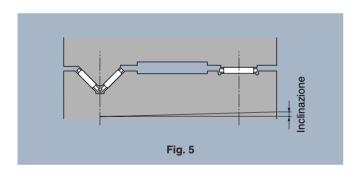
Le gabbie piane della **serie BF** hanno la struttura in lamiera di acciaio stampata ed hanno una lunghezza normale di 1000 mm. Le gabbie della **serie RF** sono im resina poliammide ed hanno una lunghezza normale di 705mm. Sia le gabbie piane della **serie BF** che quelle della **serie RF** non possono essere collegate per poter costituire una unità singola. Comunque, la **NTN** è in grado di fornire entrambe le serie nelle lunghezze richieste dal cliente. Per ulteriori informazioni al riguardo si prega di contattare l'assistenza tecnica **NTN**.

Appellativo

Gli appellativi delle gabbie piane NTN comprendono il codice della serie, il codice dimensionale (diametro del rullino $D_{\rm W}$, la larghezza della gabbia b o la lunghezza della stessa L) ed il suffisso

Tolleranze dei rullini

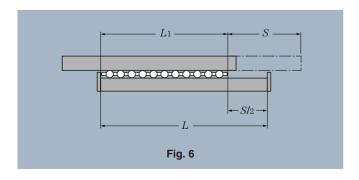
I rullini facenti parte di un singola gabbia piana sono prodotti in modo da avere una tolleranza del diametro $(D_{\rm w})$ da 0 a $-2~\mu$ m.


Esecuzione delle piste

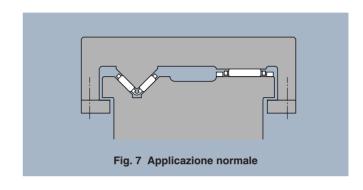
Le superfici delle piste per le gabbie piane NTN devono soddisfare le esigenze indicate nella **tabella 1**.

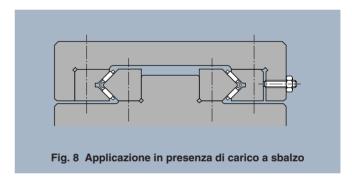
Tabella 1 Esecuzione delle superfici delle piste

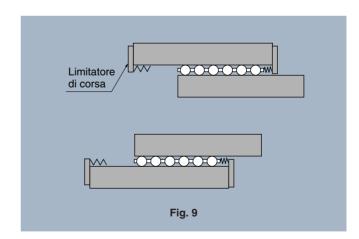
Caratteristica	Tolleranze					
Rugosità superficiale (max)	0.4a					
Durezza superficiale ●	HRC58~64					
Profondità dello strato indurito (min)	0.4mm					
Precisione di montaggio (max) 2	0.1 mm per 1000 mm					


- Quando è impossibile temprare la superficie, deve essere incorporata una lamina indurita.
- 2 La precisione di montaggio è intesa come l'inclinazione illustrata dalla Fig.5.

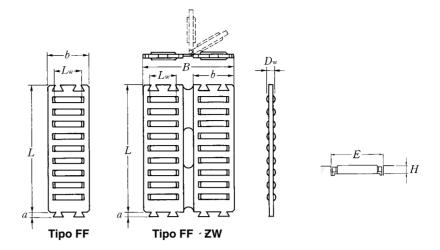
Montaggio


Teoricamente la gabbia piana a rullini si muove nella stessa direzione della tavola però con un rapporto di 1/2 rispetto alla corsa. La formula (1) esprime la correlazione tra la lunghezza (L) della tavola fissa, la corsa (S) e la lunghezza della gabbia (L_1) (**Fig. 6**).

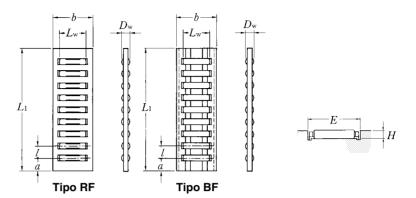

$$L=S/2+L_1$$
....(1)



Le gabbie piane generano un errore di movimento a causa dell'errore di forma della pista, delle condizioni di carico non uniformi o delle vibrazioni. Per superare tale problema, si pongono dei limitatori di corsa alle estremità della tavola fissa o di quella mobile per prevenire la fuoriuscita della gabbia (**Fig. 9**).


Le **Figg. 7** e **8** illustrano le applicazioni classiche delle gabbie piane.

Tipo FF


*D*_w 2∼3.5mm

Dimensioni d'ingombro						dinamico	Coefficient statico	dinamico	statico	Appellativo	Numero di rullini	Dimensi monta		Massa
	mm				N	k	cgf			mn	า	kg		
Dw ¹⁾	b	В	L	$L_{\rm W}$	a	$C_{ m r}$	Cor	$C_{\rm r}$	Cor			E	Н	(Approssimata)
2	10	_	32	6.8	2	8 500	19 700	865	2 010	FF2010	7	10.3 +0.1	1.7 0	0.0020
2	10	25	32	6.8	2	15 500	39 500	1 580	4 000	FF2025ZW	14	25.3 ^{+0.1} ₀	1.7 -0.2	0.0043
2.5	15	_	45	9.8	2.4	17 100	41 400	1 740	4 200	FF2515	8	15.3 ^{+0.1}	2.2 0	0.0038
2.5	15	35	45	9.8	2.4	29 300	82 500	2 980	8 450	FF2535ZW	16	35.3 ^{+0.1} ₀	2.2 0	0.0082
3	20	_	60	13.8	3	31 000	79 500	3 150	8 100	FF3020	9	20.4 +0.1	2.7 0	0.0089
3	20	45	60	13.8	3	53 500	145 000	5 450	14 800	FF3045ZW	18	45.4 ^{+0.1}	2.7 0	0.019
3.5	25	_	75	17.8	3.2	50 000	132 000	5 100	13 500	FF3525	10	25.4 ^{+0.1}	3.2 0	0.017
3.5	25	55	75	17.8	3.2	86 000	265 000	8 800	27 000	FF3555ZW	20	55.4 ^{+0.1} ₀	3.2 0	0.035

NOTA: 1) La tolleranza del diametro del rullino $D_{\rm w}$ è 0 -2 $\,\mu$ m.

Gabbie piane

Tipo BF **Tipo RF**

*D*w 3∼7mm

	Di	imensioni	d'ingom	bro			Coefficienti	di carico ³⁾	1	Appellativo	Dimens	ioni di	Massa ⁴⁾
						dinamico		dinamico	statico		monta	aggio	
		m	nm				N	kg	f		mı	m	kg
Dw ¹⁾	b	$L_1^{(2)}$	Lw	l	a	C_{r}	Cor	C_{r}	Cor		E	Н	(Approssimata)
3	20	705	13.8	6	4.5	34 000	88 500	3 450	9 000	RF3020/705	20.4 +0.1	2.7 ⁰ _{-0.2}	0.015
3	20	1 000	15.8	6	5	38 000	102 000	3 850	10 400	BF3020/1000	20.4 +0.2	2.7 ⁰ _{-0.2}	0.037
5	23	1 000	19.8	8	8	87 000	211 000	8 850	21 500	BF5023/1000	23.4 +0.2	4.7 ⁰ _{-0.2}	0.054
5	32	1 000	27.8	8	8	114 000	299 000	11 600	30 500	BF5032/1000	32.4 +0.2	4.7 0 -0.2	0.073
7	28	1 000	24	11	10.5	155 000	355 000	15 800	36 000	BF7028/1000	28.5 ^{+0.3} ₀	6.7 _{-0.2}	0.091
7	35	1 000	30	11	10.5	185 000	445 000	18 900	45 500	BF7035/1000	35.5 ^{+0.3} ₀	6.7 ⁰ _{-0.2}	0.110

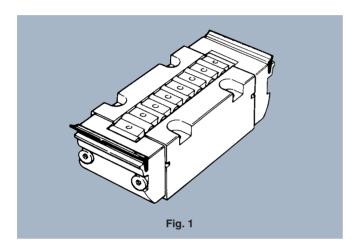
dove:, $f_1=0.1(L_1+l-2a)/l$

4) Valore della massa relativa a L_1 =100 mm.

NOTA: 1) La tolleranza del diametro del rullino D_v è 0 -2 μ m.

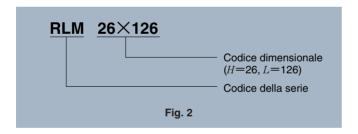
2) La lunghezza normale L_1 della gabbia tipo BF è di 1 000 mm , per il tipo RF è di 705 mm.

3) I coefficienti di carico indicati in tabella si riferiscono a 10 rullini. I coefficienti di carico per una lunghezza data della gabbia può essere ottenuta con le formule sotto riportate. $C=f_1^{7/9} \cdot C_r$ $C_o=f_1 \cdot C_{or}$


^{1.} Una gabbia viene tagliata secondo la lunghezza ordinata ma in corrispondenza di un alveolo; può risultare quindi più corta della dimensione l indicata in tabella.

^{2.} Nel caso si vogliano usare gabbie di diversa lunghezza, risulta più economico acquistare le gabbie nella lunghezza normale di 1 000 mm e quindi tagliarla in proprio nelle lunghezze desiderate.

Pattini a rulli per movimenti lineari


I pattini a rulli cilindrici **NTN** possono eseguire dei movimenti lineari di lunghezza illimitata grazie alla ricircolazione dei rulli stessi nel corpo del pattino. I rulli cilindrici sono trattenuti e guidati nella pista rispettivamente da una gabbia, costituita da elementi separatori, e dai bordi del corpo portante.

I pattini a rulli offrono un limitato coefficiente di attrito grazie alla gabbia ad elementi separatori che evita il contatto dei rulli adiacenti.

Appellativo

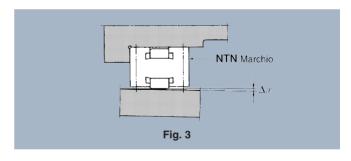
Gli appellativi dei pattini a rulli **NTN** comprendono il codice della serie (**RLM**) ed il codice dimensionale (altezza $(H) \times \text{lunghezza} (L)$).

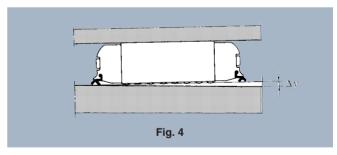
Tolleranze

I pattini a rulli **NTN** per movimenti lineari sono prodotti con tolleranza dimensionale sull'altezza in un campo da 0 a $-25~\mu$ m. I pattini vengono forniti in cinque gruppi di selezionatura della tolleranza sull'altezza (vedere la **Tabella 1**).

Tabella 1 Gruppi di selezionatura della tolleranza sull'altezza H

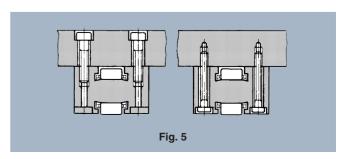
	Office in μ in
Codice selezionatura	Gruppo di selezionatura della tolleranza sull'altezza (H)
1H	0~- 5
2H	− 5~ − 10
3H	−10~−15
4H	-15~-20
5H	-20~-25

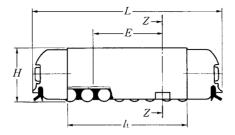

Esecuzione della superficie della pista e di quella di montaggio

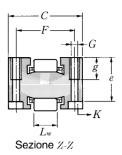

La **Tabella 1** riporta le prescrizioni per la superficie della pista volvente del pattino a rulli e per quella della superficie dove esso viene montato. Si prega di tenere presente che la superficie della pista che ha la possibilità di venire contaminata da corpi estranei duri deve essere protetta da un coperchio a prova di polvere.

La superficie laterale di riferimento per il montaggio è quella opposta al marchio **NTN**.

Tabella 2 Esecuzione della superficie della pista e di quella di montaggio


Caratteristica	Tolleranza e limiti
Rugosità superficiale della pista (max)	0.4a
Durezza superficiale della pista	HRC58~64
Profondità di tempra della pista (min)	Descritta nelle tabelle dimensionali dei pattini
Parallelismo della superficie di montaggio	
Δx (Fig. 3)	0.05 mm per 100 mm
Δy (Fig. 4)	0.01 mm per 100 mm




Montaggio

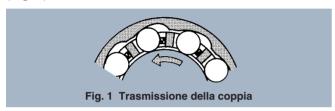
I pattini a rulli **NTN** per movimenti lineari vengono fissati tramite i fori filettati presenti dal lato della superficie di riferimento di montaggio (**Fig. 5**).

Tipo RLM



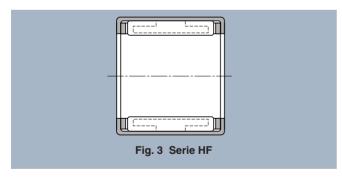
H 16∼38mm

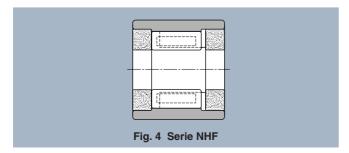
				Di	mensio	oni d'in	goml	oro				Appellativo		Coefficien statico			Profondità di tempra della pista	Massa
						mm								N	k	cgf		kg
1	Н	C	L	$L_{\rm W}$	E	F	G	Lt	e	g	K		$C_{\rm r}$	Cor	$C_{\rm r}$	Cor	(min.) mm	(Approssimata)
1	6	25	62	8	17	19	M4	35.5	12.5	6	φ 3.2	RLM16× 62	15 400	34 000	1 570	3 450	0.3	0.11
1	9	27	69	10	25.5	20.6	M4	43.4	15.5	6	φ 3.2	RLM19× 69	26 100	58 000	2 670	5 900	0.3	0.16
2	26	40	86	14	28	30	M6	52.4	21	10	φ 4.5	RLM26× 86	50 000	106 000	5 100	10 800	0.4	0.41
2	26	40	102	14	44	30	M6	67.9	21	10	φ 4.5	RLM26×102	62 500	142 000	6 400	14 500	0.4	0.53
2	26	40	126	14	68	30	M6	91.8	21	10	φ 4.5	RLM26×126	80 000	195 000	8 150	19 900	0.4	0.70
3	8	52	134	20	51	41	M8	85.7	31	14	φ 6.5	RLM38×134	124 000	270 000	12 700	27 500	0.5	1.3


Ruote libere

Ruote libere

Ruote libere

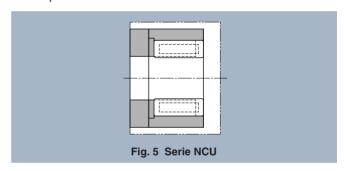

Le ruote libere a rullini NTN hanno ingombro limitato e sono caratterizzate da un anello esterno nel cui foro si trova il sistema di bloccaggio antirotazione in un senso. Esse sono disponibili per diametri albero da 4 a 35mm. Quando viene trasmessa la coppia tramite il sistema di bloccaggio, le molle a lamina piatta che fanno reazione sui ponticelli della gabbia spingono i rullini contro le superfici di bloccaggio dell'anello esterno e lo trascinano con l'effetto del cuneo (Fig. 1). Quando l'anello esterno tende a ruotare nella direzione opposta, i rullini si disimpegnano dalle superfici di bloccaggio e l'anello esterno stesso si mette a ruotare disinnestato dall'albero (Fig. 2).



Tipi ed esecuzioni

Le ruote libere NTN della serie HF hanno un anello esterno in lamiera di acciaio ottenuto da stampaggio di precisione e svolgono esclusivamente le funzioni di innesto-disinnesto. Per il supporto del carico radiale e per una rotazione regolare, le ruote libere devono disporre di cuscinetti ad entrambi i lati.

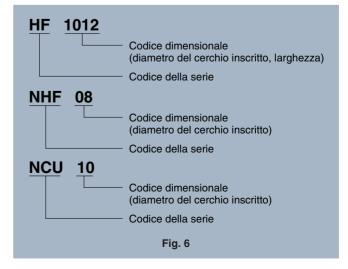
Le ruote libere NTN della serie NHF hanno un anello esterno massiccio ed a parete spessa (ottenuto da lavorazione meccanica) e quindi sono più rigide di quelle della serie HF. Poiché ad entrambi i lati dell'anello


esterno sono montati degli anelli imbevuti di olio (NTN BEARPHITE), non vi è la necessità di cuscinetti addizionali.

La serie NCU delle ruote libere NTN è costituita da unità che, mediante accoppiamento forzato, incorporano dei particolari meccanici in materiale plastico come pulegge e supporti di rulli in gomma, sistemati ciascuno attorno alla ruota libera. L'esecuzione interna delle ruote libere della serie in esame è equivalente a quella della serie NHF

Per il supporto del movimento di rotazione vi è un cuscinetto a strisciamento che è costituito dalla superficie del foro del componente meccanico montato e da quella dell'albero. Le ruote libere sono fornite complete dei componenti meccanici montati (ingranaggi, pulegge, ecc.), prodotti su specifiche del cliente.

Il materiale normale usato per i componenti meccanici (ingranaggi, pulegge, ecc.) delle unità della **serie NCU** è il poliacetalico. La **NTN** offre anche componenti similari in resina poliammide.


Nel caso di interesse per componenti meccanici che richiedono forma, precisione e materiali speciali, si prega di interpellare l'assistenza tecnica NTN.

Tutte le ruote libere NTN, ovvero le serie HF, NHF e NCU, impiegano una gabbia in poliammide per il supporto delle molle a lamina piana. Come detto sopra, le molle a lamina hanno il compito di spingere i rullini contro i cunei formati dalle superfici di bloccaggio dell'anello esterno e dall'albero.

Appellativo

Gli appellativi delle ruote libere NTN comprendono il codice della serie e quello dimensionale.

Accoppiamenti

La **Tabella 1** riporta gli accoppiamenti delle ruote libere con l'alloggiamento. Le ruote libere delle **serie HF** o **NHF** vengono semplicemente forzate nell'alloggiamento e non necessitano di essere bloccate con un anello elastico o simili. Notare comunque che le prestazioni di una ruota libera sono una conseguenza diretta della precisione dimensionale e di forma dell'albero e dell'alloggiamento. Pertanto, è richiesta una speciale considerazione e deve essere controllata rigorosamente la qualità dell'albero e dell'alloggiamento durante la lavorazione. Le ruote libere della **serie HF** sono in lamiera stampata e quindi richiedono un alloggiamento a parete spessa. La **Tabella 2** specifica lo spessore raccomandato per la parete dell'alloggiamento.

Tabella 1 Accoppiamenti

Serie	Albero	Alloggiamento				
Selle	Albeio	Acciaio	Lega leggera			
HF NHF NCU	h5 (h6) h7 h9 (h10)	N6 (N7) N6 (N7) —	R6 (R7) R6 (R7) —			

Tabella 2 Spessore (raccomandato) dell'albero e dello alloggiamento

Materiale dell'alloggiamento	Spessore alloggiamento
Acciaio, Ghisa	0.75 (D – $F_{\rm w}$) o maggiore
Lega leggera	1.5 (D – $F_{\rm W}$) o maggiore

Esecuzione dell'albero e dell'alloggiamento

L'albero e l'alloggiamento devono soddisfare le prescrizioni indicate dalla **Tabella 3**.

Tabella 3 Esecuzione dell'albero e dell'alloggiamento

Caratteristiche	Alb	ero	Alloggiamento			
Caratteristiche	Serie HF	Serie NHF	Serie HF	Serie NHF		
Rotondità (max)	IT3 (IT4)	IT5	IT4 (IT5)	IT3 (IT4)		
Cilindricità (max)	IT3 (IT4)	IT5	IT4 (IT5)	IT3 (IT4)		
Rugosità superficiale (max)	0.	4a	1.6a			
Durezza superficiale	HRC5	8~64	_			
Profondità di tempra (min)	0.4	mm	_			

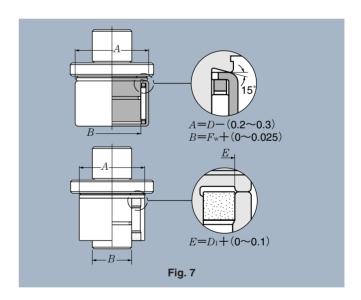
Lubrificazione

Per le ruote libere NTN l'olio è il miglior lubrificante. Comunque, esse vengono fornite prelubrificate con grasso adeguato poiché vengono spesso impiegate con lubrificazione a grasso. In condizioni operative normali non è necessaria la sostituzione del grasso. Notare comunque che una quantità eccessiva di grasso può impedire il funzionamento affidabile della ruota libera.

Temperatura di funzionamento ammessa

Serie HF ······Lubrificazione ad olio: −10~120°C
·····Lubrificazione a grasso: −10∼ 80°C
Serie NHF: ·····-10~100°C
Serie NCU: ·····-10~100°C
Serie NCZ: ·····-10~140°C

In caso di utilizzo delle ruote libere serie **NCZ** a temperature superiori a 100°C, si prega di interpellare assistenza tecnica **NTN**.

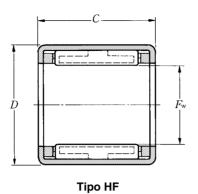

Montaggio

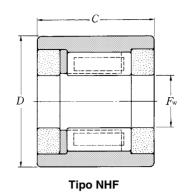
Le ruote libere devono essere montate con l'uso del mandrino illustrato dalla **Fig. 7**. L'anello O-ring sul mandrino mantiene i rullini in posizione ed aiuta a semplificare il lavoro del montaggio forzato. Le ruote libere della **serie HF** vengono montate posizionando il bordo recante la marcatura sullo spalleggiamento del mandrino. Per le ruote libere della **serie NHF** il mandrino deve essere dimensionato in modo tale da non premere sui cuscinetti imbevuti d'olio.

Senso di trasmissione della coppia o di innesto

La ruota libera è innestata quando l'anello esterno (alloggiamento) ruota relativamente all'albero nel senso indicato dalla freccia.

Per le ruote libere della **serie HF** la freccia è marcata sul bordo dell'anello esterno; per la **serie NHF** la freccia è riportata sulla superficie esterna.

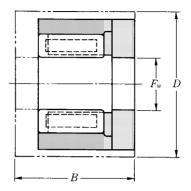

Scelta della ruota libera


La NTN ha eseguito delle prove sulle ruote libere in una varietà di condizioni diverse. Comunque, la durata della ruota libera può essere ridotta se questa viene usata in condizioni di carico e di coppia elevati, cicli con grandi variazioni di ampiezza o piccole fluttuazioni angolari.

Nel caso di impiego delle ruote libere NTN nelle condizioni sopra citate, si prega di consultare l'assistenza tecnica NTN.

Se la vostra applicazione presentasse un rischio severo a persone o cose nel caso in cui venga a mancare la funzione di innesto (a causa di scorrimento in fase di innesto), si deve prevedere un dispositivo separato di sicurezza.

Tipo HF Tipo NHF



*F*_w 4∼35mm

Dimens	Dimensioni d'ingombro		Coppia tra		Appel	llativo	Ма	ssa	Appellativo de per il suppo	
	mm		N∙m	kgf⋅m			ŀ	(g	(appross	
$F_{ m W}$	D	C			Tipo HF	Tipo NHF	Tipo HF	Tipo NHF	cuscinetto a rullini	cuscinetto ad olio
4	10	9	0.29	0.03	_	NHF04	_	0.0034	_	_
6	10	12	1.76	0.18	HF0612	_	0.003	-	HK0609T2	B-S6-22
	12	10	0.68	0.07	_	NHF06	_	0.0047		
8	12	12	3.15	0.32	HF0812	_	0.0035	_	HK0810	B-S8-25
	16	13	2.05	0.21	_	NHF08	_	0.011	_	_
10	14	12	5.30	0.54	HF1012	_	0.004	_	HK1010	B-S10-21
	18	14	3.10	0.32	_	NHF10	_	0.014	_	_
12	18	16	12.2	1.24	HF1216	_	0.0116	_	HK1212	B-S12-32
12	20	15	4.60	0.47	_	NHF12	_	0.018	-	_
14	20	16	17.3	1.76	HF1416	_	0.013	_	HK1412	B-S14-13
16	22	16	20.5	2.09	HF1616	_	0.014	_	HK1612	B-S16-13
18	24	16	24.1	2.46	HF1816	_	0.0155	_	HK1812	B-S18-8
20	26	16	28.5	2.91	HF2016	_	0.017	_	HK2012	B-S20-19
25	32	20	66	6.73	HF2520	_	0.0309	_	HK2512	B-S25-11
30	37	20	90	9.18	HF3020	_	0.036	_	HK3012	B-S30-19
35	42	20	121	12.3	HF3520	_	0.040	_	HK3512	B-S35-7

Tipo NCU Tipo NCZ

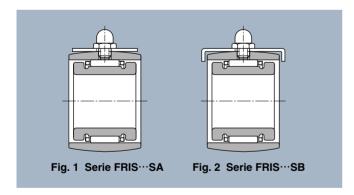
Diametro albero	Dir	mensioni d'ingom	bro	Appellativo	Coppia tra	smissibile 2)	Coppia di slittamento
mm		mm			N∙m	kgf∙m	mN·m
	$F_{ m W}$	$D^{1)}$	В			J	
4	4	over 12	over 9	NCU 4	0.20	0.02	2.94
6	6	over 13.5	over 8	NCZ 6	0.49	0.05	3.43
8	8	over 16	over 8	NCZ 8	0.78	0.08	4.90
10	10	over 20	over 10	NCU10	0.88	0.09	4.90

NOTA: 1) La tolleranza del diametro interno del componente esterno in resina accoppiato è +0.10 .

2) Il valore della coppia trasmissibile è valido per una durezza dell'albero HRC50 o maggiore.

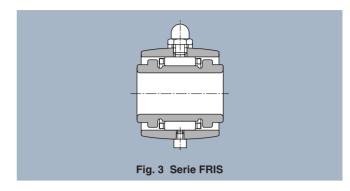
Cuscinetti per cilindro inferiore di macchine tessili (Filatoi)

I cuscinetti a rullini NTN per macchine tessili sono prelubrificati con grasso e vengono utilizzati per il supporto dei cilindri inferiori (cilindri scanalati) delle macchine per filato fine, per stoppino e per il supporto dei cilindri di stiro.

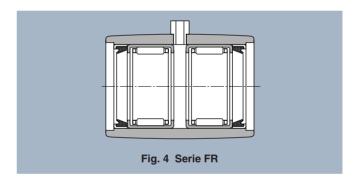

I cuscinetti della **serie FRIS** vengono usati nelle macchine per filato fine e stoppino, mentre quelli della **serie FR** sopportano i cilindri del telai di stiro.

Tipi ed esecuzioni

I cuscinetti della **serie FRIS** sopportano i cilindri inferiori di macchine per filato fine e stoppino. La superficie esterna sferica dell'anello esterno compensa gli errori di montaggio di una certa entità del cilindro inferiore. L'anello interno è munito di bordi integrali ad entrambe le estremità. Il giuoco esistente tra l'anello esterno e la superficie cilindrica esterna dei bordi dell'anello interno è molto piccolo. Inoltre, la superficie cilindrica esterna dei bordi dell'anello interno è zigrinata per impedire l'ingresso di fibre all'interno del cuscinetto.

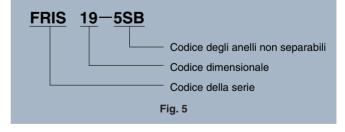

I cuscinetti della serie FRIS includono le serie A e B. I cuscinetti della serie A sono dimensionati in accordo alle norme internazionali e sono forniti con una sella di bloccaggio al telaio della macchine. I cuscinetti della serie B sono previsti per il supporto dei cilindri scanalati compatibili con la normativa JIS L 5145.

I cuscinetti della **serie A** si distinguono ancora per il tipo di sella ovvero quelli che hanno l'anello interno separabile da quello esterno (suffisso **SA**), e quelli che hanno gli anelli non separabili (suffisso **SB**) La **NTN** può anche fornire dei cuscinetti della **serie A** privi di sella.



I cuscinetti della **serie B** comprendono anche il tipo completo di ingrassatore (suffisso **N**). Essi possono poi ancora essere suddivisi a seconda del metodo di bloccaggio: il tipo identificato con il suffisso P ha una spina inserita nell'anello esterno; il tipo con suffisso W ha un foro di fissaggio nell'anello esterno.

Se richiesto, la NTN può fornire anche i cuscinetti della serie B con la sella di fissaggio.



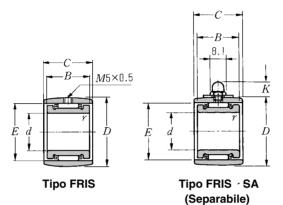
I cuscinetti della **serie FR** sopportano i cilindri inferiori delle macchine per stiro ed hanno una esecuzione a cartuccia dove un anello esterno massiccio alloggia due astucci a rullini. Essi sono privi di anello interno ed usano la superficie dell'albero come pista volvente. Entrambe le estremità dell'anello esterno sono munite di anelli di tenuta in gomma sintetica. Il bloccaggio al telaio della macchina avviene mediante la spina piantata nell'anello esterno. La spina stessa ha un foro longitudinale che permette il rifornimento del grasso al cuscinetto.

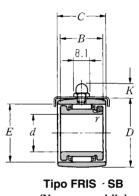
Appellativo

Gli appellativi dei cuscinetti NTN per il supporto dei cilindri inferiori dei filatoi sono costituiti dal codice della serie, dal codice dimensionale (diametro dell'albero (d) o $(F_{\rm W})$).

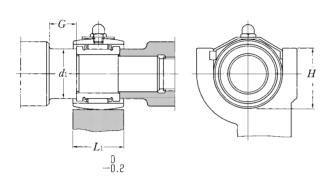
Accoppiamenti dei cuscinetti

Gli accoppiamenti dei cuscinetti con l'albero e l'alloggiamento sono definiti nella **Tabella 1**.


Tabella 1 Accoppiamenti dei cuscinetti


Serie	Alb	Alloggiamento	
Serie	Innesto filettato	Innesto scanalato	(telaio)
FRIS	g5 (g6)	j5 (j6)	H10
FR	h5	H10	

Tipo FRIS Serie A (Per macchine da filato fine e da stoppino)



(Non separabile)

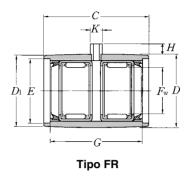
d 16.5~25mm

	Dimensioni d'ingombro									Coefficienti di carico dinamico statico				
,	ъ	70	mm		1)	T	**		N kọ					
d 0 -0.010	D	B 0 -0.050	<i>C</i> 0 -0.120	E	rs min 1)	L	K	$C_{\rm r}$	$C_{ m or}$	$C_{ m r}$	Cor			
16.5	28 0 -0.020	19	22	23.5	0.3	22.2	7.7	10 200	14 600	1 040	1 480			
19	32 ₀	20	23	27	0.3	22.2	7.7	11 800	18 500	1 200	1 880			
19	36 -0.025	22	25	29	0.3	22.2	9.8	12 700	17 600	1 300	1 800			
22	$42 \begin{array}{c} 0 \\ -0.025 \end{array}$	25	29	35	0.3	26.4	10.2	19 500	25 300	1 980	2 580			
25	45 0 -0.025	25	29	37	0.3	26.4	10.2	21 300	29 100	2 170	2 970			

NOTA: 1) Dimensione minima del raggio di raccordo $\it r.$

	Appellativo		Dii	mensio	ni di mo	ntaggio	Massa
cuscinetto	cuscinetto	con sella			kg Cuscinetto con sella		
	Tipo SA	Tipo SB	L_1	d_1	G	Н	(approssimata)
FRIS16.5	FRIS16.5SA	FRIS16.5SB	22	21	13	24~26	0.059
FRIS19	FRIS19SA	FRIS19SB	22	24	15	27~29	0.081
FRIS19-5	FRIS19-5SA	FRIS19-5SB	22	26	15	30~32	0.120
FRIS22-2	FRIS22-2SA	-	26	30	15	35~37	0.208
FRIS25	FRIS25SA	-	26	33	15	37~39	0.226

Tipo FRIS Serie B (Per macchine da filato fine e da stoppino)



d 15~25mm

		imensio	mm						statico	ti di carico dinamico statico kgf		Арр	ellativo	Massa (approssimata) kg
d 0 -0.010	D		B 0 -0.050	C 0 -0.120	J	rs min ¹⁾	K	$C_{ m r}$	Cor	$C_{ m r}$	Cor	Tipo FRIS	Tipo FRIS··NP	Tipo FRIS··NP
15	28	0 -0.020	24	22	22	0.3	7.7	10 200	14 600	1 040	1 480	FRIS15	FRIS15NP	0.070
15.875	30	0 -0.020	25.4	22	22	0.3	7.1	10 200	14 600	1 040	1 480	FRIS15.87	FRIS15.87NP	0.082
16	28	0	26	22	22	0.3	7.7	10 200	14 600	1 040	1 480	FRIS16	FRIS16NP	0.083
10	30	-0.020	26	22	22	0.3	7.1	10 200	14 600	1 040	1 480	FRIS16-2	FRIS16-2NP	0.098
18	31.750		24	23	24	0.3	7.7	11 800	18 500		1 880	FRIS18	FRIS18NP	0.083
	32	-0.025	26	23	24	0.3	7.7	11 800	18 500	1 200	1 880	FRIS18-2	FRIS18-2NP	0.088
19.050	31.750	0 -0.025	23.81	23	24	0.3	7.7	11 800	18 500		1 880	FRIS19.05	FRIS19.05NP	0.078
	34	-0.025	25.4	23	26	0.3	7.7	12 700	17 600	1 300	1 800	FRIS19.05-1	FRIS19.05-1NP	0.098
	34	0	24	23	26	0.3	7.7	12 700	17 600		1 800	FRIS20-2	FRIS20-2NP	0.089
20	34	0 -0.025	26	23	26	0.3	7.7		17 600		1 800	FRIS20-4	FRIS20-4NP	0.097
	36	0	26	23	26	0.3	7.1		17 600		1 800	FRIS20-7	FRIS20-7NP	0.125
22	40	-0.025	26	24	30	0.6	7.1	16 200	22 300	1 650	2 280	FRIS22-1	FRIS22-1NP	0.154
22.225	40	0 -0.025	25.4	24	30	0.6	7.1	16 200	22 300	1 650	2 280	FRIS22.22	FRIS22.22NP	0.145
25	42	0 -0.025	26	24	32	0.6	7.1		22 500			FRIS25-1	FRIS25-1NP	0.154
	44	-0.025	26	24	34	0.6	7.1	17 200	25 100	1 750	2 560	FRIS25-2	FRIS25-2NP	0.174

NOTA: 1) Dimensione minima del raggio di raccordo r.

Tipo FR (Per macchine da stiro)

*F*_w 17.462∼22mm

			Dir	mensioni	d'ingon	nhro				Co	oefficient	i di carico	1	Appellativo	Massa
			2		u mgon	.5.0					statico	dinamico	statico	7.pponativo	
	$F_{ m W}$		D	C	m E	G	Н	K	D_1	N	J	kg	f		kg
	I' W		0 -0.050	0 -0.20	E	G	11	Λ	D_1	$C_{\rm r}$	Cor	C_{r}	Cor		(approssimata)
			26.5	46	24	31	5	5	26	10 200	16 600	1 040	1 690	FR17.46P	0.066
17	462	+0.053 +0.010	26.5	47.6	24.6	42.86	4.76	4.76	26	14 400	25 900	1 470	2 640	FR17.46-1P	0.075
.,.	702	+0.010	26.5	52.38	24.6	42.86	4.76	4.76	26	14 400	25 900	1 470		FR17.46-2P	0.082
			26.988	41.28	24	31	5	5	26.5	10 200	16 600	1 040	1 690	FR17.46-3P	0.068
19.		+0.053 +0.020	31.750	52.38	28	42.86	4.76	4.76	31.2	16 700	25 800	1 700	2 630	FR19.05P	0.134
22		+0.053 +0.020	34	46	28	43	4.76	4.76	33.5	23 400	44 000	2 380	4 500	FR22P	0.150

Rulli tenditori per macchine tessili

I rulli tenditori **NTN** per macchine tessili vengono impiegati per tendere e guidare il nastro o cinghia che comanda la rotazione dei fusi dei filatoi per filato fine e stoppino o dei tubi di stiro.

I rulli tenditori sono realizzati nel modo seguente: sull'anello esterno di un cuscinetto a sfere, che al posto dell'anello interno ha un alberino, vengono montate forzate due semipulegge ottenute da lamiera in acciaio mediante stampaggio profondo di precisione.

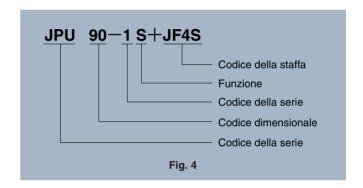
Tipi ed esecuzioni

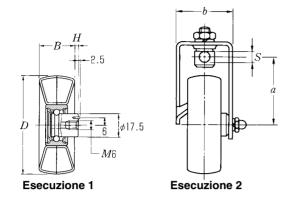
I cuscinetti a sfere dei rulli tenditori NTN per macchine tessili sono disponibili in esecuzione ad una ed a due corone di sfere e sono forniti già lubrificati con grasso al sapone di litio. Il grasso può venire aggiunto o sostituito tramite un apposito foro longitudinale dell'alberino.

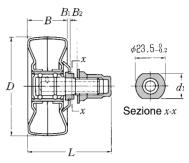
I rulli tenditori possono essere sistemati nel porta-rulli della macchina mediante un'apposita staffa (**serie JF**) ed un bullone. Essi possono anche essere montati direttamente sulla struttura della macchina mediante un bullone a testa esagonale e la relativa filettatura presente nel foro dell'alberino. La spina montata forzata nella parte laterale dell'alberino impedisce lo slittamento dello stesso in fase di chiusura del bullone.

Il bullone a testa esagonale che viene impiegato per il fissaggio del rullo tenditore alla macchine ha un foro longitudinale di lubrificazione alla cui estremità viene montato un dispositivo di ingrassaggio.

Fig. 1 Tipo ad una corona di sfere


Fig. 2 Con staffa di protezione


Fig. 3 Tipo a due corone di sfere


Il rullo tenditore con cuscinetto a due corone di sfere viene montato direttamente sul telaio della macchina inserendo l'alberino nell'apposito foro e bloccandolo successivamente con un dado. In tal modo si evita l'uso della staffa di fissaggio. La lubrificazione del cuscinetto è possibile anche tramite il dado di fissaggio.

Appellativo

I rulli tenditori NTN per macchine tessili hanno un appellativo composto dal codice della serie (JPU), dal codice dimensionale (diametro esterno della puleggia (D)) e dal suffisso. Il rullo tenditore completo di staffa di fissaggio viene identificato dall'appellativo della staffa stessa.

Esecuzione 3

D 60∼100mm

				imensio	ni d'ingo	ombro				Appellativo	Esecuzione no.	Massa
					mm							kg
D	В	B_1	Н	<i>d</i> ₁ 0 -0.3	a	b	S	L	B_2			(approssimata)
60	25	_	3.5	_	_	_	_	_	_	JPU60S	1	0.140
	25	_	3.5	_	_	_	_	_	_	JPU70S	1	0.160
	25	_	3.5	_	48	39	10.2	_	_	JPU70S+JF1S	2	0.235
70	30	2	_	21	_	_	_	67 ∼71	5∼9	JPU70-2S	3	0.245
	32	_	_	_	_	_	_	_	_	JPU70-1S	1	0.175
	32	_	_	_	48	46	10.2	_	_	JPU70-1S+JF2S	2	0.250
	25	_	3.5	_	_	_	_	_	_	JPU90S	1	0.215
	25	_	3.5	_	58	39	10.2	_	_	JPU90S+JF3S	2	0.300
90	32	_	_	_	_	_	_	_	_	JPU90-1S	1	0.230
90	32	_	_	_	58	46	10.2	_	_	JPU90-1S+JF4S	2	0.320
	32	3.5	_	21	_	_	_	70.5~74.5	5~9	JPU90-9S	3	0.325
	45	3.5	_	21	_	_	_	83.5~87.5	5~9	JPU90-10S	3	0.380
100	32	3.5	_	21	_	_	_	70.5~74.5	5∼9	JPU100-14S	3	0.290
100	40	3.5	_	21	_	_	_	78.5~82.5	5∼9	JPU100-12S	3	0.390

GUIDA AI PRODOTTI & APPENDICE

Guida ai prodotti

Gabbie a rullini saldate in esecuzione aperta

Astucci a rullini miniatura

Cuscinetti assiali con ralle non separabili

Gabbie con rullini HL

Cuscinetti per bilancieri

Perni folli miniatura

Perni folli eccentrici

Cuscinetti per macchine da stampa

Appendice

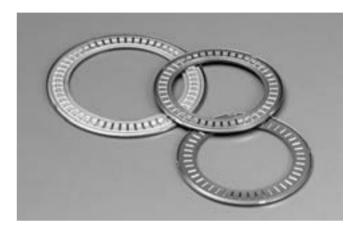
Tabella di conversione pollici - millimetri

Tabella di conversione delle unità SI di uso comune

Gabbie a rullini saldate in esecuzione aperta

Quando vengono usate delle gabbie a rullini per il supporto dalle ruote folli della quarta e quinta velocità di un cambio meccanico, viene ritardato il tempo di sincronizzazione con la ruota solidale all'albero. Come risultato si può manifestare la corrosione dell'albero. Per prevenire tale inconveniente, si fa ruotare la sola gabbia in senso opposto a quello dell'albero anche durante il tempo di sincronizzazione.

A tale scopo, nel passato si usava una gabbia in due metà ma la soluzione presentava dei problemi di montaggio e manipolazione della gabbia. La gabbia a rullini sviluppata di recente, ovvero saldata e con un'apertura singola, può essere maneggiata come un tipo normale ma ha il vantaggio di impedire il manifestarsi della corrosione dell'albero (Fretting Corrosion).


Astucci a rullini miniatura

Gli astucci a rullini miniatura, con un diametro inscritto ai rullini $(F_{\rm w})$ non superiore ai 10 mm, hanno una sezione con altezza molto piccola. Prodotti in lamiera di acciaio mediante stampaggio profondo di precisione, essi sono costituiti da un anello esterno cementato e temprato che incorpora una gabbia a rullini.

Cuscinetti assiali con ralle non separabili

L'esecuzione convenzionale di un cuscinetto assiale a rullini prevede un gruppo separabile costituito da due ralle e da una gabbia a rullini . Trattenendo la gabbia od un'altra ralla del cuscinetto mediante il bordo di una delle due ralle, si ottiene un cuscinetto assiale a rullini non scomponibile.

Gabbie con rullini HL

Se non si usa un anello interno od un anello esterno e si utilizzano le superfici dell'albero e dell'alloggiamento come piste volventi, di frequente si riduce la durata del cuscinetto. Il fenomeno è una conseguenza della formazione di un film lubrificante di spessore insufficiente che dipende principalmente dalla diversa rugosità superficiale dei rullini e delle relative piste volventi (tipicamente l'albero).

Dalla teoria MICRO EHL, la NTN ha sviluppato un metodo di trattamento superficiale esclusivo nel quale viene variato l'orientamento della rugosità superficiale, con lo scopo di poter ottenere un film lubrificante di spessore adequato.

Le gabbie a rullini risultanti sono conosciute come HL (High Lubrication). Nelle prove di durata impiegando liqido da rettifica, le gabbie HL hanno evidenziato delle durate molto superiori a quelle dei tipi convenzionali. La tecnica HL viene impiegata per i rullini, i rulli cilindrici ed i rulli conici.

Cuscinetti per bilancieri

I produttori di autoveicoli si stanno impegnando nella riduzione dei consumi specifici. Una delle soluzioni è rappresentata dalla riduzione degli attriti.

In precedenza, nel comando delle valvole venivano impiegati degli organi che funzionavano ad attrito radente. Attualmente invece, per ridurre il consumo specifico e quindi migliorare le prestazioni, vengono utilizzati dei sistemi ad attrito volvente mediante rullini.

A contatto con l'albero degli eccentrici del motore viene posto un cuscinetto a rullini. Poiché la rugosità superficiale Rmax degli eccentrici usualmente varia da 2 a 4 μ m, si può manifestare la sbucciatura della superficie dei corpi volventi del cuscinetto. Per evitare tale inconveniente, per la produzione dei cuscinetti NTN per bilancieri viene utilizzata la tecnica HL.

Perni folli miniatura

I perni folli miniatura **NTN** costituiscono dei rulli di guida compatti, di elevata precisione e con elevata capacità di carico. Essi hanno un perno con diametro da 3 a 5 mm ed un anello esterno con diametro da 10 a 13mm. L'impiego dei perni folli miniatura include l'elettronica, la robotica industriale e le macchine da ufficio.

Perni folli eccentrici

I perni folli eccentrici possono essere installati nei fori dei tipi normali. La testa del perno (lato cuscinetto) è eccentrica rispetto al corpo del perno stesso. Tale caratteristica permette di eseguire delle registrazioni fini mediante rotazione del perno.

La testa del perno ha un taglio per cacciavite ed un foro filettato.

Quando l'inserto ad incavo (accessorio in dotazione) viene avvitato nel foro relativo, il perno diventa con "testa ad incavo".

Il foro filettato può essere usato anche per il montaggio di un ingrassatore o per l'allacciamento ad un sistema di lubrificazione centralizzato.

Come i perni folli normali **NTN**, quelli eccentrici possono essere con gabbia a rullini, a pieno riempimento degli stessi ed a due corone di rulli cilindrici.

Cuscinetti per macchine da stampa

I cuscinetti NTN per il supporto dei cilindri delle macchine da stampa sono costituiti da: anello esterno eccentrico/anello centrale ed anello interno, una coppia di corone di rullini ed anelli di tenuta. Variando l'eccentricità tra l'anello esterno e quello centrale si possono fare delle registrazioni fini della posizione dei rulli delle macchine da stampa, contribuendo in modo significativo alla alta qualità della stampa.

Tabella di conversione pollici- millimetri

P	ollici										
Frazione	Decimale	0″	1″	2″	3″	4″	5″	6″	7″	8″	9″
1/64 1/32 3/64 1/16	0.015625 0.031250 0.046875 0.062500	0.397 0.794 1.191 1.588	25.400 25.797 26.194 26.591 26.988	50.800 51.197 51.594 51.991 52.388	76.200 76.597 76.994 77.391 77.788	101.600 101.997 102.394 102.791 103.188	127.000 127.397 127.794 128.191 128.588	152.400 152.797 153.194 153.591 153.988	177.800 178.197 178.594 178.991 179.388	203.200 203.597 203.994 204.391 204.788	228.600 228.997 229.394 229.791 230.188
5/64	0.078125	1.984	27.384	52.784	78.184	103.584	128.984	154.384	179.784	205.184	230.584
3/32	0.093750	2.381	27.781	53.181	78.581	103.981	129.381	154.781	180.181	205.581	230.981
7/64	0.109375	2.778	28.178	53.578	78.978	104.378	129.778	155.178	180.578	205.978	231.378
1/ 8	0.125000	3.175	28.575	53.975	79.375	104.775	130.175	155.575	180.975	206.375	231.775
9/64	0.140625	3.572	28.972	54.372	79.772	105.172	130.572	155.972	181.372	206.772	232.172
5/32	0.156250	3.969	29.369	54.769	80.169	105.569	130.969	156.369	181.769	207.169	232.569
11/64	0.171875	4.366	29.766	55.166	80.566	105.966	131.366	156.766	182.166	207.566	232.966
3/16	0.187500	4.762	30.162	55.562	80.962	106.362	131.762	157.162	182.562	207.962	233.362
13/64	0.203125	5.159	30.559	55.959	81.359	106.759	132.159	157.559	182.959	208.359	233.759
7/32	0.218750	5.556	30.956	56.356	81.756	107.156	132.556	157.956	183.356	208.756	234.156
15/64	0.234375	5.953	31.353	56.753	82.153	107.553	132.953	158.353	183.753	209.153	234.553
1/ 4	0.250000	6.350	31.750	57.150	82.550	107.950	133.350	158.750	184.150	209.550	234.950
17/64	0.265625	6.747	32.147	57.547	82.947	108.347	133.747	159.147	184.547	209.947	235.347
9/32	0.281250	7.144	32.544	57.944	83.344	108.744	134.144	159.544	184.944	210.344	235.744
19/64	0.296875	7.541	32.941	58.341	83.741	109.141	134.541	159.941	185.341	210.741	236.141
5/16	0.312500	7.938	33.338	58.738	84.138	109.538	134.938	160.338	185.738	211.138	236.538
21/64	0.328125	8.334	33.734	59.134	84.534	109.934	135.334	160.734	186.134	211.534	236.934
11/32	0.343750	8.731	34.131	59.531	84.931	110.331	135.731	161.131	186.531	211.931	237.331
23/64	0.359375	9.128	34.528	59.928	85.328	110.728	136.128	161.528	186.928	212.328	237.728
3/8	0.375000	9.525	34.925	60.325	85.725	111.125	136.525	161.925	187.325	212.725	238.125
25/64	0.390625	9.922	35.322	60.722	86.122	111.522	136.922	162.322	187.722	213.122	238.522
13/32	0.406250	10.319	35.719	61.119	86.519	111.919	137.319	162.719	188.119	213.519	238.919
27/64	0.421875	10.716	36.116	61.516	86.916	112.316	137.716	163.116	188.516	213.916	239.316
7/16	0.437500	11.112	36.512	61.912	87.312	112.721	138.112	163.512	188.912	214.312	239.712
29/64	0.453125	11.509	36.909	62.309	87.709	113.109	138.509	163.909	189.309	214.709	240.109
15/32	0.468750	11.906	37.306	62.706	88.106	113.506	138.906	164.306	189.706	215.106	240.506
31/64	0.484375	12.303	37.703	63.103	88.503	113.903	139.303	164.703	190.103	215.503	240.903
1/ 2	0.500000	12.700	38.100	63.500	88.900	114.300	139.700	165.100	190.500	215.900	241.300
33/64	0.515625	13.097	38.497	63.897	89.297	114.697	140.097	165.497	190.897	216.297	241.697
17/32	0.531250	13.494	38.894	64.294	89.694	115.094	140.494	165.894	191.294	216.694	242.094
35/64	0.546875	13.891	39.291	64.691	90.091	115.491	140.891	166.291	191.691	217.091	242.491
9/16	0.562500	14.288	39.688	65.088	90.488	115.888	141.283	166.688	192.088	217.488	242.888
37/64	0.578125	14.684	40.084	65.484	90.884	116.284	141.684	167.084	192.484	217.884	243.284
19/32	0.593750	15.081	40.481	65.881	91.281	116.681	142.081	167.481	192.881	218.281	243.681
39/64	0.609375	15.478	40.878	66.278	91.678	117.078	142.478	167.878	193.278	218.678	244.078
5/ 8	0.625000	15.875	41.275	66.675	92.075	117.475	142.875	168.275	193.675	219.075	244.475
41/64	0.640625	16.272	41.672	67.072	92.472	117.872	143.272	168.672	194.072	219.472	244.872
21/32	0.656250	16.669	42.069	67.469	92.869	118.269	143.669	169.069	194.469	219.869	245.269
43/64	0.671875	17.066	42.466	67.866	93.266	118.666	144.066	169.466	194.866	220.266	245.666
11/16	0.687500	17.462	42.862	68.262	93.662	119.062	144.462	169.862	195.262	220.662	246.062
45/64	0.703125	17.859	43.259	68.659	94.059	119.459	144.859	170.259	195.659	221.056	246.459
23/32	0.718750	18.256	43.656	69.056	94.456	119.856	145.256	170.656	196.056	221.456	246.856
47/64	0.734375	18.653	44.053	69.453	94.853	120.253	145.653	171.053	196.453	221.853	247.253
3/ 4	0.750000	19.050	44.450	69.850	95.250	120.650	146.050	171.450	196.850	222.250	247.650
49/64	0.765625	19.447	44.847	70.247	95.647	121.047	146.447	171.847	197.247	222.647	248.047
25/32	0.781250	19.844	45.244	70.644	96.044	121.444	146.844	172.244	197.644	223.044	248.444
51/64	0.796875	20.241	45.641	71.041	96.441	121.841	147.241	172.641	198.041	223.441	248.841
13/16	0.812500	20.638	46.038	71.438	96.838	122.238	147.638	173.038	198.438	223.838	249.238
53/64	0.828125	21.034	46.434	71.834	97.234	122.634	148.034	173.434	198.834	224.234	249.634
27/32	0.843750	21.431	46.831	72.231	97.631	123.031	148.431	173.831	199.231	224.631	250.031
55/64	0.859375	21.828	47.228	72.628	98.028	123.428	148.828	174.228	199.628	225.028	250.428
7/ 8	0.875000	22.225	47.625	73.025	98.425	123.825	149.225	174.625	200.025	225.425	250.825
57/64	0.890625	22.622	48.022	73.422	98.822	124.222	149.622	175.022	200.422	225.822	251.222
29/32	0.906250	23.019	48.419	73.819	99.219	124.619	150.019	175.419	200.819	226.219	251.619
59/64	0.921875	23.416	48.816	74.216	99.616	125.016	150.416	175.816	201.216	226.616	252.016
15/16	0.937500	23.812	49.212	74.612	100.012	125.412	150.812	176.212	201.612	227.012	252.412
61/64	0.953125	24.209	49.609	75.009	100.409	125.809	151.209	176.609	202.009	227.409	252.809
31/32	0.968750	24.606	50.006	75406	100.806	126.206	151.606	177.006	202.406	227.806	253.206
63/64	0.984375	25.003	50.403	75.803	101.203	126.603	152.003	177.403	202.803	228.203	253.603

Unità di misura SI di uso comune

Lunghezza	m			1m 1in 1ft	=3.281ft=39.370in =2.540 ⁻² ×10m=25.400mm =0.305mm
Area	m²			1m² 1ft² 1in²	=10.764ft ² =1550.003in ² =9.290 \times 10 ⁻² m ² =6.452 \times 10 ⁻⁴ m ² =6.452cm ²
Volume	m³			1m³ 1ft³ 1in³	=35.315ft ³ =6.102×10 ⁴ in ³ =2.832×10 ⁻² m ³ =16.387cm ³
Massa	kg			1kg 1lb 1oz	=2.205lb =0.454kg =28.350g
Forza	N	1N 1kgf	=0.102kgf =9.807N	1N 1lbf	=0.225lbf =4.448N
Potenza	W	1W 1PS 1kgf·m/s	=0.102kgf · m/s =1.360×10 ⁻³ PS =735.499W=75kgf · m/s =9.807W	1W 1ft · lbf/s 1hp(550ft · lbf/s)	=0.738ft · lbf/s =1.356W =745.700W
Pressione, sollecitazione	Pa	1Pa 1kgf/mm² 1MPa	=1.020×10 ⁻⁷ kgf/mm ² =9.807×10 ⁶ Pa =1×10 ⁶ Pa=1N/mm ² =0.102kgf/mm ²	1Pa 1lbf/in ² 1lbf/ft ²	=1.450×10 ⁻⁴ lbf/in ² =6.895×10 ³ Pa =47.880Pa
Coppia	N·m	1N · m 1kgf · m	=0.102kgf · m =9.807N · m	1N · m 1lbf · ft 1lbf · in	=0.738lbf · ft =1.356N · m =0.113N · m
Velocità	m/s			1m/s 1mile/h 1ft/s	=2.237mile/h =3.281ft/s =1.609km/h =0.305m/s
Viscosità cinematica	m²/s	1m²/s 1mm²/s	=1×10 ⁶ cSt =1cSt	1m/s 1ft²/s	=10.764ft ² /s =9.290×10 ⁻² m ² /s
Temperatura	°C	t°C 1°C	=(t°C+273.15)K =274K	t°C t°F	=0.56(t°F-32) =1.8t°C+32