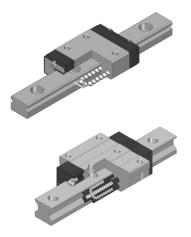
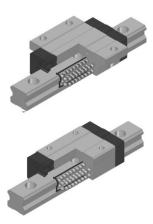


LINEAR MOTION GUIDE

A


1 WON Linear Motion Guide


1 Characteristics

WDN Linear Motion Guide is a straight-line motion bearing with the structure in which rolling elements such as balls or rollers softly circulate the inner part of the block and the block can make an infinite straight-line motion along the raceway surface of a rail.

2. Strengths

- 1) Able to make a precise positioning
 - Since there is less difference between static friction and kinetic friction as well as in speed-induced friction fluctuation, it excellently responds even to micro-migration, allowing precise positioning.
- 2) Able to maintain accuracy stably for a long time Less friction coefficient and wear due to ideal rolling motion allows the stable maintenance of accuracy for a long time.
- 3) Able to eliminate clearance or increase rigidity by preloading It is possible to eliminate clearance by using rolling elements such as a ball or a roller or increase rigidity of Linear Motion Guide by preloading.
- Lubrication is simple.
 Lubrication is simple but it uses grease or oil which makes it convenient to maintain.
- 5) Able to compact equipment and save cost for operating electricity It can be made into compact miniaturized equipment because friction is low despite highly-rigid high-loading, which saves manufacturing costs and energy.

3. Types

WON ST offers various types of Linear Motion guide from miniature types to general ball Linear Motion guide to low-sound linear motion guide to ultra high-rigid roller linear motion guide. Since each supports different shapes and sizes according to service conditions, you can select the optimal linear motion guide to each usage.

	<u>*</u>	
Linear Motion Guide		World standard ball Linear Motion guide 4-direction equal load type with 40°contact angle Great error-absorbing ability with D/F combination High-rigid highly accurate straight-line motion through ideal rolling motion
Wide Linear Motion Guide		It is a compact highly-rigid 4-direction equal load type with 45 degrees, and suitable for use in a one-axis type since it is wider and lower heights than the general miniature linear motion guide and rigidity increased.
Spacer Chain Linear Motion Guide		World standard ball Linear Motion guide 4-direction equal load type with 45°con tact angle Great error-absorbing ability with D/F combination Spacer-enabled retainer type with low noise low dust raise straight-line motion device
Miniature Linear Motion Guide		Miniature high-rigidity Various shapes and sizes Highly-durable and reliable compact straight-line motion device
Roller Linear Motion Guide		Roller-enabled ultra-rigid linear motion guide - 4-direction equal load type with 40°contact angle - Able to run reliably for a long time through rolling motion having wide contact surface - High-load, high-rigid, highly accurate straight-line motion

2 Selection of Linear Motion Guide

1. Overview

To select Linear Motion guide, most of all identify detailed requirements and prioritize the requirements to select the Linear Motion Guide suitable for the service conditions.

2. Procedure

- 1 Identify service conditions
- ••• equipment, maintenance structure, installation space, assembly status, functional requirements, service conditions
- 2 Select the type of Linear Motion guide
- Select the appropriate type by considering motion condition, load level, rigidity, friction, and assembly
- 3 Select the model number of Linear Motion guide
- Determine the model number and the quantity of blocks by considering the space and load
- 4 Calculate load
- Calculate the load in vertical and horizontal directions and moment
- 5 Calculate equivalent load
- Calculate each load applied to the block by converting it into equivalent load
- 6 Calculate mean load
- Calculate each load applied to the block and variable load during deceleration by converting them into mean load
- 7 Calculate static safety factor
- Calculate the static safety factor identified by basic load rating and max. equivalent load and check if it fits for service conditions
- 8 Calculate life
- Check if it fits for service conditions by calculating load rating and life
- 9 Review preload & clearance
- Select the preload and clearance suitable for service conditions
- 10 Determine the class of precision
- Determine the class of precision required by Linear Motion guide while driving
- 11 Lubrication, dust proof, surface handling
- Select lubricant suitable for the environment using grease, oil, and special grease lubrication and select seal for dust proof / determine the method of surface handing for rust prevention and low dust raise
- 12 Complete selection
- Complete the decision of final specifications of Linear Motion guide

3 Life Calculation

1. Load rating and life

(1) Life

If external load is applied to Linear Motion guide while driving, fatigue fracture occurs by stress created as load is repeatedly applied to the raceway surface and rolling elements, and flaking -peeling off in scale-like flakes arises. A total driving distance until flaking occurs due to initial fatigue fracture is the life of a linear motion guide.

- Defects may occur in Linear Motion guide earlier than when flaking normally occurs due to wear or fatigue in the following cases:
 - a. Excess load by the imprecise assembly following a difference in temperature or tolerance
 - b. If Linear Motion guide is contaminated with foreign substance
 - c. Driving with insufficient lubrication
 - d. Reciprocating motion in a very short distance in the form of vibration or wave during the halt or drive
 - e. Excessive load to Linear Motion guide
 - f. Deformation of plastic end-plate

2) Rating fatigue life L

Generally Linear Motion guide does not always have same life even though the products are manufactured in the same way because of the difference in scattering of raw material's original fatigue. For this reason, the reference value of life is defined as the rating fatigue life which is a total driving distance that flaking does not occur in 90% of Linear Motion guides in a group when having them run under the same conditions by grouping multiple Linear Motion guides with same specifications into a group.

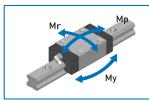
When using a ball
$$L = \left(\frac{f_H \cdot f_T \cdot f_C}{f_W} \cdot \frac{C}{P_C}\right)^3 \times 50$$

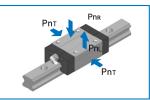
$$Vhen using a roller$$

$$L = \left(\frac{f_H \cdot f_T \cdot f_C}{f_W} \cdot \frac{C}{P_C}\right)^3 \times 100$$

(3) Basic dynamic load rating C

Basic dynamic load rating is Linear Motion guide's bearing of load which represents an applicable constant load in direction and magnitude when the rated life is 50KM. The reference value of WON Linear Motion Guide's basic dynamic load rating is 50KM (ball type) and 100KM (roller type). It is used for calculating Linear Motion guide's life while driving under constant load in magnitude from the center of a block to bottom. Each value of basic dynamic load rating (C) is stated in the catalogue.


(4) Basic static load rating Co


If Linear Motion guide is applied by excessive load or attached instantly by big impact load, a partially permanent deformation occurs between a rolling element and the raceway surface. If deformation reaches to a certain extent, it hinders a smooth driving. Basic static load rating is defined as the constant static load in direction and magnitude with the permanent deformation that occurs between a rolling element like a ball or a roller and the raceway surface of block and rail 0.0001 times bigger than the diameter of the rolling element. In Linear Motion guide, it is the load applied from top to bottom based on the center of the block. Each value of basic static load rating (Co) is stated in the specification table.

(5) Static allowable moment Mo

Moment load can be applied to Linear Motion guide. Here, a ball or a roller both at the ends is most stressed due to the stress distribution of a ball or a roller which is the rolling element inside Linear Motion guide. Static allowable moment refers to the constant moment load in direction and magnitude when the permanent deformation between a ball or a roller applied with the biggest stress and the raceway surface of a block or a rail is less than 0.0001 of the diameter of the rolling element. Moment values of three directions (Mp, Mv, Mr) are stated in the specification sheet. Static allowable moment (Mo) and static moment load rating (Mp) can be reviewed by applying safety factor (fs).

Directions of load and moment

$$f_S = \frac{Mp}{Mo}$$

Load Calculation

Linear Motion guide bears basic dynamic load rating (C) and basic static load rating (Co). But compression load applied from top to down due to inertia force created by the center of gravity, positioning thrust, acceleration, cutting force, and deceleration as well as various loads including tensile load, horizontal load, and moment load can be applied to Linear Motion guide depending on the service conditions. In this case, load of Linear Motion guide changes. When selecting Linear Motion guide, it is required to review these conditions and calculate proper load.

3. Service Condition Setting

Service conditions necessary for calculating the load and life of Linear Motion guide :

Mass: m(kg)

② Applicable load direction

③ Point of application : ℓ2, ℓ3, h1(mm) (center of gravity)

(4) Point of thrust : {4, h2(mm)

(5) Composition of Linear Motion guide: \(\ell_0, \ell_1(mm) \) (No. of block & rail)

(6) Velocity diagram Velocity: V(mm/s)

> Time constant: tn(s)

Acceleration : $\alpha_n(mm/s)$ ⑦ No. of reciprocating motion/second : $N_1(min^{-1})$

 Stroke: Is(mm)

 $V_m(m/s)$ Avg. velocity: 10 Required life: $I_h(h)$

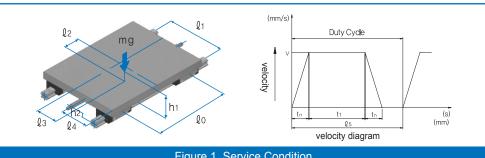


Figure 1. Service Condition

4. Load Calculation Formula

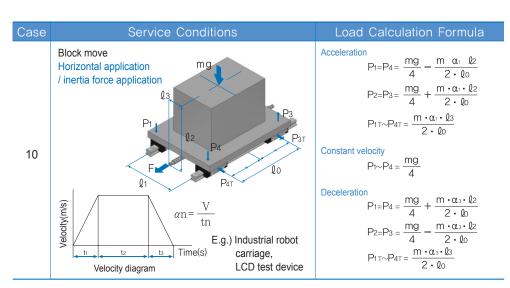
Load applied to Linear Motion guide changes due to external forces such as the center of gravity, position of thrust, acceleration, and cutting resistance. To select Linear Motion guide, you should calculate load applied to the block by fully considering the conditions below.

m: Mass	(kg) (mm)	g : Acceleration of gravity(g : 9.8m/s²) V : Velocity	(m/s ²) (m/s)
Fn: Thrust	(IIIII) (N)	tn : Time constant	(III/S) (S)
Pn: Load (vertical, reverse-vertical) PnT: Load (horizontal)	(N) (N)	αn : Acceleration	(m/s ²)

Case	Service Conditions	Load Calculation Formula
1	Block move Horizontal / uniform motion / halt	$P_{1} = \frac{mg}{4} + \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} - \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{2} = \frac{mg}{4} - \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} - \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{3} = \frac{mg}{4} - \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} + \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{4} = \frac{mg}{4} + \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} + \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$
2	Block move Overhang-horizontal / uniform motion / halt	$P_{1} = \frac{mg}{4} + \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} + \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{2} = \frac{mg}{4} - \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} + \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{3} = \frac{mg}{4} - \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} - \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{4} = \frac{mg}{4} + \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} - \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$

١	۸	ĺ		
ı,		٩	Ü	

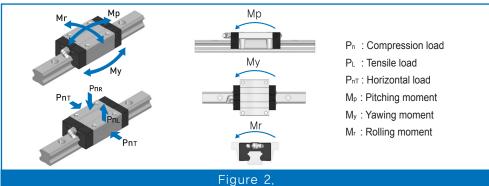
Case	Service Conditions	Load Calculation Formula
3	Rail move Horizontal / uniform motion / halt -Q1 Q1 P2 -Q1 Q1 P2 -Q1 Q1 P2 -Q2 P3 Rail move B.g.) X or Z axis Loader/unLoader	$P_{1} = \frac{mg \cdot cos \theta}{4} + \frac{mg \cdot cos \theta \cdot \ell_{2}}{2 \cdot \ell_{0}} - \frac{mg \cdot cos \theta \cdot \ell_{3}}{2 \cdot \ell_{1}} + \frac{mg \cdot sin \theta \cdot h_{1}}{2 \cdot \ell_{1}}$ $P_{1T} = \frac{mg \cdot sin \theta}{4} + \frac{mg \cdot sin \theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $P_{2} = \frac{mg \cdot cos \theta}{4} - \frac{mg \cdot cos \theta \cdot \ell_{2}}{2 \cdot \ell_{0}} - \frac{mg \cdot cos \theta \cdot \ell_{2}}{2 \cdot \ell_{1}} + \frac{mg \cdot sin \theta \cdot h_{1}}{2 \cdot \ell_{1}}$ $P_{2T} = \frac{mg \cdot sin \theta}{4} - \frac{mg \cdot sin \theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$
4	Block move Wall installation / uniform motion / halt P2T P2 P3 E.g.) Gantry-type device Y-axis drive	$P_{1} \sim P_{4} = \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{1T} = P_{4T} = \frac{mg}{4} + \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $P_{2T} = P_{3T} = \frac{mg}{4} - \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}}$
5	Block move Vertical / uniform motion / halt PIT Q0 P2T Z-axis Auto-painting spray, lifter	$P_{1} \sim P_{4} = \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $P_{1T} \sim P_{4T} = \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{0}}$



Block move Vertical/moment of inertia Acceleration P1 P2 P1 P2	ulation Formula $=P_4 = -\frac{m(g-\alpha_1)\ell_2}{2 \cdot \ell_0}$ $=P_3 = \frac{m(g-\alpha_1)\ell_2}{2 \cdot \ell_0}$ $=P_{4T} = \frac{m(g-\alpha_1)\ell_3}{2 \cdot \ell_0}$
Vertical/moment of inertia Acceleration P1 P2 P1 P2 P2	$=P_3 = \frac{m(g-\alpha_1)\ell_2}{2 \cdot \ell_0}$ $=P_{4T} = \frac{m(g-\alpha_1)\ell_3}{2 \cdot \ell_0}$
P _{II} P ₂ mg P ₂	$=P_{4T}=\frac{m(g-\alpha_1)\ell_3}{2\cdot\ell_0}$
P ₁ P ₂ P ₂	2 10
P1	_D _ III(9 & 1/23
Uniform Pt:	$T = P_{3T} = -\frac{m(g - \alpha_1)\ell_3}{2 \cdot \ell_0}$ $= P_4 = -\frac{mg \cdot \ell_2}{2 \cdot \ell_0}$
V3 motion	$=P_3 = \frac{2 \cdot l_0}{2 \cdot l_0}$
D2	$=P_{4T}=\frac{mg\cdot \ell_3}{2\cdot \ell_0}$
$\alpha n = \frac{v}{tn}$	$=P_{3T} = -\frac{\text{mg} \cdot \ell_3}{2 \cdot \ell_0}$ $= m(q - Q_2)\ell_2$
	$=P_4 = -\frac{m(g - \alpha_3)\ell_2}{2 \cdot \ell_0}$ $=P_3 = \frac{m(g - \alpha_3)\ell_2}{2 \cdot \ell_0}$
\(\delta \)	$2 \cdot \ell_0$ $T = P4T = \frac{m(g - \alpha_3)\ell_3}{2 \cdot \ell_0}$
E.g.) Conveyance robot, LTR robot 2-axis	$= P_{3T} = -\frac{m(g - \alpha_3)\ell_3}{2 \cdot \ell_0}$
Block move Cutting load / complex external load	
F1 application P ₁ :	$=P_4 = -\frac{F_1 \cdot Q_5}{2 \cdot Q_0}$
	$=P_3 = \frac{F_1 \cdot \ell_5}{2 \cdot \ell_0}$ $=P_{4T} = \frac{F_1 \cdot \ell_4}{2 \cdot \ell_0}$
. 0.4	$P_{3T} = \frac{2 \cdot \varrho_0}{2 \cdot \varrho_0}$ $= P_{3T} = -\frac{F_1 \cdot \varrho_4}{2 \cdot \varrho_0}$
	$=P_4 = \frac{F_2}{4^+} \frac{F_2 \cdot Q_2}{2 \cdot Q_0}$
Dor	$=P_3=\frac{F_2}{4} \frac{F_2 \cdot \ell_2}{2 \cdot \ell_0}$
F3 F4	$=P_4=-\frac{F_3\cdot Q_3}{2\cdot Q_1}$
	$=P_3 = \frac{F_3 \cdot \ell_3}{2 \cdot \ell_1}$
Pn	$=P_{4T} = \frac{F_3}{4^-} \frac{F_3 \cdot \ell_2}{2 \cdot \ell_0}$ $= F_2 \qquad F_3 \cdot \ell_2$
E.g.) Machine tool, CNC shelf, machining center, NC milling machine	$_{T}=P_{3T}=\frac{F_{2}}{4^{-}}\frac{F_{3}\cdot Q_{2}}{2\cdot Q_{0}}$

Case	Service Conditions	Load Calculation Formula
8	Block move Moment load in case of application to side slope / cutting load http://particles.com/par	$P_{1} = \frac{mg \cdot \cos\theta}{4} + \frac{mg \cdot \cos\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $- \frac{mg \cdot \cos\theta \cdot \ell_{3}}{2 \cdot \ell_{1}} + \frac{mg \cdot \sin\theta \cdot h_{1}}{2 \cdot \ell_{1}}$ $P_{1T} = \frac{mg \cdot \sin\theta}{4} + \frac{mg \cdot \sin\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $P_{2} = \frac{mg \cdot \cos\theta}{4} - \frac{mg \cdot \cos\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $- \frac{mg \cdot \cos\theta \cdot \ell_{2}}{2 \cdot \ell_{1}} + \frac{mg \cdot \sin\theta \cdot h_{1}}{2 \cdot \ell_{1}}$ $P_{2T} = \frac{mg \cdot \sin\theta}{4} - \frac{mg \cdot \sin\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $P_{3} = \frac{mg \cdot \cos\theta}{4} - \frac{mg \cdot \cos\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $+ \frac{mg \cdot \cos\theta \cdot \ell_{3}}{2 \cdot \ell_{1}} - \frac{mg \cdot \sin\theta \cdot h_{1}}{2 \cdot \ell_{1}}$ $P_{3T} = \frac{mg \cdot \sin\theta}{4} + \frac{mg \cdot \sin\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $P_{4} = \frac{mg \cdot \cos\theta \cdot \ell_{3}}{4} - \frac{mg \cdot \sin\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $P_{4T} = \frac{mg \cdot \cos\theta \cdot \ell_{3}}{4} + \frac{mg \cdot \sin\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $P_{4T} = \frac{mg \cdot \sin\theta}{4} + \frac{mg \cdot \sin\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$
9	Block move Moment load in case of application to front slope / cutting load P1 P2 P2 P2 P2 P1 P1 P1 P1 P1 P1 P2	$P_{1} = \frac{mg \cdot cos\theta}{4} + \frac{mg \cdot cos\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $-\frac{mg \cdot cos\theta \cdot \ell_{3}}{2 \cdot \ell_{1}} + \frac{mg \cdot sin\theta \cdot h_{1}}{2 \cdot \ell_{0}}$ $P_{1} = \frac{mg \cdot sin\theta \cdot \ell_{3}}{2 \cdot \ell_{0}}$ $P_{2} = \frac{mg \cdot cos\theta}{4} - \frac{mg \cdot cos\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $-\frac{mg \cdot cos\theta \cdot \ell_{3}}{2 \cdot \ell_{1}} - \frac{mg \cdot sin\theta \cdot h_{1}}{2 \cdot \ell_{0}}$ $P_{2} = -\frac{mg \cdot sin\theta \cdot \ell_{3}}{2 \cdot \ell_{0}}$ $P_{3} = \frac{mg \cdot cos\theta}{4} - \frac{mg \cdot cos\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $+\frac{mg \cdot cos\theta \cdot \ell_{3}}{2 \cdot \ell_{1}} - \frac{mg \cdot sin\theta \cdot h_{1}}{2 \cdot \ell_{0}}$ $P_{3} = -\frac{mg \cdot sin\theta \cdot \ell_{3}}{2 \cdot \ell_{0}}$ $P_{4} = \frac{mg \cdot cos\theta \cdot \ell_{3}}{4} + \frac{mg \cdot cos\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $+\frac{mg \cdot cos\theta \cdot \ell_{3}}{2 \cdot \ell_{1}} + \frac{mg \cdot sin\theta \cdot h_{1}}{2 \cdot \ell_{0}}$ $P_{4} = \frac{mg \cdot cos\theta \cdot \ell_{3}}{2 \cdot \ell_{0}}$ $P_{4} = \frac{mg \cdot cos\theta \cdot \ell_{3}}{2 \cdot \ell_{0}}$

5. Equivalent Load Calculation


There are diverse kinds of load applied to Linear Motion guide, such as compression load in vertical direction, tensile load, horizontal load, moment load, etc. There is also combined load of them and sometimes the magnitude and direction of load change. Since it is hard to calculate the variable load when calculating the life of Linear Motion guide, it is required to use equivalent load which is converted to compression load or tensile load in vertical direction in order to produce life or static safety factor.

6. Equivalent Load Calculation Formula

If Linear Motion guide bears vertical compression load or tensile load or horizontal load simultaneously, or the magnitude or direction of load changes, equivalent load is calculated using the following formula.

 $PE(equivalent load) = P_n + P_{nT}$

P_n: Compression load P_{nT}: Horizontal load

7. Static Safety Factor Calculation

Unexpected big load may be applied to Linear Motion guide due to inertia force caused by vibration impact or quick braking and moment load of mechanical structure. When selecting Linear Motion guide, static safety factor must be taken into account to be ready for such load. Static safety factor (fs) is shown in value obtained by dividing basic static load rating by the calculated load. To see the baseline of static safety factor by service condition, please refer to Table 1-1, and Table 1-2.

Table 1-1. Baseline of static safety factor(fs)

Type of rolling element	Service condition	Static safety factor (fs)	
	There is no vibration and impact.	1.0 ~ 1.5	
Ball	Great travel performance is needed.	1.5 ~ 2.0	
	There are moment load, violation, and impact.	2.5 ~ 7.0	
	There is no vibration and impact.	2.0 ~ 3.0	
Roller	Roller Great travel performance is needed.		
	There are moment load, violation, and impact.	4.0 ~ 7.0	

Table 1-2

If compression load is big	$\frac{f_H \cdot f_T \cdot f_C \cdot C_0}{P_n} \ge f_S$
If tensile load is big	$\frac{f_H \cdot f_T \cdot f_C \cdot C_{0L}}{P_L} \ge f_S$
If horizontal load is big	$\frac{f_H \cdot f_T \cdot f_C \cdot C_{0T}}{P_{nT}} \ge f_S$

fs : Static safety factor

Co: Basic static load rating(vertical)

C_{0L}: Basic static load rating(reverse-vertical) C_{0T}: Basic static load rating(horizontal)

Pn: Calculated load(vertical)

PL: Calculated load (reverse-vertical)

(N)

(N) PnT: Calculated load (horizontal) (N)

(N) f_H: Hardness factor (N) f_T: Temperature factor

(N) f_T: Temperature factor

(N) fc: Contact factor

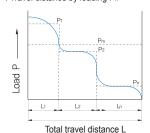
8. Mean Load Calculation

Load applied to the block of Linear Motion guide is not constant, but differs according to service conditions. Here the load that becomes equal to life under variable load is used. This is called mean load. If the load applied to block is changed due to external condition, it is required to calculate life as mean load that includes various conditions as below. If load applied to block varies with different conditions, life should be calculated by including this variable load condition. Mean load (Pm) refers to constant load that becomes equal to life under this variable load when the load applied to block changes with various conditions while traveling.

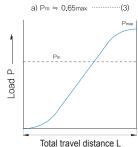
$$P_{m} = \sqrt[i]{\frac{1}{L} \cdot \sum_{n=1}^{n} (P_{n}^{i} \cdot L_{n})}$$

i: Ball - 3, Roller - 10/3

Note) the formula above or formula (1) below is applied to a ball.


1) Change in phase

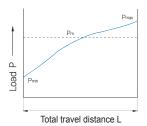
$$P_{m} = \sqrt[3]{\frac{1}{L}(P_{1}^{3} \cdot L_{1} + P_{2}^{3} \cdot L_{2} \cdot \dots + P_{n}^{3} \cdot L_{n})} \cdot \dots (1)$$


Pm : Mean load (N)
Pn : Variable load (N)

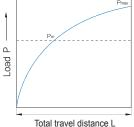
L : Total travel distance (mm)

Ln : Travel distance by loading Pn (mm)

3) Change in a sine curve



2) Change monotonously


$$P_m = \frac{1}{3} (P_{min} + 2 \cdot P_{max}) \cdots (2)$$

Pmin: Minimum load (N)

Pmax : Maximum load (N)

9. Rating Life Calculation

Rating life needs to be calculated because Linear Motion guide's life differs even under same working conditions. Rating life of Linear Motion guide is the total travel distance that a Linear Motion guide system composed of a certain number of units can drive until flaking does not occur in 90% of the raceway surface or rolling elements after being run under same working conditions. If a ball or a roller is used as a rolling element, rating life can be calculated using the following formula.

▶ Calculation formula of the rating life of ball-enabled Linear Motion guide

$$L = \left(\frac{f_{H} \cdot f_{T} \cdot f_{C}}{f_{W}} \cdot \frac{C}{P_{C}} \right)^{3} X 50$$

L: Rating life (km)
C: Basic dynamic load rating (N)
Pc: Calculated load (N)
H: Hardness factor See Fig. 3
fr: Temperature factor See Fig. 4
fc: Contact factor See Table 3
fw: Load factor See Table 3

► Calculation formula of the rating life of roller-enabled Linear Motion guide

$$L = \left(\frac{f_{H} \cdot f_{T} \cdot f_{C}}{f_{W}} \cdot \frac{C}{P_{C}}\right)^{\frac{10}{3}} X \cdot 100$$

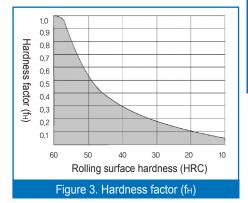
C: Basic dynamic load rating (N) Pc: Calculated load (N) f_H : Hardness factor See Fig. 3 f_T : Temperature factor See Fig. 4 f_C : Contact factor See Table 3 f_C : See Table 3

(km)

L : Rating life

▶ If the length of stroke and the number of reciprocating motion are constant, life time can be calculated using rating life (L) by the formula below.

$$L_{h} = \frac{L \times 10^{6}}{2 \times l_{s} \times n_{1} \times 60}$$


 L_h : Life time (N) ℓ_s : Length of stroke (mm) ℓ_s : No. of reciprocating motion per minute (mm $^{-1}$)

1) Hardness factor (fH)

To realize the best performance of Linear Motion guide, the proper hardness and depth should be maintained between the block contacting a rolling element (ball or roller) and the raceway surface of rail.

WON Linear Motion guide has HRC58-64 surface hardness, so there is no need to consider hardness factor. But if the hardness is lowered than baseline, Linear Motion guide's load capacity decreases so hardness factor needs to be reflected in calculating life.

2) Temperature factor (f_T)

If high temperature over 100°C is applied to Linear Motion guide, temperature factor (f⊤) needs to be taken into account when selecting Linear Motion guide. WON Linear Motion guide must be used at less than 80°C. But you have to use it at over 80°C, please use a high-temp Linear Motion guide - WON ST's specially customized product.

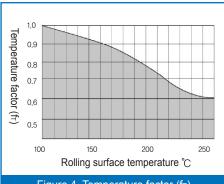


Figure 4. Temperature factor (fT)

Note) In ambient temperature of over 80°C, materials for seal, end plate, and support plate should be changed to the specifications for high temperature.

3) Contact factor (fc)

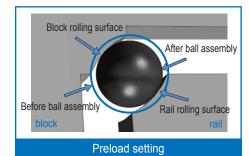
If over two blocks of Linear Motion guide are closely assembled, since uniform load may not be applied to blocks due to difference among mounting surfaces, you have to multiply basic static load rating (C) and basic dynamic load rating (Co) by contact factor shown in Table 2.

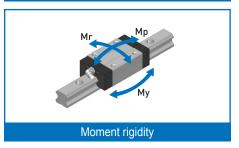
Table 2

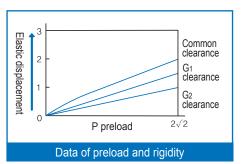
No. of blocks contacted	Contact factor (fc)	
2	0.81	
3	0.72	
4	0.66	
5	0.61	
Over 6	0.6	
Common use	1.0	

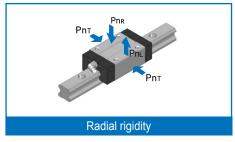
4) Load factor (fw)

Generally the static load applied to the block of Linear Motion guide can be calculated by formula. But the load applied to the block while running the machine tends to come from vibration or impact. Therefore, you have to consider load factor (fw) shown in Table 3 for the vibration or impact load during the speedy running of the machine. It can be calculated by dividing the basic dynamic load rating of Linear Motion guide by load factor (fw).


Table 3.


External condition	Service conditions	Load factor (fw)
Low	There is no external vibration or impact due to the smooth running of machine at mild speed.	1.0 ~ 1.3
Moderate	There is moderate external vibration or impact due to the running of machine at low speed.	1.2 ~ 1.5
Big	There is strong vibration or impact due to the running of machine at fast speed.	1.5 ~ 2.0
Very big	There is strong vibration or impact due to the running of machine at very fast speed.	2.0 ~ 4.0


4 Rigidity & Preload


1. Preload

Linear Motion guide is preloaded in a way that improves mechanical precision by eliminating clearance using the rolling element (ball or roller) inserted into the space between rail and the block or in a way that applies load to the rolling element in advance by inserting the rolling element larger in size than the clearance of raceway between rail and the block. This process will enhance the rigidity of Linear Motion guide and lessen the displacement level caused by external load.

2. Radial Clearance

Radial clearance refers to the total travel distance in a radial direction from the center of the block of Linear Motion guide when mild load is applied to the block up and down from the center part of the rail length after the block is assembled in the rail which is then fixed to base.

Radial clearance is usually classified into common clearance (no symbol), G_1 clearance (light preload), G_2 clearance (heavy load), and G_8 clearance (special preload), and are optional depending on usage. The values are standardized by form.

Prelo	oad & e	lastic displac	ement	
Ball diameter 10mm	20 I 15 - 10 - 5	Roller	ded preloaded not preloade	
Roller diameter	0	1000	2000	3000
		Load	(N)	

	Preload type	Preload symbol	Preload
	Moderate	No symbol	0 ~ 0.03 x C
Н	Light	G ₁	0.04 ~ 0.08 x C
	Heavy	G ₂	0.09 ~ 0.13 x C
	Moderate	No symbol	0 ~ 0.03 x C
S	Light	G1	0.03 ~ 0.05 x C
	Heavy	G ₂	0.06 ~ 0.08 x C

Table 4. Service condition for radial clearance (preload)

Туре	Preload status	Symbol	Service Conditions	Use
1. Moderate	Plus-minus clearance	No (1)	·Load is applied in uniform direction and smooth running is needed. ·There is almost no vibration or impact and precise running is required.	Welding machine, textile machinery, packaging machinery, various conveyors, medical equipment, woodworking machine, glass cutting machine, takeout robots, ATC, winding machine
2. Light	Minus clearance in small amount	G ₁ (2)	·There is a little vibration or impact and moment load. ·Light load is applied, yet high precision is required.	Various industrial robots, measuring equipment, inspection equipment, 3D processor, laser processor, PCB drilling machine, various assembling machine, electric spark machine, punching press
3. Heavy	Minus clearance in large amount	G ₂ (3)	·There is mild impact load or overhang load and moment load. Rigidity and high precision are required.	CNC shelf, machining center, milling machine, grinding machine, tapping center, drilling machine, hobbing machine, various special equipment
4. Special	Minus clearance in small or large amount	Gs (4)	·With smaller clearance than that of G1 preload, light and precise operation is required.	No preload, ultra-light preload, larger-than-moderate preload, special preload customized to user's conditions, special processing machine for heavy- duty cutting

Note (1) No clearance or very small clearance.

- (2) Very small minus clearance.
- (3) Quiet large minus clearance to enhance rigidity
- (4) Preload below G₁ or over G₂ to meet service conditions

Table 5. Radial clearance of H & S & HS Series

Unit: µm

				Symbol	
	Model No.		Moderate	Light preload	Heavy preload
			No symbol	G ₁	G ₂
H15	S15	-	-4 ~ +2	-12 ~ -4	-
H20	S20	-	-5 ~ +2	-14 ~ -5	-23 ~ -14
H25	S25	HS25	-6 ~ +3	-16 ~ -6	-26 ~ -16
H30	-	HS30	-7 ∼ +4	-19 ~ -7	-31 ~ -19
H35	-	HS35	-8 ~ +4	-22 ~ -8	-35 ~ -22
H45	-	HS45	-10 ~ +5	-25 ~ -10	-40 ~ -25
H55	-	HS55	-12 ~ +5	-29 ~ -12	-46 ~ -29

Table 6. Radial clearance of HW Series

Unit: µm

	Symbol				
Model No.	Moderate	Light preload	Heavy		
	No symbol	G ₁	G ₂		
HW17	-3 ~ 0	-7 ∼ -3	-		
HW21	-4 ~ +2	-8 ~ -4	-		
HW27	-5 ~ +2	-11 ~ -5	-		
HW35	-8 ~ +4	-18 ~ -8	-28 ~ -18		

Table 7. Radial clearance of M & MB Series

Unit : µm

		Sym	bol
Model No.		Moderate	Light preload
		No symbol	G ₁
M5	MB5	0 ~ +1.5	-1 ~ 0
M7	MB7	-2 ~ +2	-3 ~ 0
M9	MB9	-2 ~ +2	-4 ~ 0
M12	MB12	-3 ~ +3	-6 ~ 0
M15	MB15	-5 ~ + 5	-10 ~ 0
M20	-	-7 ∼ +7	-14 ~ 0

Table 8. Radial clearance of R Series

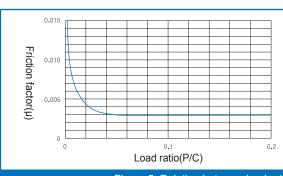
Unit: µm

	Symbol				
Model No.	Moderate	Light preload	Heavy		
	No symbol	G ₁	G ₂		
R35	-2 ~ -1	-3 ~ -2	-5 ~ -3		
R45	-2 ~ -1	-3 ~ -2	-5 ~ -3		
R55	-2 ~ -1	-4 ~ -2	-6 ~ -4		

5 Friction

1 Friction

Linear Motion guide's friction resistance occurs to the level of 1/20~1/40 compared to existing sliding guide since the rolling element (ball or roller) is assembled between the rail and the block which is the raceway surface. Also starting torque is low because the difference between static friction and kinetic friction is very small. Its low power loss and temperature rise in the part of linear motion are of advantage to speedy operation. Its high conformability and response realize the highly precise positioning.


2. Friction Coefficient

Friction resistance of Linear Motion guide relies on the load applied to Linear Motion guide, speed, lubrication or form. In case of light load or high-speedy motion, lubrication or seal is the main cause of friction resistance. In case of heavy load or slow motion, the magnitude of load affects friction resistance.

F: Friction resistance (N)

μ: Kinetic friction factor

P: Load (N)

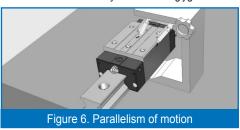
P : Load

C: Basic dynamic load rating

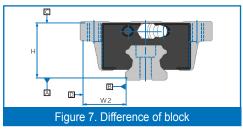
Figure 5. Relation between load ratio and friction factor

Common friction factors of various operating systems are shown in a table below and applied in case of proper lubrication or assembly and normal load.

Type of operating system	Major model number	Friction factor µ	
Linear Motion Guide	H, H-S, HW, S, S-S, HS-S, M, MB	0.002 ~ 0.003	
Linear Motion Guide	R	0.001 ~ 0.002	
Ball Spline	WLS, WSP	0.002 ~ 0.003	
Super Ball Bushing / Linear Ball Bushing	SB, SBE, LM, LME	0.001 ~ 0.003	
Cross Roller Guideway	WRG	0.001 ~ 0.0025	



6 Precision


1. Precision Specification

The degree of travel of Linear Motion guide is measured as below. (See Figure 6.)

- a. Tighten rail to the mounting surface of the bed using a bolt at the prescribed torque.
- b. Draw a measuring jig right up against the datum plane of the block as shown in Figure.
- c. Measure it by having the block and measuring jig travel the whole section from the starting point to the end point of the rail.
- d. The value measured by the measuring jig is the error in the parallelism of motion of the block.

Measuring the error in the degree of parallelization between the datum plane of block and that of rail

Difference between the maximum difference and minimum difference of blocks in each height and dimension installed to surface

Unit · mm

2. Precision Design

Table 9. Classification of precision

Dimension	Terms
Dimension tolerance of height H	Distance from the base side of rail A to the top side of block C
Difference in height H	Difference in the height of blocks combined from each rail on the same plane
Dimension tolerance of width W ₂	Distance between the datum plane of rail B and the reference side of block D
Difference in width W ₂	Difference of the reference axis of rail B and the reference side of block D of blocks combined to the rail
Parallelism of motion of C against A	Change in the top side of block C based on the base side of rail A during the motion of block combined to the rail
Parallelism of motion of D gainst B	Change in the reference side of block D based on the reference side of rail B during the motion of block combined to the rail

3. Dimension Tolerance and Difference

Table 10. Specifications for precision of Linear Motion guide (H, H-S, HW, S, S-S, HS-S)

Sinc. Illin							
	Terms	High	Precision	Super precision	Ultra precision		
Dimension	No symbol	Н	Р	SP	UP		
	140 Oyillboi	P6	P5	P4	P3		
Dimension tolerance of height H	±0.080	±0.042	±0.020	±0.010	±0.008		
Difference in height H	0.025	0.015	0.007	0.005	0.003		
Dimension tolerance of width W ₂	±0.100	±0.050	±0.025	±0.015	±0.010		
Difference in width W ₂	0.030	0.020	0.010	0.007	0.003		
Parallelism of motion of C against A			See Table 11				
Parallelism of motion of D against B							

Table 11. Length of rail and parallelism of motion of Linear Motion guide (H, H-S, HW, S, S-S, HS-S)

Jnit: µm

•	•					, Oπ. μπ
Length	n of rail			Terms		
Abovo	Dolow	Moderate	High	Precision	Super precision	Ultra precision
Above	Below	No symbol	P6	P5	P4	P3
_	50	5	3	2	1 <u>.</u> 5	1
50	80	5	3	2	1.5	1
80	125	5	3	2	1 <u>.</u> 5	1
125	200	5	3 <u>.</u> 5	2	1 <u>.</u> 5	1
200	250	6	4	25	1.5	1
250	315	7	4 <u>.</u> 5	3	1.5	1
315	400	8	5	3.5	2	1 <u>.</u> 5
400	500	9	6	4 <u>.</u> 5	2 <u>.</u> 5	1 <u>.</u> 5
500	630	11	7	5	3	2
630	800	12	8 <u>.</u> 5	6	3.5	2
800	1000	13	9	6.5	4	2.5
1000	1250	15	11	7 <u>.</u> 5	4 <u>.</u> 5	3
1250	1600	16	12	8	5	4
1600	2000	18	13	8 <u>.</u> 5	5.5	4.5
2000	2500	20	14	9 <u>.</u> 5	6	5
2500	3150	21	16	11	6.5	5.5
3150	4000	23	17	12	7 <u>.</u> 5	6

Table 12. Specifications for precision of miniature Linear Motion guide (M, MB)

Unit: mm

Model	Dimension	Moderate	High	recision		
No.	Dimension	No symbol	P6	P5		
	Dimension tolerance of height H	±0.030	-	±0.015		
	Difference in height H	0.015	-	0.005		
5	Dimension tolerance of width W ₂	±0.030	-	±0.015		
3	Difference in width W ₂	0.015	-	0.005		
	Parallelism of motion of C against A	See Table 13				
	Parallelism of motion of D against B		See Table 13			
7	Dimension tolerance of height H	±0.040	± 0.020	±0.010		
9	Difference in height H	0.030	0.015	0.007		
12	Dimension tolerance of width W ₂	±0.040	± 0.025	±0.015		
13	Difference in width W ₂	0.030	0.020	0.010		
15	Parallelism of motion of C against A	See Table 13				
20	Parallelism of motion of D against B		See Table 13			

A

Table 13. Length of rail and parallelism of motion of miniature Linear Motion guide (M, MB)

Unit : µm

Length	of rail	Paral	lelism of n	Length	of rail	
		Moderate	High	Precision		
Above	Below	No	Н	Р	Above	Below
		Symbol	P6	P5		
_	40	8	4	1	820	850
40	70	10	4	1	850	880
70	100	11	4	2	880	910
100	130	12	5	2	910	940
130	160	13	6	2	940	970
160	190	14	7	2	970	1000
190	220	15	7	3	1000	1030
220	250	16	8	3	1030	1060
250	280	17	8	3	1060	1090
280	310	17	9	3	1090	1120
310	340	18	9	3	1120	1150
340	370	18	10	3	1150	1180
370	400	19	10	3	1180	1210
400	430	20	11	4	1210	1240
430	460	20	12	4	1240	1270
460	490	21	12	4	1270	1300
490	520	21	12	4	1300	1330
520	550	22	12	4	1330	1360
550	580	22	13	4	1360	1390
580	610	22	13	4	1390	1420
610	640	22	13	4	1420	1450
640	670	23	13	4	1450	1480
670	700	23	13	5	1480	1510
700	730	23	14	5	1510	1540
730	780	23	14	5	1540	1570
760	790	23	14	5	1570	1800
790	820	23	14	5		

				notion
		Moderate	High	Precision
Above	Below	No	Н	Р
		Symbol	P6	P5
820	850	24	14	5
850	880	24	14	5
880	910	24	14	5
910	940	24	14	5
940	970	24	14	5
970	1000	25	14	5
1000	1030	25	16	5
1030	1060	25	16	5
1060	1090	25	16	6
1090	1120	25	16	6
1120	1150	25	16	6
1150	1180	25	17	6
1180	1210	26	17	6
1210	1240	26	17	6
1240	1270	26	17	6
1270	1300	26	17	6
1300	1330	26	17	6
1330	1360	27	17	6
1360	1390	27	18	6
1390	1420	27	18	6
1420	1450	27	18	7
1450	1480	27	18	7
1480	1510	27	18	7
1510	1540	28	19	7
1540	1570	28	19	7
1570	1800	28	19	7

Table 14. Specifications for precision of roller Linear Motion guide (R)

Unit : mm

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		High	Precision	Super Precision	Ultra Precision			
Dimension tolerance of height H ± 0.042 ± 0.020 ± 0.010 ± 0.008 Difference in height H 0.015 0.007 0.005 0.003	Dimension	Н	Р	SP	UP			
Difference in height H 0.015 0.007 0.005 0.003		P6	P5	P4	P3			
	Dimension tolerance of height H	±0.042	±0.020	±0.010	±0.008			
Dimension tolerance of width W_2 ± 0.050 ± 0.025 ± 0.015 ± 0.010	Difference in height H	0.015 0.007 0.005 0.003						
	Dimension tolerance of width W ₂	±0.050 ±0.025 ±0.015 ±0.0						
Difference in width W ₂ 0.020 0.010 0.007 0.003	Difference in width W2	0.020 0.010 0.007 0.003						
Parallelism of motion of C against A See Table 15	Parallelism of motion of C against A	See Table 15						
Parallelism of motion of D against B See Table 15	Parallelism of motion of D against B	See Table 15						

Table 15. Length of rail and parallelism of motion of roller Linear Motion guide (R)

 $Unit: \mu m \\$

Length	of rail	Parallelism of motion					
Above	Below	High	Precision	Super Precision	Ultra Precision		
Above	Delow	P6	P5	P4	P3		
_	50	3	2	1 <u>.</u> 5	1		
50	80	3	2	1 <u>.</u> 5	1		
80	125	3	2	1 <u>.</u> 5	1		
125	200	3.5	2	1 . 5	1		
200	250	4	2 <u>.</u> 5	1 <u>.</u> 5	1		
250	315	4.5	3	1 <u>.</u> 5	1		
315	400	5	3.5	2	1 <u>.</u> 5		
400	500	6	4 <u>.</u> 5	2 <u>.</u> 5	1.5		
500	630	7	5	3	2		
630	800	8 <u>.</u> 5	6	3.5	2		
800	1000	9	6. 5	4	2 <u>.</u> 5		
1000	1250	11	7.5	4. 5	3		
1250	1600	12	8	5	4		
1600	2000	13	8.5	5 <u>.</u> 5	4 <u>.</u> 5		
2000	2500	14	9 <u>.</u> 5	6	5		
2500	3150	16	11	6.5	5 <u>.</u> 5		
3150	4000	17	12	7 <u>.</u> 5	6		

4. Selection of Precision Class

Table 16. For the selection of precision class of Linear Motion guide by unit, please refer to the table below.

Ę			Pr	ecision cla	ass			Preload	
zatic	Unit	Moderate	High			Ultra precision	Moderate	Light preload	Heavy preload
Application	Offic	No sigh	Н	Р	SP	UP	No	G ₁	G ₂
⋖	0110 1 16		P6	P5	P4	P3	symbol		
	CNC shelf		•	•	•				•
	Machining center		•	•	•				•
	NC milling machine		•	•	•				•
<u> </u> 00	CNC tapping machine		•	•	•				•
ne T	NC boring machine		•	•	•				•
Machine Tool	NC drilling machine		•	•	•				•
Š	3D engraving machine		•	•	•				•
	Jig boring machine		•	•	•				•
	EDM electric spark machine			•	•	•		•	•
	Grinding machine			•	•	•			•
	Prober equipment					•		•	•
it	Wire bonder				•	•		•	•
ipme	Sliding machine				•	•		•	
edn	Dicing saw machine				•	•		•	
Stor	IC test handler			•	•			•	
Semiconductor equipment	PCB laser via-hole driller				•			•	
nic	PCB inspection equipment			•	•			•	
Ser	Laser marker			•				•	
	Chip mounter			•	•			•	
	Mac/Mic inspection equipment				•	•		•	
	Pattern test system				•	•		•	
	Exposure				•	•		•	
Q	Laser repair			•	•	•		•	
FPD	Lighting test equipment		•	•				•	
	Coder equipment			•	•			•	
	Chip bonding equipment		•	•				•	
	Dispenser equipment		•	•				•	

	ı								
tion		Madagata		ecision cla		1.10	Madausta	Preload	
Application	Unit	Moderate	High H	Precision	Super precision SP	Ultra precision UP	No		Heavy preload
App		No sigh	P6	P5	P4	P3	symbol	G ₁	G ₂
	Scriber		•	•				•	
	Glass edge grinding machine		•	•				•	
FPD	FPD measuring/test equipment			•	•			•	
芷	Laminating equipment		•	•				•	
	Indentation test equipment								
	Prober equipment								
	Punching press		•					•	
υ	Tire molder	•						•	
chin	Tire valcanizer	•						•	
Industrial machine	Auto-shearing machine	•						•	
strial	Auto-welding machine	•					•	•	
snpc	Conveyor	•					•		
=	Textile machine	•					•		
	Injection molding machine	•					•	•	
	Cartesian coordinated robot	•	•	•				•	
	Gantry robot	•	•					•	
poot	LTR robot		•	•				•	
Industrial robot	Take-out robot	•						•	
ustri	Cylindrical coordinated robot		•					•	
<u>p</u>	Vacuum robot		•	•				•	
	Robot carriage	•						•	
	Linear actuator		•	•	•		•	•	
	Office machine	•					•		
	FA transport system	•					•		
	Medical equipment	•					•	•	
Others	Welding machine	•					•		
₽	Painting machine	•					•		
	Precision XY table		•	•	•			•	
	UVW stage		•	•				•	
	3D measuring machine			•	•	•		•	

7 Lubrication

1. Purpose

The purpose of lubricating Linear Motion guide is to create an oil film between rail, the raceway surface of block and a rolling element to avoid the direct contact of metals and reduce friction and wear, preventing the raceway surface and the rolling element from being overheated and melted to be adhered to each other.

Moreover, the oil film created between the raceway surface and a ball decreases load-induced contact stress to improve the rolling contact fatigue life and prevent rust.

Linear Motion guide is equipped with seal but grease inside the block is leaking little by little during the operation. Therefore it is required to lubricate it at a time and interval appropriate to each service condition.

2. Selection of lubricant

To achieve the best performance of Linear Motion guide, you have to select the lubricant suitable for service conditions.

Lubricants used for Linear Motion guide include grease and oil. You can select the lubricant and lubrication method that fit your service conditions, load, operating speed, assembly type, etc.

3. Grease Jubrication

Grease is a semisolid lubricant consisting of base oil, thickener, and additives.

In case of using grease for Linear Motion guide, lithium soap grease is commonly used, but grease mixed with extreme-pressure additive is used under high load or according to use. If you want to use Linear Motion guide in a high-vacuum environment or a clean room, it's desirable to choose grease with excellent performance in low evaporation and low dust raise.

1) Refilling of grease

To refill grease to Linear Motion guide, supply a sufficient amount of grease through the nipple until remaining grease is discharged. It is appropriate to fill grease up to 50% of the volume of the block. To reduce rolling resistance which may increase after grease is filled, it is better to take a test run about 20 times prior to the operation.

2) Refill interval

If Linear Motion guide's travel exceeds a certain time, its lubricating performance declines. So it is required to refill an appropriate amount of grease at a proper time depending on service conditions and environment. Usually grease is to be filled when the travel distance reaches 100KM.

$$T = \frac{-100 \times 6000}{\text{Ve X } 60} \text{ hr} \qquad \begin{array}{c} T : \text{Oil refilling cycle (time)} \\ \text{Ve : Velocity (m/min)} \end{array}$$

4. Oil lubrication

In case of using oil for Linear Motion guide, it is recommended to use oil lubricant with high viscosity (68mm²/sec) under higher load while oil lubricant with low-viscosity (13mm²/sec) at high velocity. It is appropriate to refill 0.3cm³ of oil per hour for each one block.

Table 17. Inspection and refilling time of lubricant

Туре	Inspection item	Inspection period	Refiling time
Grease	Status of mixing with cutting chip, dust, foreign substance Status of contamination by other substances	3~6 months	Generally 1-2 times per year Usually more than once per year if travel exceeds 100km/year Refill depending on the situation after checking the status of grease
Oil	Lubricant quantity, contamination, foreign substance	3~6 months	Refill depending on the results of inspection, and determine the optimal amount to refill depending on the capacity of oil tank
Oll	Check oil level (supply oil mist)	Before every operation	 Refill an appropriate amount after identifying the consumption Standardize the optimal amount after identifying the consumption

^{*} Please do not use oil that may affect synthetic resin which is the material of Linear Motion guide units.

Table 18. Lubricants used for Linear Motion guide

Application	Main use	Product name	Manufacturer	Temp. in use (°C)	Base oil	Type of thickener
Common use (etreme-pressure additive incl.) Industrial machine, machine tool		BW EP NO.2	BWC	-20 ~ +105	Mineral oil	Lithium
Common use	Machine tool, electric spark machine, industrial robots, etc.	GADUS S2 V220 00	SHELL	-30 ~ +110	Mineral oil	Lithium
Clean & low dust raise	Semiconductor, FPD equipment	SNG 5050 DEMNUM	NTG DAIKIN	-40 ~ +1200 -50 ~ +300	Syn- thetic oil	Urea
Eco-friendly	Semiconductor AMOLED process equipment, driving gear in vacuum chamber	FOMBLIN Krytox High vacuum grease	AUSIMONT DuPont Dow Corning	-20 ~ +250	Syn- thetic oil	Ethylene fluorinated
Machine tool	Excellent in preventing rust and oil film strength Suitable for machine tools because it is hardly emulsified to clearance	VACTRA No.2 SLC DTE Oil	Exxon Mobil	-20 ~ +100	Oil	Way oil Turbine oil
Specialuse	Corrosion proofing	6459 Grease	SHELL	-20 ~ +100	Mineral oil	Polyurethane

8 Surface Treatment

1. Surface Treatment

WON ST uses the following methods for the optimal treatment of surfaces of Linear Motion guide in order to prevent rust and enhance appearance.

2. Types of Surface Treatment

1) Electrolytic rust-preventive black coating (black Cr plating)

This is an industrial black chrome coating which is used to improve the corrosion resistance at low cost. It can achieve better corrosion resistance than martensite stainless steel and be used to enhance appearance and prevent the reflection of light.

2) Industrial hard Cr plating

The film's hardness is over 850HV so its wear resistance is excellent and the corrosion resistance is comparable with that of martensite stainless steel.

WON ST offers surface treatments such as alkakine coloring or color alumite treatment if a customer requests. If you want use Linear Motion Guide by treating its surface, you have to set the safety factor high.

3) Fluoride low-temperature Cr plating

It is also called "Raydent." This is a combined surface treatment of black Cr coating with special fluoride resin coating which is used in where corrosion resistance or low dust raise is needed - for instance clean room.

9 Dust Proof

1. Dust Proof

To make use of the characteristics and performance of Linear Motion guide, it is important to protect the unit from external foreign substances which are likely to cause abnormal wear or shorten life. If dust or foreign substance is expected to be mixed in, it is required to use the effective sealing or dust-proofing system.

2. Types of Dust Proof

WON Linear Motion guide is basically equipped with seal but if a customer request, a metal scraper can be additionally mounted on the unit before shipment.

1) Exclusive seal

The block is equipped with end seals, side seals and inner seals to protect the bearing from foreign substances.

Metal scraper

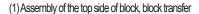
A metal scraper is installed outside the end seals and effective in preventing foreign substances such as hot spatter or slag created during a welding process from entering into the unit.

10 Measure to Use in Special Environment

WON Linear Motion guide is useful in various special applications if being used in accordance with service conditions including material, surface treatment, dust proof, grease, etc.

Table 19.

Application	Conditions of use		Countermeasure
Clean	If used in a clean environ-	Lubricant	• For use in a clean environment • Use low dust raise grease
(clean room) - Semiconductor, FPD, medical equipment -	ment, dust or particles gen- erated in Linear Motion guide should be minimized.	Rust prevention	Black Cr coating Fluoride low-temperature colorimetric Cr plating (Raydent treatment) Use high-corrosion resistant stainless steel as material
Vacuum	If used in a vacuum environment, out gas discharged from Linear Motion guide	Lubricant	Use grease for a vacuum environment
- Semiconductor, FPD deposition equipment –	should be tightly controlled to maintain the vacuum status. • Great rust prevention is required since rust-prone parts cannot be used in this environment.	Rust prevention (Out Gas)	 Use high-corrosion resistant stainless steel as material Use a self oiling agent using special coatings such as fluoroplastic coating Use ceramic as material
	• If used in higher temperature than general environment, the	Lubricant	Use grease for high-temperat- ure environments
High- temperature environment	material's heat resistance is important and plastic synthetic resin used for parts should be replaced with metal.	Material	Use an end seal, side seal + double seal Use a double seal Use a special seal for high temperature
	• If used in an environment	Seal	 Use a plastic synthetic resin cap Use a metal cap Use a metal scraper
Dust	filled with cutting chips, wood dust, and dust, it is required to develop a measure to protect the block from foreign	Сар	Use a plastic synthetic resin capUse a metal capUse a seal plate
	substances.	Holding door	Use an exclusive holding door Use an sealing all-in-one holding oor
	If exposed to a spot welding	Spatter	Fluoride black Cr coating
Spatter	or arc welding environment, hot spatters may be fixed	Seal	Use a metal scraper
	onto the	Dust proof	Use a metal cap Use a seal plate



11 Placement and Installation

1 Placement and Structure

To place Linear Motion guide in the equipment, first identify the overall structure of the equipment, then check the size of the base and a transfer table and consider load applied according to mounting directions such as placing vertically, in slope, or in the back as well as required life to make sure Linear Motion guide is optimally installed.

Placement of Linear Motion guide (example)

(3) Assembly of the flank of block, block transfer

(5) Assembly of the wall side of block, rail transfer

(6) Assembly of the wall side of block, block transfer

(2) Assembly of the back side of block, rail transfer

(4) Assembly of the flank of block, rail transfer

(7) Symmetrical assembly of the top and bottom of block, rail transfer

(8) Symmetrical assembly of the top and bottom of block, block transfer

2. Mounting and Fixation

In the structure that vibration or impact is applied or where combined load or moment load is applied, Linear Motion guide should be fixed in a different way from a general method.

As a widely used method, push a pressure plate from the flank after slightly protruding the block and rail of LM unit.

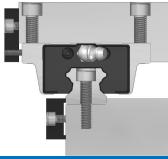


Figure 8. Pushing a pressure plate from the flank

Need to use miniature bolts due to space constraint when pushing the rail and useful if having many bolts for pushing.

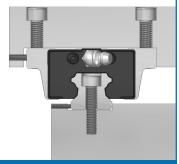


Figure 10. Pushing a bolt from the flank

Fasten a tapered fixture with a bolt. Even slight bolting up generates big force in a horizontal direction. If it is bolted up too much, deformation may occur in rail, for instance, which needs to be taken a caution.

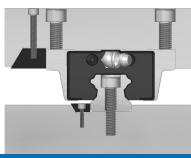
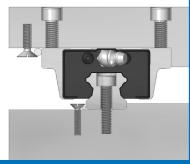
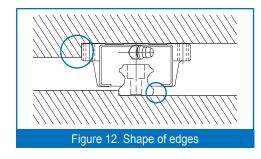


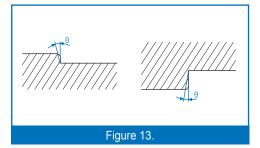
Figure 9. Pushing a tapered plate

Push a needle roller with the head of a countersunk screw using a roller of the bed. You must be careful to push it to fit the screw.




Figure 11. Pushing a roller

3. Design of mounting surface during installation

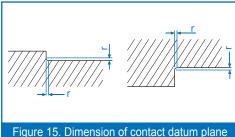

Design and management of mounting surface

The precision of mounting surface of Linear Motion guide and the error in installation generate unexpected load and stress to the unit, therefore it is required to take caution to prevent the harmful effects on the unit's travel and life.

Management of vertical angle of datum plane for installation


If the vertical angle of the installation surface and of a rail or a block is inaccurate, it cannot be assembled precisely. So you need to review the vertical angel and error during design.

Management of datum plane for assembly


It is important to manage the height and thickness of datum plane during design.

If the height is too high or low, a rail or a block cannot be assembled precisely due to its surface attachment. Or the application of eccentric load, horizontal load and moment load may loosen the strength of joint and result infaulty assembly which will be unable to meet the precision requirements. So attention must be paid

Management of the shape of contact corner

If the right-angled corner of a rail or a block installed to the mounting surface of Linear Motion guide is processed in R-shape and R value is bigger than the dimension of the surface of the rail or the block, it may not be assembled precisely to the datum plane. So attention must be paid.

Management of dimensional tolerance between datum plane and bolt during design

If the dimensional tolerance from the contact datum plane to the mounting hole of a rail or a block of Linear Motion guide is too big, precise assembly is impossible so attention must be paid.

Generally the dimensional tolerance is ±0.1mm.

If the distance tolerance from the assembly datum plane to the assembly bolt roll of a rail and a block is too wide or narrow, precise assembly is impossible. So the tolerance must be W3±0.1mm during design.

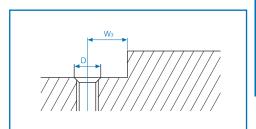
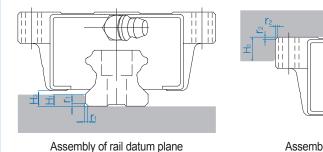



Figure 16. Dimensional tolerance between contact datum plane and mounting hole

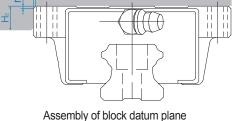


Figure 17. Height of the raised spot of mounting surface and radius of corner R

- Make a datum plane which can contact the flank in order to secure convenience in assembly of and precision positioning of a rail and a block during the installation of Linear Motion guide.
- The height of the raised spot of contact datum plane or the radius of corner may vary depending on the specifications of Linear Motion guide so please see the table below.
- To prevent deformation of the raised spot by pressing force from above or pushing force from side, sufficient thickness must be secured during design.

H Series, H-S Series, HS-S Series

Unit: mm

Model No.	Radius of comer of the installation to rail r ₁ (max.)	Radius of comer of the installation to block r2(max.)	Height of raised spot of the installation to rail H ₁	Height of raised spot of the installation to block H ₂	Нз
15	0.5	0.5	3	4	4.7
20	0.5	0.5	3.5	5	6
25	1	1	5	5	7
30	1	1	5	5	7.5
35	1	1	6	6	9
45	1	1	8	8	10
55	1.5	1.5	10	10	13

A

HW Series Unit: mm

Model No.	Radius of comer of the installation to rail r ₁ (max.)	Radius of comer of the installation to block r2(max.)		Height of raised spot of the installation to block H ₂	Нз
17	0.4	0.4	2	4	2.5
21	0.4	0.4	2.5	5	3.3
27	0.4	0.4	2.5	5	3.5
35	0.8	0.8	3.5	5	4

S Series, S-S Series

Unit: mm

Model No.			Height of raised spot of the installation to rail H ₁	Height of raised spot of the installation to block H ₂	Нз
15	0.5	0.1	2.5	4	4.5
20	0.5	1	4	5	6
25	1	1	5	5	7

M Series, MB Series

Unit: mm

Model No.	Radius of corner of the installation to rail r1(max.)	Radius of comer of the installation to block r2(max.)	Height of raised spot of the installation to rail H ₁	Height of raised spot of the installation to block H ₂	Нз
5	0.2	0.2	0.8	2	1
7	0.2	0.2	1.2	2.5	1.5
9	0.2	0.2	1.5	3	2
12	0.2	0.2	2.5	4	3
13	0.2	0.2	3	4.5	4
15	0.2	0.2	3	4.5	4
20	0.2	0.2	4	5	5

R Series

Unit : mm

Model No.	Radius of corner of the installation to rail r ₁ (max.)	Radius of comer of the installation to block r2(max.)	Height of raised spot of the installation to rail H ₁		Нз
35	1	1	5	6	6.5
45	1.5	1.5	6	8	8
55	1.5	1.5	8	10	10

4. Error tolerance of mounting surface during installation

1) Auto-adjusting and error-absorbing abilities

Linear Motion guide has an excellent auto-adjusting ability so that even though the structure to be assembled to a rail is slightly deformed or processing error may occur, the straightness or parallelism of a table after assembly will be better than the precision in processing before assembly and the quite straight-line running is available.

2) Error tolerance of the degree of parallelization when using 2-axis assembly (P_1) The error in the degree of parallelization when using a 2-axis assembly is as shown below.

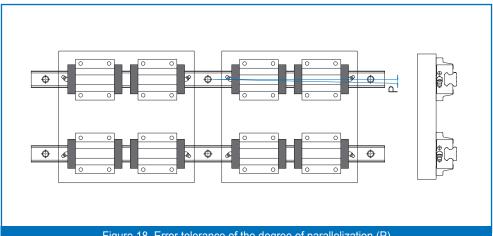


Figure 18. Error tolerance of the degree of parallelization (P)

H Series, H-S Series, HS-S Series

Unit: µm

Model No.	Common clearance	G ₁ clearance	G ₂ clearance
15	25	18	-
20	25	20	18
25	30	22	20
30	40	30	27
35	50	35	30
45	60	40	35
55	70	50	45

HW Series

Model No.	Common clearance	G ₁ clearance	G ₂ clearance
17	20	15	-
21	25	18	-
27	30	20	-
35	30	22	20

S Series, S-S Series

Unit: µm

Unit: µm

Model No.	Common clearance	G ₁ clearance	G2 clearance
15	25	18	-
20	25	20	18
25	30	22	20

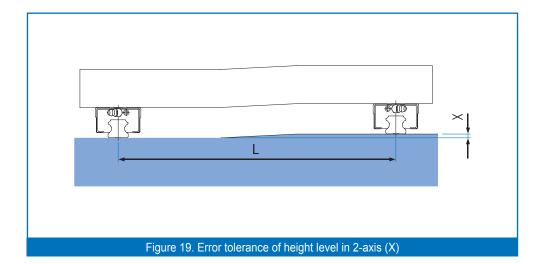
M Series, MB Series

Unit : μm

Model No.	Common clearance	G ₁ clearance
5	2	-
7	3	-
9	4	3
12	9	5
13	10	6
15	10	6
20	13	8

R Series

Unit: µm


Model No.	Common clearance	G ₁ clearance	G ₂ clearance
35	14	10	7
45	17	13	9
55	21	14	11

3) Error tolerance of height during 2-axis assembly (P2)

If the error in height is too big, the block may be distorted and its rigidity may be affected as the raceway groove of the block and the contact angle of a ball or a roller which is the rolling element are altered.

The error tolerance of height level in using 2-axis Linear Motion guides is as follows.

H Series, H-S Series, S Series, S-S Series, HS-S Series

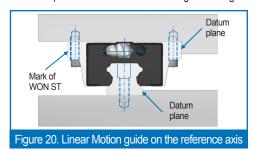
Unit: µm

Model No.	Common clearance	G ₁ clearance	G ₂ clearance
15	0.26L	0.17L	-
20	0.26L	0.17L	0.10L
25	0.26L	0.17L	0.14L
30	0.34L	0.22L	0.18L
35	0.42L	0.30L	0.24L
45	0.50L	0.34L	0.28L
55	0.60L	0.42L	0.34L

HW Series Unit: µm

Model No.	Common clearance	G ₁ clearance	G ₂ clearance
17	0.13L	0.04L	-
21	0.26L	0.17L	-
27	0.26L	0.17L	-
35	0.26L	0.17L	0.14L

M Series, MB Series Unit: µm

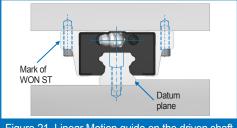

Model No.	Common clearance	G ₁ clearance
5	0.04L	-
7	0.05L	-
9	0.07L	0.01L
12	0.10L	0.02L
13	0.12L	0.04L
15	0.12L	0.04L
20	0.14L	0.06L

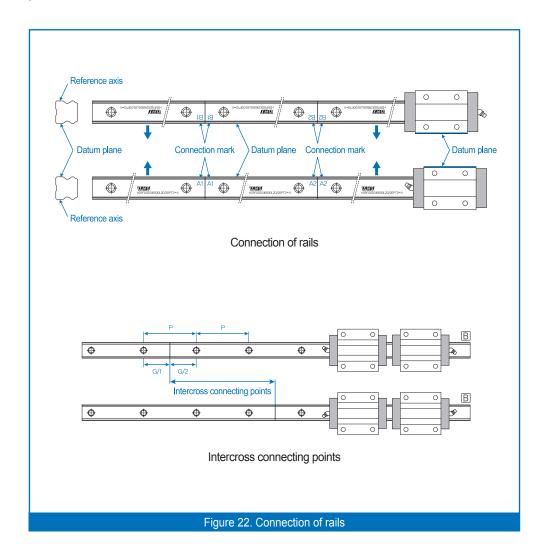
R Series Unit: µm

Model No.	Common clearance	G ₁ clearance	G ₂ clearance
35, 45, 55	0.22L	0.17L	0.12L

5. Marking of datum plane during installation

The datum plane of WON ST's Linear Motion guide is the ground surface on the opposite side of WON mark shown in the block.

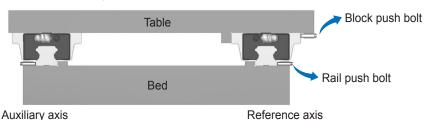



Figure 21. Linear Motion guide on the driven shaft

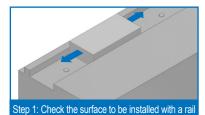
6. Connection of rails

If you need a longer rail than the one supplied, you can connect rails for the purpose of use. The mark on the rail indicates the point where rails should be linked.

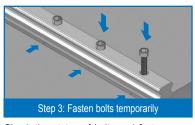
If the block passes through the connecting points simultaneously, they may affect the unit's travel and cause a delicate hitch. To solve this problem, it is recommended to make sure the connecting points intercrossed

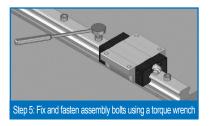


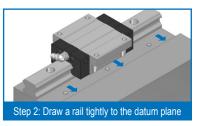
Linear Motion Guide



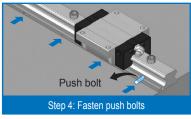
7. Installation of Linear Motion Guide


1. Installation of Linear Motion guide in the equipment exposed to vibration and impact


1) Install a rail



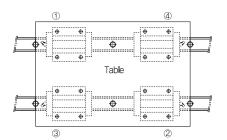
Prior to installation, thoroughly remove burr, dust, rust preventive oil, etc.



Check the status of bolts and fasten every bolt temporarily

Gently place Linear Motion guideon the bed and push it in the opposite direction of the bed's datum plane

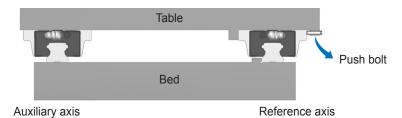
Fix push bolts to make sure that the rail is parallel with the datum plane of the bed.


• Step 5:

Fasten all bolts using the recommended torque. Fasten the bolt in the center first and then continue fastening each bolt toward both ends in order to maintain the precision of rail during assembly.

• Step 6: Assemble an auxiliary axis Repeat the procedure above for the installation of an auxiliary axis.

2) Install a block

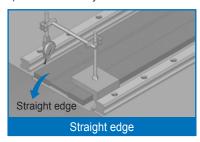


- -Step 1: Assembly bolts temporarily
 Place a table on the block and fasten all bolts temporarily
- Step 2: Fasten bolts tightly
 Fix the main rail block to the opposite side of the table's datum plane using a push bolt

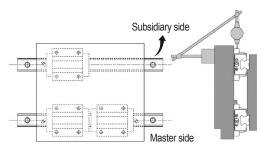
and adjust the position of the table.

- Step 3: Fix and fasten assembly bolts Completely fasten all bolts on the datum plane and subsidiary side in the order of 1 to 2.

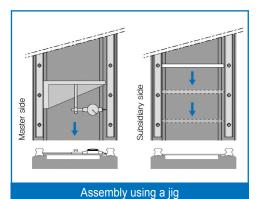
2. Installation of Linear Motion guide without a push bolt



1) Install a master rail


Fasten bolts temporarily and push a master rail toward the datum plane using a C-vise. Fasten the bolts according to the prescribed torque and order.

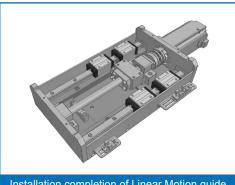
2) Install an auxiliary rail



Place a straight edge between two rails and make sure it is parallel with the master rail that is fixed temporarily.

Check the degree of parallelism with the dial gauge and adjust the rail if needed. Then, fasten bolts in order.

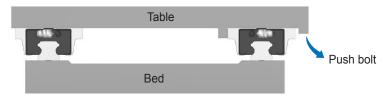
Master side Subsidiary side


Move the position of a block in every bolt pitch at the end of the rail in consecutive order and fasten bolts in order by adjusting the degree of parallelism between the datum plane of a reference rail and that of an auxiliary rail using a special jig.

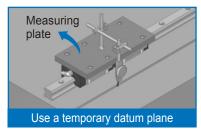
- Assembly using a table

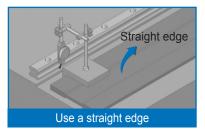
- 1. Fix two blocks on the datum plane and one block on the subsidiary side to a table.
- 2. Fix another auxiliary block and rail to the table and bed temporarily.
- 3. Place a dial gauge on the table and make sure a prober of the gauge contact the subsidiary side of the block.
- 4. Separate the table from the end of the rail and check the degree of parallelization of the block with the auxiliary rail.
- 5. Fasten bolts in order.

- Assembly using a rail on the datum plane


- 1. Fix two blocks on the datum plane and one block on the subsidiary side to a table.
- 2. Fix another auxiliary block and rail to the table and bed temporarily.
- 3. Separate the table from one rail and make an adjustment by considering the rolling resistance during the movement and checking the degree of parallelization of the auxiliary rail.
- 4. Fasten bolts in order.

Installation completion of Linear Motion guide

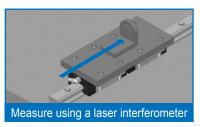

3. Installation of Linear Motion guide without the datum plane for a reference rail

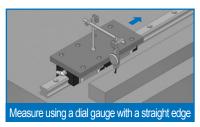

Subsidiary side

Datum plane

1) Install a reference rail

Fix two blocks together onto the measuring plate and install the temporary datum plane near the surface where a rail is to be installed on the bed. Then check and adjust the degree of parallelism of the rail and fasten bolts in order.


Fix a rail to the bed temporarily and adjust it to be straight using a dial gauge and then fasten bolts in order.


2) Apply the same method when installing the auxiliary block and rail

4. Measure precision after installation

You can check the precision of travel by fixing two blocks onto the measuring plate. Use a dial gauge with a straight edge or a laser interferometer to measure the precision.

In case of using a dial gauge, you have to place the straight edge as close to the block as possible in order to accurately measure it.

8. Torque used to fasten bolts during the assembly of Linear Motion guide

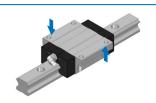
1) Select the optimal torque for bolts

For the assembly of the rail of Linear Motion guide, the optimal clamping torque must be used depending on the materials of mounting surface or bolts. Inaccurate clamping torque may affect the mounting precision of the rail so please use a torque wrench.

Unit: N•m

Linit · Nem

2) Recommended torques by the material of mounting base of Linear Motion guide


Torque value (Unit : N·m) Bolt specification Steel Aluminum Casting 2 1.3 1 M3 2.7 M4 4 2 M5 8.8 5.9 4.4 M6 13.7 9.2 6.8 M8 30 20 15 45 M10 68 33 M12 120 78 58 M14 157 105 78 196 M16 131 98 M20 382 255 191

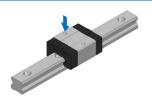
3) Recommended torques by the material of bolts

-,	10.4000 27 11.0 11.0		Oliit . Nalii				
Bolt	Clampin	g torque	Bolt	Clampin	g torque		
specification	Carbon steel bolt	SCM steel bolt	specification	Carbon steel bolt	SCM steel bolt		
M2.3	-	0.4	M12	108	76		
M2.5	-	0.6	M14	172	122		
M3	1.7	1.1	M16	263	196		
M4	4.0	2.5	M18	-	265		
M5	7.9	5.1	M20	512	-		
M6	13.3	8.6	M22	-	520		
M8	32.0	22.0	M24	882	-		
M10	62.7	43.0	M30	1750	-		

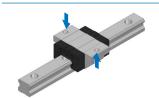
9. Directions of bolt fastening by Linear Motion guide type

H-F, H-FL, H-SF, H-SFL

Since the flange of a block is tapped and the counter bore is processed in the bottom, bolts can be assembled both from bottom to top and from top to bottom as indicated by arrows.


But, if bolts are fastened from bottom to top, it is recommended to

use one size smaller bolts.


H-R, H-RL, H-SR, H-SRL

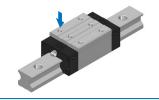
Since tap is processed in the square body of the block, it is used when bolts are fastened from top to bottom as indicated by arrows.

S-C, S-R, S-SC, S-SR

Since tap is processed in the rectangular body of the block, it is used when bolts are fastened from top to bottom as indicated by arrows.

S-CF, S-F, S-SCF, S-SF

Since the flange of a block is tapped and the counter bore is processed in the bottom, bolts can be assembled both from bottom to top and from top to bottom as indicated by arrows.


But, if bolts are fastened from bottom to top, it is recommended to use one size smaller bolts.

R-F, R-FL

Since the flange of a block is tapped and the counter bore is processed in the bottom, bolts can be assembled both from bottom to top and from top to bottom as indicated by arrows.

But, if bolts are fastened from bottom to top, it is recommended to use one size smaller bolts.

R-R, R-RL

Since the rectangular body of a block is tapped, it is used when bolts are fastened from top to bottom as indicated by arrows

12 Types of Linear Motion Guide

1. Linear Motion Guide H Series

1) Structure of H Series

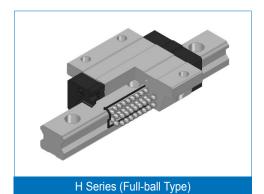
WON Linear Motion Guide H Series has a four-row circular arc-groove structure in the raceway groove of a rail or a block and is a 4-direction equal load type which can bear equal load rating for vertical compression load, tensile load, and horizontal load as the rolling element is combined with balls at 45 degree, which reduces friction resistance to ensure smooth motion and long life.

Also if the ball is preloaded, it can enhance the rigidity of Linear Motion guide and minimize Linear Motion guide's displacement for external load.

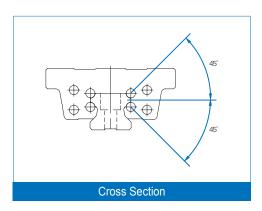
- 2) Features of H Series
- a. High quality and very effective in realizing high precision and elimination of labor
- b. High rigidity and high precision which can realize the stable travel for a longtime
- c. Great wear resistance and friction resistance which ensures a long life
- d. Great auto-adjusting and error-absorbing abilities with the face-to-face duplex structure same to D/F combination of ball bearing
- e. Various specifications for easy design
- f. Easy to use due to great compatibility between a rail and a block

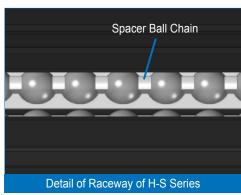
2. Spacer Chain Guide H-S Series

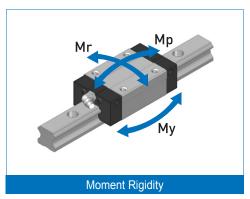
1) Structure of H-S Series

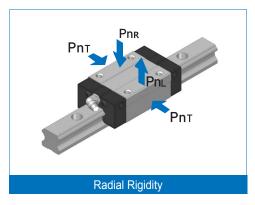

Linear Motion Guide H-S Series has a 4-direction equal load type which is identical to H Series and has an auto-adjusting face-to-face D/F structure. It uses balls as a rolling element and combines a spacer between balls to prevent them from colliding each other during the rolling motion. Therefore it makes less noise and more stable circulating motion than a full-ball type to realize quiet running and the spacer act as the pocket of lubricant to obtain longer life than H Series.

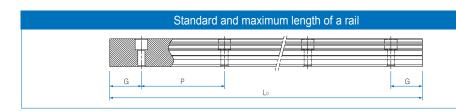
2) Features of H-S Series


- a. As a spacer-incorporated type which improves frictional properties and prevents the collision of balls, it not only allows stable circulating motion and smooth running but also reduces noise. If special lubric ating seal is attached to lengthen life, maintenance-free operations can be achieved.
- b. Collision between balls and the loss of oil film are prevented by applying a resin spacer to improve life and generate less particles and dust.
- c. High quality in realizing high precision and high velocity so it could create large effect on elimination of power loss.
- d. High rigidity and high precision which can realize the stable travel for a long time
- e. Great wear resistance and friction resistance which ensures a long life
- f. Great auto-adjusting and error-absorbing abilities with the face-to-face duplex structure same to D/F combination of ball bearing
- g. Various specifications for easy design
- h. Easy to use due to great compatibility between a rail and a block

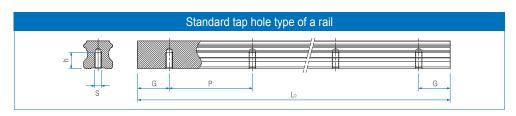



Linear Motion Guide



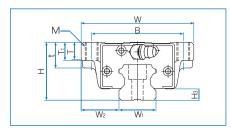


Types and Features


Types and	reatures	<u> </u>		
Category	Туре		Shape & Features	
Flange type	H-F H-SF		- With the tapped flange of a block, a general type which can be assembled both from bottom to top and from top to bottom - A4-direction equal load type with high rigidity and high load S Series is a low-noise low-dust raise type with improved life due to zero friction between balls since a spacer retainer is applied.	Machine tool X, Y, Z axis, CNC machining center, CNC shelf, CNC tapping
	H-FL H-SFL		- Having the cross section identical to that of H-F Series, it increased load rating by extending the whole length (L1) of Linear Motion guide block - A4-direction equal load type with high rigidity and high load S Series is a low-noise low-dust raise type with improved life due to zero friction between balls since a spacer retainer is applied.	center, Electric injection machine, 3D engraving machine, laser processer, milling machine, welder for exclusive use.
Compact	H-R H-SR		- With the tapped top side of a block, a compact type that the width of Linear Motion guide block is minimized - A4-direction equal load type with high rigidity and high load S Series is a low-noise low-dust raise type with improved life due to zero friction between balls since a spacer retainer is applied.	EDM electric spark machine, automation device, Various transport system, FPD inspection equipment,
type	H-RL H-SRL		- Having the cross section identical to that of H-R Series, it increased load rating by extending the whole length (L1) of Linear Motion guide block - A 4-direction equal load type with high rigidity and high load S Series is a low-noise low-dust raise type with improved life due to zero friction between balls since a spacer retainer is applied.	Industrial robots, ATC, Precision X-Y table, Various industrial machine

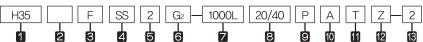
Unit: mm

Model No.	H15	H20	H25	H30	H35	H45	H55
	160	160	220	280	440	570	780
	220	220	280	360	520	675	900
	280	280	340	440	600	780	1020
	i	340	400	520	680	885	:
Standard	1360	:	460	600	760	i	2820
length	1480	1960	i i	:	i	2880	2940
	1600	2080	2200	2520	2680	2985	3060
		2200	2320	2680	2840	3090	
			2440	2840	3000		
				3000			
Standard pitch P	60	60	60	80	80	105	120
G	20	20	20	20	20	22.5	30
Max. length				4000			



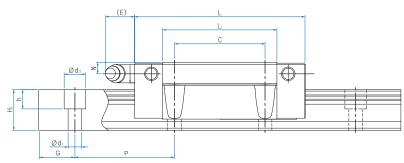
Model No.	S	h(mm)
H15	M5	8
H20	M6	10
H25	M6	12
H30	M8	15
H35	M8	17
H45	M12	24
H55	M14	24

A


H-F Series, H-FL Series

Model	Extern	al dime	nsions				Dime	ensic	ns of	block	(
No.	Height H	Width W	Length L	В	С	M	L ₁	t	Т	T ₁	N	Е	Grease nipple	Нз
H 15F	24	47	57	38	30	M5	40.8	-	7	11	6	6	A-M4	4.7
H 15FL	24	47	65.3	38	30	M5	49.1	-	7	11	6	6	A-M4	4 <u>.</u> 7
H 20F	30	63	72 <u>.</u> 7	53	40	M6	53.1	-	9 <u>.</u> 2	10	7 <u>.</u> 5	12	B-M6F	6
H 20FL	30	63	88.6	53	40	M6	69	-	9 <u>.</u> 2	10	7 <u>.</u> 5	12	B-M6F	6
H 25F	36	70	83	57	45	M8	58.3	-	11.5	16	9	12	B-M6F	7
H 25FL	36	70	102.9	57	45	M8	78 <u>.</u> 2	-	11 <u>.</u> 5	16	9	12	B-M6F	7
H 30F	42	90	97.8	72	52	M10	70.8	-	9.5	18	7 <u>.</u> 3	12	B-M6F	7 <u>.</u> 5
H 30FL	42	90	120	72	52	M10	93	-	9.5	18	7 . 3	12	B-M6F	7 <u>.</u> 5
H 35F	48	100	110	82	62	M10	80.8	-	12.5	21	8	12	B-M6F	9
H 35FL	48	100	135.4	82	62	M10	106.2	-	12.5	21	8	12	B-M6F	9
H 45F	60	120	139	100	80	M12	101.9	25	13	15	10	16	B-PT1/8	10
H 45FL	60	120	170.8	100	80	M12	133.7	25	13	15	10	16	B-PT1/8	10
H 55F	70	140	163	116	95	M14	117.5	29	19	17	11	16	B-PT1/8	13
H 55FL	70	140	201.1	116	95	M14	155.6	29	19	17	11	16	B-PT1/8	13

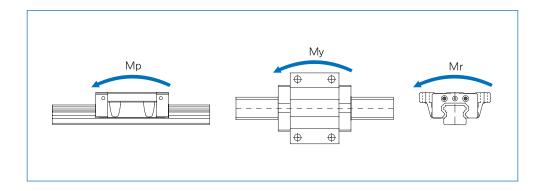
Composition of Model No.



- 1 Model No. of Linear Motion Guide
- Type of block: No symbol-Full-ball type / S-Spacer Chain type
- Form of block: R-Rectangular standard type / RL-Rectangular long type / F-Flange standard type / FL-Flange long type
- Type of seal: UU-End seal / SS-End seal + Inside seal / ZZ-End seal + Inside seal + metal scraper

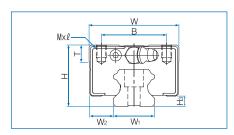
UULF-End seal + LF seal / SSLF- End seal + Inside seal + LF seal / ZZLF - End seal + Inside seal + metal scraper + LF seal (*1)

- Number of blocks combined in 1 rail
- Symbol of clearance: No symbol-Normal preload / G1-Light preload / G2-Heavy preload / Gs-Special preload (*2)
- Length of rail
- Size of G value: standard G value has no symbol.
- Symbol of precision: No symbol–Moderate precision / H-High precision / P-Precision / SP-Super Precision / UP-Ultra Precision (*3)
- No symbol-Rail counter bore type (A topside assembly) / A- Rail tap hole type (an underside assembly) (*4)
- 11 Connection symbol
- Special symbol
- (*1) See P97 Symbol List of Optional Parts (*2) See P17 Radial Clearance
- Number of axis used on the same surface (*3) See P24 Selection of Precision Class (*4) See P49 Standard tap hole type of a rail

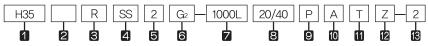


Unit: mm

		Dime	nsions	s of R	tail	Basic loa	Basic load rating Static allowance moment kN·m						Mass	
Width		Heigh	Value	Pitch		С	Со	Мр		My		Mr	Block	Rail
W ₁ ±0.05	W2	H ₁	G		d1 x d2 x h	kN	kN		2(contact)		2(contact)		kg	kg/m
15	16	13	20	60	45X75X53	12.6	16.2	0,115	0.552	0.115	0.552	0.129	0 <u>.</u> 19	1.3
15	16	13	20	60	45X75X53	14.3	19.3	0.165	0.769	0.165	0.769	0.154	0.24	1.3
20	21.5	16.5	20	60	6X9.5X8.5	18.3	23 <u>.</u> 9	0.221	1.049	0.221	1.049	0.251	0 <u>.</u> 41	2.2
20	21.5	16.5	20	60	6X95X85	21.8	30.7	0.370	1.692	0.370	1.692	0 <u>.</u> 322	0.54	2 <u>.</u> 2
23	23.5	20	20	60	7X11X9	27.0	33.1	0.337	1 <u>.</u> 636	0.337	1.636	0.398	0.61	3.0
23	23.5	20	20	60	7X11X9	32.8	43.6	0.596	2.760	0.596	2,760	0.525	0.82	3.0
28	31	26	20	80	9X14X12	50.4	57.1	0.711	3.384	0.711	3.384	0.828	1.1	4.85
28	31	26	20	80	9X14X12	60.3	73 <u>.</u> 6	1,203	5,506	1,203	5,506	1,067	1.3	4.85
34	33	29	20	80	9X14X12	67.0	74 <u>.</u> 6	1.062	5.012	1.062	5.012	1,298	1.6	6 <u>.</u> 58
34	33	29	20	80	9X14X12	80.2	96.2	1.797	8.172	1.797	8,172	1.674	2.01	6.58
45	37.5	38	22 <u>.</u> 5	105	14X20X17	108.5	116.4	2.860	9.912	2.860	9.912	2.275	2.83	11.03
45	37.5	38	22 <u>.</u> 5	105	14X20X17	129.7	150.1	4.533	16.161	4.533	16.161	2.935	3,70	11.03
53	43.5	44	30	120	16X23X20	155.9	161.5	4.654	16.016	4.654	16.016	3.779	4.36	15 <u>.</u> 26
53	43.5	44	30	120	16X23X20	187.5	210.1	7.468	26.493	7.468	26,493	4.916	5.76	15.26

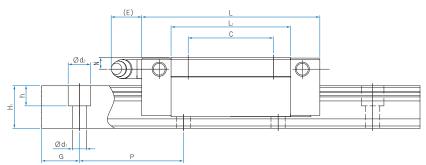

1N≒0<u>.</u>102kgf

A


H-R Series, H-RL Series

Model	Extern	al dime	nsions			Dime	ensions	of bloc	k			
No.	Height H	Width W	Length L	В	С	Μxℓ	L ₁	Т	N	Е	Grease nipple	Нз
H 15R	28	34	57	26	26	M4 x 5	40 <u>.</u> 8	6	10	6	A-M4	4.7
H 15RL	28	34	65 <u>.</u> 3	26	26	M4 x 5	49 <u>.</u> 1	6	10	6	A-M4	4.7
H 20R	30	44	72.7	32	36	M5 x 6	53.1	8	7 <u>.</u> 5	12	B-M6F	6
H 20RL	30	44	88.6	32	50	M5 x 6	69	8	7 <u>.</u> 5	12	B-M6F	6
H 25R	40	48	83	35	35	M6 x 8	58 <u>.</u> 3	8	13	12	B-M6F	7
H 25RL	40	48	102.9	35	50	M6 x 8	78 <u>.</u> 2	8	13	12	B-M6F	7
H 30R	45	60	97.8	40	40	M8 x 10	70 <u>.</u> 8	8	10.3	12	B-M6F	7 <u>.</u> 5
H 30RL	45	60	120	40	60	M8 x 10	93	8	10.3	12	B-M6F	7 <u>.</u> 5
H 35R	55	70	110	50	50	M8 x 12	80.8	10	15	12	B-M6F	9
H 35RL	55	70	135.4	50	72	M8 x 12	106.2	10	15	12	B-M6F	9
H 45R	70	86	139	60	60	M10 x 17	101.9	15	20	16	B-PT1/8	10
H 45RL	70	86	170.8	60	80	M10 x 17	133.7	15	20	16	B-PT1/8	10
H 55R	80	100	163	75	75	M12 x 18	117.5	18	21	16	B-PT1/8	13
H 55RL	80	100	201.1	75	95	M12 x 18	155 <u>.</u> 6	18	21	16	B-PT1/8	13

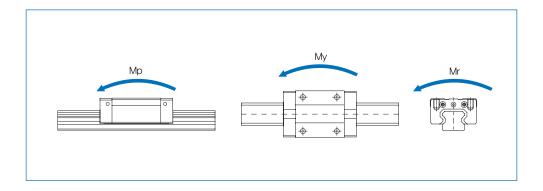
Composition of Model No.


- 1 Model No. of Linear Motion Guide
- Type of block: No symbol–Full-ball type / S–Spacer Chain type
- Form of block: R-Rectangular standard type / RL-Rectangular long type / F-Flange standard type / FL-Flange long type
- 4 Type of seal: UU-End seal / SS-End seal + Inside seal / ZZ-End seal + Inside seal + metal scraper

UULF-End seal + LF seal / SSLF- End seal + Inside seal + LF seal / ZZLF - End seal + Inside seal + metal scraper + LF seal (*1)

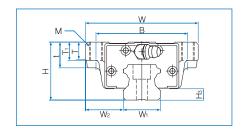
- Number of blocks combined in 1 rail
- Symbol of clearance: No symbol-Normal preload / G1-Light preload / G2-Heavy preload / Gs-Special preload (*2)
- Z Length of rail
- Size of G value: standard G value has no symbol.
- Symbol of precision: No symbol–Moderate precision / H-High precision / P-Precision / SP-Super Precision / UP-Ultra Precision (*3)
- No symbol-Rail counter bore type (A topside assembly) / A- Rail tap hole type (an underside assembly) (*4)
- 11 Connection symbol
- 12 Special symbol

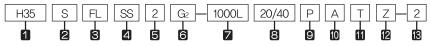
- (*1) See P97 Symbol List of Optional Parts (*2) See P17 Radial Clearance
- Number of axis used on the same surface
- (*3) See P24 Selection of Precision Class (*4) See P49 Standard tap hole type of a rail

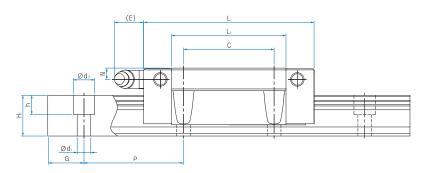


Unit: mm

	Dimensions of Rail					Basic load rating Static allowance moment kN·m					l∙m	Mass		
Width		Heigh	Value	Pitch	d1 x d2 x h	С	Со	Мр		Му		Mr	Block	Rai l kg/m
W ₁ ±0.05	W2	H ₁	G		U1 X U2 X II	kN	kN		2(contact)		2(contact)		kg	kg/m
15	9 <u>.</u> 5	13	20	60	45x75x53	12.6	16.2	0.115	0.552	0.115	0.552	0.129	0.18	1.3
15	9.5	13	20	60	45x75x53	14.3	19 <u>.</u> 3	0.165	0.769	0.165	0.769	0.154	0 <u>.</u> 23	1.3
20	12	16.5	20	60	6x95x85	18.3	23.9	0.221	1.049	0.221	1.049	0.251	0 <u>.</u> 31	2 <u>.</u> 2
20	12	16.5	20	60	6x9.5x8.5	21.8	30.7	0.370	1.692	0.370	1.692	0.322	0.41	2 <u>.</u> 2
23	12.5	20	20	60	7x11x9	27.0	33.1	0.337	1.636	0.337	1.636	0.398	0.53	3.0
23	12.5	20	20	60	7x11x9	32.8	43.6	0.596	2,760	0,596	2,760	0.525	0.71	3.0
28	16	26	20	80	9x14x12	50.4	57.1	0.711	3,384	0.711	3,384	0 <u>.</u> 828	0 <u>.</u> 9	4 <u>.</u> 85
28	16	26	20	80	9x14x12	60.3	73.6	1.203	5,506	1,203	5.506	1.067	1.1	4 <u>.</u> 85
34	18	29	20	80	9x14x12	67.0	74.6	1.062	5.012	1.062	5.012	1.298	1.5	6.58
34	18	29	20	80	9x14x12	80.2	96.2	1.797	8.172	1.797	8.172	1.674	2.01	6 <u>.</u> 58
45	20.5	38	22.5	105	14×20×17	108.5	116.4	2.860	9.912	2,860	9.912	2,275	2 <u>.</u> 89	11.03
45	20.5	38	22.5	105	14×20×17	129.7	150.1	4.533	16.161	4.533	16.161	2,935	3 <u>.</u> 74	11.03
53	23.5	44	30	120	16x23x20	155.9	161.5	4.654	16.016	4.654	16.016	3.779	4.28	15 <u>.</u> 26
53	23.5	44	30	120	16x23x20	187.5	210.1	7.468	26.493	7.468	26.493	4.916	5.59	15 <u>.</u> 26

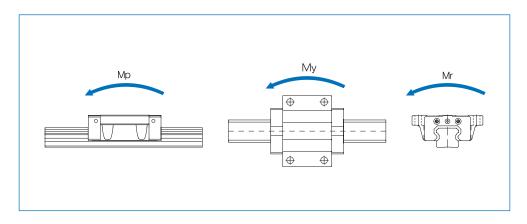

1N≒0<u>.</u>102kgf


H-SF Series, H-SFL Series


Model	Extern	al dime	nsions		Dimensions of block									
No.	Height H	Width W	Length L	В	С	M	L ₁			T ₁	N	Е	Grease nipple	Нз
H 15SF	24	47	57	38	30	M5	40.7	-	7	11	6	6	A-M4	4.7
H 15SFL	24	47	65.3	38	30	M5	49.1	-	7	11	6	6	A-M4	4.7
H 20SF	30	63	72.7	53	40	M6	53.1	-	9.2	10	7.5	12	B-M6F	6
H 20SFL	30	63	88.6	53	40	M6	69	-	9.2	10	7.5	12	B-M6F	6
H 25SF	36	70	83	57	45	M8	58.3	-	11.5	16	9	12	B-M6F	7
H 25SFL	36	70	102.9	57	45	M8	78.2	-	11.5	16	9	12	B-M6F	7
H 30SF	42	90	97.8	72	52	M10	70.8	-	9.5	18	7.3	12	B-M6F	7.5
H 30SFL	42	90	120	72	52	M10	93	-	9.5	18	7.3	12	B-M6F	7.5
H 35SF	48	100	110	82	62	M10	80.8	-	12.5	21	8	12	B-M6F	9
H 35SFL	48	100	135.4	82	62	M10	106.2	-	12.5	21	8	12	B-M6F	9
H 45SF	60	120	138.5	100	80	M12	106	25	13	18	10.5	13	B-PT1/8	10
H 45SFL	60	120	170.2	100	80	M12	137.8	25	13	18	10.5	13	B-PT1/8	13
H 55SF	70	140	171	116	95	M14	132.6	29	19	21	11	13	B-PT1/8	13
H 55SFL	70	140	210.6	116	95	M14	172.2	29	19	21	11	13	B-PT1/8	13

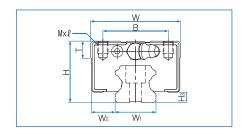
Composition of Model No.

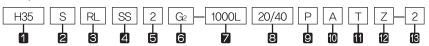
- 1 Model No. of Linear Motion Guide
- Type of block : No symbol–Full-ball type / S–Spacer Chain type
- Form of block: R-Rectangular standard type / RL-Rectangular long type / F-Flange standard type / FL-Flange long type
- Type of seal: UU-End seal / SS-End seal + Inside seal / ZZ-End seal + Inside seal + Metal scraper
 - UULF-End seal + LF seal / SSLF- End seal + Inside seal + LF seal / ZZLF End seal + Inside seal + Metal scraper + LF seal (*1)
- 5 Number of blocks combined in 1 rail
- Symbol of clearance: No symbol-Normal preload / G1-Light preload / G2-Heavy preload / G5-Special preload (*2)
- Z Length of rail
- Size of G value: standard G value has no symbol.
- Symbol of precision: No symbol–Moderate precision / H–High precision / P–Precision / SP–Super Precision / UP–Ultra Precision (*3)
- No symbol—Rail counter bore type (A topside assembly) / A— Rail tap hole type (an underside assembly) (*4)
- 11 Connection symbol
- 2 Special symbol (*1) See P97 Symbol List of Optional Parts (*2) See P17 Radial Clearance
- (*3) See P24 Selection of Precision Class (*4) See P49 Standard tap hole type of a rail

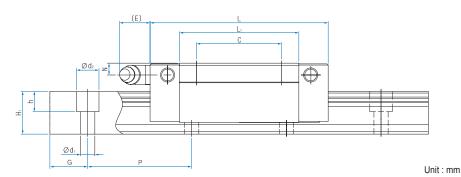


Unit : mm

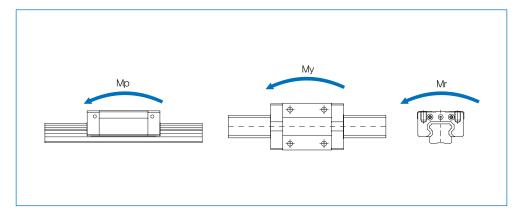
	[Dimer	sions	of R	ail	Basic loa	ad rating	Sta	atic allowar	nce morn	nent kN ·	m	Ma	ass
Width	W ₂	Heigh	Value	Pitch	ما برماء برام	С	Со	1	Ир	N	Лy	Mr	Block	Rail
W ₁ ±0.05	VV2	Hĭ	G	Р	d1 x d2 x h	kN	kN		2(Contact)		2(Contact)		kg	kg/m
15	16	13	20	60	4.5X7.5X5.3	12.1	16.2	0.115	0.552	0.115	0.552	0.129	0.19	1.3
15	16	13	20	60	4.5X7.5X5.3	13.7	19.3	0.165	0.769	0.165	0.769	0.154	0.24	1.3
20	21.5	16.5	20	60	6X9.5X8.5	17.6	23.9	0.221	1.049	0.221	1.049	0.251	0.41	2.2
20	21.5	16.5	20	60	6X9.5X8.5	21.1	30.7	0.370	1.692	0.370	1.692	0.322	0.54	2.2
23	23.5	20	20	60	7X11X9	25.8	33,1	0.337	1.636	0.337	1.636	0.398	0.61	3.0
23	23.5	20	20	60	7X11X9	31.7	43.6	0.596	2,760	0.596	2.760	0.525	0.82	3.0
28	31	26	20	80	9x14x12	48	57.1	0.711	3.384	0.711	3.384	0.828	1,1	4.85
28	31	26	20	80	9x14x12	58	73.6	1,203	5.506	1,203	5.506	1.067	1.3	4.85
34	33	29	20	80	9x14x12	63.7	74.6	1.062	5.012	1.062	5.012	1,298	1.6	6.58
34	33	29	20	80	9x14x12	77.1	96.2	1.797	8,172	1.797	8,172	1.674	2.01	6.58
45	37.5	32	22.5	105	14×20×17	82.9	95.5	1.789	8,251	1.789	8,251	1.992	3.15	9.75
45	37.5	32	22.5	105	14×20×17	99.7	122,5	2.984	13,341	2.984	13.341	2.556	4.07	9.75
53	43.5	38	30	120	16x23x20	133.5	149.2	3.495	16.007	3.495	16.007	3,608	5.30	13.75
53	43.5	38	30	120	16×23×20	160.4	191.4	5.826	25,899	5.826	25.899	4.627	6.84	13.75

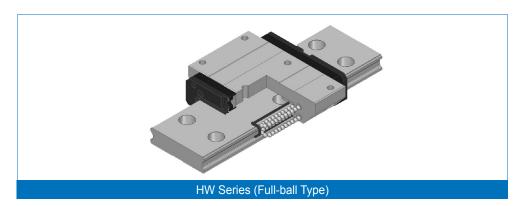

1N≒0.102kgf

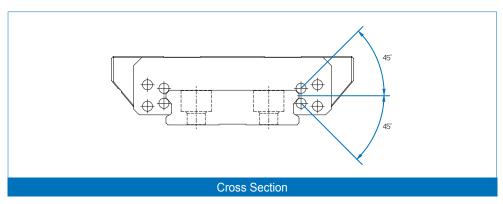

H-SR Series, H-SRL Series

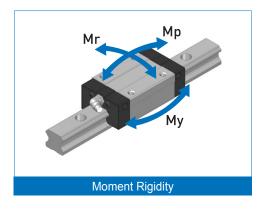

Model	Extern	al dimer	nsions	Dimensions of block								
No.	Height H	Width W	Length L	В	С	MXQ	Lı		N	Е	Grease nipple	Нз
H 15SR	28	34	57	26	26	M4 x 5	40.7	6	10	6	A-M4	4.7
H 15SRL	28	34	65.3	26	26	M4 × 5	49.1	6	10	6	A-M4	4.7
H 20SR	30	44	72.7	32	36	M5 x 6	53.1	8	7.5	12	B-M6F	6
H 20SRL	30	44	88.6	32	50	M5 x 6	69	8	7.5	12	B-M6F	6
H 25SR	40	48	83	35	35	M6 x 8	58.3	8	13	12	B-M6F	7
H 25SRL	40	48	102.9	35	50	M6 x 8	78.2	8	13	12	B-M6F	7
H 30SR	45	60	97.8	40	40	M8 x 10	70.8	8	10.3	12	B-M6F	7.5
H 30SRL	45	60	120	40	60	M8 x 10	93	8	10.3	12	B-M6F	7.5
H 35SR	55	70	110	50	50	M8 x 12	80.8	10	15	12	B-M6F	9
H 35SRL	55	70	135.4	50	72	M8 x 12	106.2	10	15	12	B-M6F	9
H 45SR	70	86	138.5	60	60	M10 × 17	106	15	20.5	13	B-PT1/8	10
H 45SRL	70	86	170.2	60	80	M10 x 17	137.8	15	20.5	13	B-PT1/8	10
H 55SR	80	100	171	75	75	M12 x 18	132.6	20	21	13	B-PT1/8	13
H 55SRL	80	100	210.6	75	95	M12 x 18	172.2	20	21	13	B-PT1/8	13

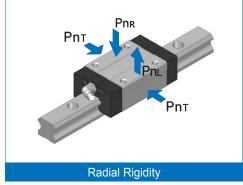
Composition of Model No.


- 1 Model No. of Linear Motion Guide
- Type of block : No symbol–Full-ball type / S–Spacer Chain type
- Form of block: R-Rectangular standard type / RL-Rectangular long type / F-Flange standard type / FL-Flange long type
- Type of seal: UU-End seal / SS-End seal + Inside seal / ZZ-End seal + Inside seal + Metal scraper
 - UULF-End seal + LF seal / SSLF- End seal + Inside seal + LF seal / ZZLF End seal + Inside seal + Metal scraper + LF seal (*1)
- 5 Number of blocks combined in 1 rail
- Symbol of clearance: No symbol-Normal preload / G1-Light preload / G2-Heavy preload / G5-Special preload (*2)
- Z Length of rail
- Size of G value: standard G value has no symbol.
- Symbol of precision: No symbol–Moderate precision / H–High precision / P–Precision / SP–Super Precision / UP–Ultra Precision (*3)
- No symbol-Rail counter bore type (A topside assembly) / A- Rail tap hole type (an underside assembly) (*4)
- 11 Connection symbol
- 2 Special symbol (*1) See P97 Symbol List of Optional Parts (*2) See P17 Radial Clearance
- (*3) See P24 Selection of Precision Class (*4) See P49 Standard tap hole type of a rail

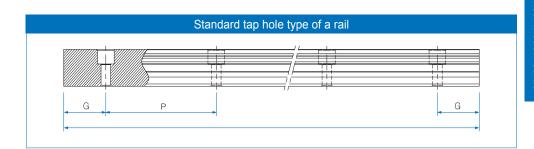

	[Dimen	sions	of R	ail	Basic loa	ad rating	Sta	atic allowar	nce morr	nent kN ·	m	Ma	ass
Width	W ₂	Heigh	Value	Pitch	d1 x d2 x h	С	Со	ı	Ир	1	Л у	Mr	Block	Rail
W ₁ ±0.05	VV2	Hi	G	Р	ui x uz x II	kN	kN		2(Contact)		2(Contact)		kg	kg/m
15	9.5	13	20	60	4.5X7.5X5.3	12.1	16.2	0.115	0.552	0.115	0.552	0.129	0.18	1.3
15	9.5	13	20	60	4.5X7.5X5.3	13.7	19.3	0.165	0.769	0.165	0.769	0.154	0.23	1.3
20	12	16.5	20	60	6X9.5X8.5	17.6	23.9	0.221	1.049	0.221	1.049	0.251	0.31	2.2
20	12	16.5	20	60	6X9.5X8.5	21,1	30.7	0.370	1.692	0.370	1,692	0.322	0.41	2.2
23	12.5	20	20	60	7X11X9	25.8	33.1	0.337	1.636	0.337	1,636	0.398	0.53	3.0
23	12.5	20	20	60	7X11X9	31.7	43.6	0.596	2.760	0.596	2.760	0.525	0.71	3.0
28	16	26	20	80	9x14x12	48	57.1	0.711	3.384	0.711	3.384	0.828	0.9	4.85
28	16	26	20	80	9x14x12	58	73.6	1,203	5.506	1,203	5.506	1.067	1.1	4.85
34	18	29	20	80	9x14x12	63.7	74.6	1.062	5.012	1.062	5.012	1,298	1.5	6.58
34	18	29	20	80	9x14x12	77.1	96.2	1.797	8.172	1.797	8.172	1.674	2.01	6.58
45	20.5	32	22.5	105	14x20x17	82.9	95.5	1.789	8.251	1.789	8.251	1,992	3.20	9.75
45	20.5	32	22.5	105	14x20x17	99.7	122.5	2.984	13.341	2.984	13.341	2.556	4.10	9.75
53	23.5	38	30	120	16×23×20	133.5	149.2	3.495	16.007	3.495	16.007	3.608	5.16	13.75
53	23.5	38	30	120	16×23×20	160.4	191.4	5.826	25,899	5.826	25.899	4.627	6.61	13.75

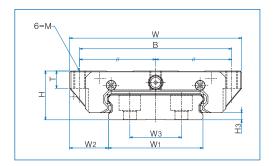

1N≒0.102kgf



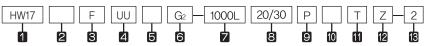


Wide Linear Motion Guide HW Series

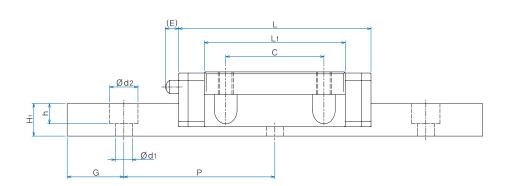



Unit: mm

Model No.	HW17	HW21	HW27	HW35
	110	130	160	280
	230	230	280	440
	350	380	340	680
Chandord	470	430	460	840
Standard length	550	580	520	1000
lengui	630	630	640	1240
	:	780	700	1480
		i	820	1640
			:	1800
Standard pitch P	40	50	60	80
G	15	15	20	20
Max. length	20	00	30	00

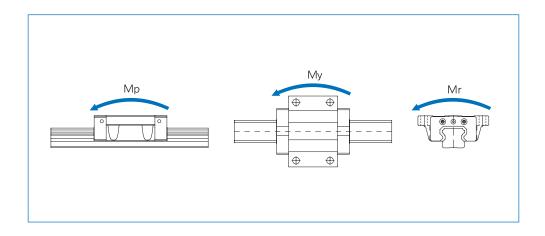

HW-F Series

Model	Exterr	nal dimer	sions				Dimens	ions of	block			
Model No.	Height H	Width W	Length L	В	С	М	L ₁	Т	N	Е	Grease nipple	Нз
HW17F	17	60	51	53	26	M4	37.4	6	4	3.5	A-Ø3	2.5
HW21F	21	68	59	60	29	M5	45.4	8	5	3.5	A-Ø3	3.3
HW27F	27	80	72.5	70	40	M6	54.7	10	6	10.3	B-M6F	3.5
HW35F	35	120	105.3	107	60	M8	82.1	14	7.6	10.3	B-M6F	4


Composition of Model No.

- 1 Model No. of Linear Motion Guide
- 2 Type of block : No symbol–Full-ball type
- Form of block: R-Rectangular standard type / F-Flange standard type
- Type of seal: UU-End seal / SS-End seal + Inside seal / ZZ-End seal + Inside seal + Metal scraper (*1)
- Number of blocks combined in 1 rail
- Symbol of clearance: No symbol-Normal preload / G1-Light preload / G2-Heavy preload / G5-Special preload (*2)
- Length of rail
- Size of G value: standard G value has no symbol.
- Symbol of precision: No symbol-Moderate precision / H-High precision / P-Precision / SP-Super Precision / UP-Ultra Precision (*3)
- No symbol–Rail counter bore type (A topside assembly)
- 11 Connection symbol
- 12 Special symbol

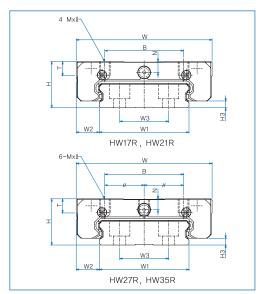
- (*1) See P97 Symbol List of Optional Parts (*2) See P17 Radial Clearance
- Number of axis used on the same surface
- (*3) See P24 Selection of Precision Class



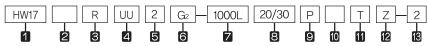
Unit: mm

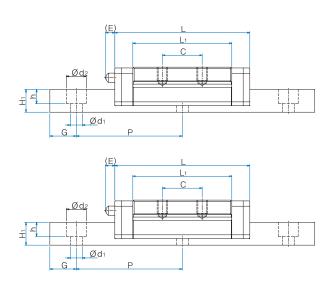
		Dime	ensio	ns of	f Rail		Basic loa	ad rating	Sta	ntic allowar	nce mor	ment kN	· m	Ma	ISS
Width			Heigh	Value	Pitch		С	Со		Мр		Му	Mr	Block	Rail
W ₁ ±0.05	W ₂	Wз	Hı	G	Р	d1 x d2 x h	kN	kŇ		2(Contact)		2(Contact)		kg	kg/m
33	8.5	18	8.6	15	40	4.5x7.5x5.3	7.3	12.2	0.081	0.381	0.081	0.381	0.205	0.15	1.9
37	8.5	22	11	15	50	4.5x7.5x5.3	8.4	14.8	0.119	0.547	0.119	0.547	0.278	0.24	2.9
42	10	24	15	20	60	4.5x7.5x5.3	15.3	24.8	0.239	1.114	0.239	1.114	0.527	0.47	4.5
69	15.5	40	19	20	80	7x11x9	33.9	53.2	0.773	3.528	0.773	3.528	1.851	1.40	9.6

1N≒0.102kgf



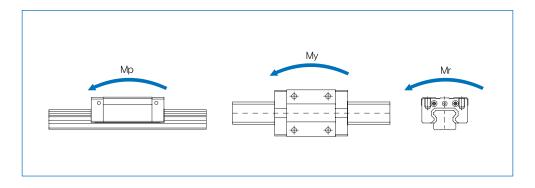
61


HW-R Series


Madal	Extern	al dime	nsions			Dir	mensior	ns of bl	ock			
Model No.	Height H	Width W	Length L	В	С	MXQ	L ₁	Т	N	Е	Grease nipple	Нз
HW17R	17	50	51	29	15	M4 X 5	37.4	5.2	4	3.5	A-Ø3	2.5
HW21R	21	54	59	31	19	M5 X 6	45.4	8	5	3.5	A-Ø3	3.3
HW27R	27	62	72.5	46	32	M6 X 6	54.7	10	6	10.3	B-M6F	3.5
HW35R	35	100	105.3	76	50	M8 X 8	82.1	14	7.6	10.3	B-M6F	4

Composition of Model No.

- 1 Model No. of Linear Motion Guide
- Type of block : No symbol–Full-ball type
- Form of block: R-Rectangular standard type / F-Flange standard type
- Type of seal: UU-End seal / SS-End seal + Inside seal / ZZ-End seal + Inside seal + Metal scraper (*1)
- Number of blocks combined in 1 rail
- Symbol of clearance: No symbol-Normal preload / G1-Light preload / G2-Heavy preload / G5-Special preload (*2)
- Length of rail
- Size of G value: standard G value has no symbol.
- Symbol of precision: No symbol–Moderate precision / H-High precision / P-Precision / SP-Super Precision / UP-Ultra Precision (*3)
- No symbol—Rail counter bore type (A topside assembly)
- 11 Connection symbol
- 12 Special symbol
- 13 Number of axis used on the same surface
- (*1) See P97 Symbol List of Optional Parts $\,$ (*2) See P17 Radial Clearance
- (*3) See P24 Selection of Precision Class



Unit: mm

		Din	nensi	ons o	f Rail		Basic loa	ad rating	Sta	· m	Mass				
Width			Heigh	Value	Pitch		С	Со	N	И р		Му	Mr	Block	Rail
W ₁ ±0.05	W2	Wз	H ₁	G	P	d1 x d2 x h	kN	kN		2(Con- tact)		2(Con- tact)		kg	kg/m
33	8.5	18	8.6	15	40	4.5x7.5x5.3	7.3	12.2	0.081	0.381	0.081	0.381	0.205	0.13	1.9
37	8.5	22	11	15	50	4.5x7.5x5.3	8.4	14.8	0.119	0.547	0.119	0.547	0.278	0.19	2.9
42	10	24	15	20	60	4.5x7.5x5.3	15.3	24.8	0.239	1.114	0.239	1.114	0.527	0.36	4.5
69	15.5	40	19	20	80	7x11x9	33.9	53.2	0.773	3.528	0.773	3.528	1.851	1.20	9.6

1N≒0.102kgf

3. Slim Linear Motion Guide S Series

1) Structure of S Series

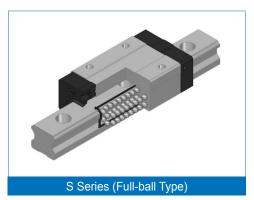
Linear Motion Guide S Series has a four-row circular arc-groove structure and is a 4-direction equal load type. It also has an auto-adjusting face-to-face D/F structure. It uses balls as a rolling element and is a slim-type guide with a low sectional height as well as high rigidity and less noise.

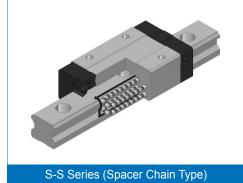
- 2) Features of S Series
- a. High quality and very effective in realizing high precision and elimination of labor
- b. High rigidity and high precision which can realize the stable travel for a long time
- c. Great wear resistance and friction resistance which ensures a long life
- d. Great auto-adjusting and error-absorbing abilities with the face-to-face duplex structure same to D/F combination of ball bearing
- e. Various specifications for easy design
- f. Easy to use due to great compatibility between a rail and a block
- g. 4-direction equal load and high-rigidity structure
- h. Slim shape suitable for horizontal motion to ensure stable running

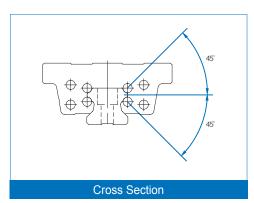
4. Slim Spacer Chain Linear Motion Guide S-S Series

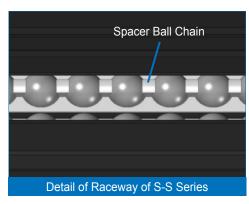
1) Structure of S Series

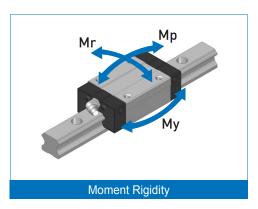
Linear Motion Guide S-S Series has a 4-direction equal load type which is identical to S Series and has an auto-adjusting face-to-face D/F structure.

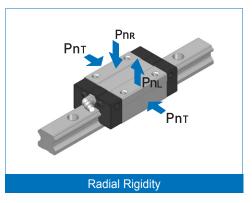

It uses balls as a rolling element and combines a spacer between balls to prevent them from colliding each other during the rolling motion.

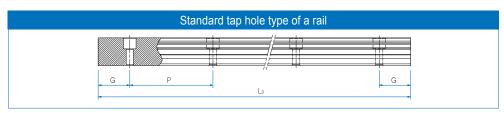

Therefore it makes less noise and more stable circulating motion than a full-ball type to realize quiet running even in high velocity movement and the spacer act as the pocket of lubr icant to obtain longer life than H Series


- 2) Features of S-S Series
- a. As a spacer-incorporated type which improves frictional properties and prevents the collision of balls, it not only allows stable circulating motion and smooth running but also reduces noise. If special lubricating seal is attached to lengthen life, maintenance-free operations can be achieved.
- Collision between balls and the loss of oil film are preveted by applying a resin spacer to improve life and generate less particles and dust.
- c. High quality in realizing high precision and high velocity so it could create large effec on elimination of power loss.
- d. High rigidity and high precision which can realize the stable travel for a long time
- e. Great wear resistance and friction resistance which ensures a long life
- f. Great auto-adjusting and error-absorbing abilities with the face-to-face duplex structure same to D/F combination of ball bearing
- g. Various specifications for easy design
- h. Easy to use due to great compatibility between a rail and a block

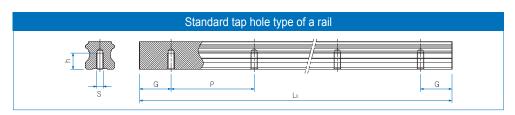



Slim Linear Motion Guide S, S-S Series



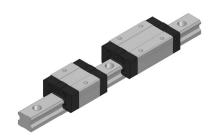


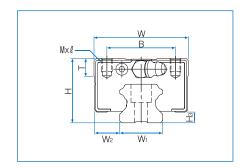
Types and Features


	reatures	Obarra O Frankrija	
Category	Type	Shape & Features	
Compact	S-C S-SC	- With the tapped flange of a block, a slim compact that the width and length of Linear Motion guide block is minimized - A 4-direction equal load type with 45° contact angle S Series is a low-noise low-dust raise type with improved life due to zero friction between balls since a spacer chain is applied.	Cartesian coordi- nated robot, linear actuator, automation
type	S-R S-SR	- Having the cross section identical to that of S-C Series, a slim compact type that the width and length of Linear Motion guide block is minimized - A4-direction equal load type with 45° contact angle S Series is a low-noise low-dust raise type with improved life due to zero friction between balls since a spacer chain is applied.	system, semiconductor/ display manufac- turing system, LED inspection equipment, dispenser equip- ment, medical Equip-
Flange	S-CF S-SCF	- With the tapped flange of a block, a slim compact type that the width and length of Linear Motion guide block is minimized - A4-direction equal load type with 45° contact angle S Series is a low-noise low-dust raise type with improved life due to zero friction between balls since a spacer chain is applied,	ment, high-speed transport system, woodworking machine, take-out robots, small machine tool,
type	S-F S-SF	- Having the cross section identical to that of S-CF Series, a slim compact type that the width and length of Linear Motion guide block is minimized - A4-direction equal load type with 45° contact angle S Series is a low-noise low-dust raise type with improved life due to zero friction between balls since a spacer chain is applied.	laser processor, precision measurement equipment

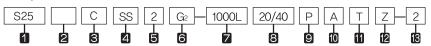
Unit: mm

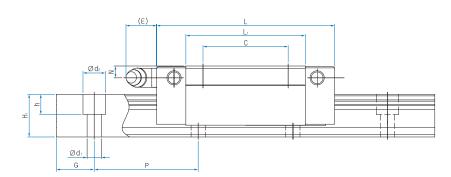
Model No.	S15	S20	S25
	160	160	220
	220	220	280
	280	280	340
Standard	:	340	400
	1360		460
length	1480	1960	:
	1600	2080	2200
		2200	2320
			2440
Standard pitch P	60	60	60
G	20	20	20
Max. length		4000	




Unit: mm

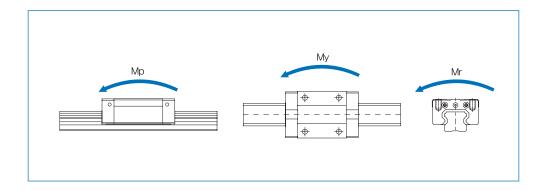
Model No.	S	h(mm)
H15	M5	8
H20	M6	10
H25	M6	12


S-C Series, S-R Series


Model	Extern	al dime	nsions	Dimensions of block									
No.	Height H	Width W	Length L	В	С	Mxℓ	L ₁	Т	N	Е	Grease nipple	Нз	
S 15C	24	34	40.2	26	-	M4 x 6	24	6	6	6	A-M4	ΛE	
S 15R	24	34	56.9	20	26		40.7	Ö				4 <u>.</u> 5	
S 20C	28	42	47.2	32	-	ME v 7	27.6	7 <u>.</u> 5	5.5	12	B-M6F	6	
S 20R	20	42	66.3	32	32	M5 x 7	46.7	7 <u>.</u> 5	3<u>.</u>3	12	D-IVIOF	Ö	
S 25C	22	48	59.1	35	_	M6 x 9	34.4	- 8	6	12	D MCE	7	
S 25R	33 25R	48	83	30 3	35	IVIO X 9	58 <u>.</u> 2	ð		12	B - M6F	/	

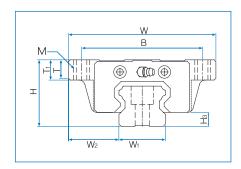
Composition of Model No.

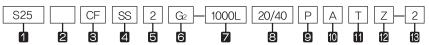
- 1 Model No. of Linear Motion Guide
- Type of block: No symbol–Full-ball type / S–Spacer Chain type
- Form of block: C-Rectangular short type / R-Rectangular standard type / CF-Flange short type / F-Flange standard type
- Type of seal: UU–End seal / SS–End seal + Inside seal / ZZ–End seal + Inside seal + Metal scraper
 - UULF-End seal + LF seal / SSLF- End seal + Inside seal + LF seal / ZZLF End seal + Inside seal + Metal scraper + LF seal (*1)
- Number of blocks combined in 1 rail
- Symbol of clearance: No symbol-Normal preload / G1-Light preload / G2-Heavy preload / G5-Special preload (*2)
- Z Length of rail
- Size of G value: standard G value has no symbol.
- Symbol of precision: No symbol–Moderate precision / H–High precision / P–Precision / SP–Super Precision / UP–Ultra Precision (*3)
- No symbol–Rail counter bore type (A topside assembly) / A– Rail tap hole type (an underside assembly)(*4)
- 11 Connection symbol
- 12 Special symbol
- 13 Number of axis used on the same surface
 - (*1) See P97 Symbol List of Optional Parts (*2) See P17 Radial Clearance
 - (*3) See P24 Selection of Precision Class (*4) See P67 The reference for standard tap hole type of a rail



Unit: mm

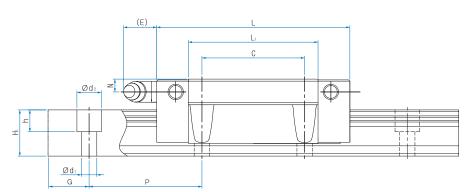
Dimensions of Rail						Basic load rating		Stati	c allowa	Mass												
Width Heigh Va		Value	Pitch	طيد ماميد ام	С	Со	Мр		My		Mr	Block	Rail									
W1 ±0.05	W2	H1	H ₁ G P		d1 x d2 x h	kN	kN		2(contact)		2(contact)		kg	kg/m								
15	0.E	13	20	60	60	60	60	60	60	60	60	60	15,75,50	9.0	10.0	0.042	0.224	0.042	0.224	0.079	0.096	10
ıo	9.5	13	20		45x75x53	12.6	16.2	0.115	0.552	0.115	0.552	0.129	0.156	1.3								
20	-1-1	10.5	20	00	00	00	60	00505	12.0	13.1	0.063	0.342	0.063	0.342	0.137	0.153	0.0					
20	20 11 16.5 20	60	6x9 <u>5</u> x8 <u>5</u>	16.8	21.2	0.173	0,838	0.173	0.838	0.223	0.246	2 <u>.</u> 2										
22	00 40 5 00 00	00 00 00	00 -	744 0	19.2	20.4	0.123	0.670	0.123	0.670	0.246	0.254	20									
23 12 <u>.</u> 5 20	20 20	20 60	60 7x11x9	27.0	33.1	0.337	1.636	0.337	1,636	0.398	0.413	3.0										


1N=0.102kgf


S-CF Series, S-F Series

Model	Extern	al dime	nsions	Dimensions of block										
No.	Height H	Width W	Length L	В	С	Μxℓ	L ₁	Т	T ₁	N	Е	Grease nipple	Нз	
S 15CF	24	52	40.2	41	-	M5 -	24	6	6 7	6	6	A 144	4 <u>.</u> 5	
S 15F	24	52	56.9	41	26		40.7	О			Ö	A-M4	4.5	
S 20CF	28	50	47.2	40	_	M6	27 <u>.</u> 6	0	8 9	5 <u>.</u> 5	12	B-M6F	6	
S 20F	28	59	66.3	49	32		46.7	O			12			
S 25CF	22	70	59.1		MO	34.4	_	10	6	10	D MCE	7		
S 25F	5F 33	33 73	83	60	35	- M8	58 <u>.</u> 2	9	10	6	12	B-M6F	/	

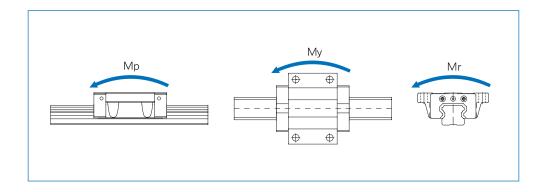
Composition of Model No.



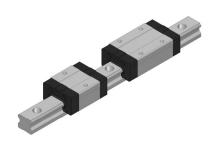
- 1 Model No. of Linear Motion Guide
- Type of block: No symbol–Full-ball type / S–Spacer Chain type
- Form of block: C-Rectangular short type / R-Rectangular standard type / CF-Flange short type / F-Flange standard type
- Type of seal: UU–End seal / SS–End seal + Inside seal / ZZ–End seal + Inside seal + Metal scraper

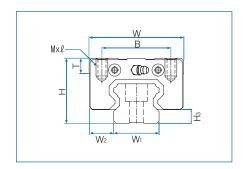
UULF-End seal + LF seal / SSLF- End seal + Inside seal + LF seal / ZZLF - End seal + Inside seal + Metal scraper + LF seal (*1)

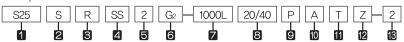
- Number of blocks combined in 1 rail
- Symbol of clearance: No symbol-Normal preload / G1-Light preload / G2-Heavy preload / G5-Special preload (*2)
- Z Length of rail
- 8 Size of G value: standard G value has no symbol.
- Symbol of precision: No symbol–Moderate precision / H–High precision / P–Precision / SP–Super Precision / UP–Ultra Precision (*3)
- No symbol-Rail counter bore type (A topside assembly) / A- Rail tap hole type (an underside assembly) (*4)
- 11 Connection symbol
- 12 Special symbol
- 13 Number of axis used on the same surface
 - (*1) See P97 Symbol List of Optional Parts (*2) See P17 Radial Clearance
 - (*3) See P24 Selection of Precision Class (*4) See P67 The reference for standard tap hole type of a rail

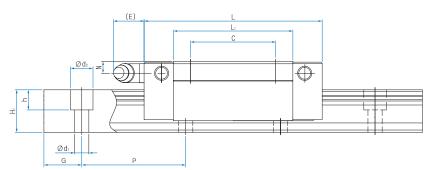


Unit: mm


Dimensions of Rail						Basic load rating		Stati	c allowa	Mass								
Width			Value	Pitch	Pitch	Pitch	Pitch		С	Со	N	1p	N	Лy	Mr	Block	Rail	
W1 ±0.05	W2	H ₁ G P		d1 x d2 x h	kN	kN		2(contact)		2(contact)		kg	kg/m					
15	10 E	13	20	60	00	15,75,50	9.0	10.0	0.042	0.224	0.042	0.224	0.079	0.125	1.2			
15	18.5	13	20		45x75x53	12.6	16.2	0.115	0.552	0.115	0.552	0.129	0.203	1.3				
20	10 E	10 E	20	00	00	60	60	60	6v0Ev0E	12.0	13.1	0.063	0.342	0.063	0.342	0.137	0.187	2.0
20	20 19.5 16.5 20	60	6x95x85	16.8	21.2	0.173	0.838	0.173	0.838	0.223	0.301	2 <u>.</u> 2						
22	00 05 00 00	00 00	00 7.44.0	19.2	20.4	0.123	0.670	0.123	0.670	0.246	0.320	0.0						
23 25 20 20	20 60	60	60	ου /XIIX9	/x11x9	7x11x9	60 /x11x9	27.0	33,1	0,337	1,636	0,337	1,636	0,398	0.527	3.0		

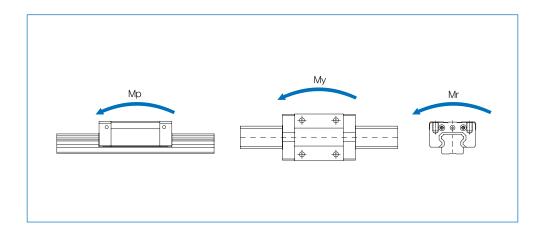

1N=0.102kgf


S-SC Series, S-SR Series

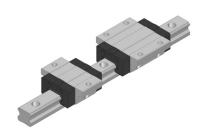

Model	Extern	nal dimer	nsions	Dimensions of block								
No.	Height H	Width W	Length L	В	С	ΜΧQ	L1		N	Е	Grease nipple	Нз
S 15SC	24	34	40.2	26	-	M4 × 6	24	6	6	6	A-M4	ΛE
S 15SR	24	34	56.9		26	1V14 X U	40.7	O	O		A-IVI4	4.5
S 20SC	28	42	47.2	32 - 32	_	M5 x 7	27.6	7.5		12	B-M6F	6
S 20SR	20	42	66,3		32	IVIO X /	46.7	7.5	5.5	12	B-IVIOF	Ö
S 25SC	33	48	59.1	25	35 <u>-</u> M6	M6 x 9	34.4	8	6	12	D MEE	7
S 25SR	33	40	83	33		IVIO X 9	58.3		O		B-M6F	1

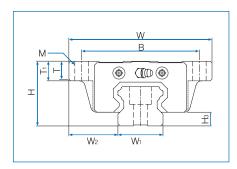
Composition of Model No.

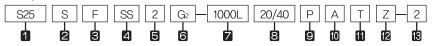
- 1 Model No. of Linear Motion Guide
- Type of block: No symbol–Full-ball type / S–Spacer Chain type
- Form of block: C-Rectangular short type / R-Rectangular standard type / CF-Flange short type / F-Flange standard type
- Type of seal: UU–End seal / SS–End seal + Inside seal / ZZ–End seal + Inside seal + Metal scraper
 - UULF-End seal + LF seal / SSLF- End seal + Inside seal + LF seal / ZZLF End seal + Inside seal + Metal scraper + LF seal (*1)
- Number of blocks combined in 1 rail
- Symbol of clearance: No symbol-Normal preload / G1-Light preload / G2-Heavy preload / G5-Special preload (*2)
- Length of rail
- 8 Size of G value: standard G value has no symbol.
- Symbol of precision: No symbol–Moderate precision / H–High precision / P–Precision / SP–Super Precision / UP–Ultra Precision (*3)
- No symbol-Rail counter bore type (A topside assembly) / A- Rail tap hole type (an underside assembly) (*4)
- 11 Connection symbol
- 12 Special symbol
- Number of axis used on the same surface
 - (*1) See P97 Symbol List of Optional Parts (*2) See P17 Radial Clearance
 - (*3) See P24 Selection of Precision Class (*4) See P67 The reference for standard tap hole type of a rail

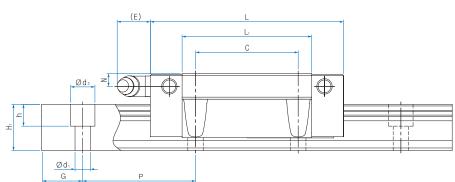


Unit: mm


	Dimensions of Rail					Basic loa	ad rating	Static allowance morment kN · m					Mass										
Width		Heiah	Value	Pitch		C Co	C Co		Мр	N	Иy	Mr	Block	Rail									
W ₁ ±0.05	W2	H ₁	G	Р	d ₁ x d ₂ x h	kŇ	kŇ		2(Contact)		2(Contact)		kg	kg/m									
4.	٥٢	10	20	00	4 E. 7 E. E O	8.3	10	0.042	0.224	0.042	0.224	0.079	0.096	10									
15	9.5	13	20	60	4.5×7.5×5.3	12.1	16.2	0.115	0.552	0.115	0.552	0.129	0.156	1.3									
20	11	16.5	20	60	6x9.5x8.5	11,1	13,1	0.063	0,342	0.063	0.342	0.137	0,153	2.2									
20	- 11	10.5	20	00	0,00,00	16,1	21,2	0,173	0,838	0,173	0,838	0,223	0.246	2.2									
22	10 E	20	20 60	20 60	20 60	20 60	20 60	20 60	00	60	0 60	60	60	7.44.0	17.9	20.4	0.123	0.670	0.123	0.670	0.246	0.254	2.0
23	12.5	20			60	60	7x11x9	25,8	33,1	0,337	1,636	0,337	1,636	0,398	0,413	3.0							

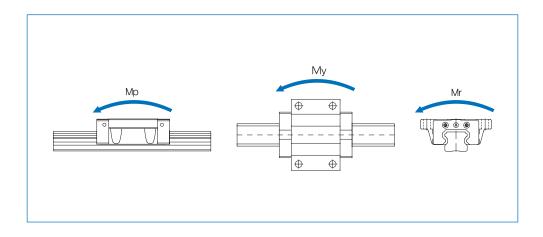

1N≒0.102kgf


S-SCF Series, S-SF Series

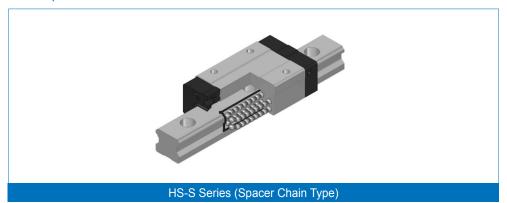

Model	Extern	ernal dimensions			Dimensions of block								
No.	Height H	Width W	Length L	В	С	М	Lı		T ₁	N	Е	Grease nipple	Нз
S 15SCF	0.4	F0	40.2	44	-	N A IT	24	0	7	6	0	A 144	4.5
S 15SF	24	52	56.9	41	26	M5	40.7	6	/	О	6	A-M4	4.5
S 20SCF	28	59	47.2	49	_	М6	27.6	8	0	EE	12	D MCE	6
S 20SF	20	59	66.3	49	32	IVIO	46.7	0	9	5.5	12	B-M6F	Ö
S 25SCF	22	70	59.1	00	_	140	34.4	0	10	0	10	D MCE	7
S 25SF	33	33	73	83 60	35	M8	58.3	9	10	6	12	B-M6F	7

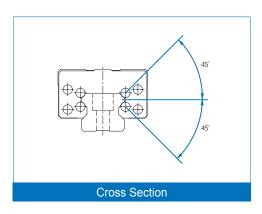
Composition of Model No.

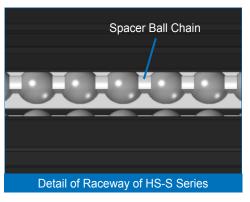
- 1 Model No. of Linear Motion Guide
- Type of block: No symbol–Full-ball type / S–Spacer Chain type
- Form of block: C-Rectangular short type / R-Rectangular standard type / CF-Flange short type / F-Flange standard type
- Type of seal: UU–End seal / SS–End seal + Inside seal / ZZ–End seal + Inside seal + Metal scraper
 - UULF-End seal + LF seal / SSLF- End seal + Inside seal + LF seal / ZZLF End seal + Inside seal + Metal scraper + LF seal (*1)
- Number of blocks combined in 1 rail
- Symbol of clearance: No symbol-Normal preload / G1-Light preload / G2-Heavy preload / G5-Special preload (*2)
- Z Length of rail
- Size of G value: standard G value has no symbol.
- Symbol of precision: No symbol–Moderate precision / H–High precision / P–Precision / SP–Super Precision / UP–Ultra Precision (*3)
- No symbol-Rail counter bore type (A topside assembly) / A- Rail tap hole type (an underside assembly) (*4)
- 11 Connection symbol
- Special symbol
- 13 Number of axis used on the same surface
 - (*1) See P97 Symbol List of Optional Parts (*2) See P17 Radial Clearance
 - (*3) See P24 Selection of Precision Class (*4) See P67 The reference for standard tap hole type of a rail

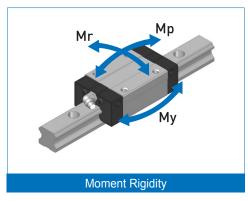


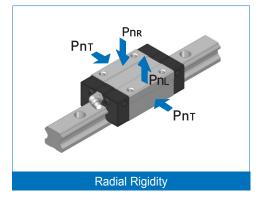
Unit: mm

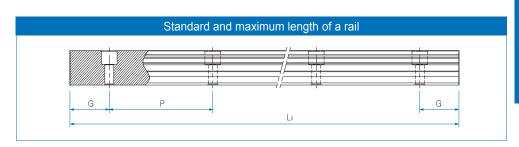

	Dimensions of Rail			ail	Basic loa	ad rating	Sta	Static allowance morment kN · m					Mass					
Width	W2	Heigh	Value	Pitch	d1 x d2 x h	С	C Co		Мр	1	Л у	Mr	Block	Rail				
W ₁ ±0.05	VVZ	Hi	G	Р	u x uz x II	kN	kN		2(Contact)		2(Contact)		kg	kg/m				
15	0.E	13	20	60	1 Ev7 EvE 0	8.3	10	0.042	0.224	0.042	0.224	0.079	0.125	1.0				
15	9.5	13	20	00	4.5×7.5×5.3	12.1	16.2	0.115	0.552	0.115	0.552	0.129	0.203	1.3				
20	44	10.5	20	00	0.0 5.0 5	11,1	13,1	0.063	0.342	0.063	0.342	0.137	0.187	0.0				
20	11	16.5	20	60	6x9.5x8.5	16.1	21,2	0.173	0,838	0.173	0.838	0.223	0.301	2.2				
22	10 E	20	20 60	20 60	20 60	20 60	00	20 60	7,41,0	17.9	20.4	0.123	0.670	0.123	0.670	0.246	0.320	2.0
23	12.5	20	20				20		60	60	60 7x11x9	25,8	33,1	0.337	1,636	0.337	1.636	0.398

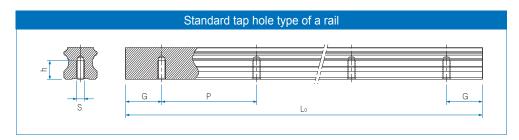

1N≒0.102kgf



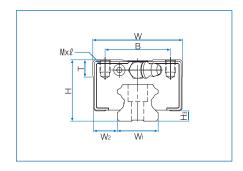

A Linear Mo


Slim Spacer Chain Linear Motion Guide HS-S Series



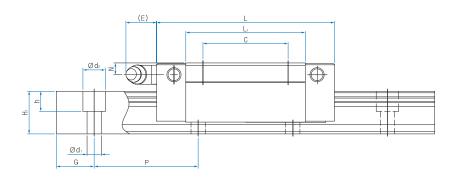


Model No.	HS25	HS30	HS35	HS45	HS55			
	220	280	440	570	780			
	340	360	520	675	900			
	400	440	600	780	1020			
	i	520	760	885	i			
Standard length	2200	:	840	:	2820			
	2320	2520	:	2880	2940			
	2440	2680	2840	2985	3060			
		2840	2920	3090				
			3000					
Standard pitch P	60	80	80	10.5	120			
G	20	20	20	22.5	30			
Max. length	4000							



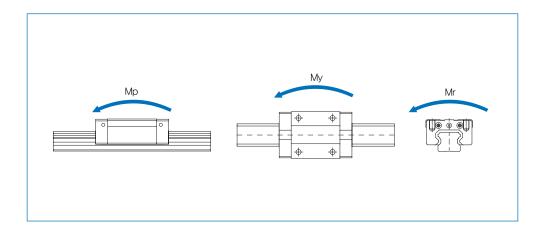
Model No.	S	h(mm)
HS25	M6	12
HS30	M8	15
HS35	M8	17
HS45	M12	24
HS55	M14	24

HS-SR Series, HS-SRL Series


Madal	Extern	al dimer	nsions		Dimensions of block								
Model No.	Height H	Width W	Length L	В	С	ΜΧQ	Lı	Т	N	Е	Grease nipple	Нз	
HS 25SR	36	48	83	35	35	M6×6.5	58.3	8	9	12	B-M6F	7	
HS 25SRL	30	40	102.9	33	50	C.OXOIVI	78.2	0	9	12	B-IVIOF	1	
HS 30SR	40	00	97.8	40	40	M00	70.8	0	7.0	10	D MCE	7	
HS 30SRL	42	60	120	40 60	60	M8x8	93	8	7.8	12	B-M6F	7	
HS 35SR	48	70	110	50	50	M8x10	80.8	15	10	12	B-M6F	7.5	
HS 35SRL	40	70	135.4	50	72	MOXIU	106.2	15	10	12	B-IVIOF	7.5	
HS 45SR	60	86	138.5	6	60	M10×15	106	15	10.5	13	B-PT1/8	10	
HS 45SRL	60	00	170.2	60	80	MITUXIO	137.8	15	10,5	13	B-P11/8	10	
HS 55SR	70	70 100		75	75	MAOUAE	132.6	20	11	13	B-PT1/8	13	
HS 55SRL	70	100	210.6	/5 95	95	M12x15	172.2	20	11	13	D-F11/0	13	

Composition of Model No.

- 1 Model No. of Linear Motion Guide
- 2 Type of block : S-Spacer Chain type
- Form of block: R-Rectangular standard type / RL-Rectangular long type
- Type of seal: UU_End seal / SS_End seal + Inside seal / ZZ_End seal + Inside seal + metal scraper
 UULF-End seal + LF seal / SSLF- End seal + Inside seal + LF seal / ZZLF End seal + Inside seal + metal scraper + LF seal (*1)
- 5 Number of blocks combined in 1 rail
- Symbol of clearance: No symbol-Normal preload / G1-Light preload / G2-Heavy preload / Gs-Special preload (*2)
- Length of rail
- 8 Size of G value: standard G value has no symbol.
- Symbol of precision: No symbol–Moderate precision / H–High precision / P–Precision / SP–Super Precision / UP–Ultra Precision (*3)
- No symbol—Rail counter bore type (A topside assembly) / A— Rail tap hole type (an underside assembly) (*4)
- 11 Connection symbol
- 12 Special symbol
- 13 Number of axis used on the same surface
 - (*1) See P97 Symbol List of Optional Parts (*2) See P17 Radial Clearance
 - (*3) See P24 Selection of Precision Class (*4) See P77 The reference for standard tap hole type of a rail



Unit: mm

	D	imens	sions	of Ra	iil	Basic loa	ad rating	Static allowance morment kN · m					Mass			
Width	14/	Heigh	Value	Pitch		С	Со	ı	И р	ı	Иy	Mr	Block	Rail		
W ₁ ±0.05	W2	H ₁	G	P	d ₁ x d ₂ x h	kŇ	kN		2(Contact)		2(Contact)		kg	kg/m		
22	10 E	20	20	60	7x11x9	25.8	33.1	0.337	1,636	0.337	1,636	0.398	0.53	2.0		
23	12.5	20	20	60	7x11x9	31.7	43.6	0.596	2.760	0.596	2.760	0.525	0.71	3.0		
28	16	25.1	20	80	9x14x14.1	48.0	57.1	0.711	3.384	0.711	3.384	0.828	0.9	4.85		
20	10	20,1	20	00	9x14x14.1	58.0	73.6	1,203	5.506	1,203	5.506	1.067	1,1	4.00		
34	18	27	20	80	9x14x13	63.7	74.6	1.062	5.012	1.062	5.012	1,298	1.5	6.58		
34	10	21	20	00	9814813	77.1	96.2	1.797	8.172	1.797	8.172	1.674	2.01	0,56		
45	20.5	32	22.5	105	14x20x17	82.9	95.5	1.789	8.251	1.789	8.251	1,992	2.49	9.75		
45	20.5	32	22,5	103	14320317	99.7	122.5	2.984	13.341	2.984	13.341	2.556	3.18	9.75		
53	23.5	38	20	120	16,22,20	133.5	149.2	3.495	16.007	3.495	16.007	3.608	4.15	13,75		
55	23.5	50	30	30	30	120	120 16×23×20	160.4	191.4	5.826	25.899	5.826	25.899	4.627	5.29	13,73

1N≒0.102kgf

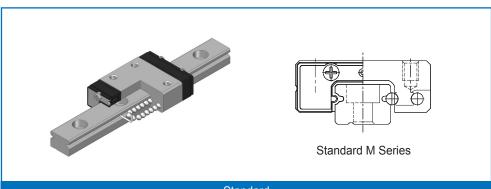
5. Miniature Linear Motion Guide M Series

1) Structure of M Series

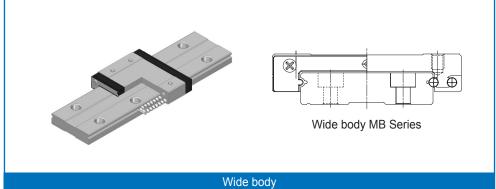
WON Miniature Linear Motion Guide M Series has a shape of a gothic-arch groove in the raceway between a rail and a block and a 4-direction equal type structure with 2-row 4-point contact balls at 45 degree. Even though it is small in size, it provides stable travel and rigidity under the environment where variable load and combined load is applied.

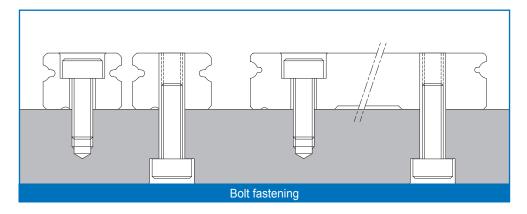
- 2) Features of M Series
- a. A compact highly-rigid 4-direction equal load type
- b. Various specifications for easy design with space and load rating taken into account
- Balls are maintained during the assembly of a block and a rail since a wire to retain balls is built in the block.
- d. It's material is stainless steel which does not rust easily, so it is very suitable for the environment where rust and particle generation should be prevented clean room, for instance.

Wide Miniature Linear Motion Guide MB Series


1) Structure of MB Series

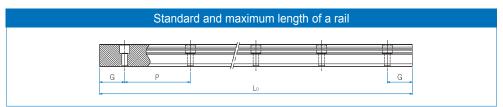
WON Miniature Linear Motion Guide MB Series has a 4-direction equal load type which is identical to M Series, and the basic load rating and moment load are significantly improved compared to the general M Series by broadening the width between a rail and a block.


- 2) Features of MB Series
- a. As the width between a rail and a block is broadened and the number of balls increased, load rating and moment load are improved.
- Suitable for use in a one-axis type since it is wider than the general miniature Linear Motion guide and rigidity increased.
- e. A compact highly-rigid 4-direction equal load type
- f. Various specifications for easy design with space and load rating taken into account
- g. Balls are maintained during the assembly of a block and a rail since a wire to retain balls is built in the block.
- h. Its material is stainless steel which does not rust easily so it is very suitable for the environment where rust and particle generation should be prevented for clean room, for instance.
 - For MB12 and MB15 Model Numbers, Bearing Steel material (MBT12, MBT15) is ready to produce.

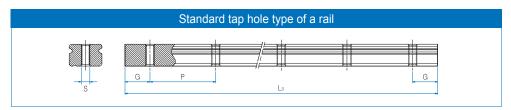


Miniature Linear Motion Guide M, MB Series

Standard

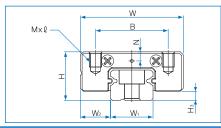


Types and Features


Types and			
Category	Туре	Shape & Features	
	M-C		
Compact type	M-N	Standard Miniature Linear- Motion Guide Bearing steel material of blocks for the type of MT12 and MT15 are available.	Semiconductor test equipment, semiconductor assembly equip- ment,
	M-L		display test equipment, HEAD-axis LED inspection equipment, pneumatic ma-
	MB-C MBT-C	High rigidity is achieved as the	chinery, table cylinder, automation ma- chinery, medical equip-
Wide board	MB-N MBT-N	block is wider and longer than M Series to increase load rating and allowable moment. Bearing steel material of blocks for the type of MBT12	ment, smart actuators, Cartesian coordin- ated robot, UVW stage
	MB-L MBT-L	and MBT15 are available.	

Model No.	M5	M7	M9	M12	MT12	M15	MT15	M20	
	40	40	55	70	70	70	70	220	
	55	55	75	95	95	110	110	280	
	70	70	95	120	120	150	150	340	
01 1 1	:	:	115	145	145	190	190	460	
Standard	100	100	:	170	170	230	230	:	
length	130	130	275	:	:	:	:	1120	
	160	160	375	570	570	670	670	1240	
			495	695	695	870	870	1360	
				820	820	1070	1070		
Standard maximum length of a rail	1000	1000	995	995	1995	1990	1990	1960	
Standard pitch P	15	15	20	25	25	40	40	60	
G	5	5	7.5	10	10	15	15	20	
Max. length		10	00		2000				

MB5	MB7	MB9	MB12	MBT12	MBT13	MB15	MBT15		
50	50	50	70	70	110	110	110		
70	80	80	110	110	150	150	150		
90	110	110	150	150	190	190	190		
÷	:	140	190	190	230	230	230		
130	260	:	230	230	270	270	270		
150	290	500	:	:	:	:	:		
170	350	710	590	590	750	750	750		
		860	750	750	790	790	790		
			910	910	910	910	910		
990	980	2000	1990	1990	1990	1990	1990		
20	30	30	40	40	40	40	40		
5	10	10	15	15	15	15	15		
10	00	2000							

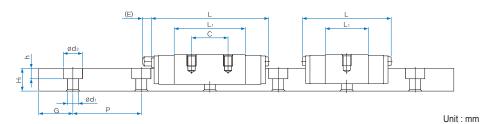

Model No.	S (Thru)
M5	M2.6
M7	M3
M9	M4
M12 / MT12	M4
M15 / MT15	M4
M20	M6

Model No.	S (Thru)
MB5	M3
MB7	M4
MB9	M4
MB12 / MBT12	M5
MBT13	M5
MB15 / MBT15	M5

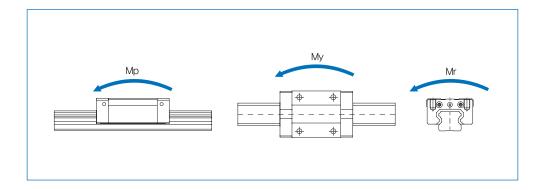
M Series



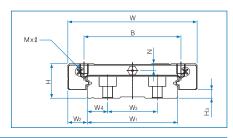
Model	Exter	nal dime	ension			Dime	nsions of	block			
No.	Height H	Width W	Length L	В	С	M x ℓ	L ₁	N	Е	Greas nipple	Нз
M 5C			17	8	_	M2 x 1.5	9 <u>.</u> 4				
M 5N	6	12	20	O		-	12.4	1 <u>.</u> 2	_	_	1
M 5NA			20	_	7	M2.6 × 1.5	12,7				
M 7C			19 <u>.</u> 8		_		9 <u>.</u> 6				
M 7N	8	17	24.3	12	8	M2 x 2 <u>.</u> 5	14.1	1 <u>.</u> 5	_	_	1.5
M 7L	0	17	31 <u>.</u> 8	12	13	IVIL X LO	21 <u>.</u> 6	1.0			1.0
M7LA			01.0		12		21.0				
M 9C			22.4		_		11 <u>.</u> 8				
M 9N	10	20	31 <u>.</u> 3	15	10	M3 x 3	20.7	22	_	_	2
M 9L			41.4	10	16	11.0 % 0	30.8				_
M9LA					15		30.0				
M 12C			26.4		_		12.8				
M 12N	13	27	34.9	20	15	M3 x 3 <u>.</u> 5	21 <u>.</u> 3	2.7	_	_	3
M 12L			45 <u>.</u> 4		20		31 <u>.</u> 8				
M 15C			34 <u>.</u> 4		_		17 <u>.</u> 7				
M 15N	16	32	44 <u>.</u> 4	25	20	M3 x 4	27 <u>.</u> 7	3 <u>.</u> 1	4	A-M3	4
M 15L			59 <u>.</u> 4		25		42.7				
M 20 C			39 <u>.</u> 8		_		22 <u>.</u> 2				
M 20 N	20	40	51 <u>.</u> 8	30	25	M4 x 6	34 <u>.</u> 2	4 <u>.</u> 2	4	A-M3	5
M 20 L			69 <u>.</u> 8		30		52.2				


Composition of Model No.

*Bearing steel material of rails for the type of MT12 and MT15 are available.

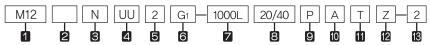

- 1 Model No. of Linear Motion Guide
- 2 Type of block : No symbol–Full-ball type
- Form of block: C-Rectangular short type / N-Rectangular standard type / L-Rectangular long type
- Type of seal: UU-End seal / UULF-End seal + LF seal (*1)
- Number of blocks combined in 1 rail
- Symbol of clearance: No symbol-Normal preload / G1-Light preload (*2)
- Length of rail
- 8 Size of G value: standard G value has no symbol.
- Symbol of precision: No symbol–Moderate precision / H–High precision / P–Precision (*3)
- No symbol-Rail counter bore type (A topside assembly) / A- Rail tap hole type (an underside assembly) (*4)
- 11 Connection symbol
- 12 Special symbol
- 18 Number of axis used on the same surface
 - (*1) See P97 Symbol List of Optional Parts (*2) See P17 Radial Clearance
 - (*3) See P24 Selection of Precision Class (*4) See P83 The reference for standard tap hole type of a rail

		Dime	nsion	s of R	ail	Basic lo	ad rating	Sta	tic allow	ance m	oment N	٧·m	Mas	ss
Width		Heigh	Value	Pitch		С	Co	ı	И р	Γ	Лy	Mr	Block	Rail
	W ₂	H ₁	G		d1 x d2 x h	N	N		2(contact)		2(contact)			g/m
0						516	757	1.3	7.1	1.3	7.1	2.01	3.1	
5 -0.02	3 <u>.</u> 5	3 <u>.</u> 7	5	15	2.4×3.6×0.8	631	1,009	2.2	11.6	2,2	11.6	2.67	4.0	139
						901	1,136	1.9	11.8	1.9	11.8	4.14	6.4	
_ 0	5	5	5	15	24x42x23	1,197	1,703	4.2	23,1	4.2	23.1	6.22	9.0	253
7 -0.02	5	5	5	10	2.484.282.3	1,631	2,650	10.1	50.0	10.1	50.0	9.67	12,6	200
						1,180	1,485	3.1	17.9	3.1	17.9	6.90	9.9	
0	5.5	6	7 <u>.</u> 5	20	3.5×6×3.5	1,721	2,545	9.3	46.6	9.3	46.6	11.84	17.1	391
9 -0.02	J <u>.</u> J	O	7.5	20	3.00003.0	2,375	4,030	21.9	102,8	21.9	102.8	18.74	25.2	331
0						2,175	2,385	5.4	32.9	5.4	32.9	14.79	19.8	
12_0.025	7 <u>.</u> 5	8	10	25	35x65x45	3,023	3,816	14.4	75.8	14.4	75.8	23,66	31.5	679
0.020						4,246	6,200	34.8	169.1	34.8	169.1	38.44	45.9	
0						3,418	3,895	12.2	71.6	12.2	71.6	29.99	37.8	
15 _{-0.025}	8 <u>.</u> 5	10	15	40	35x65x45	4.540	5,842	28.6	148.7	28.6	148.7	44.99	57.6	1071
0.023						6.492	9,737	73.5	351.2	73.5	351.2	74.98	85.5	
0						4.512	5,299	20.7	115.9	20.7	115.9	54.05	80.1	
20_0.03	10	11	20	60	6×9.5×5.5	6.191	8,328	50.2	252.7	50.2	252.7	84.94	119.7	1572
0.03						8.396	12,870	118.6	554.4	118.6	554.4	131,27	176.4	


1N≒0<u>.</u>102kgf

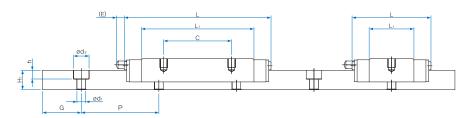
A

MB Series



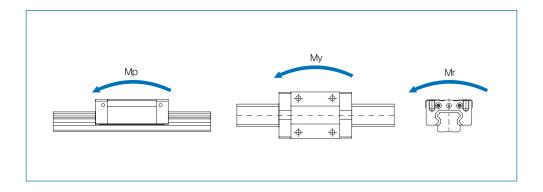
Model	Extern	al dimer	nsions			Dimens	ions of bl	ock			
No.	Height H	Width W	Length L	В	С	Μxℓ	L ₁	N	Е	Grease nipple	Нз
MB 5C	6.5	17	21	13	_	M2.5 x 1.5	13.4	1.4	_	_	1.3
MB 5N	0.5	17	25	13	-	IVIZO X I.O	17.4	1.4	_	_	1,3
MB 7C			24		-		12.6		_	_	
MB 7N	9	25	33	19	10	M3 x 3	21 <u>.</u> 6	1.7	-	-	2
MB 7L			43.5		19		32.1		-	_	
MB 9C			28.1	21	_		16.5		-	_	
MB 9N	12	30	40.2	21	12	M3 x 3	28.6	3 <u>.</u> 2	-	-	3
MB 9L			52	23	24		40.4		_	_	
MB 12C			31.1		_		17 <u>.</u> 5		-	_	
MB 12N	14	40	44.5	28	15	M3 × 3.5	30.9	3	_	_	4
MB 12L			59.7		28		46.1		-	-	
MBT 13C			35.3		-		18.7				
MBT 13N	15	50	49.2	35	18	M4 x 4.5	32.6	3.1	3.5	A-M3	3
MBT 13L			68.6		35		52				
MB 15C			42 <u>.</u> 8		_		25.2				
MB 15N	16	60	56.6	45	20	M4 x 4 <u>.</u> 5	39	3 . 5	4	A-M3	4
MB 15L			75.8		35		58.2				

Composition of Model No.


*Bearing steel material of rails for the type of MBT12 and MBT15 are available.

*MB13 is available only with bearing steel.

- 1 Model No. of Linear Motion Guide
- 2 Type of block : No symbol–Full-ball type
- Form of block: C-Rectangular short type / N-Rectangular standard type / L-Rectangular long type
- Type of seal: UU-End seal / UULF-End seal + LF seal (*1)
- 5 Number of blocks combined in 1 rail
- Symbol of clearance: No symbol–Normal preload / G1–Light preload (*2)
- Z Length of rail
- 8 Size of G value: standard G value has no symbol.
- Symbol of precision: No symbol–Moderate precision / H–High precision / P–Precision (*3)
- No symbol-Rail counter bore type (A topside assembly) / A- Rail tap hole type (an underside assembly) (*4)
- 11 Connection symbol
- 12 Special symbol
- 13 Number of axis used on the same surface
 - (*1) See P97 Symbol List of Optional Parts (*2) See P17 Radial Clearance
 - (*3) See P24 Selection of Precision Class (*4) See P83 The reference for standard tap hole type of a rail



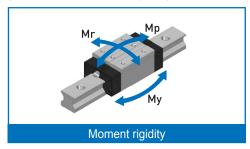
Unit: mm

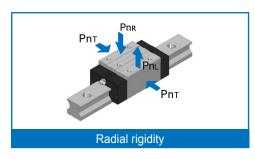
		D	mer	nsior	is of	Rail		Basic lo	ad rating	Sta	tic allow	ance m	oment N	l∙m	Ma	ass
Width				Heigh	Value	Pitch		С	Со	V	Л р	N	Лу	Mr	Block	Rail g/m
W ₁	W ₂	Wз	W4				d1 x d2 x h	Ñ	N		2(contact)		2(contact)			g/m
10 _0,025	2 E	_	_	4	5	20	2.054.054.6	66.8	1,094	2.6	13.3	2.6	13.3	5.63	5.3	299
10 -0.025	3.5			4	5	20	2.9x4.8x1.6	80.6	1,430	4.4	21.4	4.4	21.4	7.36	6.8	299
								1,102	1,514	3.4	19.5	3.4	19.5	10.83	11.7	
$14_{-0.05}^{0}$	5.5	-	-	5.5	10	30	3.5x6x3.2	1,631	2,65 0	10.1	51.1	10.1	51.1	18.95	18.9	560
								2,166	3,975	22.5	106.1	22.5	106.1	28.42	27.9	
0								1,515	2,121	6.2	33.4	6.2	33.4	19.41	23.4	
18_0_05	6	-	-	7	10	30	3.5x6x4.5	2,197	3,60 6	18.2	87.6	18.2	87.6	33.0 0	39.6	912
								2,878	5,30 3	37.8	172.9	37.8	172.9	48.52	54.9	
								2,753	3,339	10.3	57.3	10.3	57.3	40.73	40.5	
$24_{-0.05}^{0}$	8	-	-	8.5	15	40	4.5x8x4.5	4,015	5,723	31.2	152.2	31.2	152.2	69.8 3	68.4	1369
								5,539	9,062	73.8	338.7	73.8	338.7	110.56	99.9	
								3,694	4,351	14.3	82.8	14.3	82.8	66.1	60.0	
30_0.05	10	-	-	9	15	40	4.5x8x4.5	5,457	7,599	43.7	219.3	43.7	219.3	115.5	103.8	2086
								7,576	12,142	111.5	517.4	111.5	517.4	184.6	165.0	
								4,954	6,056	26.9	145.3	26.9	145.3	128.40	85.5	
$42_{-0.05}^{0}$	10	23	9.5	9.5	15	40	4.5x8x4.5	6,579	9,085	62.5	306.5	62.5	306.5	192.60	126.0	2886
								9,076	14,384	147.8	680.6	147.8	680.6	304.94	183.6	

1N=0.102kgf

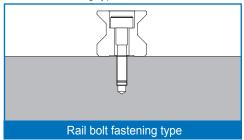
7. Roller Linear Motion Guide R Series

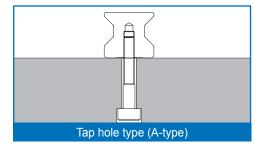
1) Structure of R Series

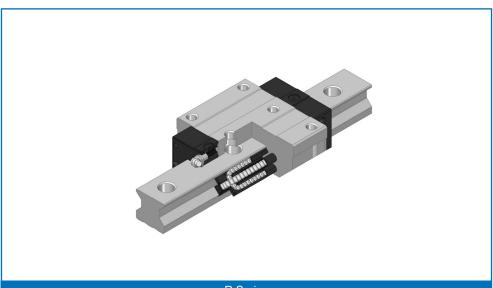

WON Linear Motion Guide R Series uses rollers as a rolling element between the raceway surface of a rail and a block and its four-row cylindrical roller forms a contact angle of 45° which bears equal load for vertical tensile compression load and horizontal load.

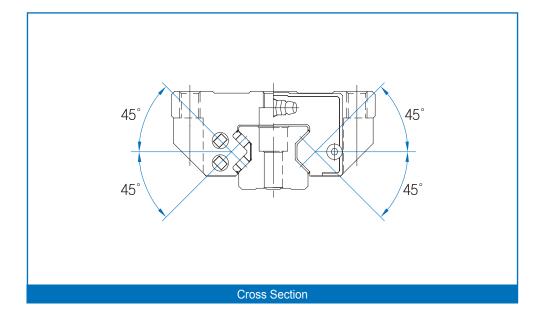

A roller used as a rolling element has less elastic displacement than a ball so it has small displacement for external load. Also the contact area with the roller is wide so that it has advantages such as high rigidity, bearing against big load, long life, impact resistance and wear resistance as well as less friction resistance that supports smooth motion and guite running.

Moreover if the roller is preloaded, it can enhance the rigidity of Linear Motion guide.


2) Features of R Series

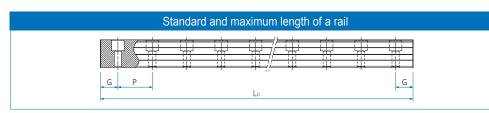

- a. High quality and very effective in realizing high precision and elimination of labor
- b. High rigidity and high precision which can realize the stable travel for a long time
- c. Great wear resistance and friction resistance which ensures a long life
- d. High rigidity and overload capacity compared to ball types of the same model no.
- e. Excellent vibration resistance since it has less displacement against impact load or variable load than ball types and vibration decay time is shorter compared to natural frequency.
- f. Bigger basic static load rating than ball-type Linear Motion guide with the same specifications allows the compact design using smaller model no. than ball types. If same model no. is used, it achieves longer life due to bigger load rating.
- g. Various specification for easy design

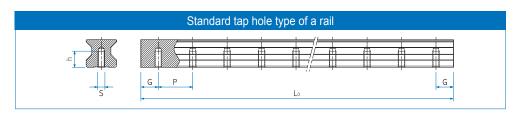

Rail bolt fastening type



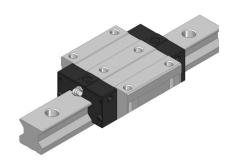
Roller Linear Motion Guide R Series

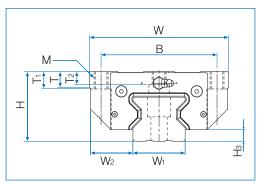
R Series



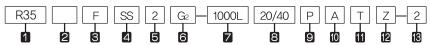

Types and Features

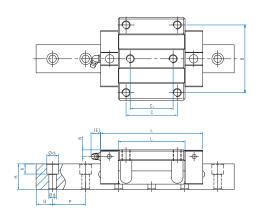
Types and		 01 0	
Category	Type	Shape & Features	
Flange	R-F	- With the tapped flange of a lock, it can be assembled both from bottom to top and from top to bottom - A 4-direction equal load type with high rigidity and high load	Machine tool, CNC machining
type	R-FL	- Having the roller contact structure and the cross section identical to those of S-F Series, it increased load rating by extending the whole length (L ₁) of Linear Motion guide block - A 4-direction equal load type with high rigidity and high load	center, CNC tapping center, NC milling ma- chine, boring machine, multiple machin- ing center,
Compact	R-R	 With the tapped top side of a block, a compact type that the width of Linear Motion guide block is minimized A 4-direction equal load type with high rigidity and high load 	planer miller, large injection machine, heavy-duty cutting machine, wire-cut penta- hedral processing center, display test equip-
type	R-RL	- Having the cross section identical to that of H-R Series, it increased load rating by extending the whole length (L ₁) of Linear Motion guide block - A 4-direction equal load type with high rigidity and high load	ment


Model No.	35	45	55
	280	570	780
	520	885	900
	920	1095	1140
	1240	1305	1380
Standard	1400	1515	1620
length			:
	1960	2040	2100
	2360	2460	2580
	2840	2985	3060
		3090	
Standard pitch P	40	52.5	60
G	20	22.5	30
Max. length		4000	



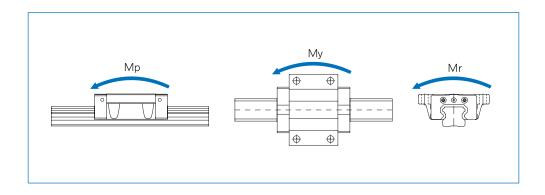
Model No.	S	h(mm)
R35	M8	17
R45	M12	24
R55	M14	24


R-F Series, R-FL Series

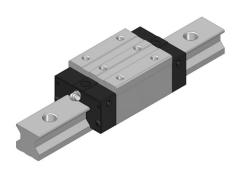

Model	Extern	al dime	nsions					Dime	nsions	of blo	ock					
No.	Height H	Width W	Length L	В	С	C ₂	М	S	L ₁	Т	T ₁	T ₂	N	Ε	Grease nipple	Нз
R 35F	48	100	125.1	82	62	52	M10	8 <u>.</u> 5	82 <u>.</u> 5	12	13	8	8	12	B-M6F	7
R 35FL	48	100	152 <u>.</u> 1	82	62	52	M10	8 <u>.</u> 5	109.5	12	13	8	8	12	B-M6F	7
R 45F	60	120	154.4	100	80	60	M12	10 <u>.</u> 5	106.6	13.5	15	11	10	16	B - PT 1/8	10
R 45FL	60	120	189.4	100	80	60	M12	10.5	141.6	13.5	15	11	10	16	B-PT 1/8	10
R 55F	70	140	181 <u>.</u> 6	116	95	70	M14	12 <u>.</u> 5	127 <u>.</u> 8	17 <u>.</u> 5	18	13.5	11	16	B-PT 1/8	10
R 55FL	70	140	229 <u>.</u> 6	116	95	70	M14	12.5	175.8	17.5	18	13.5	11	16	B - PT 1/8	10

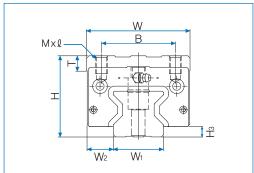
Composition of Model No.

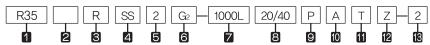
- 1 Model No. of Linear Motion Guide
- 2 Type of block : No symbol-Roller type
- Form of block: R-Rectangular standard type / RL-Rectangular long type / F-Flange standard type / FL-Flange long type
- Type of seal: UU-End seal / SS-End seal + Inside seal / ZZ-End seal + Inside seal + Metal scraper (*1)
- Number of blocks combined in 1 rail
- Symbol of clearance: No symbol-Normal preload / G1-Light preload / G2-Heavy preload / Gs-Special preload (*2)
- Z Length of rail
- 8 Size of G value: standard G value has no symbol.
- Symbol of precision: No symbol-Moderate precision / H-High precision / P-Precision / SP-Super Precision / UP-Ultra Precision (*3)
- No symbol-Rail counter bore type (A topside assembly) / A- Rail tap hole type (an underside assembly) (*4)
- 11 Connection symbol
- Special symbol
- Number of axis used on the same surface
 - (*1) See P97 Symbol List of Optional Parts (*2) See P17 Radial Clearance
 - (*3) See P24 Selection of Precision Class (*4) See P91 The reference for standard tap hole type of a rail

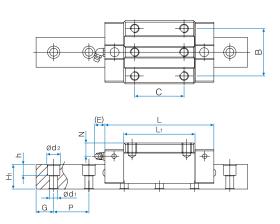


Unit: mm


		Dime	nsion	s of R	ail	Basic lo	ad rating	Stat	ic allowa	ance mo	oment kl	V·m	Mass	
Width		Heigh	Value	Pitch	طیده امید ام	С	Со	N	l p	N	1 y	Mr	Block	Rạil
W1 ±0.05	W2	H ₁	G		d1 x d2 x h	kN	kN		2(contact)		2(contact)		kg	kg/m
34	33	31	20	40	9x14x12	50.7	121.5	1.772	8.919	1.772	8.919	2.606	1.703	6.27
34	33	31	20	40	9x14x12	63 <u>.</u> 5	162.0	3.136	14.985	3,136	14,985	3 <u>.</u> 475	2,263	6 <u>.</u> 27
45	37 <u>.</u> 5	38	22.5	52.5	14×20×17	82 <u>.</u> 3	210.0	3 <u>.</u> 957	19.380	3.957	19,380	5 <u>.</u> 652	3.19	10.193
45	37.5	38	22.5	52.5	14×20×17	102.9	280.0	7.009	32,771	7.009	32,771	7.536	4.266	10.193
53	43.5	43.5	30	60	16x23x20	114.8	283.5	6,406	31.061	6.406	31.061	9.364	5.393	13.37
53	43.5	43.5	30	60	16x23x20	147 <u>.</u> 5	391.6	12,168	56.12	12,168	56,121	12,931	7 <u>.</u> 5	13,37

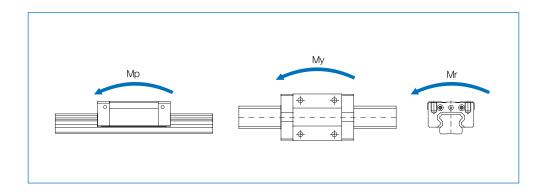

1N=0,102kgf


R-R Series, R-RL Series


Model	Exterr	nal dime	nsions			Dimensi	ons of	block				
No.	Height H	Width W	Length L	В	С	Μ×ℓ	L ₁	Т	N	Е	Grease nipple	Нз
R 35R	55	70	125.1	50	50	M8 x 12	82 <u>.</u> 5	10.3	15	12	B-M6F	7
R 35RL	55	70	152.1	50	72	M8 x 12	109.5	10.3	15	12	B-M6F	7
R 45R	70	86	154.4	60	60	M10 x 20	106.6	24 <u>.</u> 5	20	16	B - PT 1/8	10
R 45RL	70	86	189.4	60	80	M10 x 20	141.6	24.5	20	16	B-PT 1/8	10
R 55R	80	100	181.6	75	75	M12 x 18	127.8	27 <u>.</u> 5	22	16	B-PT 1/8	10
R 55RL	80	100	229 <u>.</u> 6	75	95	M12 x 18	175.8	27.5	22	16	B-PT 1/8	10

Composition of Model No.

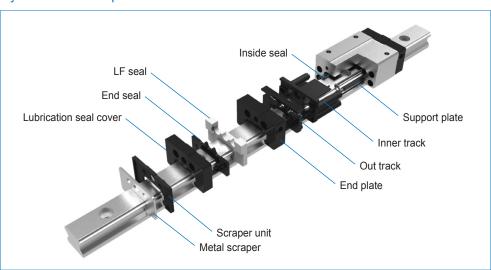
- 1 Model No. of Linear Motion Guide
- 2 Type of block : No symbol-Roller type
- Form of block: R-Rectangular standard type / RL-Rectangular long type / F-Flange standard type / FL-Flange long type
- 4 Type of seal: UU–End seal / SS–End seal + Inside seal / ZZ–End seal + Inside seal + Metal scraper (*1)
- Number of blocks combined in 1 rail
- Symbol of clearance: No symbol-Normal preload / G1-Light preload / G2-Heavy preload / Gs-Special preload (*2)
- Z Length of rail
- 8 Size of G value: standard G value has no symbol.
- Symbol of precision: No symbol-Moderate precision / H-High precision / P-Precision / SP-Super Precision / UP-Ultra Precision (*3)
- No symbol–Rail counter bore type (A topside assembly) / A– Rail tap hole type (an underside assembly) (*4)
- 11 Connection symbol
- 12 Special symbol
- 13 Number of axis used on the same surface
 - (*1) See P97 Symbol List of Optional Parts (*2) See P17 Radial Clearance
 - (*3) See P24 Selection of Precision Class (*4) See P91 The reference for standard tap hole type of a rail



Unit: mm

	ا	Dimer	nsions	of Ra	ail	Basic load rating Static allowance moment kN·m							Mass	
Width		Heigh	Value	Pitch		С	Со	N	Л р	N	1y	Mr	Block	Rail
W1 ±0.05	W2	H ₁	G		d1 x d2 x h	kN	kN		2(contact)		2(contact)		kg	kg/m
34	18	31	20	40	9x14x12	50.7	121 <u>.</u> 5	1,772	8,919	1,772	8 <u>.</u> 919	2,606	1,179	6 <u>.</u> 27
34	18	31	20	40	9x14x12	63 <u>.</u> 5	162.0	3,136	14.985	3,136	14.985	3.475	2,263	6 <u>.</u> 27
45	20.5	38	22.5	52.5	14×20×17	82 <u>.</u> 3	210.0	3.957	19,380	3.957	19.380	5,652	3,103	10.193
45	20.5	38	22.5	52.5	14×20×17	102.9	280.0	7.009	32,771	7.009	32,771	7.536	4.08	10.193
53	23.5	43.5	30	60	16x23x20	114.8	283.5	6.406	31,061	6,406	31,061	9,364	4,723	13 <u>.</u> 37
53	23.5	43.5	30	60	16x23x20	147.5	391.6	12,168	56,121	12,168	56,121	12,931	6.466	13 <u>.</u> 37

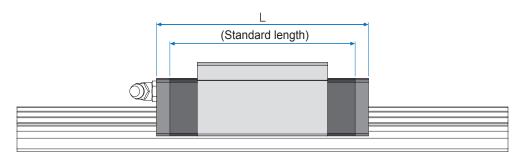
1N=0.102kgf


13 Options

1. Seal and Rail Cap

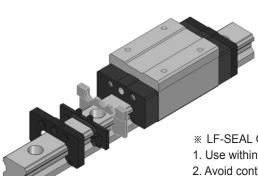
Item	Place to attach seal	Applications
End seal	End seal Wrench bolt	- Where dust or particle is frequently generated
Inside seal	Inside seal	- Where foreign substance can be easily accessed from the flank or bottom - Where Linear Motion guide is moving in a vertical, horizontal, and reverse direction - Where a lot of cutting chips or foreign substance present - Where there is a danger in the intrusion of cutting chips or foreign substances into the block
Metal scraper	Metal scraper	Where spatters may arise such as welding slag or metal powers
LF seal	LF seal	- Use within the maximum operating temperature of 40°C. - Avoid contact with organic solvents, such as thinner or milky white oil. - During the initial use of the LF-SEAL, the rolling resistance may increase. - LF-SEAL (1EA) should use both sides of each block.
Rail cap		If foreign substance enters into the bolt holes in a rail, it may intrude even into the block. A metal or plastic cap is used to prevent it. C: plastic material railcap MC: metal material railcap railcap for each part no in the catalog is available.

Symbol List of Optimal Parts


Symbol	Optional parts
UU	End seal
SS	End seal + Inside seal
ZZ	End seal + Inside seal + Metal scraper
UULF	End seal + LF seal
SSLF	End seal + Inside seal + LF seal
ZZLF	End seal + Inside seal + Metal scraper + LF seal

Option Mapping Table by Model No.

Cymbol	Ball Linear Motion Guide	Miniature Linear Motion Guide	Roller Linear Motion Guide
Symbol	H Series / S Series	M / MB Series	R Series
UU	0	0	-
SS	0	_	_
ZZ	0	_	0
UULF	0	0	_
SSLF	0	_	_
ZZLF	0	_	-



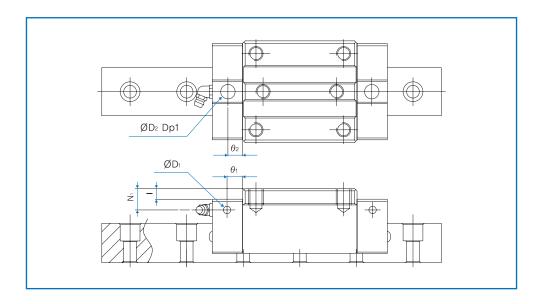
The installation option table of Linear Motion Guide way

	Symbol	Standard	L					
бунівої		length	UU	SS	ZZ	UULF	SSLF	ZZLF
	15F/R/SF/SR	57	57	57	63.7	69	69	75.7
	15FL/RL/SFL/SRL	65.3	65.3	65.3	72	77.3	77.3	84
	20F/R/SF/SR	72.7	72.7	72.7	81.4	84.7	84.7	93.4
	20FL/RL/SFL/SRL	88.6	88.6	88.6	97.3	100.6	100.6	109.3
	25F/R/SF/SR	83	83	83	91.7	95	95	103.7
	25FL/RL/SFL/SRL	102.9	102.9	102.9	111.6	114.9	114.9	123.6
Н	30F/R/SF/SR	97.8	97.8	97.8	107.7	111.8	111.8	121.7
П	30FL/RL/SFL/SRL	120	120	120	129.9	134	134	143.9
	35F/R/SF/SR	110	110	110	120	124	124	134
	35FL/RL/SFL/SRL	135.4	135.4	135.4	145.4	149.4	149.4	159.4
	45F/R/SF/SR	139	139	139	148.9	154	154	163.9
	45FL/RL/SFL/SRL	170.8	170.8	170.8	180.7	185.8	185.8	195.7
	55F/R/SF/SR	163	163	163	172.9	179	179	188.9
	55FL/RL/SFL/SRL	201.1	201.1	201.1	211	217.1	217.1	227
	15C/CF/SC/SCF	40.2	40.2	40.2	46.9	52.2	52.2	58.9
	15R/F/SR/SF	56.9	56.9	56.9	63.6	68.9	68.9	75.6
S	20C/CF/SC/SCF	47.2	47.2	47.2	55.9	59.2	59.2	67.9
0	20R/F/SR/SF	66.3	66.3	66.3	75	78.3	78.3	87
	25C/CF/SC/SCF	59.1	59.1	59.1	67.8	71.1	71.1	79.8
	25R/F/SR/SF	83	83	83	91.7	95	95	103.7
	25SR	83	83	83	91.7	95	95	103.7
	25SRL	102.9	102.9	102.9	111.6	114.9	114.9	123.6
HS	30SR	97.8	97.8	97.8	107.7	111.8	111.8	121.7
ПО	30SRL	120	120	120	129.9	134	134	143.9
	35SR	110	110	110	120	124	124	134
	35SRL	135.4	135.4	135.4	145.4	149.4	149.4	159.4

- *** LF-SEAL General Precautions**
- 1. Use within the maximum operating temperature of 40℃.
- 2. Avoid contact with organic solvents, such as thinner or milky white oil.
- 3. During the initial use of the LF-SEAL, the rolling resistance may increase.
- 4. LF-SEAL (1EA) should use both sides of each block.

- 1	Jni	٠.	m	m
·	וווי	ι.	- 111	

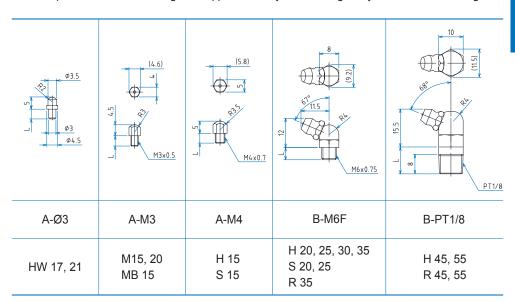
Symbol		Standard		
		length	UU	UULF
	5C	17	17	21.4
	5N	20	20	24.4
	5NA	20	20	24.4
	7C	19.8	19.8	24.8
	7N	24.3	24.3	29.3
	7L	31.8	31.8	36.8
	7LA	31.8	31.8	36.8
	9C	22.4	22.4	27.4
	9N	31.3	31.3	36.3
N 4	9L	41.4	41.4	46.4
М	9LA	41.4	41.4	46.4
	12C	26.4	26.4	32.4
	12N	34.9	34.9	40.9
	12L	45.4	45.4	51.4
	15C	34.4	34.4	41.4
	15N	44.4	44.4	51.4
	15L	59.4	59.4	66.4
	20C	39.8	39.8	46.8
	20N	51.8	51.8	58.8
	20L	69.8	69.8	76.8


 Standard	

The length of th	Symbol		Standard	L		
5N 25 25 29.4 7C 24 24 29 7N 33 33 38 7L 43.5 43.5 48.5 9C 28.1 28.1 33.1 9N 40.2 40.2 45.2 9L 52 52 57 MB 12C 31.1 31.1 37.1 12N 44.5 44.5 50.5 13C 35.3 35.3 35.3 42.3			length	UU	UULF	
7C 24 24 29 7N 33 33 38 7L 43.5 43.5 48.5 9C 28.1 28.1 33.1 9N 40.2 40.2 45.2 9L 52 52 57 MB 12C 31.1 31.1 37.1 12N 44.5 44.5 50.5 13C 35.3 35.3 35.3 42.3		5C	21	21	25.4	
7N 33 33 38 7L 43.5 43.5 48.5 9C 28.1 28.1 33.1 9N 40.2 40.2 45.2 9L 52 52 57 MB 12C 31.1 31.1 37.1 12N 44.5 44.5 50.5 13C 35.3 35.3 42.3		5N	25	25	29.4	
7L 43.5 43.5 48.5 9C 28.1 28.1 33.1 9N 40.2 40.2 45.2 9L 52 52 57 MB 12C 31.1 31.1 37.1 12N 44.5 44.5 50.5 13C 35.3 35.3 42.3		7C	24	24	29	
9C 28.1 28.1 33.1 9N 40.2 40.2 45.2 9L 52 52 57 MB 12C 31.1 31.1 37.1 12N 44.5 44.5 50.5 13C 35.3 35.3 42.3		7N	33	33	38	
9N 40.2 40.2 45.2 9L 52 52 57 MB 12C 31.1 31.1 37.1 12N 44.5 44.5 50.5 13C 35.3 35.3 42.3		7L	43.5	43.5	48.5	
MB 12C 31.1 31.1 37.1 12N 44.5 44.5 50.5 13C 35.3 35.3 42.3		9C	28.1	28.1	33.1	
MB 12C 31.1 31.1 37.1 12N 44.5 44.5 50.5 13C 35.3 35.3 42.3		9N	40.2	40.2	45.2	
12N 44.5 44.5 50.5 13C 35.3 35.3 42.3		9L	52	52	57	
13C 35.3 35.3 42.3	MB	12C	31,1	31.1	37.1	
		12N	44.5	44.5	50.5	
13N 49 2 49 2 56 2		13C	35.3	35.3	42.3	
1011 1012 1012		13N	49.2	49.2	56.2	
13L 68.6 68.6 75.6		13L	68.6	68.6	75.6	
12L 59.7 59.7 65.7		12L	59.7	59.7	65.7	
15C 42.8 42.8 49.8		15C	42.8	42.8	49.8	
15N 56.6 56.6 63.6		15N	56.6	56.6	63.6	
15L 75.8 75.8 82.8		15L	75.8	75.8	82.8	

2. Oil Filler

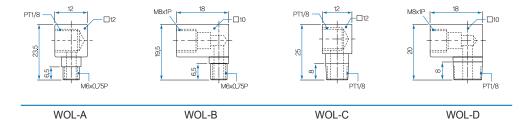
Fuelling on the side and top is available in R Series. The standard specification does not include the oil filler that penetrates the block of Linear Motion guide to protect it from foreign substance. Therefore, if you have a request, please contact WON ST.

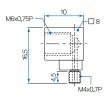


Model No.		Hole for a side nipple			Top oil filler			
		θ1	N ₁	D ₁	D ₂	(O-ring)		θ2
	35F(L)	10.4	8	5.2	10.7	S7	0.4	11
	35R(L)	10.4	15	5.2	10.7	S7	7.4	11
R	45F(L)	10.4	10	5.2	10.7	S7	0.4	11
K	45R(L)	10.4	20	5.2	10.7	S7	10.4	11
	55F(L)	12.5	11	5.2	10.7	S7	0.4	11
	55R(L)	12.5	21	5.2	10.7	S7	10.4	11

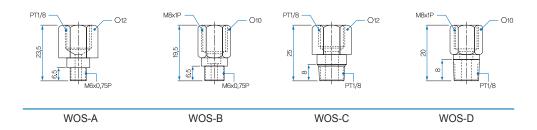
3. Grease Nipple

WON ST provides various kinds of grease nipple necessary for lubricating the system of Linear Motion guide.




	rease nipple model no.	A - Ø3	A-M3	A-M4		B-M6F		B-PT1/8
	Application model no.	HW 17, 21	M 15, 20 MB 13, 15	H 15 S 15	H 20, 25 S 20, 25	H 30, 35	HW 27, 35	H 45, 55
Thre	Standard	4	4.2	4	5	5	5	8
Thread (L)	ZZ	-	-	6	7	7	-	11
-) Ler	LF	9	7.7	10	10	12	12	15.5
Length	LF + ZZ	-	-	12	12	14.5	-	18

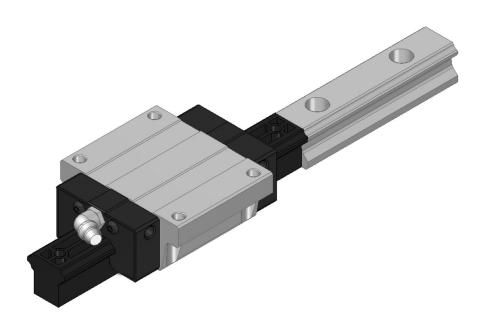
4. Connection of oil pipes


WOL Type

WOL-E

WOS Type

5. How to install Linear Motion guide using a support rail


Linear Motion guide block should be inserted into or removed from the rail using a support rail for safety.

If you install the block in the rail without using the support rail, a rolling element may deviate from the block and damage or destroy the parts inside.

If the block without a rolling element is installed, it may significantly shorten the block's life and lead to load reduction and early breakage.

If you use the support rail, do not lean it. Adhere it to the end of the rail and slowly apply force to assemble it.

If the block is contaminated by dust as the rolling element is deviated from it, please do not use the product and contact WON ST for advice.

14 Instructions for Handling

1. Handling

- 1) The packaged WON Linear Motion guide is damp-proof after grease removal and cleaning, so please open it just before use.
- 2) The rail-block compatible product is fitted with a plastic support rail. Please take caution when assembling it with the rail.
- 3) If you reassemble a block-rail set product or a single block product after dismantling it into pieces, foreign substance may intrude into the block, decreasing performance to make rolling motion unsmooth or damaged. So please do not disassemble it.
- 4) If either a rail or a block leans to one side, the block or the rail may fall to be damaged. Please take caution and avoid the deviation of the block or the rail.
- 5) The end plate may be damaged if impact is applied since it is made of plastic material. Please be careful.

2. Lubrication

- 1) If the product is supplied as it is applied by rust preventive oil, please clean it off thoroughly and fill lubricant prior to use.
- 2) Do not mix it with other lubricants such as thickener or additive. If so, it may destroy the structure of grease or cause a harmful effect.
- 3) Viscosity of grease may vary depending on temperature and increase in winter due to low temperature, and the friction resistance of Linear Motion guide may increase.
- 4) In case of using special lubricant, please contact WON in advance.
- 5) In case of using oil lubricant, it may not reach the hole of raceway depending on the assembly status or direction of a block and a rail, so no lubricating effect may be obtained. WON can offer the lubricating method suitable for each assembly environment so please contact WON.

3. Caution for Use

- 1) After opening the product, please put damp-proof agent inside the dry container for storage.
- 2) Please handle the product after wearing plastic gloves in a clean place.
- 3) Please be careful to protect it from foreign substance which may inhibit rolling motion or damage function.
- 4) Please protect it using a holding door or cover to prevent Linear Motion guide exposed directly to poor environment that may cause corrosion or damage.
- 5) In case of using standard plastic end plate-based Linear Motion guide, use it at under 80°C. To use it at higher temperature than 80°C, please order a metal end plate which will specially customized.
- 6) If the rail of Linear Motion guide is fixed at the ceiling or in high place and if the block bears load downwards, the end plate may be destroyed or a ball may come off from the rail resulting in the fall of the block and fixtures. So please take a measure to install a safety device.

Storage

Depending on storage conditions, a rail may warp. For storage, place it in a horizontal position in the package box provided by WON or in a similar box with the flat bottom and avoid the environments where temperature is too high or low and very humid.

Cause and Countermeasure of Damage of Linear Motion Guide

	Condition	Cause	Countermeasures
		Damage by life	Change Linear Motion guide
Fatigue failure on the rolling	Flaking Caused by rolling fatigue on the rolling surface Maximum shear stress-induced internal	Overload	Reconsider the model no. selected, use higher model no, lower the load level, reinforce the assembly precision during installation, enhance the rigidity of base and table
surface	cracks are expressed on the surface.	Poor lubrication	Refill lubricant, shorten the refilling interval of lubricant, review the relevance of lubricant in use, improve the lubricant passage
Indentation of the rolling	Indentation Plastic deformation on the rolling sur-	Impact load or excessive external load	Reconsider the model no. selected, lower the load level, reinforce the assembly precision during installation, use the higher model no.
surface	face due to excessive external load	Careless handling	Prevent impact and fall during handling Improve handling method and environment
0.1.1	Burn Rough surface of the rolling surface due to slight burning by friction between a rolling element and	Poor lubrication	Refill lubricant, use the optimal lubricant, improve the lubrication method
Seizing	the rolling surface - Cause for the discoloration of the rolling surface, weakened hardness, and flaking	Overload	Review the service conditions, lower the load level, use the higher model no. enhance the assembly precision during installation
	Cracking Partial breaking into pieces of a rolling element or rolling surface due to excessive external load	Impact load or excessive external load	Reconsider the model no. selected, use the higher model no. lower the load level, enhance the assembly precision during installation
Cracking		Poor raceway circulation of a rolling element	Prevent the intrusion of foreign substance, develop a dust proof measure, refill lubricant, shorten the refilling interval of lubricant, improve the lubrication method
	Abnormal wear Rapid increase in wear as the slippery between a rolling element and the rolling surface Cause for failure in precision and preload as companied by oxidation wear	Excessive load or excessive eccentric load	Reconsider the model no. selected, use the higher model no., lower the load level, enhance the assembly precision during installation
Abnormal		Foreign	Complement the performance of seal, develop a dust proof measure
wear		substance	Refill lubricant, use the optimal lubricant, improve the lubrication method, improve the lubricant passage
Flatting	Vibration - Wear facilitated by the loss of oil film	Load	Review the service conditions, use the higher model no., enhance the assembly precision during installation
Flatting corrosion	during the running of vibrant stroke and the slippery between a rolling element	Vibration	Improve the transport condition, change lubricant, improve the lubrication method, shorten the refilling interval of lubricant
	and the rolling element	Foreign substance	Complement the performance of seal, develop a dust proof measure
Rust	 Rust Caused by the loss of oil film or contact of exposed part to water, acid, alkali 	Intrusion of cooling water	Make a rust-preventive treatment onto the surface, complement the performance of seal, change lubricant, change cooling agent, refill lubricant, shorten the refilling interval of lubricant
prevention	and especially when cooling water	High humidity	Make a rust-preventive treatment onto the surface, improve environment
	enters into the block; cause for early flaking due to concentrated stress	Poor handling	Improve the condition of storage, reinforce the sealing performance, apply sufficient amount of rust-preventive oil

<Comparison Table of Full-Ball Type Model No. of Other Manufacturers>

1. H Series(Standard Type)

WON	THK	NSK	PMI	HIWIN
H 15F H 15FL	HSR 15A, B	LH 15EL, EM LH 15GL, GM	MSA 15A	HGW 15CA
H 20F	HSR 20A, B	LH 20EL, EM	MSA 20A	HGW 20CA
H 20FL	HSR 20LA, LB	LH 20GL, GM	MSA 20LA	HGW 20HA
H 25F	HSR 25A, B	LH 25EL, EM	MSA 25A	HGW 25CA
H 25FL	HSR 25LA, LB	LH 25GL, GM	MSA 25LA	HGW 25HA
H 30F	HSR 30A, B	LH 30EL, EM	MSA 30A	HGW 30CA
H 30FL	HSR 30LA, LB	LH 30GL, GM	MSA 30LA	HGW 30HA
H 35F	HSR 35A, B	LH 35EL, EM	MSA 35A	HGW 35CA
H 35FL	HSR 35LA, LB	LH 35GL, GM	MSA 35LA	HGW 35HA
H 45F	HSR 45A, B	LH 45EL, EM	MSA 45A	HGW 45CA
H 45FL	HSR 45LA, LB	LH 45GL, GM	MSA 45LA	HGW 45HA
H 55F	HSR 55A, B	LH 55EL, EM	MSA 55A	HGW 55CA
H 55FL	HSR 55LA, LB	LH 55GL, GM	MSA 55LA	HGW 55HA
H 15R H 15RL	HSR 15R	LH 15AN, AL LH 15BL, BL	MSA 15S	HGH 15CA
H 20R	HSR 20R	LH 20AN, AL	MSA 20S	HGH 20CA
H 20RL	HSR 20LR	LH 20BN, BL	MSA 20LS	HGH 20HA
H 25R	HSR 25R	LH 25AN, AL	MSA 25S	HGH 25CA
H 25RL	HSR 25LR	LH 25BN, BL	MSA 25LS	HGH 25HA
H 30R	HSR 30R	LH 30AN, AL	MSA 30S	HGH 30CA
H 30RL	HSR 30LR	LH 30BN, BL	MSA 30LS	HGH 30HA
H 35R	HSR 35R	LH 35AN, AL	MSA 35S	HGH 35CA
H 35RL	HSR 35LR	LH 35BN, BL	MSA 35LS	HGH 35HA
H 45R	HSR 45R	LH 45AN, AL	MSA 45S	HGH 45CA
H 45RL	HSR 45LR	LH 45BN, BL	MSA 45LS	HGH 45HA
H 55R	HSR 55R	LH 55AN, AL	MSA 55S	HGH 55CA
H 55RL	HSR 55LR	LH 55BN, BL	MSA 55LS	HGH 55HA

2. HW Series(Standard Wide body Type)

WON	THK	NSK	PMI	PMI	HIWIN
HW 17F	HRW 17CA	LW 17EL	-	WEW 17CC	LWFF 33
HW 21F	HRW 21CA	LW 21EL	MSG 21E	WEW 21CC	LWFF 37
HW 27F	HRW 27CA	LW 27EL	MSG 27E	WEW 27CC	LWFF 42
HW 35F	HRW 35CA	LW 35EL	MSG 35E	WEW 35CC	LWFF 69
HW 17R	HRW 17CR	-	-	WEH 17CA	LWFF 33
HW 21R	HRW 21CR	_	MSG 21S	WEH 21CA	LWFF 37
HW 27R	HRW 27CR	-	MSG 27S	WEH 27CA	LWFF 42
HW 35R	HRW 35CR	-	MSG 35S	WEH 35CA	_

3. S Series(Slim Type)

WON	THK	NSK	PMI	HIWIN
S 15C	SR 15V	LS 15CL	MSB 15TS	EGH 15SA
S 15R	SR 15W	LS 15AL	MSB 15S	EGH 15CA
S 20C	SR 20V	LS 20CL	MSB 20TS	EGH 20SA
S 20R	SR 20W	LS 20AL	MSB 20S	EGH 20CA
S 25C	SR 25V	LS 25CL	MSB 25TS	EGH 25SA
S 25R	SR 25W	LS 25AL	MSB 25S	EGH 25CA
S 15CF	SR 15SB	LS 15EM	MSB 15TE	EGW 15CA
S 15F	SR 15TB	LS 15JM	MSB 15E	EGW 15CB
S 20CF	SR 20SB	LS 20EM	MSB 20TE	EGW 20CA
S 20F	SR 20TB	LS 20JM	MSB 20E	EGW 20CB
S 25CF	SR 25SB	LS 25EM	MSB 25TE	EGW 25CA
S 25F	SR 25TB	LS 25JM	MSB 25E	EGW 25CB

4. M Series(Miniature Standard Type)

WON	THK	NSK	PMI	HIWIN	IKO
M 5C	SRS 5GM	–	-	MGN 5C	LWLC 5
M 5N	SRS 5GN	LU 05TL	-	-	LWL 5
M 7C	SRS 7GS	-	–	–	LWLC 7
M 7N	SRS 7GM	LU 07AL	MSC 7M	MGN 7C	LWL 7
M 7L	SRS 7GN	-	MSC 7LM	MGN 7H	LWLG 7
M 9C	SRS 9GS	–	–	-	LWLC 9
M 9N	SRS 9GM	LU 09TL	MSC 9M	MGN 9C	LWL 9
M 9L	SRS 9GN	LU 09UL	MSC 9LM	MGN 9H	LWLG 9
M 12C	SRS 12GS	–	–	–	LWLC 12
M 12N	SRS 12GM	LU 12TL	MSC 12M	MGN 12C	LWL 12
M 12L	SRS 12GN	LU 12UL	MSC 12LM	MGN 12H	LWLG 12
M 15C	SRS 15GS	–	–	–	LWLC 15
M 15N	SRS 15GM	LU 15AL	MSC 15M	MGN 15C	LWL 15
M 15L	SRS 15GN	LU 15BL	MSC 15LM	MGN 15H	LWLG 15
M 20C	-	-	-	-	LWLC 20
M 20N	SRS 20GM	-	-	-	LWL 20
M 20L	-	-	-	-	LWLG 20

5. MB Series(Miniature Wide body Type)

WON	THK	NSK	PMI	HIWIN	IKO
MB 5C	SRS 5WGM	_	-	-	LWLFC 10
MB 5N	SRS 5WGN	LE 05AL	-	_	LWLF 10
MB 7C	SRS 7WGS	_	-	_	LWLFC 14
MB 7N	SRS 7WGM	LU 07TL	MSD 7M	MGW 7C	LWLF 14
MB 7L	SRS 7WGN	_	MSD 7LM	MGW 7H	LWLFG 14
MB 9C	SRS 9WGS	_	-	_	LWLFC 18
MB 9N	SRS 9WGM	LE 09TL, TR	MSD 9M	MGW 9C	LWLF 18
MB 9L	SRS 9WGN	_	MSD 9LM	MGW 9H	LWLFG 18
MB 12C	SRS 12WGS	_	-	_	LWLFC 24
MB 12N	SRS 12WGM	LE 12AL, AR	MSD 12M	MGW 12C	LWLF 24
MB 12L	SRS 12WGN	_	MSD 12LM	MGW 12H	LWLFG 24
MB 15C	SRS 15WGS	_	_	_	LWLFC 42
MB 15N	SRS 15WGM	LE 15AL, AR	MSD 15M	MGW 15C	LWLF 42
MB 15L	SRS 15WGN	_	MSD 15LM	MGW 15H	LWLFG 42

<Comparison Table of Spacer Chain type No. of Other Manufacturers>

1. H-S Series (Standard type)

(
WON	THK	NSK	PMI	HIWIN
H 15SF	SHS 15C	SH 15FL	SME 15EA	QHW 15CA
H 15SFL	SHS 15LC	SH 15HL	SME 15LEA	- OLIMA 2000A
H 20SF H 20SFL	SHS 20C SHS 20LC	SH 20FL SH 20HL	SME 20EA SME 20LEA	QHW 20CA QHW 20HA
H 25SF	SHS 25C	SH 25FL	SME 25EA	QHW 25CA
H 25SFL	SHS 25LC	SH 25HL	SME 25LEA	QHW 25HA
H 30SF	SHS 30C	SH 30FL	SME 30EA	QHW 30CA
H 30SFL	SHS 30LC	SH 30HL	SME 30LEA	QHW 30HA
H 35SF	SHS 35C	SH 35FL	SME 35EA	QHW 35CA
H 35SFL	SHS 35LC	SH 35HL	SME 35LEA	QHW 35HA
H 45SF	SHS 45C	SH 45FL	SME 45EA	QHW 45CA
H 45SFL	SHS 45LC	SH 45HL	SME 45LEA	QHW 45HA
H 55SF	SHS 55C	SH 55FL	_	_
H 55SFL	SHS 55LC	SH 55HL	_	_
H 15SR	SHS 15R	SH 15AN	SME 15SA	QHH 15CA
H 15SRL	-	SH 15BN	SME 15LSA	-
H 20SR H 20SRL	SHS 20V SHS 20LV	SH 20AN SH 20BN	SME 20SA SME 20LSA	QHH 20CA QHH 20HA
H 25SR H 25SRL	SHS 25R SHS 25LR	SH 25AN SH 25BN	SME 25SA SME 25LSA	QHH 25CA QHH 25HA
H 30SR	SHS 30R	SH 30AN	SME 30SA	QHH 30CA
H 30SRL	SHS 30LR	SH 30BN	SME 30LSA	QHH 30HA
H 35SR	SHS 35R	SH 35AN	SME 35SA	QHH 35CA
H 35SRL	SHS 35LR	SH 35BN	SME 35LSA	QHH 35HA
H 45SR	SHS 45R	SH 45AN	SME 45SA	QHH 45CA
H 45SRL	SHS 45LR	SH 45BN	SME 45LSA	QHH 45HA
H 55SR	SHS 55R	SH 55AN	_	_
H 55SRL	SHS 55LR	SH 55BN	_	_

2. S-S Series (Slim type)

WON	THK	NSK	PMI	HIWIN
S 15SC	SSR 15XV	SS 15CL	SME 15EB	QEH 15SA
S 15SR	SSR 15XW	SS 15AL	SME 15LEB	QEH 15CA
S 20SC	SSR 20XV	SS 20CL	SME 20EB	QEH 20SA
S 20SR	SSR 20XW	SS 20AL	SME 20LEB	QEH 20CA
S 25SC	SSR 25XV	SS 25CL	SME 25EB	QEH 25SA
S 25SR	SSR 25XW	SS 25AL	SME 25LEB	QEH 25CA
S 15SCF	-	SS 15JM	SME 15SB	QEW 15SA
S 15SF	SSR 15XTB	SS 15EM	SME 15LSB	QEW 15CA
S 20SCF	-	SS 20JM	SME 20SB	QEW 20SA
S 20SF	SSR 20XTB	SS 20EM	SME 20LSB	QEW 20CA
S 25SCF	-	SS 25JM	SME 25SB	QEW 25SA
S 25SF	SSR 25XTB	SS 25EM	SME 25LSB	QEW 25CA

3. HS-S Series (Slim type)

WON	THK
HS 25SR	SHS 25V
HS 25SRL	SHS 25LV
HS 30SR	SHS 30V
HS 30SRL	SHS 30LV
HS 35SR	SHS 35V
HS 35SRL	SHS 35LV